Non-Markov models of single-molecule dynamics from information-theoretical analysis of trajectories
Whether single-molecule trajectories, observed experimentally or in molecular simulations, can be described using simple models such as biased diffusion is a subject of considerable debate. Memory effects and anomalous diffusion have been reported in a number of studies, but directly inferring such...
Saved in:
Published in | The Journal of chemical physics Vol. 159; no. 6 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
14.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 1089-7690 |
DOI | 10.1063/5.0158930 |
Cover
Loading…
Abstract | Whether single-molecule trajectories, observed experimentally or in molecular simulations, can be described using simple models such as biased diffusion is a subject of considerable debate. Memory effects and anomalous diffusion have been reported in a number of studies, but directly inferring such effects from trajectories, especially given limited temporal and/or spatial resolution, has been a challenge. Recently, we proposed that this can be achieved with information-theoretical analysis of trajectories, which is based on the general observation that non-Markov effects make trajectories more predictable and, thus, more “compressible” by lossless compression algorithms. Toy models where discrete molecular states evolve in time were shown to be amenable to such analysis, but its application to continuous trajectories presents a challenge: the trajectories need to be digitized first, and digitization itself introduces non-Markov effects that depend on the specifics of how trajectories are sampled. Here we develop a milestoning-based method for information-theoretical analysis of continuous trajectories and show its utility in application to Markov and non-Markov models and to trajectories obtained from molecular simulations. |
---|---|
AbstractList | Whether single-molecule trajectories, observed experimentally or in molecular simulations, can be described using simple models such as biased diffusion is a subject of considerable debate. Memory effects and anomalous diffusion have been reported in a number of studies, but directly inferring such effects from trajectories, especially given limited temporal and/or spatial resolution, has been a challenge. Recently, we proposed that this can be achieved with information-theoretical analysis of trajectories, which is based on the general observation that non-Markov effects make trajectories more predictable and, thus, more "compressible" by lossless compression algorithms. Toy models where discrete molecular states evolve in time were shown to be amenable to such analysis, but its application to continuous trajectories presents a challenge: the trajectories need to be digitized first, and digitization itself introduces non-Markov effects that depend on the specifics of how trajectories are sampled. Here we develop a milestoning-based method for information-theoretical analysis of continuous trajectories and show its utility in application to Markov and non-Markov models and to trajectories obtained from molecular simulations. Whether single-molecule trajectories, observed experimentally or in molecular simulations, can be described using simple models such as biased diffusion is a subject of considerable debate. Memory effects and anomalous diffusion have been reported in a number of studies, but directly inferring such effects from trajectories, especially given limited temporal and/or spatial resolution, has been a challenge. Recently, we proposed that this can be achieved with information-theoretical analysis of trajectories, which is based on the general observation that non-Markov effects make trajectories more predictable and, thus, more "compressible" by lossless compression algorithms. Toy models where discrete molecular states evolve in time were shown to be amenable to such analysis, but its application to continuous trajectories presents a challenge: the trajectories need to be digitized first, and digitization itself introduces non-Markov effects that depend on the specifics of how trajectories are sampled. Here we develop a milestoning-based method for information-theoretical analysis of continuous trajectories and show its utility in application to Markov and non-Markov models and to trajectories obtained from molecular simulations.Whether single-molecule trajectories, observed experimentally or in molecular simulations, can be described using simple models such as biased diffusion is a subject of considerable debate. Memory effects and anomalous diffusion have been reported in a number of studies, but directly inferring such effects from trajectories, especially given limited temporal and/or spatial resolution, has been a challenge. Recently, we proposed that this can be achieved with information-theoretical analysis of trajectories, which is based on the general observation that non-Markov effects make trajectories more predictable and, thus, more "compressible" by lossless compression algorithms. Toy models where discrete molecular states evolve in time were shown to be amenable to such analysis, but its application to continuous trajectories presents a challenge: the trajectories need to be digitized first, and digitization itself introduces non-Markov effects that depend on the specifics of how trajectories are sampled. Here we develop a milestoning-based method for information-theoretical analysis of continuous trajectories and show its utility in application to Markov and non-Markov models and to trajectories obtained from molecular simulations. |
Author | Park, Raymond Vouga, Etienne Song, Kevin Makarov, Dmitrii E. Das, Atanu |
Author_xml | – sequence: 1 givenname: Kevin surname: Song fullname: Song, Kevin organization: Department of Computer Science, University of Texas at Austin – sequence: 2 givenname: Raymond surname: Park fullname: Park, Raymond organization: 7Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA – sequence: 3 givenname: Atanu surname: Das fullname: Das, Atanu organization: 7Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA – sequence: 4 givenname: Dmitrii E. surname: Makarov fullname: Makarov, Dmitrii E. organization: 7Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA – sequence: 5 givenname: Etienne surname: Vouga fullname: Vouga, Etienne organization: Department of Computer Science, University of Texas at Austin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37551804$$D View this record in MEDLINE/PubMed |
BookMark | eNp90UtLxDAUBeAgI874WPgHpOBGhWoeTZMsRXzBqBtdl0x6oxnTRpNWmH9vnRldiLjK5juHcO42GrWhBYT2CT4luGRn_BQTLhXDG2hCsFS5KBUeoQnGlOSqxOUYbac0xxgTQYstNGaCcyJxMUHmPrT5nY6v4SNrQg0-ZcFmybXPHvImeDC9h6xetLpxJmU2hiZzrQ2x0Z0bot0LhAidM9pnutV-kdyyoYt6DqYL0UHaRZtW-wR763cHPV1dPl7c5NOH69uL82luWCG7XImZpdgaXXBmNcy04ZZYIaSQTOoauBScAi1sXZoS16LgtDZaKcrMjJa1YDvoaNX7FsN7D6mrGpcMeK9bCH2qqCyEKBRTbKCHv-g89HH4_0pxxkkpB3WwVv2sgbp6i67RcVF9zzeA4xUwMaQUwf4Qgquv01S8Wp9msGe_rHHdcsRhK-f_TJysEulb_lP_CXYVnWw |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1073_pnas_2318333121 crossref_primary_10_1063_5_0218040 crossref_primary_10_1063_5_0247331 |
Cites_doi | 10.1063/1.3666840 10.1021/ct900549r 10.1038/s41598-017-00287-5 10.1063/1.4773283 10.1109/tit.1977.1055714 10.1073/pnas.0806085105 10.1073/pnas.1714401115 10.1021/acs.jpcb.8b11137 10.1073/pnas.1722327115 10.1063/5.0127557 10.1021/jp309420u 10.1016/j.bpj.2021.02.045 10.1021/ma00070a025 10.1063/1.5016487 10.1073/pnas.97.13.7220 10.1063/1.4997584 10.1021/ct700200b 10.1073/pnas.2008307117 10.1063/1.472208 10.1073/pnas.0707378105 10.1021/acs.jpcb.8b07361 10.1016/s0031-8914(40)90098-2 10.1016/0370-1573(93)90012-3 10.1073/pnas.1616672114 10.1103/physrevlett.125.146001 10.1016/s0370-1573(00)00070-3 10.1063/5.0025785 10.1093/bioinformatics/btt055 10.1063/1.2408420 10.1021/acs.jpcb.8b06112 10.1073/pnas.1117368109 10.1063/1.166191 10.1103/physrevresearch.5.l012026 10.1063/5.0142166 10.1016/j.bpr.2021.100029 10.1016/j.xcrp.2021.100409 10.1021/acs.jpclett.8b00956 10.1209/0295-5075/ac35ba 10.1016/j.bpj.2010.11.017 10.1021/jp9059483 10.1063/1.3590108 10.1021/jp902291n 10.1073/pnas.96.17.9597 10.1063/1.5079742 10.1073/pnas.2023856118 10.1021/jp034285o 10.1021/jp500611f 10.1002/j.1538-7305.1948.tb01338.x 10.1063/1.3556750 10.1103/physrevx.11.041047 10.1021/jp982362n 10.1021/jp076510y 10.1021/acs.jpcb.0c10978 10.1063/1.4795838 10.1021/acs.jpcb.0c01437 10.1016/s0370-1573(01)00025-4 10.1103/physrevresearch.3.l022018 10.1063/1.4792206 10.1063/1.328693 10.1021/ct200086k 10.1103/physreve.76.061121 10.1063/1.439715 10.1063/1.4993228 10.1103/physrevlett.96.108101 10.1063/1.4940794 10.1039/c1cp21541h |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0158930 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 37551804 10_1063_5_0158930 jcp |
Genre | Journal Article |
GrantInformation_xml | – fundername: CSIR-NCL – fundername: Welch Foundation grantid: F-1514 funderid: https://doi.org/10.13039/100000928 – fundername: NSF IIS grantid: 2212048 – fundername: Adobe Systems funderid: https://doi.org/10.13039/100004344 – fundername: Division of Chemistry grantid: CHE 1955552 funderid: https://doi.org/10.13039/100000165 |
GroupedDBID | --- -DZ -ET -~X 123 2-P 29K 4.4 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c348t-97bf20fca453faebac5f1f7787838ade58752e24fd6c60d7452dca9923cb26d73 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri Jul 11 03:06:10 EDT 2025 Mon Jun 30 06:33:38 EDT 2025 Mon Jul 21 05:55:39 EDT 2025 Tue Jul 01 01:12:33 EDT 2025 Thu Apr 24 23:08:29 EDT 2025 Fri Jun 21 00:10:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Published under an exclusive license by AIP Publishing. 2023 Author(s). Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c348t-97bf20fca453faebac5f1f7787838ade58752e24fd6c60d7452dca9923cb26d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4023-187X 0000-0003-0822-5274 0000-0002-8421-1846 0000-0003-4994-0469 0009-0003-8097-6109 |
PMID | 37551804 |
PQID | 2847535168 |
PQPubID | 2050685 |
PageCount | 13 |
ParticipantIDs | scitation_primary_10_1063_5_0158930 proquest_journals_2847535168 crossref_primary_10_1063_5_0158930 proquest_miscellaneous_2847749393 pubmed_primary_37551804 crossref_citationtrail_10_1063_5_0158930 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230814 2023-08-14 2023-Aug-14 |
PublicationDateYYYYMMDD | 2023-08-14 |
PublicationDate_xml | – month: 08 year: 2023 text: 20230814 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Dudko, Hummer, Szabo (c5) 2008; 105 Thirumalai (c55) 1999; 103 Glatzel, Schilling (c15) 2021; 136 Parrinello, Rahman (c72) 1981; 52 Satija, Das, Muhle, Enderlein, Makarov (c18) 2020; 124 Toan, Morrison, Hyeon, Thirumalai (c59) 2008; 112 Shannon (c32) 1948; 27 Lapidus, Eaton, Hofrichter (c50) 2000; 97 Berezhkovskii, Szabo (c44) 2019; 150 Grossman-Haham, Rosenblum, Namani, Hofmann (c23) 2018; 115 Li, Yang, Komatsuzaki (c24) 2008; 105 Cheng, Makarov (c63) 2011; 134 Aviram, Pirchi, Barak, Riven, Haran (c8) 2018; 148 Lapolla, Godec (c14) 2020; 153 Zijlstra, Nettels, Satija, Makarov, Schuler (c28) 2020; 125 Makarov (c47) 2013; 138 Taylor, Pirchi, Haran, Komatsuzaki (c9) 2018; 148 Bjelkmar, Larsson, Cuendet, Hess, Lindahl (c70) 2010; 6 Elber (c38) 2016; 144 Satija, Makarov (c12) 2019; 123 Daldrop, Kappler, Brunig, Netz (c13) 2018; 115 Avdoshenko, Das, Satija, Papoian, Makarov (c21) 2017; 7 Bieri, Wirz, Hellrung, Schutkowski, Drewello, Kiefhaber (c51) 1999; 96 Schurmann, Grassberger (c49) 1996; 6 Gaspard, Wang (c35) 1993; 235 Pastor, Zwanzig, Szabo (c58) 1996; 105 Hawk, Makarov (c68) 2011; 135 Bussi, Donadio, Parrinello (c71) 2007; 126 Bhatt, Zuckerman (c41) 2011; 7 Song, Makarov, Vouga (c65) 2023; 158 Pronk, Pall, Schulz, Larsson, Bjelkmar, Apostolov, Shirts, Smith, Kasson, van der Spoel, Hess, Lindahl (c69) 2013; 29 Satija, Das, Makarov (c22) 2017; 147 Berezhkovskii, Makarov (c26) 2018; 9 Dudko, Hummer, Szabo (c4) 2006; 96 Metzler, Klafter (c43) 2000; 339 Das, Makarov (c64) 2018; 122 Berezhkovskii, Makarov (c46) 2021; 1 Soranno, Buchli, Nettels, Cheng, Muller-Spath, Pfeil, Hoffmann, Lipman, Makarov, Schuler (c52) 2012; 109 Soranno, Holla, Dingfelder, Nettels, Makarov, Schuler (c53) 2017; 114 Wang, Makarov (c54) 2003; 107 Cheng, Hawk, Makarov (c62) 2013; 138 Makarov (c29) 2021; 125 Presse, Lee, Dill (c19) 2013; 117 Cheng, Uzawa, Plaxco, Makarov (c56) 2009; 113 Szabo, Schulten, Schulten (c3) 1980; 72 Li, Yang, Komatsuzaki (c25) 2009; 113 Ayaz, Tepper, Brunig, Kappler, Daldrop, Netz (c17) 2021; 118 Kantor, Kardar (c60) 2007; 76 Widder, Koch, Schilling (c16) 2022; 157 Kilic, Sgouralis, Presse (c11) 2021; 120 Kilic, Sgouralis, Heo, Ishii, Tahara, Presse (c10) 2021; 2 Friedman, O’Shaughnessy (c61) 1993; 26 Cheng, Uzawa, Plaxco, Makarov (c57) 2010; 99 Hawk (c67) 2013; 138 Satija, Berezhkovskii, Makarov (c27) 2020; 117 Medina, Satija, Makarov (c48) 2018; 122 Boffetta, Cencini, Falcioni, Vulpiani (c66) 2002; 356 Ziv, Lempel (c33) 1977; 23 Hartich, Godec (c40) 2021; 11 Kramers (c2) 1940; 7 Presse, Peterson, Lee, Elms, MacCallum, Marqusee, Bustamante, Dill (c20) 2014; 118 Lapolla, Godec (c30) 2021; 3 Song, Makarov, Vouga (c31) 2023; 5 Schutte, Noe, Lu, Sarich, Vanden-Eijnden (c39) 2011; 134 Best, Hummer (c6) 2011; 13 Hess (c73) 2008; 4 (2024080800010642400_c24) 2008; 105 (2024080800010642400_c11) 2021; 120 (2024080800010642400_c52) 2012; 109 (2024080800010642400_c5) 2008; 105 (2024080800010642400_c68) 2011; 135 (2024080800010642400_c14) 2020; 153 (2024080800010642400_c34) 2015 (2024080800010642400_c59) 2008; 112 (2024080800010642400_c27) 2020; 117 (2024080800010642400_c3) 1980; 72 (2024080800010642400_c9) 2018; 148 (2024080800010642400_c1) 2001 (2024080800010642400_c51) 1999; 96 (2024080800010642400_c54) 2003; 107 (2024080800010642400_c35) 1993; 235 (2024080800010642400_c37) 2015 (2024080800010642400_c64) 2018; 122 (2024080800010642400_c22) 2017; 147 (2024080800010642400_c43) 2000; 339 (2024080800010642400_c33) 1977; 23 (2024080800010642400_c8) 2018; 148 (2024080800010642400_c20) 2014; 118 (2024080800010642400_c63) 2011; 134 (2024080800010642400_c65) 2023; 158 (2024080800010642400_c46) 2021; 1 (2024080800010642400_c55) 1999; 103 (2024080800010642400_c41) 2011; 7 (2024080800010642400_c30) 2021; 3 (2024080800010642400_c57) 2010; 99 (2024080800010642400_c66) 2002; 356 (2024080800010642400_c6) 2011; 13 (2024080800010642400_c17) 2021; 118 (2024080800010642400_c62) 2013; 138 (2024080800010642400_c4) 2006; 96 (2024080800010642400_c71) 2007; 126 (2024080800010642400_c50) 2000; 97 (2024080800010642400_c61) 1993; 26 (2024080800010642400_c7) 2015 (2024080800010642400_c45) 2001 (2024080800010642400_c32) 1948; 27 (2024080800010642400_c42) 2011 (2024080800010642400_c58) 1996; 105 (2024080800010642400_c21) 2017; 7 (2024080800010642400_c25) 2009; 113 (2024080800010642400_c38) 2016; 144 (2024080800010642400_c10) 2021; 2 (2024080800010642400_c70) 2010; 6 (2024080800010642400_c19) 2013; 117 (2024080800010642400_c72) 1981; 52 (2024080800010642400_c23) 2018; 115 (2024080800010642400_c18) 2020; 124 (2024080800010642400_c26) 2018; 9 (2024080800010642400_c48) 2018; 122 (2024080800010642400_c53) 2017; 114 (2024080800010642400_c15) 2021; 136 (2024080800010642400_c13) 2018; 115 (2024080800010642400_c49) 1996; 6 (2024080800010642400_c28) 2020; 125 (2024080800010642400_c40) 2021; 11 (2024080800010642400_c31) 2023; 5 (2024080800010642400_c2) 1940; 7 (2024080800010642400_c69) 2013; 29 (2024080800010642400_c67) 2013; 138 (2024080800010642400_c60) 2007; 76 (2024080800010642400_c36) 2020 (2024080800010642400_c47) 2013; 138 (2024080800010642400_c56) 2009; 113 (2024080800010642400_c39) 2011; 134 (2024080800010642400_c29) 2021; 125 (2024080800010642400_c44) 2019; 150 (2024080800010642400_c73) 2008; 4 (2024080800010642400_c12) 2019; 123 (2024080800010642400_c16) 2022; 157 |
References_xml | – volume: 4 start-page: 116 year: 2008 ident: c73 publication-title: J. Chem. Theory Comput. – volume: 153 start-page: 194104 year: 2020 ident: c14 publication-title: J. Chem. Phys. – volume: 117 start-page: 495 year: 2013 ident: c19 publication-title: J. Phys. Chem. B – volume: 5 start-page: L012026 year: 2023 ident: c31 publication-title: Phys. Rev. Res. – volume: 356 start-page: 367 year: 2002 ident: c66 publication-title: Phys. Rep. – volume: 135 start-page: 224109 year: 2011 ident: c68 publication-title: J. Chem. Phys. – volume: 138 start-page: 014102 year: 2013 ident: c47 publication-title: J. Chem. Phys. – volume: 29 start-page: 845 year: 2013 ident: c69 publication-title: Bioinformatics – volume: 134 start-page: 204105 year: 2011 ident: c39 publication-title: J. Chem. Phys. – volume: 26 start-page: 4888 year: 1993 ident: c61 publication-title: Macromolecules – volume: 115 start-page: 5169 year: 2018 ident: c13 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 122 start-page: 11400 year: 2018 ident: c48 publication-title: J. Phys. Chem. B – volume: 7 start-page: 284 year: 1940 ident: c2 publication-title: Physica – volume: 144 start-page: 060901 year: 2016 ident: c38 publication-title: J. Chem. Phys. – volume: 120 start-page: 1665 year: 2021 ident: c11 publication-title: Biophys. J. – volume: 122 start-page: 9049 year: 2018 ident: c64 publication-title: J. Phys. Chem. B – volume: 1 start-page: 100029 year: 2021 ident: c46 publication-title: Biophys. Rep. – volume: 158 start-page: 111101 year: 2023 ident: c65 publication-title: J. Chem. Phys. – volume: 125 start-page: 146001 year: 2020 ident: c28 publication-title: Phys. Rev. Lett. – volume: 113 start-page: 14732 year: 2009 ident: c25 publication-title: J. Phys. Chem. B – volume: 235 start-page: 291 year: 1993 ident: c35 publication-title: Phys. Rep. – volume: 105 start-page: 3878 year: 1996 ident: c58 publication-title: J. Chem. Phys. – volume: 123 start-page: 802 year: 2019 ident: c12 publication-title: J. Phys. Chem. B – volume: 117 start-page: 27116 year: 2020 ident: c27 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 339 start-page: 1 year: 2000 ident: c43 publication-title: Phys. Rep. – volume: 147 start-page: 152707 year: 2017 ident: c22 publication-title: J. Chem. Phys. – volume: 7 start-page: 2520 year: 2011 ident: c41 publication-title: J. Chem. Theory Comput. – volume: 6 start-page: 414 year: 1996 ident: c49 publication-title: Chaos – volume: 148 start-page: 123303 year: 2018 ident: c8 publication-title: J. Chem. Phys. – volume: 124 start-page: 3482 year: 2020 ident: c18 publication-title: J. Phys. Chem. B – volume: 150 start-page: 054106 year: 2019 ident: c44 publication-title: J. Chem. Phys. – volume: 7 start-page: 269 year: 2017 ident: c21 publication-title: Sci. Rep. – volume: 27 start-page: 379 year: 1948 ident: c32 publication-title: Bell Syst. Tech. J. – volume: 112 start-page: 6094 year: 2008 ident: c59 publication-title: J. Phys. Chem. B – volume: 97 start-page: 7220 year: 2000 ident: c50 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 136 start-page: 36001 year: 2021 ident: c15 publication-title: Europhys. Lett. – volume: 3 start-page: L022018 year: 2021 ident: c30 publication-title: Phys. Rev. Res. – volume: 76 start-page: 061121 year: 2007 ident: c60 publication-title: Phys. Rev. E – volume: 113 start-page: 14026 year: 2009 ident: c56 publication-title: J. Phys. Chem. B – volume: 103 start-page: 608 year: 1999 ident: c55 publication-title: J. Phys. Chem. B – volume: 99 start-page: 3959 year: 2010 ident: c57 publication-title: Biophys. J. – volume: 6 start-page: 459 year: 2010 ident: c70 publication-title: J. Chem. Theory Comput. – volume: 115 start-page: 513 year: 2018 ident: c23 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 9 start-page: 2190 year: 2018 ident: c26 publication-title: J. Phys. Chem. Lett. – volume: 125 start-page: 2467 year: 2021 ident: c29 publication-title: J. Phys. Chem. B – volume: 105 start-page: 536 year: 2008 ident: c24 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 105 start-page: 15755 year: 2008 ident: c5 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 157 start-page: 194107 year: 2022 ident: c16 publication-title: J. Chem. Phys. – volume: 126 start-page: 014101 year: 2007 ident: c71 publication-title: J. Chem. Phys. – volume: 96 start-page: 108101 year: 2006 ident: c4 publication-title: Phys. Rev. Lett. – volume: 96 start-page: 9597 year: 1999 ident: c51 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 107 start-page: 5617 year: 2003 ident: c54 publication-title: J. Phys. Chem. B – volume: 138 start-page: 074112 year: 2013 ident: c62 publication-title: J. Chem. Phys. – volume: 138 start-page: 154105 year: 2013 ident: c67 publication-title: J. Chem. Phys. – volume: 23 start-page: 337 year: 1977 ident: c33 publication-title: IEEE Trans. Inf. Theory – volume: 52 start-page: 7182 year: 1981 ident: c72 publication-title: J. Appl. Phys. – volume: 72 start-page: 4350 year: 1980 ident: c3 publication-title: J. Chem. Phys. – volume: 148 start-page: 123325 year: 2018 ident: c9 publication-title: J. Chem. Phys. – volume: 118 start-page: 6597 year: 2014 ident: c20 publication-title: J. Phys. Chem. B – volume: 114 start-page: E1833 year: 2017 ident: c53 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 134 start-page: 085104 year: 2011 ident: c63 publication-title: J. Chem. Phys. – volume: 109 start-page: 17800 year: 2012 ident: c52 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 13 start-page: 16902 year: 2011 ident: c6 publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: 100409 year: 2021 ident: c10 publication-title: Cell Rep. Phys. Sci. – volume: 11 start-page: 041047 year: 2021 ident: c40 publication-title: Phys. Rev. X – volume: 118 start-page: e2023856118 year: 2021 ident: c17 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 135 start-page: 224109 year: 2011 ident: 2024080800010642400_c68 publication-title: J. Chem. Phys. doi: 10.1063/1.3666840 – volume-title: A Guide to First Passage Times year: 2001 ident: 2024080800010642400_c45 – volume: 6 start-page: 459 year: 2010 ident: 2024080800010642400_c70 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900549r – volume: 7 start-page: 269 year: 2017 ident: 2024080800010642400_c21 publication-title: Sci. Rep. doi: 10.1038/s41598-017-00287-5 – volume: 138 start-page: 014102 year: 2013 ident: 2024080800010642400_c47 publication-title: J. Chem. Phys. doi: 10.1063/1.4773283 – volume: 23 start-page: 337 year: 1977 ident: 2024080800010642400_c33 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/tit.1977.1055714 – volume: 105 start-page: 15755 year: 2008 ident: 2024080800010642400_c5 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0806085105 – volume: 115 start-page: 513 year: 2018 ident: 2024080800010642400_c23 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1714401115 – volume: 123 start-page: 802 year: 2019 ident: 2024080800010642400_c12 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b11137 – volume-title: Motor Proteins and Molecular Motors year: 2015 ident: 2024080800010642400_c7 – volume: 115 start-page: 5169 year: 2018 ident: 2024080800010642400_c13 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1722327115 – volume: 157 start-page: 194107 year: 2022 ident: 2024080800010642400_c16 publication-title: J. Chem. Phys. doi: 10.1063/5.0127557 – volume: 117 start-page: 495 year: 2013 ident: 2024080800010642400_c19 publication-title: J. Phys. Chem. B doi: 10.1021/jp309420u – volume: 120 start-page: 1665 year: 2021 ident: 2024080800010642400_c11 publication-title: Biophys. J. doi: 10.1016/j.bpj.2021.02.045 – volume: 26 start-page: 4888 year: 1993 ident: 2024080800010642400_c61 publication-title: Macromolecules doi: 10.1021/ma00070a025 – volume: 148 start-page: 123325 year: 2018 ident: 2024080800010642400_c9 publication-title: J. Chem. Phys. doi: 10.1063/1.5016487 – volume: 97 start-page: 7220 year: 2000 ident: 2024080800010642400_c50 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.97.13.7220 – volume: 148 start-page: 123303 year: 2018 ident: 2024080800010642400_c8 publication-title: J. Chem. Phys. doi: 10.1063/1.4997584 – volume: 4 start-page: 116 year: 2008 ident: 2024080800010642400_c73 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700200b – volume: 117 start-page: 27116 year: 2020 ident: 2024080800010642400_c27 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2008307117 – volume: 105 start-page: 3878 year: 1996 ident: 2024080800010642400_c58 publication-title: J. Chem. Phys. doi: 10.1063/1.472208 – volume-title: Single Molecule Science: Physical Principles and Models year: 2015 ident: 2024080800010642400_c37 – volume: 105 start-page: 536 year: 2008 ident: 2024080800010642400_c24 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0707378105 – volume: 122 start-page: 11400 year: 2018 ident: 2024080800010642400_c48 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b07361 – volume-title: Molecular Kinetics in Condense Phases: Theory, Simulation, and Analysis year: 2020 ident: 2024080800010642400_c36 – volume: 7 start-page: 284 year: 1940 ident: 2024080800010642400_c2 publication-title: Physica doi: 10.1016/s0031-8914(40)90098-2 – volume: 235 start-page: 291 year: 1993 ident: 2024080800010642400_c35 publication-title: Phys. Rep. doi: 10.1016/0370-1573(93)90012-3 – volume: 114 start-page: E1833 year: 2017 ident: 2024080800010642400_c53 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1616672114 – volume: 125 start-page: 146001 year: 2020 ident: 2024080800010642400_c28 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.125.146001 – volume: 339 start-page: 1 year: 2000 ident: 2024080800010642400_c43 publication-title: Phys. Rep. doi: 10.1016/s0370-1573(00)00070-3 – volume: 153 start-page: 194104 year: 2020 ident: 2024080800010642400_c14 publication-title: J. Chem. Phys. doi: 10.1063/5.0025785 – volume: 29 start-page: 845 year: 2013 ident: 2024080800010642400_c69 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt055 – volume: 126 start-page: 014101 year: 2007 ident: 2024080800010642400_c71 publication-title: J. Chem. Phys. doi: 10.1063/1.2408420 – volume: 122 start-page: 9049 year: 2018 ident: 2024080800010642400_c64 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b06112 – volume: 109 start-page: 17800 year: 2012 ident: 2024080800010642400_c52 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1117368109 – volume: 6 start-page: 414 year: 1996 ident: 2024080800010642400_c49 publication-title: Chaos doi: 10.1063/1.166191 – volume: 5 start-page: L012026 year: 2023 ident: 2024080800010642400_c31 publication-title: Phys. Rev. Res. doi: 10.1103/physrevresearch.5.l012026 – volume: 158 start-page: 111101 year: 2023 ident: 2024080800010642400_c65 publication-title: J. Chem. Phys. doi: 10.1063/5.0142166 – volume: 1 start-page: 100029 year: 2021 ident: 2024080800010642400_c46 publication-title: Biophys. Rep. doi: 10.1016/j.bpr.2021.100029 – volume: 2 start-page: 100409 year: 2021 ident: 2024080800010642400_c10 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2021.100409 – volume: 9 start-page: 2190 year: 2018 ident: 2024080800010642400_c26 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00956 – volume: 136 start-page: 36001 year: 2021 ident: 2024080800010642400_c15 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/ac35ba – volume-title: Information Theory: A Tutorial Introduction year: 2015 ident: 2024080800010642400_c34 – volume: 99 start-page: 3959 year: 2010 ident: 2024080800010642400_c57 publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.11.017 – volume: 113 start-page: 14732 year: 2009 ident: 2024080800010642400_c25 publication-title: J. Phys. Chem. B doi: 10.1021/jp9059483 – volume: 134 start-page: 204105 year: 2011 ident: 2024080800010642400_c39 publication-title: J. Chem. Phys. doi: 10.1063/1.3590108 – volume: 113 start-page: 14026 year: 2009 ident: 2024080800010642400_c56 publication-title: J. Phys. Chem. B doi: 10.1021/jp902291n – volume: 96 start-page: 9597 year: 1999 ident: 2024080800010642400_c51 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.17.9597 – volume: 150 start-page: 054106 year: 2019 ident: 2024080800010642400_c44 publication-title: J. Chem. Phys. doi: 10.1063/1.5079742 – volume: 118 start-page: e2023856118 year: 2021 ident: 2024080800010642400_c17 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2023856118 – volume: 107 start-page: 5617 year: 2003 ident: 2024080800010642400_c54 publication-title: J. Phys. Chem. B doi: 10.1021/jp034285o – volume: 118 start-page: 6597 year: 2014 ident: 2024080800010642400_c20 publication-title: J. Phys. Chem. B doi: 10.1021/jp500611f – volume: 27 start-page: 379 year: 1948 ident: 2024080800010642400_c32 publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 134 start-page: 085104 year: 2011 ident: 2024080800010642400_c63 publication-title: J. Chem. Phys. doi: 10.1063/1.3556750 – volume-title: First Steps in Random Walks: From Tools to Applications year: 2011 ident: 2024080800010642400_c42 – volume: 11 start-page: 041047 year: 2021 ident: 2024080800010642400_c40 publication-title: Phys. Rev. X doi: 10.1103/physrevx.11.041047 – volume: 103 start-page: 608 year: 1999 ident: 2024080800010642400_c55 publication-title: J. Phys. Chem. B doi: 10.1021/jp982362n – volume: 112 start-page: 6094 year: 2008 ident: 2024080800010642400_c59 publication-title: J. Phys. Chem. B doi: 10.1021/jp076510y – volume: 125 start-page: 2467 year: 2021 ident: 2024080800010642400_c29 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.0c10978 – volume: 138 start-page: 154105 year: 2013 ident: 2024080800010642400_c67 publication-title: J. Chem. Phys. doi: 10.1063/1.4795838 – volume: 124 start-page: 3482 year: 2020 ident: 2024080800010642400_c18 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.0c01437 – volume: 356 start-page: 367 year: 2002 ident: 2024080800010642400_c66 publication-title: Phys. Rep. doi: 10.1016/s0370-1573(01)00025-4 – volume: 3 start-page: L022018 year: 2021 ident: 2024080800010642400_c30 publication-title: Phys. Rev. Res. doi: 10.1103/physrevresearch.3.l022018 – volume: 138 start-page: 074112 year: 2013 ident: 2024080800010642400_c62 publication-title: J. Chem. Phys. doi: 10.1063/1.4792206 – volume: 52 start-page: 7182 year: 1981 ident: 2024080800010642400_c72 publication-title: J. Appl. Phys. doi: 10.1063/1.328693 – volume: 7 start-page: 2520 year: 2011 ident: 2024080800010642400_c41 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200086k – volume: 76 start-page: 061121 year: 2007 ident: 2024080800010642400_c60 publication-title: Phys. Rev. E doi: 10.1103/physreve.76.061121 – volume-title: Nonequilibrium Statistical Mechanics year: 2001 ident: 2024080800010642400_c1 – volume: 72 start-page: 4350 year: 1980 ident: 2024080800010642400_c3 publication-title: J. Chem. Phys. doi: 10.1063/1.439715 – volume: 147 start-page: 152707 year: 2017 ident: 2024080800010642400_c22 publication-title: J. Chem. Phys. doi: 10.1063/1.4993228 – volume: 96 start-page: 108101 year: 2006 ident: 2024080800010642400_c4 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.96.108101 – volume: 144 start-page: 060901 year: 2016 ident: 2024080800010642400_c38 publication-title: J. Chem. Phys. doi: 10.1063/1.4940794 – volume: 13 start-page: 16902 year: 2011 ident: 2024080800010642400_c6 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp21541h |
SSID | ssj0001724 |
Score | 2.455429 |
Snippet | Whether single-molecule trajectories, observed experimentally or in molecular simulations, can be described using simple models such as biased diffusion is a... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Algorithms Compressibility Digitization Markov chains Physics Spatial resolution Trajectory analysis |
Title | Non-Markov models of single-molecule dynamics from information-theoretical analysis of trajectories |
URI | http://dx.doi.org/10.1063/5.0158930 https://www.ncbi.nlm.nih.gov/pubmed/37551804 https://www.proquest.com/docview/2847535168 https://www.proquest.com/docview/2847749393 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CTmjwgGBcFhgoXB6QkEcW27k8TmPTBF2ZWCv1LXIcR-ouCerSSfDrOY7tpLBOGrxElWs5lr_Px8cn5wLwXuIZz4IkJ4FIJWE5TXFLhQkRMaUFHli8pDp2-GgUHU7Ylymf9gkV2uiSJt-Wv1bGlfwPqtiGuOoo2X9AthsUG_A34otPRBift8J4VFdEB9vUV6aiTeuWoS__54pcmLq36mNhas5fmkgSmyhVz4ksBzGKpeQkzVyctsZ852B42lNqSYGVLteAsY50yvmJ9fL9imduR71j65P9XfzE5Sl6A7mphowq6qI3jp-JeX3VSsOLWTOfzWy4hDVOhFRbW01QqJWnQZKSODIVQbfVijYnhG1e8FkvUq8Jd9SmEBGdZpWjlhX0J5j7aj_6lh1MhsNsvD8d34W1EG8OwQDWdj8fDU-64xk1NmaiLswsXLqpiH7qhv5TSbl283gA66ifGFeJJW1k_AgeWhT8XcOJx3BHVRuwvueq923AvWMDyhOQPUt8wxK_Lv2_WOI7lviaJf4NLPEdS_QIyyx5CpOD_fHeIbGlNYikLGlIGudlGJRSME5LoXIheblTxii9E5qIQnG8xoYqZGURySgoYsbDQooUbwMyD6Mips9gUNWV2gSfh4wngkrORY67XuaSizJO29JBiRKpBx_cWmZu0XT5k_Os9X-IaMYzu-wevO26_jDJVlZ12nKAZHYvXmZayeKU70SJB2-6v3HJ9ecvUal6YfrELKUp9eC5AbJ7C431bAPmwbsO2Zun8OIW73gJ9_sNsQWDZr5Qr1B_bfLXlpG_AcmCnd4 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Markov+models+of+single-molecule+dynamics+from+information-theoretical+analysis+of+trajectories&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Song%2C+Kevin&rft.au=Park%2C+Raymond&rft.au=Das%2C+Atanu&rft.au=Makarov%2C+Dmitrii+E&rft.date=2023-08-14&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=159&rft.issue=6&rft_id=info:doi/10.1063%2F5.0158930&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |