Robust modeling for thermal error of spindle of slant bed lathe based on error decomposition
Thermal error of spindle is critical to the slant bed CNC lathe towards high machining precision. The heat generated by the spindle itself contributes to the thermal error indeed. However, the thermal error is also influenced by the thermal deformation of other components such as the turret and lath...
Saved in:
Published in | Case studies in thermal engineering Vol. 51; p. 103564 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2214-157X 2214-157X |
DOI | 10.1016/j.csite.2023.103564 |
Cover
Loading…
Abstract | Thermal error of spindle is critical to the slant bed CNC lathe towards high machining precision. The heat generated by the spindle itself contributes to the thermal error indeed. However, the thermal error is also influenced by the thermal deformation of other components such as the turret and lathe bed, especially in complex structured slant-bed CNC lathes where error coupling commonly exists. In order to achieve robust modeling of thermal error, a decomposition method was proposed in this paper to separate the contributions of spindle, turret and lathe bed from the overall measured thermal deformation. The thermal error coupling relationship was established from the perspective of machine tool construction. A specific testing scheme was designed to determine the parameters of decoupling model. Additionally, a comparative experiment was carried out by placing the sensor support horizontally and vertically to verify the effectiveness of thermal error decoupling. Taking T65-750 high-precision CNC lathe as the object, the relationship between thermal error and tilt angle in the X-direction of the headstock, bed, and other components was revealed, achieving robust prediction of thermal error irrespective of the ambient temperature subject to change. Finally, the thermal error model built based on error decomposition was applied to improve the machining accuracy of cylindrical parts dramatically in practice. |
---|---|
AbstractList | Thermal error of spindle is critical to the slant bed CNC lathe towards high machining precision. The heat generated by the spindle itself contributes to the thermal error indeed. However, the thermal error is also influenced by the thermal deformation of other components such as the turret and lathe bed, especially in complex structured slant-bed CNC lathes where error coupling commonly exists. In order to achieve robust modeling of thermal error, a decomposition method was proposed in this paper to separate the contributions of spindle, turret and lathe bed from the overall measured thermal deformation. The thermal error coupling relationship was established from the perspective of machine tool construction. A specific testing scheme was designed to determine the parameters of decoupling model. Additionally, a comparative experiment was carried out by placing the sensor support horizontally and vertically to verify the effectiveness of thermal error decoupling. Taking T65-750 high-precision CNC lathe as the object, the relationship between thermal error and tilt angle in the X-direction of the headstock, bed, and other components was revealed, achieving robust prediction of thermal error irrespective of the ambient temperature subject to change. Finally, the thermal error model built based on error decomposition was applied to improve the machining accuracy of cylindrical parts dramatically in practice. |
ArticleNumber | 103564 |
