Non-Markov models of single-molecule dynamics from information-theoretical analysis of trajectories

Whether single-molecule trajectories, observed experimentally or in molecular simulations, can be described using simple models such as biased diffusion is a subject of considerable debate. Memory effects and anomalous diffusion have been reported in a number of studies, but directly inferring such...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 159; no. 6
Main Authors Song, Kevin, Park, Raymond, Das, Atanu, Makarov, Dmitrii E., Vouga, Etienne
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 14.08.2023
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1089-7690
DOI10.1063/5.0158930

Cover

Loading…
Abstract Whether single-molecule trajectories, observed experimentally or in molecular simulations, can be described using simple models such as biased diffusion is a subject of considerable debate. Memory effects and anomalous diffusion have been reported in a number of studies, but directly inferring such effects from trajectories, especially given limited temporal and/or spatial resolution, has been a challenge. Recently, we proposed that this can be achieved with information-theoretical analysis of trajectories, which is based on the general observation that non-Markov effects make trajectories more predictable and, thus, more “compressible” by lossless compression algorithms. Toy models where discrete molecular states evolve in time were shown to be amenable to such analysis, but its application to continuous trajectories presents a challenge: the trajectories need to be digitized first, and digitization itself introduces non-Markov effects that depend on the specifics of how trajectories are sampled. Here we develop a milestoning-based method for information-theoretical analysis of continuous trajectories and show its utility in application to Markov and non-Markov models and to trajectories obtained from molecular simulations.
AbstractList Whether single-molecule trajectories, observed experimentally or in molecular simulations, can be described using simple models such as biased diffusion is a subject of considerable debate. Memory effects and anomalous diffusion have been reported in a number of studies, but directly inferring such effects from trajectories, especially given limited temporal and/or spatial resolution, has been a challenge. Recently, we proposed that this can be achieved with information-theoretical analysis of trajectories, which is based on the general observation that non-Markov effects make trajectories more predictable and, thus, more "compressible" by lossless compression algorithms. Toy models where discrete molecular states evolve in time were shown to be amenable to such analysis, but its application to continuous trajectories presents a challenge: the trajectories need to be digitized first, and digitization itself introduces non-Markov effects that depend on the specifics of how trajectories are sampled. Here we develop a milestoning-based method for information-theoretical analysis of continuous trajectories and show its utility in application to Markov and non-Markov models and to trajectories obtained from molecular simulations.
Whether single-molecule trajectories, observed experimentally or in molecular simulations, can be described using simple models such as biased diffusion is a subject of considerable debate. Memory effects and anomalous diffusion have been reported in a number of studies, but directly inferring such effects from trajectories, especially given limited temporal and/or spatial resolution, has been a challenge. Recently, we proposed that this can be achieved with information-theoretical analysis of trajectories, which is based on the general observation that non-Markov effects make trajectories more predictable and, thus, more "compressible" by lossless compression algorithms. Toy models where discrete molecular states evolve in time were shown to be amenable to such analysis, but its application to continuous trajectories presents a challenge: the trajectories need to be digitized first, and digitization itself introduces non-Markov effects that depend on the specifics of how trajectories are sampled. Here we develop a milestoning-based method for information-theoretical analysis of continuous trajectories and show its utility in application to Markov and non-Markov models and to trajectories obtained from molecular simulations.Whether single-molecule trajectories, observed experimentally or in molecular simulations, can be described using simple models such as biased diffusion is a subject of considerable debate. Memory effects and anomalous diffusion have been reported in a number of studies, but directly inferring such effects from trajectories, especially given limited temporal and/or spatial resolution, has been a challenge. Recently, we proposed that this can be achieved with information-theoretical analysis of trajectories, which is based on the general observation that non-Markov effects make trajectories more predictable and, thus, more "compressible" by lossless compression algorithms. Toy models where discrete molecular states evolve in time were shown to be amenable to such analysis, but its application to continuous trajectories presents a challenge: the trajectories need to be digitized first, and digitization itself introduces non-Markov effects that depend on the specifics of how trajectories are sampled. Here we develop a milestoning-based method for information-theoretical analysis of continuous trajectories and show its utility in application to Markov and non-Markov models and to trajectories obtained from molecular simulations.
Author Park, Raymond
Vouga, Etienne
Song, Kevin
Makarov, Dmitrii E.
Das, Atanu
Author_xml – sequence: 1
  givenname: Kevin
  surname: Song
  fullname: Song, Kevin
  organization: Department of Computer Science, University of Texas at Austin
– sequence: 2
  givenname: Raymond
  surname: Park
  fullname: Park, Raymond
  organization: 7Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
– sequence: 3
  givenname: Atanu
  surname: Das
  fullname: Das, Atanu
  organization: 7Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
– sequence: 4
  givenname: Dmitrii E.
  surname: Makarov
  fullname: Makarov, Dmitrii E.
  organization: 7Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
– sequence: 5
  givenname: Etienne
  surname: Vouga
  fullname: Vouga, Etienne
  organization: Department of Computer Science, University of Texas at Austin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37551804$$D View this record in MEDLINE/PubMed
BookMark eNp90UtLxDAUBeAgI874WPgHpOBGhWoeTZMsRXzBqBtdl0x6oxnTRpNWmH9vnRldiLjK5juHcO42GrWhBYT2CT4luGRn_BQTLhXDG2hCsFS5KBUeoQnGlOSqxOUYbac0xxgTQYstNGaCcyJxMUHmPrT5nY6v4SNrQg0-ZcFmybXPHvImeDC9h6xetLpxJmU2hiZzrQ2x0Z0bot0LhAidM9pnutV-kdyyoYt6DqYL0UHaRZtW-wR763cHPV1dPl7c5NOH69uL82luWCG7XImZpdgaXXBmNcy04ZZYIaSQTOoauBScAi1sXZoS16LgtDZaKcrMjJa1YDvoaNX7FsN7D6mrGpcMeK9bCH2qqCyEKBRTbKCHv-g89HH4_0pxxkkpB3WwVv2sgbp6i67RcVF9zzeA4xUwMaQUwf4Qgquv01S8Wp9msGe_rHHdcsRhK-f_TJysEulb_lP_CXYVnWw
CODEN JCPSA6
CitedBy_id crossref_primary_10_1073_pnas_2318333121
crossref_primary_10_1063_5_0218040
crossref_primary_10_1063_5_0247331
Cites_doi 10.1063/1.3666840
10.1021/ct900549r
10.1038/s41598-017-00287-5
10.1063/1.4773283
10.1109/tit.1977.1055714
10.1073/pnas.0806085105
10.1073/pnas.1714401115
10.1021/acs.jpcb.8b11137
10.1073/pnas.1722327115
10.1063/5.0127557
10.1021/jp309420u
10.1016/j.bpj.2021.02.045
10.1021/ma00070a025
10.1063/1.5016487
10.1073/pnas.97.13.7220
10.1063/1.4997584
10.1021/ct700200b
10.1073/pnas.2008307117
10.1063/1.472208
10.1073/pnas.0707378105
10.1021/acs.jpcb.8b07361
10.1016/s0031-8914(40)90098-2
10.1016/0370-1573(93)90012-3
10.1073/pnas.1616672114
10.1103/physrevlett.125.146001
10.1016/s0370-1573(00)00070-3
10.1063/5.0025785
10.1093/bioinformatics/btt055
10.1063/1.2408420
10.1021/acs.jpcb.8b06112
10.1073/pnas.1117368109
10.1063/1.166191
10.1103/physrevresearch.5.l012026
10.1063/5.0142166
10.1016/j.bpr.2021.100029
10.1016/j.xcrp.2021.100409
10.1021/acs.jpclett.8b00956
10.1209/0295-5075/ac35ba
10.1016/j.bpj.2010.11.017
10.1021/jp9059483
10.1063/1.3590108
10.1021/jp902291n
10.1073/pnas.96.17.9597
10.1063/1.5079742
10.1073/pnas.2023856118
10.1021/jp034285o
10.1021/jp500611f
10.1002/j.1538-7305.1948.tb01338.x
10.1063/1.3556750
10.1103/physrevx.11.041047
10.1021/jp982362n
10.1021/jp076510y
10.1021/acs.jpcb.0c10978
10.1063/1.4795838
10.1021/acs.jpcb.0c01437
10.1016/s0370-1573(01)00025-4
10.1103/physrevresearch.3.l022018
10.1063/1.4792206
10.1063/1.328693
10.1021/ct200086k
10.1103/physreve.76.061121
10.1063/1.439715
10.1063/1.4993228
10.1103/physrevlett.96.108101
10.1063/1.4940794
10.1039/c1cp21541h
ContentType Journal Article
Copyright Author(s)
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/5.0158930
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList PubMed
Technology Research Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 37551804
10_1063_5_0158930
jcp
Genre Journal Article
GrantInformation_xml – fundername: CSIR-NCL
– fundername: Welch Foundation
  grantid: F-1514
  funderid: https://doi.org/10.13039/100000928
– fundername: NSF IIS
  grantid: 2212048
– fundername: Adobe Systems
  funderid: https://doi.org/10.13039/100004344
– fundername: Division of Chemistry
  grantid: CHE 1955552
  funderid: https://doi.org/10.13039/100000165
GroupedDBID ---
-DZ
-ET
-~X
123
2-P
29K
4.4
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c348t-97bf20fca453faebac5f1f7787838ade58752e24fd6c60d7452dca9923cb26d73
ISSN 0021-9606
1089-7690
IngestDate Fri Jul 11 03:06:10 EDT 2025
Mon Jun 30 06:33:38 EDT 2025
Mon Jul 21 05:55:39 EDT 2025
Tue Jul 01 01:12:33 EDT 2025
Thu Apr 24 23:08:29 EDT 2025
Fri Jun 21 00:10:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Published under an exclusive license by AIP Publishing.
2023 Author(s). Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-97bf20fca453faebac5f1f7787838ade58752e24fd6c60d7452dca9923cb26d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4023-187X
0000-0003-0822-5274
0000-0002-8421-1846
0000-0003-4994-0469
0009-0003-8097-6109
PMID 37551804
PQID 2847535168
PQPubID 2050685
PageCount 13
ParticipantIDs scitation_primary_10_1063_5_0158930
proquest_journals_2847535168
crossref_primary_10_1063_5_0158930
proquest_miscellaneous_2847749393
pubmed_primary_37551804
crossref_citationtrail_10_1063_5_0158930
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230814
2023-08-14
2023-Aug-14
PublicationDateYYYYMMDD 2023-08-14
PublicationDate_xml – month: 08
  year: 2023
  text: 20230814
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Dudko, Hummer, Szabo (c5) 2008; 105
Thirumalai (c55) 1999; 103
Glatzel, Schilling (c15) 2021; 136
Parrinello, Rahman (c72) 1981; 52
Satija, Das, Muhle, Enderlein, Makarov (c18) 2020; 124
Toan, Morrison, Hyeon, Thirumalai (c59) 2008; 112
Shannon (c32) 1948; 27
Lapidus, Eaton, Hofrichter (c50) 2000; 97
Berezhkovskii, Szabo (c44) 2019; 150
Grossman-Haham, Rosenblum, Namani, Hofmann (c23) 2018; 115
Li, Yang, Komatsuzaki (c24) 2008; 105
Cheng, Makarov (c63) 2011; 134
Aviram, Pirchi, Barak, Riven, Haran (c8) 2018; 148
Lapolla, Godec (c14) 2020; 153
Zijlstra, Nettels, Satija, Makarov, Schuler (c28) 2020; 125
Makarov (c47) 2013; 138
Taylor, Pirchi, Haran, Komatsuzaki (c9) 2018; 148
Bjelkmar, Larsson, Cuendet, Hess, Lindahl (c70) 2010; 6
Elber (c38) 2016; 144
Satija, Makarov (c12) 2019; 123
Daldrop, Kappler, Brunig, Netz (c13) 2018; 115
Avdoshenko, Das, Satija, Papoian, Makarov (c21) 2017; 7
Bieri, Wirz, Hellrung, Schutkowski, Drewello, Kiefhaber (c51) 1999; 96
Schurmann, Grassberger (c49) 1996; 6
Gaspard, Wang (c35) 1993; 235
Pastor, Zwanzig, Szabo (c58) 1996; 105
Hawk, Makarov (c68) 2011; 135
Bussi, Donadio, Parrinello (c71) 2007; 126
Bhatt, Zuckerman (c41) 2011; 7
Song, Makarov, Vouga (c65) 2023; 158
Pronk, Pall, Schulz, Larsson, Bjelkmar, Apostolov, Shirts, Smith, Kasson, van der Spoel, Hess, Lindahl (c69) 2013; 29
Satija, Das, Makarov (c22) 2017; 147
Berezhkovskii, Makarov (c26) 2018; 9
Dudko, Hummer, Szabo (c4) 2006; 96
Metzler, Klafter (c43) 2000; 339
Das, Makarov (c64) 2018; 122
Berezhkovskii, Makarov (c46) 2021; 1
Soranno, Buchli, Nettels, Cheng, Muller-Spath, Pfeil, Hoffmann, Lipman, Makarov, Schuler (c52) 2012; 109
Soranno, Holla, Dingfelder, Nettels, Makarov, Schuler (c53) 2017; 114
Wang, Makarov (c54) 2003; 107
Cheng, Hawk, Makarov (c62) 2013; 138
Makarov (c29) 2021; 125
Presse, Lee, Dill (c19) 2013; 117
Cheng, Uzawa, Plaxco, Makarov (c56) 2009; 113
Szabo, Schulten, Schulten (c3) 1980; 72
Li, Yang, Komatsuzaki (c25) 2009; 113
Ayaz, Tepper, Brunig, Kappler, Daldrop, Netz (c17) 2021; 118
Kantor, Kardar (c60) 2007; 76
Widder, Koch, Schilling (c16) 2022; 157
Kilic, Sgouralis, Presse (c11) 2021; 120
Kilic, Sgouralis, Heo, Ishii, Tahara, Presse (c10) 2021; 2
Friedman, O’Shaughnessy (c61) 1993; 26
Cheng, Uzawa, Plaxco, Makarov (c57) 2010; 99
Hawk (c67) 2013; 138
Satija, Berezhkovskii, Makarov (c27) 2020; 117
Medina, Satija, Makarov (c48) 2018; 122
Boffetta, Cencini, Falcioni, Vulpiani (c66) 2002; 356
Ziv, Lempel (c33) 1977; 23
Hartich, Godec (c40) 2021; 11
Kramers (c2) 1940; 7
Presse, Peterson, Lee, Elms, MacCallum, Marqusee, Bustamante, Dill (c20) 2014; 118
Lapolla, Godec (c30) 2021; 3
Song, Makarov, Vouga (c31) 2023; 5
Schutte, Noe, Lu, Sarich, Vanden-Eijnden (c39) 2011; 134
Best, Hummer (c6) 2011; 13
Hess (c73) 2008; 4
(2024080800010642400_c24) 2008; 105
(2024080800010642400_c11) 2021; 120
(2024080800010642400_c52) 2012; 109
(2024080800010642400_c5) 2008; 105
(2024080800010642400_c68) 2011; 135
(2024080800010642400_c14) 2020; 153
(2024080800010642400_c34) 2015
(2024080800010642400_c59) 2008; 112
(2024080800010642400_c27) 2020; 117
(2024080800010642400_c3) 1980; 72
(2024080800010642400_c9) 2018; 148
(2024080800010642400_c1) 2001
(2024080800010642400_c51) 1999; 96
(2024080800010642400_c54) 2003; 107
(2024080800010642400_c35) 1993; 235
(2024080800010642400_c37) 2015
(2024080800010642400_c64) 2018; 122
(2024080800010642400_c22) 2017; 147
(2024080800010642400_c43) 2000; 339
(2024080800010642400_c33) 1977; 23
(2024080800010642400_c8) 2018; 148
(2024080800010642400_c20) 2014; 118
(2024080800010642400_c63) 2011; 134
(2024080800010642400_c65) 2023; 158
(2024080800010642400_c46) 2021; 1
(2024080800010642400_c55) 1999; 103
(2024080800010642400_c41) 2011; 7
(2024080800010642400_c30) 2021; 3
(2024080800010642400_c57) 2010; 99
(2024080800010642400_c66) 2002; 356
(2024080800010642400_c6) 2011; 13
(2024080800010642400_c17) 2021; 118
(2024080800010642400_c62) 2013; 138
(2024080800010642400_c4) 2006; 96
(2024080800010642400_c71) 2007; 126
(2024080800010642400_c50) 2000; 97
(2024080800010642400_c61) 1993; 26
(2024080800010642400_c7) 2015
(2024080800010642400_c45) 2001
(2024080800010642400_c32) 1948; 27
(2024080800010642400_c42) 2011
(2024080800010642400_c58) 1996; 105
(2024080800010642400_c21) 2017; 7
(2024080800010642400_c25) 2009; 113
(2024080800010642400_c38) 2016; 144
(2024080800010642400_c10) 2021; 2
(2024080800010642400_c70) 2010; 6
(2024080800010642400_c19) 2013; 117
(2024080800010642400_c72) 1981; 52
(2024080800010642400_c23) 2018; 115
(2024080800010642400_c18) 2020; 124
(2024080800010642400_c26) 2018; 9
(2024080800010642400_c48) 2018; 122
(2024080800010642400_c53) 2017; 114
(2024080800010642400_c15) 2021; 136
(2024080800010642400_c13) 2018; 115
(2024080800010642400_c49) 1996; 6
(2024080800010642400_c28) 2020; 125
(2024080800010642400_c40) 2021; 11
(2024080800010642400_c31) 2023; 5
(2024080800010642400_c2) 1940; 7
(2024080800010642400_c69) 2013; 29
(2024080800010642400_c67) 2013; 138
(2024080800010642400_c60) 2007; 76
(2024080800010642400_c36) 2020
(2024080800010642400_c47) 2013; 138
(2024080800010642400_c56) 2009; 113
(2024080800010642400_c39) 2011; 134
(2024080800010642400_c29) 2021; 125
(2024080800010642400_c44) 2019; 150
(2024080800010642400_c73) 2008; 4
(2024080800010642400_c12) 2019; 123
(2024080800010642400_c16) 2022; 157
References_xml – volume: 4
  start-page: 116
  year: 2008
  ident: c73
  publication-title: J. Chem. Theory Comput.
– volume: 153
  start-page: 194104
  year: 2020
  ident: c14
  publication-title: J. Chem. Phys.
– volume: 117
  start-page: 495
  year: 2013
  ident: c19
  publication-title: J. Phys. Chem. B
– volume: 5
  start-page: L012026
  year: 2023
  ident: c31
  publication-title: Phys. Rev. Res.
– volume: 356
  start-page: 367
  year: 2002
  ident: c66
  publication-title: Phys. Rep.
– volume: 135
  start-page: 224109
  year: 2011
  ident: c68
  publication-title: J. Chem. Phys.
– volume: 138
  start-page: 014102
  year: 2013
  ident: c47
  publication-title: J. Chem. Phys.
– volume: 29
  start-page: 845
  year: 2013
  ident: c69
  publication-title: Bioinformatics
– volume: 134
  start-page: 204105
  year: 2011
  ident: c39
  publication-title: J. Chem. Phys.
– volume: 26
  start-page: 4888
  year: 1993
  ident: c61
  publication-title: Macromolecules
– volume: 115
  start-page: 5169
  year: 2018
  ident: c13
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 122
  start-page: 11400
  year: 2018
  ident: c48
  publication-title: J. Phys. Chem. B
– volume: 7
  start-page: 284
  year: 1940
  ident: c2
  publication-title: Physica
– volume: 144
  start-page: 060901
  year: 2016
  ident: c38
  publication-title: J. Chem. Phys.
– volume: 120
  start-page: 1665
  year: 2021
  ident: c11
  publication-title: Biophys. J.
– volume: 122
  start-page: 9049
  year: 2018
  ident: c64
  publication-title: J. Phys. Chem. B
– volume: 1
  start-page: 100029
  year: 2021
  ident: c46
  publication-title: Biophys. Rep.
– volume: 158
  start-page: 111101
  year: 2023
  ident: c65
  publication-title: J. Chem. Phys.
– volume: 125
  start-page: 146001
  year: 2020
  ident: c28
  publication-title: Phys. Rev. Lett.
– volume: 113
  start-page: 14732
  year: 2009
  ident: c25
  publication-title: J. Phys. Chem. B
– volume: 235
  start-page: 291
  year: 1993
  ident: c35
  publication-title: Phys. Rep.
– volume: 105
  start-page: 3878
  year: 1996
  ident: c58
  publication-title: J. Chem. Phys.
– volume: 123
  start-page: 802
  year: 2019
  ident: c12
  publication-title: J. Phys. Chem. B
– volume: 117
  start-page: 27116
  year: 2020
  ident: c27
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 339
  start-page: 1
  year: 2000
  ident: c43
  publication-title: Phys. Rep.
– volume: 147
  start-page: 152707
  year: 2017
  ident: c22
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 2520
  year: 2011
  ident: c41
  publication-title: J. Chem. Theory Comput.
– volume: 6
  start-page: 414
  year: 1996
  ident: c49
  publication-title: Chaos
– volume: 148
  start-page: 123303
  year: 2018
  ident: c8
  publication-title: J. Chem. Phys.
– volume: 124
  start-page: 3482
  year: 2020
  ident: c18
  publication-title: J. Phys. Chem. B
– volume: 150
  start-page: 054106
  year: 2019
  ident: c44
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 269
  year: 2017
  ident: c21
  publication-title: Sci. Rep.
– volume: 27
  start-page: 379
  year: 1948
  ident: c32
  publication-title: Bell Syst. Tech. J.
– volume: 112
  start-page: 6094
  year: 2008
  ident: c59
  publication-title: J. Phys. Chem. B
– volume: 97
  start-page: 7220
  year: 2000
  ident: c50
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 136
  start-page: 36001
  year: 2021
  ident: c15
  publication-title: Europhys. Lett.
– volume: 3
  start-page: L022018
  year: 2021
  ident: c30
  publication-title: Phys. Rev. Res.
– volume: 76
  start-page: 061121
  year: 2007
  ident: c60
  publication-title: Phys. Rev. E
– volume: 113
  start-page: 14026
  year: 2009
  ident: c56
  publication-title: J. Phys. Chem. B
– volume: 103
  start-page: 608
  year: 1999
  ident: c55
  publication-title: J. Phys. Chem. B
– volume: 99
  start-page: 3959
  year: 2010
  ident: c57
  publication-title: Biophys. J.
– volume: 6
  start-page: 459
  year: 2010
  ident: c70
  publication-title: J. Chem. Theory Comput.
– volume: 115
  start-page: 513
  year: 2018
  ident: c23
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 9
  start-page: 2190
  year: 2018
  ident: c26
  publication-title: J. Phys. Chem. Lett.
– volume: 125
  start-page: 2467
  year: 2021
  ident: c29
  publication-title: J. Phys. Chem. B
– volume: 105
  start-page: 536
  year: 2008
  ident: c24
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 105
  start-page: 15755
  year: 2008
  ident: c5
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 157
  start-page: 194107
  year: 2022
  ident: c16
  publication-title: J. Chem. Phys.
– volume: 126
  start-page: 014101
  year: 2007
  ident: c71
  publication-title: J. Chem. Phys.
– volume: 96
  start-page: 108101
  year: 2006
  ident: c4
  publication-title: Phys. Rev. Lett.
– volume: 96
  start-page: 9597
  year: 1999
  ident: c51
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 107
  start-page: 5617
  year: 2003
  ident: c54
  publication-title: J. Phys. Chem. B
– volume: 138
  start-page: 074112
  year: 2013
  ident: c62
  publication-title: J. Chem. Phys.
– volume: 138
  start-page: 154105
  year: 2013
  ident: c67
  publication-title: J. Chem. Phys.
– volume: 23
  start-page: 337
  year: 1977
  ident: c33
  publication-title: IEEE Trans. Inf. Theory
– volume: 52
  start-page: 7182
  year: 1981
  ident: c72
  publication-title: J. Appl. Phys.
– volume: 72
  start-page: 4350
  year: 1980
  ident: c3
  publication-title: J. Chem. Phys.
– volume: 148
  start-page: 123325
  year: 2018
  ident: c9
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 6597
  year: 2014
  ident: c20
  publication-title: J. Phys. Chem. B
– volume: 114
  start-page: E1833
  year: 2017
  ident: c53
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 134
  start-page: 085104
  year: 2011
  ident: c63
  publication-title: J. Chem. Phys.
– volume: 109
  start-page: 17800
  year: 2012
  ident: c52
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 13
  start-page: 16902
  year: 2011
  ident: c6
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 100409
  year: 2021
  ident: c10
  publication-title: Cell Rep. Phys. Sci.
– volume: 11
  start-page: 041047
  year: 2021
  ident: c40
  publication-title: Phys. Rev. X
– volume: 118
  start-page: e2023856118
  year: 2021
  ident: c17
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 135
  start-page: 224109
  year: 2011
  ident: 2024080800010642400_c68
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3666840
– volume-title: A Guide to First Passage Times
  year: 2001
  ident: 2024080800010642400_c45
– volume: 6
  start-page: 459
  year: 2010
  ident: 2024080800010642400_c70
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900549r
– volume: 7
  start-page: 269
  year: 2017
  ident: 2024080800010642400_c21
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00287-5
– volume: 138
  start-page: 014102
  year: 2013
  ident: 2024080800010642400_c47
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4773283
– volume: 23
  start-page: 337
  year: 1977
  ident: 2024080800010642400_c33
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/tit.1977.1055714
– volume: 105
  start-page: 15755
  year: 2008
  ident: 2024080800010642400_c5
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0806085105
– volume: 115
  start-page: 513
  year: 2018
  ident: 2024080800010642400_c23
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1714401115
– volume: 123
  start-page: 802
  year: 2019
  ident: 2024080800010642400_c12
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b11137
– volume-title: Motor Proteins and Molecular Motors
  year: 2015
  ident: 2024080800010642400_c7
– volume: 115
  start-page: 5169
  year: 2018
  ident: 2024080800010642400_c13
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1722327115
– volume: 157
  start-page: 194107
  year: 2022
  ident: 2024080800010642400_c16
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0127557
– volume: 117
  start-page: 495
  year: 2013
  ident: 2024080800010642400_c19
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp309420u
– volume: 120
  start-page: 1665
  year: 2021
  ident: 2024080800010642400_c11
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2021.02.045
– volume: 26
  start-page: 4888
  year: 1993
  ident: 2024080800010642400_c61
  publication-title: Macromolecules
  doi: 10.1021/ma00070a025
– volume: 148
  start-page: 123325
  year: 2018
  ident: 2024080800010642400_c9
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5016487
– volume: 97
  start-page: 7220
  year: 2000
  ident: 2024080800010642400_c50
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.97.13.7220
– volume: 148
  start-page: 123303
  year: 2018
  ident: 2024080800010642400_c8
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4997584
– volume: 4
  start-page: 116
  year: 2008
  ident: 2024080800010642400_c73
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700200b
– volume: 117
  start-page: 27116
  year: 2020
  ident: 2024080800010642400_c27
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2008307117
– volume: 105
  start-page: 3878
  year: 1996
  ident: 2024080800010642400_c58
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472208
– volume-title: Single Molecule Science: Physical Principles and Models
  year: 2015
  ident: 2024080800010642400_c37
– volume: 105
  start-page: 536
  year: 2008
  ident: 2024080800010642400_c24
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0707378105
– volume: 122
  start-page: 11400
  year: 2018
  ident: 2024080800010642400_c48
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b07361
– volume-title: Molecular Kinetics in Condense Phases: Theory, Simulation, and Analysis
  year: 2020
  ident: 2024080800010642400_c36
– volume: 7
  start-page: 284
  year: 1940
  ident: 2024080800010642400_c2
  publication-title: Physica
  doi: 10.1016/s0031-8914(40)90098-2
– volume: 235
  start-page: 291
  year: 1993
  ident: 2024080800010642400_c35
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(93)90012-3
– volume: 114
  start-page: E1833
  year: 2017
  ident: 2024080800010642400_c53
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1616672114
– volume: 125
  start-page: 146001
  year: 2020
  ident: 2024080800010642400_c28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.125.146001
– volume: 339
  start-page: 1
  year: 2000
  ident: 2024080800010642400_c43
  publication-title: Phys. Rep.
  doi: 10.1016/s0370-1573(00)00070-3
– volume: 153
  start-page: 194104
  year: 2020
  ident: 2024080800010642400_c14
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0025785
– volume: 29
  start-page: 845
  year: 2013
  ident: 2024080800010642400_c69
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt055
– volume: 126
  start-page: 014101
  year: 2007
  ident: 2024080800010642400_c71
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
– volume: 122
  start-page: 9049
  year: 2018
  ident: 2024080800010642400_c64
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b06112
– volume: 109
  start-page: 17800
  year: 2012
  ident: 2024080800010642400_c52
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1117368109
– volume: 6
  start-page: 414
  year: 1996
  ident: 2024080800010642400_c49
  publication-title: Chaos
  doi: 10.1063/1.166191
– volume: 5
  start-page: L012026
  year: 2023
  ident: 2024080800010642400_c31
  publication-title: Phys. Rev. Res.
  doi: 10.1103/physrevresearch.5.l012026
– volume: 158
  start-page: 111101
  year: 2023
  ident: 2024080800010642400_c65
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0142166
– volume: 1
  start-page: 100029
  year: 2021
  ident: 2024080800010642400_c46
  publication-title: Biophys. Rep.
  doi: 10.1016/j.bpr.2021.100029
– volume: 2
  start-page: 100409
  year: 2021
  ident: 2024080800010642400_c10
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2021.100409
– volume: 9
  start-page: 2190
  year: 2018
  ident: 2024080800010642400_c26
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b00956
– volume: 136
  start-page: 36001
  year: 2021
  ident: 2024080800010642400_c15
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/ac35ba
– volume-title: Information Theory: A Tutorial Introduction
  year: 2015
  ident: 2024080800010642400_c34
– volume: 99
  start-page: 3959
  year: 2010
  ident: 2024080800010642400_c57
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.11.017
– volume: 113
  start-page: 14732
  year: 2009
  ident: 2024080800010642400_c25
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9059483
– volume: 134
  start-page: 204105
  year: 2011
  ident: 2024080800010642400_c39
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3590108
– volume: 113
  start-page: 14026
  year: 2009
  ident: 2024080800010642400_c56
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp902291n
– volume: 96
  start-page: 9597
  year: 1999
  ident: 2024080800010642400_c51
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.17.9597
– volume: 150
  start-page: 054106
  year: 2019
  ident: 2024080800010642400_c44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5079742
– volume: 118
  start-page: e2023856118
  year: 2021
  ident: 2024080800010642400_c17
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2023856118
– volume: 107
  start-page: 5617
  year: 2003
  ident: 2024080800010642400_c54
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp034285o
– volume: 118
  start-page: 6597
  year: 2014
  ident: 2024080800010642400_c20
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp500611f
– volume: 27
  start-page: 379
  year: 1948
  ident: 2024080800010642400_c32
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 134
  start-page: 085104
  year: 2011
  ident: 2024080800010642400_c63
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3556750
– volume-title: First Steps in Random Walks: From Tools to Applications
  year: 2011
  ident: 2024080800010642400_c42
– volume: 11
  start-page: 041047
  year: 2021
  ident: 2024080800010642400_c40
  publication-title: Phys. Rev. X
  doi: 10.1103/physrevx.11.041047
– volume: 103
  start-page: 608
  year: 1999
  ident: 2024080800010642400_c55
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp982362n
– volume: 112
  start-page: 6094
  year: 2008
  ident: 2024080800010642400_c59
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp076510y
– volume: 125
  start-page: 2467
  year: 2021
  ident: 2024080800010642400_c29
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c10978
– volume: 138
  start-page: 154105
  year: 2013
  ident: 2024080800010642400_c67
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4795838
– volume: 124
  start-page: 3482
  year: 2020
  ident: 2024080800010642400_c18
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c01437
– volume: 356
  start-page: 367
  year: 2002
  ident: 2024080800010642400_c66
  publication-title: Phys. Rep.
  doi: 10.1016/s0370-1573(01)00025-4
– volume: 3
  start-page: L022018
  year: 2021
  ident: 2024080800010642400_c30
  publication-title: Phys. Rev. Res.
  doi: 10.1103/physrevresearch.3.l022018
– volume: 138
  start-page: 074112
  year: 2013
  ident: 2024080800010642400_c62
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4792206
– volume: 52
  start-page: 7182
  year: 1981
  ident: 2024080800010642400_c72
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328693
– volume: 7
  start-page: 2520
  year: 2011
  ident: 2024080800010642400_c41
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200086k
– volume: 76
  start-page: 061121
  year: 2007
  ident: 2024080800010642400_c60
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.76.061121
– volume-title: Nonequilibrium Statistical Mechanics
  year: 2001
  ident: 2024080800010642400_c1
– volume: 72
  start-page: 4350
  year: 1980
  ident: 2024080800010642400_c3
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.439715
– volume: 147
  start-page: 152707
  year: 2017
  ident: 2024080800010642400_c22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4993228
– volume: 96
  start-page: 108101
  year: 2006
  ident: 2024080800010642400_c4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.96.108101
– volume: 144
  start-page: 060901
  year: 2016
  ident: 2024080800010642400_c38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4940794
– volume: 13
  start-page: 16902
  year: 2011
  ident: 2024080800010642400_c6
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp21541h
SSID ssj0001724
Score 2.455429
Snippet Whether single-molecule trajectories, observed experimentally or in molecular simulations, can be described using simple models such as biased diffusion is a...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Compressibility
Digitization
Markov chains
Physics
Spatial resolution
Trajectory analysis
Title Non-Markov models of single-molecule dynamics from information-theoretical analysis of trajectories
URI http://dx.doi.org/10.1063/5.0158930
https://www.ncbi.nlm.nih.gov/pubmed/37551804
https://www.proquest.com/docview/2847535168
https://www.proquest.com/docview/2847749393
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CTmjwgGBcFhgoXB6QkEcW27k8TmPTBF2ZWCv1LXIcR-ouCerSSfDrOY7tpLBOGrxElWs5lr_Px8cn5wLwXuIZz4IkJ4FIJWE5TXFLhQkRMaUFHli8pDp2-GgUHU7Ylymf9gkV2uiSJt-Wv1bGlfwPqtiGuOoo2X9AthsUG_A34otPRBift8J4VFdEB9vUV6aiTeuWoS__54pcmLq36mNhas5fmkgSmyhVz4ksBzGKpeQkzVyctsZ852B42lNqSYGVLteAsY50yvmJ9fL9imduR71j65P9XfzE5Sl6A7mphowq6qI3jp-JeX3VSsOLWTOfzWy4hDVOhFRbW01QqJWnQZKSODIVQbfVijYnhG1e8FkvUq8Jd9SmEBGdZpWjlhX0J5j7aj_6lh1MhsNsvD8d34W1EG8OwQDWdj8fDU-64xk1NmaiLswsXLqpiH7qhv5TSbl283gA66ifGFeJJW1k_AgeWhT8XcOJx3BHVRuwvueq923AvWMDyhOQPUt8wxK_Lv2_WOI7lviaJf4NLPEdS_QIyyx5CpOD_fHeIbGlNYikLGlIGudlGJRSME5LoXIheblTxii9E5qIQnG8xoYqZGURySgoYsbDQooUbwMyD6Mips9gUNWV2gSfh4wngkrORY67XuaSizJO29JBiRKpBx_cWmZu0XT5k_Os9X-IaMYzu-wevO26_jDJVlZ12nKAZHYvXmZayeKU70SJB2-6v3HJ9ecvUal6YfrELKUp9eC5AbJ7C431bAPmwbsO2Zun8OIW73gJ9_sNsQWDZr5Qr1B_bfLXlpG_AcmCnd4
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Markov+models+of+single-molecule+dynamics+from+information-theoretical+analysis+of+trajectories&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Song%2C+Kevin&rft.au=Park%2C+Raymond&rft.au=Das%2C+Atanu&rft.au=Makarov%2C+Dmitrii+E&rft.date=2023-08-14&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=159&rft.issue=6&rft_id=info:doi/10.1063%2F5.0158930&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon