Flexible Solid Flow Electrodes for High-Energy Scalable Energy Storage

Flow batteries allow independent scaling of power and energy and permit low-cost materials for large-scale energy storage. However, they suffer from low-energy densities or poor scalability when a solid electrode is used in hybrid systems (zinc or lithium metals). Breaking the convention of pumping...

Full description

Saved in:
Bibliographic Details
Published inJoule Vol. 3; no. 7; pp. 1677 - 1688
Main Authors Wang, Zengyue, Tam, Long-Yin Simon, Lu, Yi-Chun
Format Journal Article
LanguageEnglish
Published Elsevier Inc 17.07.2019
Online AccessGet full text

Cover

Loading…
Abstract Flow batteries allow independent scaling of power and energy and permit low-cost materials for large-scale energy storage. However, they suffer from low-energy densities or poor scalability when a solid electrode is used in hybrid systems (zinc or lithium metals). Breaking the convention of pumping fluids, we propose and demonstrate a new flow battery invention that transports active material via rotation of flexible electrode belts made from high-energy-density solid electrode materials (flexible solid flow electrode). Using this strategy, we demonstrated a fully scalable aqueous solid-liquid hybrid flow battery using a lithium titanium phosphate (LTP) flexible anode belt coupled with lithium iodide (LiI) catholyte. This strategy of the circulating flexible solid electrode can be readily applied to existing solid-liquid hybrid flow batteries (e.g., Zn-I2, Zn-Br2, Li-I2, Li-polysulfide, etc.) and allows many types of solid electrode materials in a flow battery platform without constraints in solubility or scalability. [Display omitted] •New strategy for scalable energy storage by rolling flexible solid electrode•Robust electrochemical and mechanical performance in aqueous and non-aqueous systems•Extended material choices in flow battery without limits in solubility or scalability Large-scale and long-duration energy storage is required for effective utilization of intermittent solar and wind energy. Flow batteries are ideal for large-scale energy storage owing to independent scaling of power and energy. The energy density of all-vanadium flow batteries is limited by the liquid electrolytes. Emerging solid-liquid hybrid flow batteries (e.g., Zn metal flow battery) use solid active material with improved energy density; however, the hybrid configuration sacrifices scalability. Breaking the convention of pumping fluids, we demonstrate a new flow battery that transports active material via rotation of flexible electrode belts made from high-energy-density solid electrode materials. This strategy can be readily applied to existing hybrid flow batteries (e.g., Zn-I2, Zn-Br2, Li-I2, Li-polysulfide, etc.) and extends flow battery material choices without limits in solubility or scalability. This work describes a new strategy to build high-energy density, fully scalable energy storage devices by using flexible solid electrodes. This work demonstrates a novel method to convert conventional hybrid flow batteries to fully scalable energy storage devices and enables extensive new material chemistries for large-scale energy storage applications.
AbstractList Flow batteries allow independent scaling of power and energy and permit low-cost materials for large-scale energy storage. However, they suffer from low-energy densities or poor scalability when a solid electrode is used in hybrid systems (zinc or lithium metals). Breaking the convention of pumping fluids, we propose and demonstrate a new flow battery invention that transports active material via rotation of flexible electrode belts made from high-energy-density solid electrode materials (flexible solid flow electrode). Using this strategy, we demonstrated a fully scalable aqueous solid-liquid hybrid flow battery using a lithium titanium phosphate (LTP) flexible anode belt coupled with lithium iodide (LiI) catholyte. This strategy of the circulating flexible solid electrode can be readily applied to existing solid-liquid hybrid flow batteries (e.g., Zn-I2, Zn-Br2, Li-I2, Li-polysulfide, etc.) and allows many types of solid electrode materials in a flow battery platform without constraints in solubility or scalability. [Display omitted] •New strategy for scalable energy storage by rolling flexible solid electrode•Robust electrochemical and mechanical performance in aqueous and non-aqueous systems•Extended material choices in flow battery without limits in solubility or scalability Large-scale and long-duration energy storage is required for effective utilization of intermittent solar and wind energy. Flow batteries are ideal for large-scale energy storage owing to independent scaling of power and energy. The energy density of all-vanadium flow batteries is limited by the liquid electrolytes. Emerging solid-liquid hybrid flow batteries (e.g., Zn metal flow battery) use solid active material with improved energy density; however, the hybrid configuration sacrifices scalability. Breaking the convention of pumping fluids, we demonstrate a new flow battery that transports active material via rotation of flexible electrode belts made from high-energy-density solid electrode materials. This strategy can be readily applied to existing hybrid flow batteries (e.g., Zn-I2, Zn-Br2, Li-I2, Li-polysulfide, etc.) and extends flow battery material choices without limits in solubility or scalability. This work describes a new strategy to build high-energy density, fully scalable energy storage devices by using flexible solid electrodes. This work demonstrates a novel method to convert conventional hybrid flow batteries to fully scalable energy storage devices and enables extensive new material chemistries for large-scale energy storage applications.
Author Lu, Yi-Chun
Wang, Zengyue
Tam, Long-Yin Simon
Author_xml – sequence: 1
  givenname: Zengyue
  surname: Wang
  fullname: Wang, Zengyue
  organization: Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N. T. 999077, Hong Kong SAR, China
– sequence: 2
  givenname: Long-Yin Simon
  surname: Tam
  fullname: Tam, Long-Yin Simon
  organization: Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N. T. 999077, Hong Kong SAR, China
– sequence: 3
  givenname: Yi-Chun
  surname: Lu
  fullname: Lu, Yi-Chun
  email: yichunlu@mae.cuhk.edu.hk
  organization: Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N. T. 999077, Hong Kong SAR, China
BookMark eNp9kMtOwzAQRS1UJErpF7DJDyTYiR_JggWqGopUiUVhbTn2pDgyMbLDo39P0oLEitXMSPeMZs4lmvW-B4SuCc4IJvymyzr_7iDLMakyzDJM2Bma54zmKS0Ymf3pL9Ayxg7jMZmXOS_mqK4dfNnGQbLzzpqkdv4zWTvQQ_AGYtL6kGzs_iVd9xD2h2SnlVNT_HcefFB7uELnrXIRlj91gZ7r9dNqk24f7x9Wd9tUF7Qc0oozLgzjGIC3TckoFaTSmAhdcdMowILRCkQjFIOyUILrlgLXACw3lBBTLFBx2quDjzFAK9-CfVXhIAmWkw3ZyaMNOdmQmMnRxkjdnigYT_uwEGTUFnoNxobxU2m8_Zf_BlMsasQ
CitedBy_id crossref_primary_10_1007_s40820_023_01174_7
crossref_primary_10_1007_s40544_023_0857_0
crossref_primary_10_3390_su152115635
crossref_primary_10_1002_aenm_201902085
crossref_primary_10_1039_D1EE02258J
crossref_primary_10_1016_j_nanoms_2020_06_003
crossref_primary_10_1038_s41560_020_00772_8
crossref_primary_10_1039_D1TA06138K
crossref_primary_10_1016_j_joule_2020_07_001
crossref_primary_10_1021_acs_accounts_0c00360
crossref_primary_10_1002_cssc_202100094
crossref_primary_10_1016_j_electacta_2021_138970
crossref_primary_10_1557_s43581_022_00027_x
crossref_primary_10_1016_j_electacta_2020_137075
crossref_primary_10_1016_j_est_2023_110086
crossref_primary_10_1016_j_jpowsour_2023_233477
crossref_primary_10_3390_en14185643
crossref_primary_10_1016_j_jpowsour_2020_229023
crossref_primary_10_1007_s11581_023_04952_w
Cites_doi 10.1038/nature15746
10.1021/ja201118f
10.1016/j.nanoen.2016.09.043
10.1002/aenm.201502183
10.1038/natrevmats.2017.14
10.1016/j.electacta.2016.04.010
10.1039/C6CP04566A
10.1002/cssc.201600102
10.1002/anie.201708664
10.1126/science.aab3033
10.1039/C6EE03554J
10.1038/nature12909
10.1002/adma.201505000
10.1002/anie.201803122
10.1039/c3cp53428f
10.1002/anie.201703399
10.1039/c3ee00072a
10.1126/sciadv.aao1761
10.1039/C2CP44466F
10.1002/aenm.201300627
10.1016/j.joule.2017.08.007
10.1021/acsenergylett.7b00650
10.1002/anie.201606472
10.1021/acs.chemmater.7b02561
10.1002/adma.201403746
10.1016/0378-7753(88)80005-3
10.1149/2.1141704jes
10.1039/C7TA00482F
10.1039/c2ee02542f
10.1021/acs.chemmater.5b04558
10.1149/2.002304jes
10.1002/aenm.201100152
10.1002/aenm.201400567
10.1126/science.1212741
10.1149/1.2133517
10.1016/j.elecom.2007.08.016
10.1002/anie.201604925
10.1039/C7CS00569E
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.joule.2019.05.015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2542-4351
EndPage 1688
ExternalDocumentID 10_1016_j_joule_2019_05_015
S2542435119302582
GroupedDBID 6I.
AAEDW
AAIAV
AALRI
AAXUO
ABMAC
ABVKL
ACGFS
ADBBV
ADJPV
AFTJW
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
NCXOZ
OK1
0R~
0SF
AAMRU
AAYXX
ADVLN
AITUG
AKAPO
CITATION
SSZ
ID FETCH-LOGICAL-c348t-96567d560ee6fb8544719c017c96dbae07549e7b7a5e83a76cf4e6cee52d411d3
IEDL.DBID ABVKL
ISSN 2542-4351
IngestDate Thu Sep 26 21:08:36 EDT 2024
Fri Feb 23 02:31:20 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-96567d560ee6fb8544719c017c96dbae07549e7b7a5e83a76cf4e6cee52d411d3
OpenAccessLink http://www.cell.com/article/S2542435119302582/pdf
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_joule_2019_05_015
elsevier_sciencedirect_doi_10_1016_j_joule_2019_05_015
PublicationCentury 2000
PublicationDate 2019-07-17
PublicationDateYYYYMMDD 2019-07-17
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-17
  day: 17
PublicationDecade 2010
PublicationTitle Joule
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lu, Goodenough, Kim (bib25) 2011; 133
Wei, Pan, Duan, Hollas, Yang, Li, Nie, Liu, Reed, Wang (bib11) 2017; 2
Hamelet, Larcher, Dupont, Tarascon (bib33) 2013; 160
Pan, Yang, Huang, Wang, Huang, Wang (bib37) 2014; 4
Cheng, Zhang, Yang, Wen, Cao, Wang (bib24) 2007; 9
Bai, Bazant (bib27) 2016; 202
Zhao, Huang, Luo, Liu, Lu, Li, Li, Hu, Ma, Chen (bib14) 2018; 4
Shin, You, Lee, Kumar, Yin, Wang, Shirley Meng (bib41) 2016; 18
Wei, Xu, Vijayakumar, Cosimbescu, Liu, Sprenkle, Wang (bib15) 2014; 26
Yang, Zheng, Cui (bib28) 2013; 6
Li, Pan, Su, Tsai, Badel, Valle, Eiler, Xiang, Brushett, Chiang (bib7) 2017; 1
Weng, Li, Cong, Zhou, Lu (bib21) 2017; 10
Pan, Huang, Huang, Wang (bib38) 2016; 28
Lin, Chen, Gerhardt, Tong, Kim, Eisenach, Valle, Hardee, Gordon, Aziz (bib2) 2015; 349
Duduta, Ho, Wood, Limthongkul, Brunini, Carter, Chiang (bib31) 2011; 1
Yu, Hu, Pan, Zhang, Wang, Li, Huang, Chen (bib13) 2017; 8
Janoschka, Martin, Martin, Friebe, Morgenstern, Hiller, Hager, Schubert (bib3) 2015; 527
Janoschka, Martin, Hager, Schubert (bib9) 2016; 55
Rychcik, Skyllas-Kazacos (bib16) 1988; 22
Li, Nie, Vijayakumar, Li, Liu, Sprenkle, Wang (bib19) 2015; 6
Li, Smith, Dong, Baram, Fan, Xie, Limthongkul, Carter, Chiang (bib32) 2013; 15
Chen, Lai, Lu (bib34) 2017; 29
Dunn, Kamath, Tarascon (bib1) 2011; 334
Chen, Lu (bib35) 2016; 6
Park, Aalipour, Vermesh, Yu, Gambhir (bib4) 2017; 2
Skyllas-Kazacos, Cao, Kazacos, Kausar, Mousa (bib17) 2016; 9
Xie, Zhang, Xu, Wang, Li (bib40) 2018; 57
Weng, Simon Tam, Lu (bib42) 2017; 5
Lu, Y.C., Wang, Z.Y., Tam, L.-Y.S., Zou, Q.L., and Cong, G.T. (2016). High-energy density and low-cost flow electrochemical devices. US patent US20170162900A1, filed Decemeber 7, 2016.
Winsberg, Hagemann, Janoschka, Hager, Schubert (bib5) 2017; 56
Miller, Wainright, Savinell (bib30) 2017; 164
Huang, Li, Grätzel, Wang (bib36) 2013; 15
Zhang, Ding, Zhang, Wang, Zhao, Zhang, Yu (bib29) 2017; 56
Huskinson, Marshak, Suh, Er, Gerhardt, Galvin, Chen, Aspuru-Guzik, Gordon, Aziz (bib8) 2014; 505
Ding, Zhang, Zhang, Zhou, Yu (bib12) 2018; 47
Winsberg, Janoschka, Morgenstern, Hagemann, Muench, Hauffman, Gohy, Hager, Schubert (bib22) 2016; 28
Xie, Duan, Xu, Zhang, Li (bib23) 2017; 56
Zhao, Byon (bib26) 2013; 3
Lim, Lackner, Knechtli (bib18) 1977; 124
Rugolo, Aziz (bib6) 2012; 5
Liu, Wei, Nie, Sprenkle, Wang (bib10) 2016; 6
Li, Weng, Zou, Cong, Lu (bib20) 2016; 30
Li (10.1016/j.joule.2019.05.015_bib7) 2017; 1
Hamelet (10.1016/j.joule.2019.05.015_bib33) 2013; 160
Winsberg (10.1016/j.joule.2019.05.015_bib5) 2017; 56
Weng (10.1016/j.joule.2019.05.015_bib21) 2017; 10
Shin (10.1016/j.joule.2019.05.015_bib41) 2016; 18
Rugolo (10.1016/j.joule.2019.05.015_bib6) 2012; 5
Duduta (10.1016/j.joule.2019.05.015_bib31) 2011; 1
Weng (10.1016/j.joule.2019.05.015_bib42) 2017; 5
Liu (10.1016/j.joule.2019.05.015_bib10) 2016; 6
Lin (10.1016/j.joule.2019.05.015_bib2) 2015; 349
Wei (10.1016/j.joule.2019.05.015_bib15) 2014; 26
Li (10.1016/j.joule.2019.05.015_bib19) 2015; 6
Park (10.1016/j.joule.2019.05.015_bib4) 2017; 2
Zhao (10.1016/j.joule.2019.05.015_bib26) 2013; 3
Ding (10.1016/j.joule.2019.05.015_bib12) 2018; 47
Yang (10.1016/j.joule.2019.05.015_bib28) 2013; 6
Bai (10.1016/j.joule.2019.05.015_bib27) 2016; 202
Huang (10.1016/j.joule.2019.05.015_bib36) 2013; 15
Janoschka (10.1016/j.joule.2019.05.015_bib9) 2016; 55
Cheng (10.1016/j.joule.2019.05.015_bib24) 2007; 9
Xie (10.1016/j.joule.2019.05.015_bib40) 2018; 57
10.1016/j.joule.2019.05.015_bib39
Wei (10.1016/j.joule.2019.05.015_bib11) 2017; 2
Chen (10.1016/j.joule.2019.05.015_bib34) 2017; 29
Skyllas-Kazacos (10.1016/j.joule.2019.05.015_bib17) 2016; 9
Lu (10.1016/j.joule.2019.05.015_bib25) 2011; 133
Huskinson (10.1016/j.joule.2019.05.015_bib8) 2014; 505
Yu (10.1016/j.joule.2019.05.015_bib13) 2017; 8
Lim (10.1016/j.joule.2019.05.015_bib18) 1977; 124
Miller (10.1016/j.joule.2019.05.015_bib30) 2017; 164
Dunn (10.1016/j.joule.2019.05.015_bib1) 2011; 334
Rychcik (10.1016/j.joule.2019.05.015_bib16) 1988; 22
Li (10.1016/j.joule.2019.05.015_bib20) 2016; 30
Winsberg (10.1016/j.joule.2019.05.015_bib22) 2016; 28
Zhao (10.1016/j.joule.2019.05.015_bib14) 2018; 4
Xie (10.1016/j.joule.2019.05.015_bib23) 2017; 56
Li (10.1016/j.joule.2019.05.015_bib32) 2013; 15
Chen (10.1016/j.joule.2019.05.015_bib35) 2016; 6
Janoschka (10.1016/j.joule.2019.05.015_bib3) 2015; 527
Pan (10.1016/j.joule.2019.05.015_bib37) 2014; 4
Zhang (10.1016/j.joule.2019.05.015_bib29) 2017; 56
Pan (10.1016/j.joule.2019.05.015_bib38) 2016; 28
References_xml – volume: 28
  start-page: 2052
  year: 2016
  end-page: 2057
  ident: bib38
  article-title: High-Energy Density Redox Flow Lithium Battery with Unprecedented Voltage Efficiency
  publication-title: Chem. Mater.
  contributor:
    fullname: Wang
– volume: 160
  start-page: A516
  year: 2013
  end-page: A520
  ident: bib33
  article-title: Silicon-Based Non Aqueous Anolyte for Li Redox-Flow Batteries
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Tarascon
– volume: 57
  start-page: 11171
  year: 2018
  end-page: 11176
  ident: bib40
  article-title: A Long Cycle Life, Self-Healing Zinc-Iodine Flow Battery with High Power Density
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Li
– volume: 2
  start-page: 2187
  year: 2017
  end-page: 2204
  ident: bib11
  article-title: Materials and Systems for Organic Redox Flow Batteries: Status and Challenges
  publication-title: ACS Energy Lett.
  contributor:
    fullname: Wang
– volume: 15
  start-page: 15833
  year: 2013
  end-page: 15839
  ident: bib32
  article-title: Aqueous semi-solid flow cell: demonstration and analysis
  publication-title: Phys. Chem. Chem. Phys.
  contributor:
    fullname: Chiang
– volume: 3
  start-page: 1630
  year: 2013
  end-page: 1635
  ident: bib26
  article-title: Batteries: High-Performance Lithium-Iodine Flow Battery. Adv
  publication-title: Energy Mater.
  contributor:
    fullname: Byon
– volume: 9
  start-page: 1521
  year: 2016
  end-page: 1543
  ident: bib17
  article-title: Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review
  publication-title: ChemSusChem
  contributor:
    fullname: Mousa
– volume: 6
  year: 2016
  ident: bib35
  article-title: A High-Energy-Density Multiple Redox Semi-Solid-Liquid Flow Battery
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Lu
– volume: 55
  start-page: 14427
  year: 2016
  end-page: 14430
  ident: bib9
  article-title: An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System
  publication-title: Angew. Chem. Int. Edit.
  contributor:
    fullname: Schubert
– volume: 8
  year: 2017
  ident: bib13
  article-title: A class of liquid anode for rechargeable batteries with ultralong cycle life
  publication-title: Nat. Commun.
  contributor:
    fullname: Chen
– volume: 1
  start-page: 306
  year: 2017
  end-page: 327
  ident: bib7
  article-title: Air-Breathing Aqueous Sulfur Flow Battery for Ultralow-Cost Long-Duration Electrical Storage
  publication-title: Joule
  contributor:
    fullname: Chiang
– volume: 30
  start-page: 283
  year: 2016
  end-page: 292
  ident: bib20
  article-title: A high-energy and low-cost polysulfide/iodide redox flow battery
  publication-title: Nano Energy
  contributor:
    fullname: Lu
– volume: 334
  start-page: 928
  year: 2011
  end-page: 935
  ident: bib1
  article-title: Electrical energy storage for the grid: a battery of choices
  publication-title: Science
  contributor:
    fullname: Tarascon
– volume: 9
  start-page: 2639
  year: 2007
  end-page: 2642
  ident: bib24
  article-title: Preliminary study of single flow zinc-nickel battery
  publication-title: Electrochem. Commun.
  contributor:
    fullname: Wang
– volume: 5
  start-page: 7151
  year: 2012
  end-page: 7160
  ident: bib6
  article-title: Electricity storage for intermittent renewable sources
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Aziz
– volume: 5
  start-page: 11764
  year: 2017
  end-page: 11771
  ident: bib42
  article-title: High-performance LiTi2(PO4)3 anodes for high-areal-capacity flexible aqueous lithium-ion batteries
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Lu
– volume: 4
  year: 2018
  ident: bib14
  article-title: High-capacity aqueous zinc batteries using sustainable quinone electrodes
  publication-title: Sci. Adv.
  contributor:
    fullname: Chen
– volume: 18
  start-page: 26376
  year: 2016
  end-page: 26382
  ident: bib41
  article-title: Deposition of ZnO on bismuth species towards a rechargeable Zn-based aqueous battery
  publication-title: Phys. Chem. Chem. Phys.
  contributor:
    fullname: Shirley Meng
– volume: 164
  start-page: A796
  year: 2017
  end-page: A803
  ident: bib30
  article-title: Iron Electrodeposition in a Deep Eutectic Solvent for Flow Batteries
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Savinell
– volume: 2
  year: 2017
  ident: bib4
  article-title: Towards clinically translatable
  publication-title: Nat. Rev. Mater.
  contributor:
    fullname: Gambhir
– volume: 26
  start-page: 7649
  year: 2014
  end-page: 7653
  ident: bib15
  article-title: TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries
  publication-title: Adv. Mater.
  contributor:
    fullname: Wang
– volume: 47
  start-page: 69
  year: 2018
  end-page: 103
  ident: bib12
  article-title: Molecular engineering of organic electroactive materials for redox flow batteries
  publication-title: Chem. Soc. Rev.
  contributor:
    fullname: Yu
– volume: 15
  start-page: 1793
  year: 2013
  end-page: 1797
  ident: bib36
  article-title: Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery
  publication-title: Phys. Chem. Chem. Phys.
  contributor:
    fullname: Wang
– volume: 6
  year: 2016
  ident: bib10
  article-title: A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyyte and 4-HO-TEMPO Catholyte
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Wang
– volume: 202
  start-page: 216
  year: 2016
  end-page: 223
  ident: bib27
  article-title: Performance and Degradation of A Lithium-Bromine Rechargeable Fuel Cell Using Highly Concentrated Catholytes
  publication-title: Electrochim. Acta
  contributor:
    fullname: Bazant
– volume: 133
  start-page: 5756
  year: 2011
  end-page: 5759
  ident: bib25
  article-title: Aqueous cathode for next-generation alkali-ion batteries
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Kim
– volume: 1
  start-page: 511
  year: 2011
  end-page: 516
  ident: bib31
  article-title: Flow Batteries: Semi-Solid Lithium Rechargeable Flow Battery
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Chiang
– volume: 349
  start-page: 1529
  year: 2015
  end-page: 1532
  ident: bib2
  article-title: Alkaline quinone flow battery
  publication-title: Science
  contributor:
    fullname: Aziz
– volume: 505
  start-page: 195
  year: 2014
  end-page: 198
  ident: bib8
  article-title: A metal-free organic-inorganic aqueous flow battery
  publication-title: Nature
  contributor:
    fullname: Aziz
– volume: 56
  start-page: 14953
  year: 2017
  end-page: 14957
  ident: bib23
  article-title: A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Li
– volume: 29
  start-page: 7533
  year: 2017
  end-page: 7542
  ident: bib34
  article-title: Silicon–Carbon Nanocomposite Semi-Solid Negolyte and Its Application in Redox Flow Batteries
  publication-title: Chem. Mater.
  contributor:
    fullname: Lu
– volume: 124
  start-page: 1154
  year: 1977
  end-page: 1157
  ident: bib18
  article-title: Zinc-Bromine Secondary Battery
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Knechtli
– volume: 10
  start-page: 735
  year: 2017
  end-page: 741
  ident: bib21
  article-title: Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Lu
– volume: 527
  start-page: 78
  year: 2015
  end-page: 81
  ident: bib3
  article-title: An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials
  publication-title: Nature
  contributor:
    fullname: Schubert
– volume: 6
  start-page: 1552
  year: 2013
  end-page: 1558
  ident: bib28
  article-title: A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Cui
– volume: 6
  year: 2015
  ident: bib19
  article-title: Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery
  publication-title: Nat. Commun.
  contributor:
    fullname: Wang
– volume: 28
  start-page: 2238
  year: 2016
  end-page: 2243
  ident: bib22
  article-title: Poly(TEMPO)/Zinc Hybrid-Flow Battery: A Novel, "Green," High Voltage, and Safe Energy Storage System
  publication-title: Adv. Mater.
  contributor:
    fullname: Schubert
– volume: 4
  year: 2014
  ident: bib37
  article-title: Batteries: Redox Targeting of Anatase TiO2 for Redox Flow Lithium-Ion Batteries
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Wang
– volume: 56
  start-page: 686
  year: 2017
  end-page: 711
  ident: bib5
  article-title: Redox-Flow Batteries: From Metals to Organic Redox-Active Materials
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Schubert
– volume: 22
  start-page: 59
  year: 1988
  end-page: 67
  ident: bib16
  article-title: Characteristics of a new all-vanadium redox flow battery
  publication-title: J. Power Sources
  contributor:
    fullname: Skyllas-Kazacos
– volume: 56
  start-page: 7454
  year: 2017
  end-page: 7459
  ident: bib29
  article-title: A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Yu
– volume: 527
  start-page: 78
  year: 2015
  ident: 10.1016/j.joule.2019.05.015_bib3
  article-title: An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials
  publication-title: Nature
  doi: 10.1038/nature15746
  contributor:
    fullname: Janoschka
– volume: 133
  start-page: 5756
  year: 2011
  ident: 10.1016/j.joule.2019.05.015_bib25
  article-title: Aqueous cathode for next-generation alkali-ion batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201118f
  contributor:
    fullname: Lu
– volume: 30
  start-page: 283
  year: 2016
  ident: 10.1016/j.joule.2019.05.015_bib20
  article-title: A high-energy and low-cost polysulfide/iodide redox flow battery
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.09.043
  contributor:
    fullname: Li
– volume: 6
  year: 2016
  ident: 10.1016/j.joule.2019.05.015_bib35
  article-title: A High-Energy-Density Multiple Redox Semi-Solid-Liquid Flow Battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502183
  contributor:
    fullname: Chen
– volume: 2
  year: 2017
  ident: 10.1016/j.joule.2019.05.015_bib4
  article-title: Towards clinically translatable in vivo nanodiagnostics
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.14
  contributor:
    fullname: Park
– volume: 202
  start-page: 216
  year: 2016
  ident: 10.1016/j.joule.2019.05.015_bib27
  article-title: Performance and Degradation of A Lithium-Bromine Rechargeable Fuel Cell Using Highly Concentrated Catholytes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.04.010
  contributor:
    fullname: Bai
– volume: 18
  start-page: 26376
  year: 2016
  ident: 10.1016/j.joule.2019.05.015_bib41
  article-title: Deposition of ZnO on bismuth species towards a rechargeable Zn-based aqueous battery
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP04566A
  contributor:
    fullname: Shin
– volume: 9
  start-page: 1521
  year: 2016
  ident: 10.1016/j.joule.2019.05.015_bib17
  article-title: Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600102
  contributor:
    fullname: Skyllas-Kazacos
– volume: 56
  start-page: 14953
  year: 2017
  ident: 10.1016/j.joule.2019.05.015_bib23
  article-title: A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708664
  contributor:
    fullname: Xie
– volume: 349
  start-page: 1529
  year: 2015
  ident: 10.1016/j.joule.2019.05.015_bib2
  article-title: Alkaline quinone flow battery
  publication-title: Science
  doi: 10.1126/science.aab3033
  contributor:
    fullname: Lin
– volume: 10
  start-page: 735
  year: 2017
  ident: 10.1016/j.joule.2019.05.015_bib21
  article-title: Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03554J
  contributor:
    fullname: Weng
– volume: 6
  year: 2015
  ident: 10.1016/j.joule.2019.05.015_bib19
  article-title: Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery
  publication-title: Nat. Commun.
  contributor:
    fullname: Li
– volume: 505
  start-page: 195
  year: 2014
  ident: 10.1016/j.joule.2019.05.015_bib8
  article-title: A metal-free organic-inorganic aqueous flow battery
  publication-title: Nature
  doi: 10.1038/nature12909
  contributor:
    fullname: Huskinson
– volume: 28
  start-page: 2238
  year: 2016
  ident: 10.1016/j.joule.2019.05.015_bib22
  article-title: Poly(TEMPO)/Zinc Hybrid-Flow Battery: A Novel, "Green," High Voltage, and Safe Energy Storage System
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505000
  contributor:
    fullname: Winsberg
– volume: 57
  start-page: 11171
  year: 2018
  ident: 10.1016/j.joule.2019.05.015_bib40
  article-title: A Long Cycle Life, Self-Healing Zinc-Iodine Flow Battery with High Power Density
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803122
  contributor:
    fullname: Xie
– volume: 15
  start-page: 15833
  year: 2013
  ident: 10.1016/j.joule.2019.05.015_bib32
  article-title: Aqueous semi-solid flow cell: demonstration and analysis
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp53428f
  contributor:
    fullname: Li
– volume: 56
  start-page: 7454
  year: 2017
  ident: 10.1016/j.joule.2019.05.015_bib29
  article-title: A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201703399
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 1552
  year: 2013
  ident: 10.1016/j.joule.2019.05.015_bib28
  article-title: A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee00072a
  contributor:
    fullname: Yang
– volume: 4
  year: 2018
  ident: 10.1016/j.joule.2019.05.015_bib14
  article-title: High-capacity aqueous zinc batteries using sustainable quinone electrodes
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao1761
  contributor:
    fullname: Zhao
– volume: 15
  start-page: 1793
  year: 2013
  ident: 10.1016/j.joule.2019.05.015_bib36
  article-title: Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C2CP44466F
  contributor:
    fullname: Huang
– volume: 8
  year: 2017
  ident: 10.1016/j.joule.2019.05.015_bib13
  article-title: A class of liquid anode for rechargeable batteries with ultralong cycle life
  publication-title: Nat. Commun.
  contributor:
    fullname: Yu
– volume: 3
  start-page: 1630
  year: 2013
  ident: 10.1016/j.joule.2019.05.015_bib26
  article-title: Batteries: High-Performance Lithium-Iodine Flow Battery. Adv
  publication-title: Energy Mater.
  doi: 10.1002/aenm.201300627
  contributor:
    fullname: Zhao
– volume: 1
  start-page: 306
  year: 2017
  ident: 10.1016/j.joule.2019.05.015_bib7
  article-title: Air-Breathing Aqueous Sulfur Flow Battery for Ultralow-Cost Long-Duration Electrical Storage
  publication-title: Joule
  doi: 10.1016/j.joule.2017.08.007
  contributor:
    fullname: Li
– volume: 2
  start-page: 2187
  year: 2017
  ident: 10.1016/j.joule.2019.05.015_bib11
  article-title: Materials and Systems for Organic Redox Flow Batteries: Status and Challenges
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00650
  contributor:
    fullname: Wei
– volume: 55
  start-page: 14427
  year: 2016
  ident: 10.1016/j.joule.2019.05.015_bib9
  article-title: An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201606472
  contributor:
    fullname: Janoschka
– volume: 29
  start-page: 7533
  year: 2017
  ident: 10.1016/j.joule.2019.05.015_bib34
  article-title: Silicon–Carbon Nanocomposite Semi-Solid Negolyte and Its Application in Redox Flow Batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02561
  contributor:
    fullname: Chen
– volume: 26
  start-page: 7649
  year: 2014
  ident: 10.1016/j.joule.2019.05.015_bib15
  article-title: TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403746
  contributor:
    fullname: Wei
– volume: 22
  start-page: 59
  year: 1988
  ident: 10.1016/j.joule.2019.05.015_bib16
  article-title: Characteristics of a new all-vanadium redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(88)80005-3
  contributor:
    fullname: Rychcik
– volume: 164
  start-page: A796
  year: 2017
  ident: 10.1016/j.joule.2019.05.015_bib30
  article-title: Iron Electrodeposition in a Deep Eutectic Solvent for Flow Batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1141704jes
  contributor:
    fullname: Miller
– volume: 5
  start-page: 11764
  year: 2017
  ident: 10.1016/j.joule.2019.05.015_bib42
  article-title: High-performance LiTi2(PO4)3 anodes for high-areal-capacity flexible aqueous lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00482F
  contributor:
    fullname: Weng
– ident: 10.1016/j.joule.2019.05.015_bib39
– volume: 5
  start-page: 7151
  year: 2012
  ident: 10.1016/j.joule.2019.05.015_bib6
  article-title: Electricity storage for intermittent renewable sources
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee02542f
  contributor:
    fullname: Rugolo
– volume: 28
  start-page: 2052
  year: 2016
  ident: 10.1016/j.joule.2019.05.015_bib38
  article-title: High-Energy Density Redox Flow Lithium Battery with Unprecedented Voltage Efficiency
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04558
  contributor:
    fullname: Pan
– volume: 160
  start-page: A516
  year: 2013
  ident: 10.1016/j.joule.2019.05.015_bib33
  article-title: Silicon-Based Non Aqueous Anolyte for Li Redox-Flow Batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.002304jes
  contributor:
    fullname: Hamelet
– volume: 1
  start-page: 511
  year: 2011
  ident: 10.1016/j.joule.2019.05.015_bib31
  article-title: Flow Batteries: Semi-Solid Lithium Rechargeable Flow Battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100152
  contributor:
    fullname: Duduta
– volume: 4
  year: 2014
  ident: 10.1016/j.joule.2019.05.015_bib37
  article-title: Batteries: Redox Targeting of Anatase TiO2 for Redox Flow Lithium-Ion Batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400567
  contributor:
    fullname: Pan
– volume: 334
  start-page: 928
  year: 2011
  ident: 10.1016/j.joule.2019.05.015_bib1
  article-title: Electrical energy storage for the grid: a battery of choices
  publication-title: Science
  doi: 10.1126/science.1212741
  contributor:
    fullname: Dunn
– volume: 6
  year: 2016
  ident: 10.1016/j.joule.2019.05.015_bib10
  article-title: A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyyte and 4-HO-TEMPO Catholyte
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Liu
– volume: 124
  start-page: 1154
  year: 1977
  ident: 10.1016/j.joule.2019.05.015_bib18
  article-title: Zinc-Bromine Secondary Battery
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2133517
  contributor:
    fullname: Lim
– volume: 9
  start-page: 2639
  year: 2007
  ident: 10.1016/j.joule.2019.05.015_bib24
  article-title: Preliminary study of single flow zinc-nickel battery
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2007.08.016
  contributor:
    fullname: Cheng
– volume: 56
  start-page: 686
  year: 2017
  ident: 10.1016/j.joule.2019.05.015_bib5
  article-title: Redox-Flow Batteries: From Metals to Organic Redox-Active Materials
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604925
  contributor:
    fullname: Winsberg
– volume: 47
  start-page: 69
  year: 2018
  ident: 10.1016/j.joule.2019.05.015_bib12
  article-title: Molecular engineering of organic electroactive materials for redox flow batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00569E
  contributor:
    fullname: Ding
SSID ssj0001928263
Score 2.2489452
Snippet Flow batteries allow independent scaling of power and energy and permit low-cost materials for large-scale energy storage. However, they suffer from low-energy...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 1677
Title Flexible Solid Flow Electrodes for High-Energy Scalable Energy Storage
URI https://dx.doi.org/10.1016/j.joule.2019.05.015
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lvehBfGJ9kYNHQ93Na3OspUvxdamV3kKyyUJlaYtW_PtOsruoIB48ZmFg-bKZ-WYz8w1Cl4W0hgtPCTNOEeaMIrbMDPGOK24oGPHQnPzwKCYzdjvn8w4atb0woayy8f21T4_eunkyaNAcrBeLwRRSm5TFezAKgTsDP9xLgf3C6ewNb57v7r9-tSjIK-JMtWBCgk2rPxQrvWDXqqCYmahaxJP_HqO-xZ18F-00hBEP63faQx2_3Efb32QED1CeB1VLW3k8XVULh_Nq9YHH9Xwb598w8FIc6jnIODb64SnsS-iYwu0a8m5wK4dolo-fRhPSzEcgBWXZhijgYtIBZfFelDbjDAKNKuCIFUo4azywAaa8tNJwn1EjRVEyLyAq8tSxJHH0CHWXq6U_RjixiSls6cK9GgPOkzlLZeKMTZlMrZd9dNUiote1DIZu68NedARQBwD1NdcAYB-JFjX9Yzc1OOq_DE_-a3iKtsKKRMnLM9TdvL77c6ALG3vRfA6f6BW-Ug
link.rule.ids 315,783,787,27581,27936,27937,45675
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5V7QAMiKcoTw-MWCWNHcdjQY0KfSxtUTfLjl2pKGorKOLvc85DFAkxMCbRSdFn5-67-O47gNtUGM0jF1KmraTMaknNPNbUWS65DtGI--bk4SjqTdnzjM9q8Fj1wviyytL3Fz4999blnVaJZmu9WLTGmNq0WX4OFmLgjtEPN5ANCF6HRufhpT_4_tUiMa_IZ6p5E-ptKv2hvNILVy3zipmBLEQ8-e8xaivuJAewXxJG0ine6RBqbnkEe1sygseQJF7V0mSOjFfZwpIkW32SbjHfxrp3gryU-HoO2s0b_cgY18V3TJHqGvNudCsnME26k8ceLecj0DRk8YZK5GLCImVxLpqbmDMMNDLFTyyVkTXaIRtg0gkjNHdxqEWUzpmLMCrytmVBYMNTqC9XS3cGJDCBTs3c-nM1hpwntiYUgdWmzUTbONGEuwoRtS5kMFRVH_aqcgCVB1Ddc4UANiGqUFM_VlOho_7L8Py_hjew05sMB2rwNOpfwK5_QnP5y0uob94-3BVSh425LrfGF_whwUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Solid+Flow+Electrodes+for+High-Energy+Scalable+Energy+Storage&rft.jtitle=Joule&rft.au=Wang%2C+Zengyue&rft.au=Tam%2C+Long-Yin+Simon&rft.au=Lu%2C+Yi-Chun&rft.date=2019-07-17&rft.pub=Elsevier+Inc&rft.issn=2542-4351&rft.eissn=2542-4351&rft.volume=3&rft.issue=7&rft.spage=1677&rft.epage=1688&rft_id=info:doi/10.1016%2Fj.joule.2019.05.015&rft.externalDocID=S2542435119302582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4351&client=summon