Author | Qu, Qiangqiang Tao, Tao Mei, Xuesong Shi, Hu Wang, Haitao |
Author_xml | – sequence: 1 givenname: Hu orcidid: 0000-0003-2453-5969 surname: Shi fullname: Shi, Hu email: tigershi@xjtu.edu.cn – sequence: 2 givenname: Qiangqiang surname: Qu fullname: Qu, Qiangqiang – sequence: 3 givenname: Xuesong surname: Mei fullname: Mei, Xuesong – sequence: 4 givenname: Tao surname: Tao fullname: Tao, Tao – sequence: 5 givenname: Haitao surname: Wang fullname: Wang, Haitao |
BookMark | eNqFkMtKQzEQhoNUsNY-gZvzAqfm1p5zFi6keIOCIAouhJDLRFPOSUoSBd_e9LIQF7qaf4b5hn_-UzTywQNC5wTPCCaLi_VMJ5dhRjFlZcLmC36ExpQSXpN58zL6oU_QNKU1xpg0rCWcj9HrY1AfKVdDMNA7_1bZEKv8DnGQfQUxli7YKm2cNz3sZC99rhSYqpdlr1IyFR38YdmADsMmFEMu-DN0bGWfYHqoE_R8c_20vKtXD7f3y6tVrRlvc90xzGWn8cJgRUFipg1RjBV_uGu1tIRKqzvFcdtgoFySRjHFLaMAtqGGsgnq9nd1DClFsEK7LLcOcpSuFwSLbVJiLXZJiW1SYp9UYdkvdhPdIOPXP9TlnoLy1qeDKJJ24DUYF0FnYYL7k_8G_9GGsQ |
CitedBy_id | crossref_primary_10_1007_s00170_023_12720_3 crossref_primary_10_1007_s00231_024_03519_3 crossref_primary_10_1007_s42452_024_06389_w crossref_primary_10_1007_s10973_024_13889_9 crossref_primary_10_1007_s12541_024_01207_0 crossref_primary_10_1016_j_measurement_2025_117152 |
Cites_doi | 10.1088/0957-0233/22/8/085107 10.1007/s00170-017-0353-7 10.4028/www.scientific.net/AMM.37-38.86 10.1016/j.csite.2022.102432 10.1016/j.csite.2023.103054 10.1080/10407782.2015.1037130 10.1016/j.ijmachtools.2006.02.018 10.3901/JME.2021.03.156 10.1007/s00170-015-7941-1 10.1016/S0890-6955(00)00010-9 10.1007/s00170-016-8868-x |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.csite.2023.103564 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | 10_1016_j_csite_2023_103564 S2214157X23008705 |
GroupedDBID | 0R~ 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c348t-9304a9c06d0b2ea03cd1b33144098caf12afc9b40870e24a17b3b4f32eef72d23 |
IEDL.DBID | IXB |
ISSN | 2214-157X |
IngestDate | Tue Jul 01 02:28:41 EDT 2025 Thu Apr 24 22:51:21 EDT 2025 Sun Apr 06 06:53:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Error decomposition Thermal error Error modeling Spindle Slant bed CNC lathe |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-9304a9c06d0b2ea03cd1b33144098caf12afc9b40870e24a17b3b4f32eef72d23 |
ORCID | 0000-0003-2453-5969 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2214157X23008705 |
ParticipantIDs | crossref_citationtrail_10_1016_j_csite_2023_103564 crossref_primary_10_1016_j_csite_2023_103564 elsevier_sciencedirect_doi_10_1016_j_csite_2023_103564 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2023 2023-11-00 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sun, Ren, Hong (bib14) 2017; 88 Zhang, Feng, Chen (bib11) 2013; 68 Li, Feng, Zhang (bib4) 2016; 69 Dai, Pang, Rui, Li, Wang, Li (bib3) July 2023; 47 Guo, Liu, Wang (bib8) 2016; 85 Xu, Jiang, Cai (bib5) 2007; 47 Yan, Xiao, Jun (bib9) 2018; 126 Ramesh, Mannan, Poo (bib1) 2000; 40 Bo, Yao, Kai (bib6) 2017 Liu, Miao, Wei (bib17) 2017 Mian, Fletcher, Longstaff (bib12) 2011; 22 Deng, Fu, He (bib10) 2010; 37–38 Wei, Ye, Miao (bib16) 2022 Liu, Han, Wang (bib2) 2021; 57 Li, Wang, Zhu, Wang, Zhu (bib7) 2022 Li, Li, Jiang (bib13) 2017; 92 Li, Wang, Zhu, Wang, Zhu, Dai (bib15) 2022; 39 Yan (10.1016/j.csite.2023.103564_bib9) 2018; 126 Li (10.1016/j.csite.2023.103564_bib15) 2022; 39 Li (10.1016/j.csite.2023.103564_bib7) 2022 Bo (10.1016/j.csite.2023.103564_bib6) 2017 Guo (10.1016/j.csite.2023.103564_bib8) 2016; 85 Deng (10.1016/j.csite.2023.103564_bib10) 2010; 37–38 Wei (10.1016/j.csite.2023.103564_bib16) 2022 Liu (10.1016/j.csite.2023.103564_bib17) 2017 Zhang (10.1016/j.csite.2023.103564_bib11) 2013; 68 Sun (10.1016/j.csite.2023.103564_bib14) 2017; 88 Ramesh (10.1016/j.csite.2023.103564_bib1) 2000; 40 Li (10.1016/j.csite.2023.103564_bib4) 2016; 69 Li (10.1016/j.csite.2023.103564_bib13) 2017; 92 Dai (10.1016/j.csite.2023.103564_bib3) 2023; 47 Xu (10.1016/j.csite.2023.103564_bib5) 2007; 47 Mian (10.1016/j.csite.2023.103564_bib12) 2011; 22 Liu (10.1016/j.csite.2023.103564_bib2) 2021; 57 |
