Flexible Solid Flow Electrodes for High-Energy Scalable Energy Storage
Flow batteries allow independent scaling of power and energy and permit low-cost materials for large-scale energy storage. However, they suffer from low-energy densities or poor scalability when a solid electrode is used in hybrid systems (zinc or lithium metals). Breaking the convention of pumping...
Saved in:
Published in | Joule Vol. 3; no. 7; pp. 1677 - 1688 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
17.07.2019
|
Online Access | Get full text |
Cover
Loading…
Abstract | Flow batteries allow independent scaling of power and energy and permit low-cost materials for large-scale energy storage. However, they suffer from low-energy densities or poor scalability when a solid electrode is used in hybrid systems (zinc or lithium metals). Breaking the convention of pumping fluids, we propose and demonstrate a new flow battery invention that transports active material via rotation of flexible electrode belts made from high-energy-density solid electrode materials (flexible solid flow electrode). Using this strategy, we demonstrated a fully scalable aqueous solid-liquid hybrid flow battery using a lithium titanium phosphate (LTP) flexible anode belt coupled with lithium iodide (LiI) catholyte. This strategy of the circulating flexible solid electrode can be readily applied to existing solid-liquid hybrid flow batteries (e.g., Zn-I2, Zn-Br2, Li-I2, Li-polysulfide, etc.) and allows many types of solid electrode materials in a flow battery platform without constraints in solubility or scalability.
[Display omitted]
•New strategy for scalable energy storage by rolling flexible solid electrode•Robust electrochemical and mechanical performance in aqueous and non-aqueous systems•Extended material choices in flow battery without limits in solubility or scalability
Large-scale and long-duration energy storage is required for effective utilization of intermittent solar and wind energy. Flow batteries are ideal for large-scale energy storage owing to independent scaling of power and energy. The energy density of all-vanadium flow batteries is limited by the liquid electrolytes. Emerging solid-liquid hybrid flow batteries (e.g., Zn metal flow battery) use solid active material with improved energy density; however, the hybrid configuration sacrifices scalability. Breaking the convention of pumping fluids, we demonstrate a new flow battery that transports active material via rotation of flexible electrode belts made from high-energy-density solid electrode materials. This strategy can be readily applied to existing hybrid flow batteries (e.g., Zn-I2, Zn-Br2, Li-I2, Li-polysulfide, etc.) and extends flow battery material choices without limits in solubility or scalability.
This work describes a new strategy to build high-energy density, fully scalable energy storage devices by using flexible solid electrodes. This work demonstrates a novel method to convert conventional hybrid flow batteries to fully scalable energy storage devices and enables extensive new material chemistries for large-scale energy storage applications. |
---|---|
AbstractList | Flow batteries allow independent scaling of power and energy and permit low-cost materials for large-scale energy storage. However, they suffer from low-energy densities or poor scalability when a solid electrode is used in hybrid systems (zinc or lithium metals). Breaking the convention of pumping fluids, we propose and demonstrate a new flow battery invention that transports active material via rotation of flexible electrode belts made from high-energy-density solid electrode materials (flexible solid flow electrode). Using this strategy, we demonstrated a fully scalable aqueous solid-liquid hybrid flow battery using a lithium titanium phosphate (LTP) flexible anode belt coupled with lithium iodide (LiI) catholyte. This strategy of the circulating flexible solid electrode can be readily applied to existing solid-liquid hybrid flow batteries (e.g., Zn-I2, Zn-Br2, Li-I2, Li-polysulfide, etc.) and allows many types of solid electrode materials in a flow battery platform without constraints in solubility or scalability.
[Display omitted]
•New strategy for scalable energy storage by rolling flexible solid electrode•Robust electrochemical and mechanical performance in aqueous and non-aqueous systems•Extended material choices in flow battery without limits in solubility or scalability
Large-scale and long-duration energy storage is required for effective utilization of intermittent solar and wind energy. Flow batteries are ideal for large-scale energy storage owing to independent scaling of power and energy. The energy density of all-vanadium flow batteries is limited by the liquid electrolytes. Emerging solid-liquid hybrid flow batteries (e.g., Zn metal flow battery) use solid active material with improved energy density; however, the hybrid configuration sacrifices scalability. Breaking the convention of pumping fluids, we demonstrate a new flow battery that transports active material via rotation of flexible electrode belts made from high-energy-density solid electrode materials. This strategy can be readily applied to existing hybrid flow batteries (e.g., Zn-I2, Zn-Br2, Li-I2, Li-polysulfide, etc.) and extends flow battery material choices without limits in solubility or scalability.
This work describes a new strategy to build high-energy density, fully scalable energy storage devices by using flexible solid electrodes. This work demonstrates a novel method to convert conventional hybrid flow batteries to fully scalable energy storage devices and enables extensive new material chemistries for large-scale energy storage applications. |
Author | Lu, Yi-Chun Wang, Zengyue Tam, Long-Yin Simon |
Author_xml | – sequence: 1 givenname: Zengyue surname: Wang fullname: Wang, Zengyue organization: Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N. T. 999077, Hong Kong SAR, China – sequence: 2 givenname: Long-Yin Simon surname: Tam fullname: Tam, Long-Yin Simon organization: Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N. T. 999077, Hong Kong SAR, China – sequence: 3 givenname: Yi-Chun surname: Lu fullname: Lu, Yi-Chun email: yichunlu@mae.cuhk.edu.hk organization: Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N. T. 999077, Hong Kong SAR, China |
BookMark | eNp9kMtOwzAQRS1UJErpF7DJDyTYiR_JggWqGopUiUVhbTn2pDgyMbLDo39P0oLEitXMSPeMZs4lmvW-B4SuCc4IJvymyzr_7iDLMakyzDJM2Bma54zmKS0Ymf3pL9Ayxg7jMZmXOS_mqK4dfNnGQbLzzpqkdv4zWTvQQ_AGYtL6kGzs_iVd9xD2h2SnlVNT_HcefFB7uELnrXIRlj91gZ7r9dNqk24f7x9Wd9tUF7Qc0oozLgzjGIC3TckoFaTSmAhdcdMowILRCkQjFIOyUILrlgLXACw3lBBTLFBx2quDjzFAK9-CfVXhIAmWkw3ZyaMNOdmQmMnRxkjdnigYT_uwEGTUFnoNxobxU2m8_Zf_BlMsasQ |
CitedBy_id | crossref_primary_10_1007_s40820_023_01174_7 crossref_primary_10_1007_s40544_023_0857_0 crossref_primary_10_3390_su152115635 crossref_primary_10_1002_aenm_201902085 crossref_primary_10_1039_D1EE02258J crossref_primary_10_1016_j_nanoms_2020_06_003 crossref_primary_10_1038_s41560_020_00772_8 crossref_primary_10_1039_D1TA06138K crossref_primary_10_1016_j_joule_2020_07_001 crossref_primary_10_1021_acs_accounts_0c00360 crossref_primary_10_1002_cssc_202100094 crossref_primary_10_1016_j_electacta_2021_138970 crossref_primary_10_1557_s43581_022_00027_x crossref_primary_10_1016_j_electacta_2020_137075 crossref_primary_10_1016_j_est_2023_110086 crossref_primary_10_1016_j_jpowsour_2023_233477 crossref_primary_10_3390_en14185643 crossref_primary_10_1016_j_jpowsour_2020_229023 crossref_primary_10_1007_s11581_023_04952_w |
Cites_doi | 10.1038/nature15746 10.1021/ja201118f 10.1016/j.nanoen.2016.09.043 10.1002/aenm.201502183 10.1038/natrevmats.2017.14 10.1016/j.electacta.2016.04.010 10.1039/C6CP04566A 10.1002/cssc.201600102 10.1002/anie.201708664 10.1126/science.aab3033 10.1039/C6EE03554J 10.1038/nature12909 10.1002/adma.201505000 10.1002/anie.201803122 10.1039/c3cp53428f 10.1002/anie.201703399 10.1039/c3ee00072a 10.1126/sciadv.aao1761 10.1039/C2CP44466F 10.1002/aenm.201300627 10.1016/j.joule.2017.08.007 10.1021/acsenergylett.7b00650 10.1002/anie.201606472 10.1021/acs.chemmater.7b02561 10.1002/adma.201403746 10.1016/0378-7753(88)80005-3 10.1149/2.1141704jes 10.1039/C7TA00482F 10.1039/c2ee02542f 10.1021/acs.chemmater.5b04558 10.1149/2.002304jes 10.1002/aenm.201100152 10.1002/aenm.201400567 10.1126/science.1212741 10.1149/1.2133517 10.1016/j.elecom.2007.08.016 10.1002/anie.201604925 10.1039/C7CS00569E |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. |
Copyright_xml | – notice: 2019 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.joule.2019.05.015 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2542-4351 |
EndPage | 1688 |
ExternalDocumentID | 10_1016_j_joule_2019_05_015 S2542435119302582 |
GroupedDBID | 6I. AAEDW AAIAV AALRI AAXUO ABMAC ABVKL ACGFS ADBBV ADJPV AFTJW ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB NCXOZ OK1 0R~ 0SF AAMRU AAYXX ADVLN AITUG AKAPO CITATION SSZ |
ID | FETCH-LOGICAL-c348t-96567d560ee6fb8544719c017c96dbae07549e7b7a5e83a76cf4e6cee52d411d3 |
IEDL.DBID | ABVKL |
ISSN | 2542-4351 |
IngestDate | Thu Sep 26 21:08:36 EDT 2024 Fri Feb 23 02:31:20 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-96567d560ee6fb8544719c017c96dbae07549e7b7a5e83a76cf4e6cee52d411d3 |
OpenAccessLink | http://www.cell.com/article/S2542435119302582/pdf |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1016_j_joule_2019_05_015 elsevier_sciencedirect_doi_10_1016_j_joule_2019_05_015 |
PublicationCentury | 2000 |
PublicationDate | 2019-07-17 |
PublicationDateYYYYMMDD | 2019-07-17 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-17 day: 17 |
PublicationDecade | 2010 |
PublicationTitle | Joule |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Lu, Goodenough, Kim (bib25) 2011; 133 Wei, Pan, Duan, Hollas, Yang, Li, Nie, Liu, Reed, Wang (bib11) 2017; 2 Hamelet, Larcher, Dupont, Tarascon (bib33) 2013; 160 Pan, Yang, Huang, Wang, Huang, Wang (bib37) 2014; 4 Cheng, Zhang, Yang, Wen, Cao, Wang (bib24) 2007; 9 Bai, Bazant (bib27) 2016; 202 Zhao, Huang, Luo, Liu, Lu, Li, Li, Hu, Ma, Chen (bib14) 2018; 4 Shin, You, Lee, Kumar, Yin, Wang, Shirley Meng (bib41) 2016; 18 Wei, Xu, Vijayakumar, Cosimbescu, Liu, Sprenkle, Wang (bib15) 2014; 26 Yang, Zheng, Cui (bib28) 2013; 6 Li, Pan, Su, Tsai, Badel, Valle, Eiler, Xiang, Brushett, Chiang (bib7) 2017; 1 Weng, Li, Cong, Zhou, Lu (bib21) 2017; 10 Pan, Huang, Huang, Wang (bib38) 2016; 28 Lin, Chen, Gerhardt, Tong, Kim, Eisenach, Valle, Hardee, Gordon, Aziz (bib2) 2015; 349 Duduta, Ho, Wood, Limthongkul, Brunini, Carter, Chiang (bib31) 2011; 1 Yu, Hu, Pan, Zhang, Wang, Li, Huang, Chen (bib13) 2017; 8 Janoschka, Martin, Martin, Friebe, Morgenstern, Hiller, Hager, Schubert (bib3) 2015; 527 Janoschka, Martin, Hager, Schubert (bib9) 2016; 55 Rychcik, Skyllas-Kazacos (bib16) 1988; 22 Li, Nie, Vijayakumar, Li, Liu, Sprenkle, Wang (bib19) 2015; 6 Li, Smith, Dong, Baram, Fan, Xie, Limthongkul, Carter, Chiang (bib32) 2013; 15 Chen, Lai, Lu (bib34) 2017; 29 Dunn, Kamath, Tarascon (bib1) 2011; 334 Chen, Lu (bib35) 2016; 6 Park, Aalipour, Vermesh, Yu, Gambhir (bib4) 2017; 2 Skyllas-Kazacos, Cao, Kazacos, Kausar, Mousa (bib17) 2016; 9 Xie, Zhang, Xu, Wang, Li (bib40) 2018; 57 Weng, Simon Tam, Lu (bib42) 2017; 5 Lu, Y.C., Wang, Z.Y., Tam, L.-Y.S., Zou, Q.L., and Cong, G.T. (2016). High-energy density and low-cost flow electrochemical devices. US patent US20170162900A1, filed Decemeber 7, 2016. Winsberg, Hagemann, Janoschka, Hager, Schubert (bib5) 2017; 56 Miller, Wainright, Savinell (bib30) 2017; 164 Huang, Li, Grätzel, Wang (bib36) 2013; 15 Zhang, Ding, Zhang, Wang, Zhao, Zhang, Yu (bib29) 2017; 56 Huskinson, Marshak, Suh, Er, Gerhardt, Galvin, Chen, Aspuru-Guzik, Gordon, Aziz (bib8) 2014; 505 Ding, Zhang, Zhang, Zhou, Yu (bib12) 2018; 47 Winsberg, Janoschka, Morgenstern, Hagemann, Muench, Hauffman, Gohy, Hager, Schubert (bib22) 2016; 28 Xie, Duan, Xu, Zhang, Li (bib23) 2017; 56 Zhao, Byon (bib26) 2013; 3 Lim, Lackner, Knechtli (bib18) 1977; 124 Rugolo, Aziz (bib6) 2012; 5 Liu, Wei, Nie, Sprenkle, Wang (bib10) 2016; 6 Li, Weng, Zou, Cong, Lu (bib20) 2016; 30 Li (10.1016/j.joule.2019.05.015_bib7) 2017; 1 Hamelet (10.1016/j.joule.2019.05.015_bib33) 2013; 160 Winsberg (10.1016/j.joule.2019.05.015_bib5) 2017; 56 Weng (10.1016/j.joule.2019.05.015_bib21) 2017; 10 Shin (10.1016/j.joule.2019.05.015_bib41) 2016; 18 Rugolo (10.1016/j.joule.2019.05.015_bib6) 2012; 5 Duduta (10.1016/j.joule.2019.05.015_bib31) 2011; 1 Weng (10.1016/j.joule.2019.05.015_bib42) 2017; 5 Liu (10.1016/j.joule.2019.05.015_bib10) 2016; 6 Lin (10.1016/j.joule.2019.05.015_bib2) 2015; 349 Wei (10.1016/j.joule.2019.05.015_bib15) 2014; 26 Li (10.1016/j.joule.2019.05.015_bib19) 2015; 6 Park (10.1016/j.joule.2019.05.015_bib4) 2017; 2 Zhao (10.1016/j.joule.2019.05.015_bib26) 2013; 3 Ding (10.1016/j.joule.2019.05.015_bib12) 2018; 47 Yang (10.1016/j.joule.2019.05.015_bib28) 2013; 6 Bai (10.1016/j.joule.2019.05.015_bib27) 2016; 202 Huang (10.1016/j.joule.2019.05.015_bib36) 2013; 15 Janoschka (10.1016/j.joule.2019.05.015_bib9) 2016; 55 Cheng (10.1016/j.joule.2019.05.015_bib24) 2007; 9 Xie (10.1016/j.joule.2019.05.015_bib40) 2018; 57 10.1016/j.joule.2019.05.015_bib39 Wei (10.1016/j.joule.2019.05.015_bib11) 2017; 2 Chen (10.1016/j.joule.2019.05.015_bib34) 2017; 29 Skyllas-Kazacos (10.1016/j.joule.2019.05.015_bib17) 2016; 9 Lu (10.1016/j.joule.2019.05.015_bib25) 2011; 133 Huskinson (10.1016/j.joule.2019.05.015_bib8) 2014; 505 Yu (10.1016/j.joule.2019.05.015_bib13) 2017; 8 Lim (10.1016/j.joule.2019.05.015_bib18) 1977; 124 Miller (10.1016/j.joule.2019.05.015_bib30) 2017; 164 Dunn (10.1016/j.joule.2019.05.015_bib1) 2011; 334 Rychcik (10.1016/j.joule.2019.05.015_bib16) 1988; 22 Li (10.1016/j.joule.2019.05.015_bib20) 2016; 30 Winsberg (10.1016/j.joule.2019.05.015_bib22) 2016; 28 Zhao (10.1016/j.joule.2019.05.015_bib14) 2018; 4 Xie (10.1016/j.joule.2019.05.015_bib23) 2017; 56 Li (10.1016/j.joule.2019.05.015_bib32) 2013; 15 Chen (10.1016/j.joule.2019.05.015_bib35) 2016; 6 Janoschka (10.1016/j.joule.2019.05.015_bib3) 2015; 527 Pan (10.1016/j.joule.2019.05.015_bib37) 2014; 4 Zhang (10.1016/j.joule.2019.05.015_bib29) 2017; 56 Pan (10.1016/j.joule.2019.05.015_bib38) 2016; 28 |
References_xml | – volume: 28 start-page: 2052 year: 2016 end-page: 2057 ident: bib38 article-title: High-Energy Density Redox Flow Lithium Battery with Unprecedented Voltage Efficiency publication-title: Chem. Mater. contributor: fullname: Wang – volume: 160 start-page: A516 year: 2013 end-page: A520 ident: bib33 article-title: Silicon-Based Non Aqueous Anolyte for Li Redox-Flow Batteries publication-title: J. Electrochem. Soc. contributor: fullname: Tarascon – volume: 57 start-page: 11171 year: 2018 end-page: 11176 ident: bib40 article-title: A Long Cycle Life, Self-Healing Zinc-Iodine Flow Battery with High Power Density publication-title: Angew. Chem. Int. Ed. contributor: fullname: Li – volume: 2 start-page: 2187 year: 2017 end-page: 2204 ident: bib11 article-title: Materials and Systems for Organic Redox Flow Batteries: Status and Challenges publication-title: ACS Energy Lett. contributor: fullname: Wang – volume: 15 start-page: 15833 year: 2013 end-page: 15839 ident: bib32 article-title: Aqueous semi-solid flow cell: demonstration and analysis publication-title: Phys. Chem. Chem. Phys. contributor: fullname: Chiang – volume: 3 start-page: 1630 year: 2013 end-page: 1635 ident: bib26 article-title: Batteries: High-Performance Lithium-Iodine Flow Battery. Adv publication-title: Energy Mater. contributor: fullname: Byon – volume: 9 start-page: 1521 year: 2016 end-page: 1543 ident: bib17 article-title: Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review publication-title: ChemSusChem contributor: fullname: Mousa – volume: 6 year: 2016 ident: bib35 article-title: A High-Energy-Density Multiple Redox Semi-Solid-Liquid Flow Battery publication-title: Adv. Energy Mater. contributor: fullname: Lu – volume: 55 start-page: 14427 year: 2016 end-page: 14430 ident: bib9 article-title: An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System publication-title: Angew. Chem. Int. Edit. contributor: fullname: Schubert – volume: 8 year: 2017 ident: bib13 article-title: A class of liquid anode for rechargeable batteries with ultralong cycle life publication-title: Nat. Commun. contributor: fullname: Chen – volume: 1 start-page: 306 year: 2017 end-page: 327 ident: bib7 article-title: Air-Breathing Aqueous Sulfur Flow Battery for Ultralow-Cost Long-Duration Electrical Storage publication-title: Joule contributor: fullname: Chiang – volume: 30 start-page: 283 year: 2016 end-page: 292 ident: bib20 article-title: A high-energy and low-cost polysulfide/iodide redox flow battery publication-title: Nano Energy contributor: fullname: Lu – volume: 334 start-page: 928 year: 2011 end-page: 935 ident: bib1 article-title: Electrical energy storage for the grid: a battery of choices publication-title: Science contributor: fullname: Tarascon – volume: 9 start-page: 2639 year: 2007 end-page: 2642 ident: bib24 article-title: Preliminary study of single flow zinc-nickel battery publication-title: Electrochem. Commun. contributor: fullname: Wang – volume: 5 start-page: 7151 year: 2012 end-page: 7160 ident: bib6 article-title: Electricity storage for intermittent renewable sources publication-title: Energy Environ. Sci. contributor: fullname: Aziz – volume: 5 start-page: 11764 year: 2017 end-page: 11771 ident: bib42 article-title: High-performance LiTi2(PO4)3 anodes for high-areal-capacity flexible aqueous lithium-ion batteries publication-title: J. Mater. Chem. A contributor: fullname: Lu – volume: 4 year: 2018 ident: bib14 article-title: High-capacity aqueous zinc batteries using sustainable quinone electrodes publication-title: Sci. Adv. contributor: fullname: Chen – volume: 18 start-page: 26376 year: 2016 end-page: 26382 ident: bib41 article-title: Deposition of ZnO on bismuth species towards a rechargeable Zn-based aqueous battery publication-title: Phys. Chem. Chem. Phys. contributor: fullname: Shirley Meng – volume: 164 start-page: A796 year: 2017 end-page: A803 ident: bib30 article-title: Iron Electrodeposition in a Deep Eutectic Solvent for Flow Batteries publication-title: J. Electrochem. Soc. contributor: fullname: Savinell – volume: 2 year: 2017 ident: bib4 article-title: Towards clinically translatable publication-title: Nat. Rev. Mater. contributor: fullname: Gambhir – volume: 26 start-page: 7649 year: 2014 end-page: 7653 ident: bib15 article-title: TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries publication-title: Adv. Mater. contributor: fullname: Wang – volume: 47 start-page: 69 year: 2018 end-page: 103 ident: bib12 article-title: Molecular engineering of organic electroactive materials for redox flow batteries publication-title: Chem. Soc. Rev. contributor: fullname: Yu – volume: 15 start-page: 1793 year: 2013 end-page: 1797 ident: bib36 article-title: Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery publication-title: Phys. Chem. Chem. Phys. contributor: fullname: Wang – volume: 6 year: 2016 ident: bib10 article-title: A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyyte and 4-HO-TEMPO Catholyte publication-title: Adv. Energy Mater. contributor: fullname: Wang – volume: 202 start-page: 216 year: 2016 end-page: 223 ident: bib27 article-title: Performance and Degradation of A Lithium-Bromine Rechargeable Fuel Cell Using Highly Concentrated Catholytes publication-title: Electrochim. Acta contributor: fullname: Bazant – volume: 133 start-page: 5756 year: 2011 end-page: 5759 ident: bib25 article-title: Aqueous cathode for next-generation alkali-ion batteries publication-title: J. Am. Chem. Soc. contributor: fullname: Kim – volume: 1 start-page: 511 year: 2011 end-page: 516 ident: bib31 article-title: Flow Batteries: Semi-Solid Lithium Rechargeable Flow Battery publication-title: Adv. Energy Mater. contributor: fullname: Chiang – volume: 349 start-page: 1529 year: 2015 end-page: 1532 ident: bib2 article-title: Alkaline quinone flow battery publication-title: Science contributor: fullname: Aziz – volume: 505 start-page: 195 year: 2014 end-page: 198 ident: bib8 article-title: A metal-free organic-inorganic aqueous flow battery publication-title: Nature contributor: fullname: Aziz – volume: 56 start-page: 14953 year: 2017 end-page: 14957 ident: bib23 article-title: A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage publication-title: Angew. Chem. Int. Ed. contributor: fullname: Li – volume: 29 start-page: 7533 year: 2017 end-page: 7542 ident: bib34 article-title: Silicon–Carbon Nanocomposite Semi-Solid Negolyte and Its Application in Redox Flow Batteries publication-title: Chem. Mater. contributor: fullname: Lu – volume: 124 start-page: 1154 year: 1977 end-page: 1157 ident: bib18 article-title: Zinc-Bromine Secondary Battery publication-title: J. Electrochem. Soc. contributor: fullname: Knechtli – volume: 10 start-page: 735 year: 2017 end-page: 741 ident: bib21 article-title: Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries publication-title: Energy Environ. Sci. contributor: fullname: Lu – volume: 527 start-page: 78 year: 2015 end-page: 81 ident: bib3 article-title: An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials publication-title: Nature contributor: fullname: Schubert – volume: 6 start-page: 1552 year: 2013 end-page: 1558 ident: bib28 article-title: A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage publication-title: Energy Environ. Sci. contributor: fullname: Cui – volume: 6 year: 2015 ident: bib19 article-title: Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery publication-title: Nat. Commun. contributor: fullname: Wang – volume: 28 start-page: 2238 year: 2016 end-page: 2243 ident: bib22 article-title: Poly(TEMPO)/Zinc Hybrid-Flow Battery: A Novel, "Green," High Voltage, and Safe Energy Storage System publication-title: Adv. Mater. contributor: fullname: Schubert – volume: 4 year: 2014 ident: bib37 article-title: Batteries: Redox Targeting of Anatase TiO2 for Redox Flow Lithium-Ion Batteries publication-title: Adv. Energy Mater. contributor: fullname: Wang – volume: 56 start-page: 686 year: 2017 end-page: 711 ident: bib5 article-title: Redox-Flow Batteries: From Metals to Organic Redox-Active Materials publication-title: Angew. Chem. Int. Ed. contributor: fullname: Schubert – volume: 22 start-page: 59 year: 1988 end-page: 67 ident: bib16 article-title: Characteristics of a new all-vanadium redox flow battery publication-title: J. Power Sources contributor: fullname: Skyllas-Kazacos – volume: 56 start-page: 7454 year: 2017 end-page: 7459 ident: bib29 article-title: A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte publication-title: Angew. Chem. Int. Ed. contributor: fullname: Yu – volume: 527 start-page: 78 year: 2015 ident: 10.1016/j.joule.2019.05.015_bib3 article-title: An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials publication-title: Nature doi: 10.1038/nature15746 contributor: fullname: Janoschka – volume: 133 start-page: 5756 year: 2011 ident: 10.1016/j.joule.2019.05.015_bib25 article-title: Aqueous cathode for next-generation alkali-ion batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201118f contributor: fullname: Lu – volume: 30 start-page: 283 year: 2016 ident: 10.1016/j.joule.2019.05.015_bib20 article-title: A high-energy and low-cost polysulfide/iodide redox flow battery publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.09.043 contributor: fullname: Li – volume: 6 year: 2016 ident: 10.1016/j.joule.2019.05.015_bib35 article-title: A High-Energy-Density Multiple Redox Semi-Solid-Liquid Flow Battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502183 contributor: fullname: Chen – volume: 2 year: 2017 ident: 10.1016/j.joule.2019.05.015_bib4 article-title: Towards clinically translatable in vivo nanodiagnostics publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.14 contributor: fullname: Park – volume: 202 start-page: 216 year: 2016 ident: 10.1016/j.joule.2019.05.015_bib27 article-title: Performance and Degradation of A Lithium-Bromine Rechargeable Fuel Cell Using Highly Concentrated Catholytes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.04.010 contributor: fullname: Bai – volume: 18 start-page: 26376 year: 2016 ident: 10.1016/j.joule.2019.05.015_bib41 article-title: Deposition of ZnO on bismuth species towards a rechargeable Zn-based aqueous battery publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP04566A contributor: fullname: Shin – volume: 9 start-page: 1521 year: 2016 ident: 10.1016/j.joule.2019.05.015_bib17 article-title: Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review publication-title: ChemSusChem doi: 10.1002/cssc.201600102 contributor: fullname: Skyllas-Kazacos – volume: 56 start-page: 14953 year: 2017 ident: 10.1016/j.joule.2019.05.015_bib23 article-title: A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708664 contributor: fullname: Xie – volume: 349 start-page: 1529 year: 2015 ident: 10.1016/j.joule.2019.05.015_bib2 article-title: Alkaline quinone flow battery publication-title: Science doi: 10.1126/science.aab3033 contributor: fullname: Lin – volume: 10 start-page: 735 year: 2017 ident: 10.1016/j.joule.2019.05.015_bib21 article-title: Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03554J contributor: fullname: Weng – volume: 6 year: 2015 ident: 10.1016/j.joule.2019.05.015_bib19 article-title: Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery publication-title: Nat. Commun. contributor: fullname: Li – volume: 505 start-page: 195 year: 2014 ident: 10.1016/j.joule.2019.05.015_bib8 article-title: A metal-free organic-inorganic aqueous flow battery publication-title: Nature doi: 10.1038/nature12909 contributor: fullname: Huskinson – volume: 28 start-page: 2238 year: 2016 ident: 10.1016/j.joule.2019.05.015_bib22 article-title: Poly(TEMPO)/Zinc Hybrid-Flow Battery: A Novel, "Green," High Voltage, and Safe Energy Storage System publication-title: Adv. Mater. doi: 10.1002/adma.201505000 contributor: fullname: Winsberg – volume: 57 start-page: 11171 year: 2018 ident: 10.1016/j.joule.2019.05.015_bib40 article-title: A Long Cycle Life, Self-Healing Zinc-Iodine Flow Battery with High Power Density publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803122 contributor: fullname: Xie – volume: 15 start-page: 15833 year: 2013 ident: 10.1016/j.joule.2019.05.015_bib32 article-title: Aqueous semi-solid flow cell: demonstration and analysis publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53428f contributor: fullname: Li – volume: 56 start-page: 7454 year: 2017 ident: 10.1016/j.joule.2019.05.015_bib29 article-title: A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201703399 contributor: fullname: Zhang – volume: 6 start-page: 1552 year: 2013 ident: 10.1016/j.joule.2019.05.015_bib28 article-title: A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage publication-title: Energy Environ. Sci. doi: 10.1039/c3ee00072a contributor: fullname: Yang – volume: 4 year: 2018 ident: 10.1016/j.joule.2019.05.015_bib14 article-title: High-capacity aqueous zinc batteries using sustainable quinone electrodes publication-title: Sci. Adv. doi: 10.1126/sciadv.aao1761 contributor: fullname: Zhao – volume: 15 start-page: 1793 year: 2013 ident: 10.1016/j.joule.2019.05.015_bib36 article-title: Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C2CP44466F contributor: fullname: Huang – volume: 8 year: 2017 ident: 10.1016/j.joule.2019.05.015_bib13 article-title: A class of liquid anode for rechargeable batteries with ultralong cycle life publication-title: Nat. Commun. contributor: fullname: Yu – volume: 3 start-page: 1630 year: 2013 ident: 10.1016/j.joule.2019.05.015_bib26 article-title: Batteries: High-Performance Lithium-Iodine Flow Battery. Adv publication-title: Energy Mater. doi: 10.1002/aenm.201300627 contributor: fullname: Zhao – volume: 1 start-page: 306 year: 2017 ident: 10.1016/j.joule.2019.05.015_bib7 article-title: Air-Breathing Aqueous Sulfur Flow Battery for Ultralow-Cost Long-Duration Electrical Storage publication-title: Joule doi: 10.1016/j.joule.2017.08.007 contributor: fullname: Li – volume: 2 start-page: 2187 year: 2017 ident: 10.1016/j.joule.2019.05.015_bib11 article-title: Materials and Systems for Organic Redox Flow Batteries: Status and Challenges publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00650 contributor: fullname: Wei – volume: 55 start-page: 14427 year: 2016 ident: 10.1016/j.joule.2019.05.015_bib9 article-title: An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201606472 contributor: fullname: Janoschka – volume: 29 start-page: 7533 year: 2017 ident: 10.1016/j.joule.2019.05.015_bib34 article-title: Silicon–Carbon Nanocomposite Semi-Solid Negolyte and Its Application in Redox Flow Batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02561 contributor: fullname: Chen – volume: 26 start-page: 7649 year: 2014 ident: 10.1016/j.joule.2019.05.015_bib15 article-title: TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries publication-title: Adv. Mater. doi: 10.1002/adma.201403746 contributor: fullname: Wei – volume: 22 start-page: 59 year: 1988 ident: 10.1016/j.joule.2019.05.015_bib16 article-title: Characteristics of a new all-vanadium redox flow battery publication-title: J. Power Sources doi: 10.1016/0378-7753(88)80005-3 contributor: fullname: Rychcik – volume: 164 start-page: A796 year: 2017 ident: 10.1016/j.joule.2019.05.015_bib30 article-title: Iron Electrodeposition in a Deep Eutectic Solvent for Flow Batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.1141704jes contributor: fullname: Miller – volume: 5 start-page: 11764 year: 2017 ident: 10.1016/j.joule.2019.05.015_bib42 article-title: High-performance LiTi2(PO4)3 anodes for high-areal-capacity flexible aqueous lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00482F contributor: fullname: Weng – ident: 10.1016/j.joule.2019.05.015_bib39 – volume: 5 start-page: 7151 year: 2012 ident: 10.1016/j.joule.2019.05.015_bib6 article-title: Electricity storage for intermittent renewable sources publication-title: Energy Environ. Sci. doi: 10.1039/c2ee02542f contributor: fullname: Rugolo – volume: 28 start-page: 2052 year: 2016 ident: 10.1016/j.joule.2019.05.015_bib38 article-title: High-Energy Density Redox Flow Lithium Battery with Unprecedented Voltage Efficiency publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04558 contributor: fullname: Pan – volume: 160 start-page: A516 year: 2013 ident: 10.1016/j.joule.2019.05.015_bib33 article-title: Silicon-Based Non Aqueous Anolyte for Li Redox-Flow Batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.002304jes contributor: fullname: Hamelet – volume: 1 start-page: 511 year: 2011 ident: 10.1016/j.joule.2019.05.015_bib31 article-title: Flow Batteries: Semi-Solid Lithium Rechargeable Flow Battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100152 contributor: fullname: Duduta – volume: 4 year: 2014 ident: 10.1016/j.joule.2019.05.015_bib37 article-title: Batteries: Redox Targeting of Anatase TiO2 for Redox Flow Lithium-Ion Batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400567 contributor: fullname: Pan – volume: 334 start-page: 928 year: 2011 ident: 10.1016/j.joule.2019.05.015_bib1 article-title: Electrical energy storage for the grid: a battery of choices publication-title: Science doi: 10.1126/science.1212741 contributor: fullname: Dunn – volume: 6 year: 2016 ident: 10.1016/j.joule.2019.05.015_bib10 article-title: A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyyte and 4-HO-TEMPO Catholyte publication-title: Adv. Energy Mater. contributor: fullname: Liu – volume: 124 start-page: 1154 year: 1977 ident: 10.1016/j.joule.2019.05.015_bib18 article-title: Zinc-Bromine Secondary Battery publication-title: J. Electrochem. Soc. doi: 10.1149/1.2133517 contributor: fullname: Lim – volume: 9 start-page: 2639 year: 2007 ident: 10.1016/j.joule.2019.05.015_bib24 article-title: Preliminary study of single flow zinc-nickel battery publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2007.08.016 contributor: fullname: Cheng – volume: 56 start-page: 686 year: 2017 ident: 10.1016/j.joule.2019.05.015_bib5 article-title: Redox-Flow Batteries: From Metals to Organic Redox-Active Materials publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604925 contributor: fullname: Winsberg – volume: 47 start-page: 69 year: 2018 ident: 10.1016/j.joule.2019.05.015_bib12 article-title: Molecular engineering of organic electroactive materials for redox flow batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00569E contributor: fullname: Ding |
SSID | ssj0001928263 |
Score | 2.2489452 |
Snippet | Flow batteries allow independent scaling of power and energy and permit low-cost materials for large-scale energy storage. However, they suffer from low-energy... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 1677 |
Title | Flexible Solid Flow Electrodes for High-Energy Scalable Energy Storage |
URI | https://dx.doi.org/10.1016/j.joule.2019.05.015 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lvehBfGJ9kYNHQ93Na3OspUvxdamV3kKyyUJlaYtW_PtOsruoIB48ZmFg-bKZ-WYz8w1Cl4W0hgtPCTNOEeaMIrbMDPGOK24oGPHQnPzwKCYzdjvn8w4atb0woayy8f21T4_eunkyaNAcrBeLwRRSm5TFezAKgTsDP9xLgf3C6ewNb57v7r9-tSjIK-JMtWBCgk2rPxQrvWDXqqCYmahaxJP_HqO-xZ18F-00hBEP63faQx2_3Efb32QED1CeB1VLW3k8XVULh_Nq9YHH9Xwb598w8FIc6jnIODb64SnsS-iYwu0a8m5wK4dolo-fRhPSzEcgBWXZhijgYtIBZfFelDbjDAKNKuCIFUo4azywAaa8tNJwn1EjRVEyLyAq8tSxJHH0CHWXq6U_RjixiSls6cK9GgPOkzlLZeKMTZlMrZd9dNUiote1DIZu68NedARQBwD1NdcAYB-JFjX9Yzc1OOq_DE_-a3iKtsKKRMnLM9TdvL77c6ALG3vRfA6f6BW-Ug |
link.rule.ids | 315,783,787,27581,27936,27937,45675 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5V7QAMiKcoTw-MWCWNHcdjQY0KfSxtUTfLjl2pKGorKOLvc85DFAkxMCbRSdFn5-67-O47gNtUGM0jF1KmraTMaknNPNbUWS65DtGI--bk4SjqTdnzjM9q8Fj1wviyytL3Fz4999blnVaJZmu9WLTGmNq0WX4OFmLgjtEPN5ANCF6HRufhpT_4_tUiMa_IZ6p5E-ptKv2hvNILVy3zipmBLEQ8-e8xaivuJAewXxJG0ine6RBqbnkEe1sygseQJF7V0mSOjFfZwpIkW32SbjHfxrp3gryU-HoO2s0b_cgY18V3TJHqGvNudCsnME26k8ceLecj0DRk8YZK5GLCImVxLpqbmDMMNDLFTyyVkTXaIRtg0gkjNHdxqEWUzpmLMCrytmVBYMNTqC9XS3cGJDCBTs3c-nM1hpwntiYUgdWmzUTbONGEuwoRtS5kMFRVH_aqcgCVB1Ddc4UANiGqUFM_VlOho_7L8Py_hjew05sMB2rwNOpfwK5_QnP5y0uob94-3BVSh425LrfGF_whwUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Solid+Flow+Electrodes+for+High-Energy+Scalable+Energy+Storage&rft.jtitle=Joule&rft.au=Wang%2C+Zengyue&rft.au=Tam%2C+Long-Yin+Simon&rft.au=Lu%2C+Yi-Chun&rft.date=2019-07-17&rft.pub=Elsevier+Inc&rft.issn=2542-4351&rft.eissn=2542-4351&rft.volume=3&rft.issue=7&rft.spage=1677&rft.epage=1688&rft_id=info:doi/10.1016%2Fj.joule.2019.05.015&rft.externalDocID=S2542435119302582 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4351&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4351&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4351&client=summon |