References_xml | – volume: 47 year: July 2023 ident: bib3 article-title: Thermal error prediction model of high-speed motorized spindle based on DELM network optimized by weighted mean of vectors algorithm publication-title: Case Stud. Therm. Eng. – volume: 68 year: 2013 ident: bib11 article-title: A method for thermal performance modeling and simulation of machine tools[J] publication-title: Int. J. Adv. Des. Manuf. Technol. – volume: 22 year: 2011 ident: bib12 article-title: Efficient thermal error prediction in a machine tool using finite element analysis publication-title: Meas. Sci. Technol. – start-page: 113 year: 2017 ident: bib17 article-title: Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm[J] publication-title: Int. J. Mach. Tool Manufact. – volume: 57 start-page: 156 year: 2021 end-page: 173 ident: bib2 article-title: Review on thermal error compensation for axes of CNC machine tools publication-title: J. Mech. Eng. – start-page: 38 year: 2022 ident: bib7 article-title: Thermal error modeling of electrical spindle based on optimized ELM with marine predator algorithm[J] publication-title: Case Stud. Therm. Eng. – volume: 126 start-page: 324 year: 2018 end-page: 335 ident: bib9 article-title: Uneven heat generation and thermal performance of spindle bearings[J] publication-title: Tribol. Int. – volume: 40 year: 2000 ident: bib1 article-title: Error compensation in machine tools — a review publication-title: Int. J. Mach. Tool Manufact. – volume: 37–38 start-page: 86 year: 2010 end-page: 89 ident: bib10 article-title: An analysis of thermal-structural characteristics for precision linear rolling guide CNC grinding machine tool's bed[J] publication-title: Appl. Mech. Mater. – start-page: 77 year: 2022 ident: bib16 article-title: Thermal error modeling and compensation based on Gaussian process regression for CNC machine tools[J] publication-title: Precis. Eng. – volume: 39 year: 2022 ident: bib15 article-title: Thermal error modeling of high-speed electric spindle based on Aquila Optimizer optimized least squares support vector machine publication-title: Case Stud. Therm. Eng. – volume: 69 start-page: 51 year: 2016 end-page: 66 ident: bib4 article-title: Method for modifying convective heat transfer coefficients used in the thermal simulation of a feed drive system based on the response surface methodology publication-title: Numer. Heat Tran. Part A: Applications – volume: 85 start-page: 227 year: 2016 end-page: 236 ident: bib8 article-title: Dynamic modeling and experimental verification for the feeding system of a gantry machine tool based on thermal-mechanical coupling publication-title: Int. J. Adv. Des. Manuf. Technol. – volume: 92 start-page: 3073 year: 2017 end-page: 3092 ident: bib13 article-title: Thermal error modeling and compensation of a heavy gantry-type machine tool and its verification in machining publication-title: Int. J. Adv. Des. Manuf. Technol. – volume: 47 start-page: 53 year: 2007 end-page: 62 ident: bib5 article-title: An improved thermal model for machine tool bearings publication-title: Int. J. Mach. Tool Manufact. – start-page: 694 year: 2017 end-page: 697 ident: bib6 article-title: Analysis of thermal characteristics of spindle and headstock of machine tool based on finite element method publication-title: IEEE International Conference on Applied System Innovation – volume: 88 start-page: 1267 year: 2017 end-page: 1277 ident: bib14 article-title: Thermal error reduction based on thermodynamics structure optimization method for an ultra-precision machine tool publication-title: Int. J. Adv. Des. Manuf. Technol. – start-page: 38 year: 2022 ident: 10.1016/j.csite.2023.103564_bib7 article-title: Thermal error modeling of electrical spindle based on optimized ELM with marine predator algorithm[J] publication-title: Case Stud. Therm. Eng. – volume: 22 issue: 8 year: 2011 ident: 10.1016/j.csite.2023.103564_bib12 article-title: Efficient thermal error prediction in a machine tool using finite element analysis publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/22/8/085107 – volume: 92 start-page: 3073 issue: 9–12 year: 2017 ident: 10.1016/j.csite.2023.103564_bib13 article-title: Thermal error modeling and compensation of a heavy gantry-type machine tool and its verification in machining publication-title: Int. J. Adv. Des. Manuf. Technol. doi: 10.1007/s00170-017-0353-7 – volume: 37–38 start-page: 86 year: 2010 ident: 10.1016/j.csite.2023.103564_bib10 article-title: An analysis of thermal-structural characteristics for precision linear rolling guide CNC grinding machine tool's bed[J] publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.37-38.86 – volume: 39 year: 2022 ident: 10.1016/j.csite.2023.103564_bib15 article-title: Thermal error modeling of high-speed electric spindle based on Aquila Optimizer optimized least squares support vector machine publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.102432 – volume: 126 start-page: 324 issue: 17 year: 2018 ident: 10.1016/j.csite.2023.103564_bib9 article-title: Uneven heat generation and thermal performance of spindle bearings[J] publication-title: Tribol. Int. – start-page: 113 year: 2017 ident: 10.1016/j.csite.2023.103564_bib17 article-title: Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm[J] publication-title: Int. J. Mach. Tool Manufact. – volume: 47 year: 2023 ident: 10.1016/j.csite.2023.103564_bib3 article-title: Thermal error prediction model of high-speed motorized spindle based on DELM network optimized by weighted mean of vectors algorithm publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.103054 – volume: 69 start-page: 51 issue: 1 year: 2016 ident: 10.1016/j.csite.2023.103564_bib4 article-title: Method for modifying convective heat transfer coefficients used in the thermal simulation of a feed drive system based on the response surface methodology publication-title: Numer. Heat Tran. Part A: Applications doi: 10.1080/10407782.2015.1037130 – volume: 47 start-page: 53 issue: 1 year: 2007 ident: 10.1016/j.csite.2023.103564_bib5 article-title: An improved thermal model for machine tool bearings publication-title: Int. J. Mach. Tool Manufact. doi: 10.1016/j.ijmachtools.2006.02.018 – start-page: 77 year: 2022 ident: 10.1016/j.csite.2023.103564_bib16 article-title: Thermal error modeling and compensation based on Gaussian process regression for CNC machine tools[J] publication-title: Precis. Eng. – volume: 57 start-page: 156 year: 2021 ident: 10.1016/j.csite.2023.103564_bib2 article-title: Review on thermal error compensation for axes of CNC machine tools publication-title: J. Mech. Eng. doi: 10.3901/JME.2021.03.156 – volume: 85 start-page: 227 issue: 1 year: 2016 ident: 10.1016/j.csite.2023.103564_bib8 article-title: Dynamic modeling and experimental verification for the feeding system of a gantry machine tool based on thermal-mechanical coupling publication-title: Int. J. Adv. Des. Manuf. Technol. doi: 10.1007/s00170-015-7941-1 – volume: 40 issue: 9 year: 2000 ident: 10.1016/j.csite.2023.103564_bib1 article-title: Error compensation in machine tools — a review publication-title: Int. J. Mach. Tool Manufact. doi: 10.1016/S0890-6955(00)00010-9 – start-page: 694 year: 2017 ident: 10.1016/j.csite.2023.103564_bib6 article-title: Analysis of thermal characteristics of spindle and headstock of machine tool based on finite element method publication-title: IEEE International Conference on Applied System Innovation – volume: 68 issue: 5–8 year: 2013 ident: 10.1016/j.csite.2023.103564_bib11 article-title: A method for thermal performance modeling and simulation of machine tools[J] publication-title: Int. J. Adv. Des. Manuf. Technol. – volume: 88 start-page: 1267 issue: 5–8 year: 2017 ident: 10.1016/j.csite.2023.103564_bib14 article-title: Thermal error reduction based on thermodynamics structure optimization method for an ultra-precision machine tool publication-title: Int. J. Adv. Des. Manuf. Technol. doi: 10.1007/s00170-016-8868-x |
SSID | ssj0001738144 |
Score | 2.3190424 |
Snippet | Thermal error of spindle is critical to the slant bed CNC lathe towards high machining precision. The heat generated by the spindle itself contributes to the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103564 |
SubjectTerms | Error decomposition Error modeling Slant bed CNC lathe Spindle Thermal error |
Title | Robust modeling for thermal error of spindle of slant bed lathe based on error decomposition |
URI | https://dx.doi.org/10.1016/j.csite.2023.103564 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jJz2Inzi_yMGjZW2SpuaowzEEPaiDHoSSpAlMZju27v83L011guzgrQl50P4a3vsl7wuha55SLpgtozLJ3AGFWx0pa92ZB7xASklh_H3H0zOfTNljnuY9NOpyYSCsMuj-Vqd7bR1mhgHN4WI2G74Skjjrk-WORMdu10GiOVRqgSS-_P7nniVzNsn3dIX1EQh0xYd8mJf2TlpoIg755ylnfxuoDaMz3kd7gS3iu_aFDlDPVIdod6OG4BF6f6nVetVg39LGzWDHQjGwuk8naJZLN6otXi1mUE3BP84dmFiZEs-B_WGwYyWuq7C4NBBlHkK5jtF0_PA2mkShZUKk3bc3kaAxk0LHvIwVMTKmukwUpeDBFbda2oRIq4ViAJghTCaZoopZSoyxGSkJPUH9qq7MKcKpIy_MCAWEijFKZJbKRGobC8upVckAkQ6nQod64tDWYl50gWMfhQe3AHCLFtwBuvkWWrTlNLYv590PKH7tisIp_G2CZ_8VPEc7MGqzDS9Qv1muzaWjHY268sf1K7-7vgCs4NYv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zHtSD-InzMwePlrVJmq5HHY5Ntx10gx2EkqQJTGY79vH_m5e2OkE8eGvTPCi_hPd-yftC6JaHlMfMpF4aRPaAwo3ypDH2zANeIClFrN19x2DIu2P2NAknNdSucmEgrLLU_YVOd9q6HGmWaDbn02nzlZDAWp9oYkm0b3dduIW2LRvgENfVmzx8X7RE1ii5pq4g4IFEVX3IxXkp56WFLuKQgB5y9ruF2rA6nQO0X9JFfF_80SGq6ewI7W0UETxGby-5XC9X2PW0sSPY0lAMtO7DCurFwr7lBi_nUyin4B5nFk0sdYpnQP8wGLIU51k5OdUQZl7Gcp2gcedx1O56Zc8ET1HWWnkx9ZmIlc9TXxItfKrSQFIKLty4pYQJiDAqlgwQ04SJIJJUMkOJ1iYiKaGnqJ7lmT5DOLTshelYAqNijBIRhSIQyvix4dTIoIFIhVOiyoLi0NdillSRY--JAzcBcJMC3Aa6-xKaF_U0_p7OqwVIfmyLxGr8vwTP_yt4g3a6o0E_6feGzxdoF74UqYeXqL5arPWV5SAree322CeC9dhh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+modeling+for+thermal+error+of+spindle+of+slant+bed+lathe+based+on+error+decomposition&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Shi%2C+Hu&rft.au=Qu%2C+Qiangqiang&rft.au=Mei%2C+Xuesong&rft.au=Tao%2C+Tao&rft.date=2023-11-01&rft.pub=Elsevier+Ltd&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=51&rft_id=info:doi/10.1016%2Fj.csite.2023.103564&rft.externalDocID=S2214157X23008705 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |