The norm of pre-Schwarzian derivative on subclasses of bi-univalent functions

In the present paper, we give the best estimates for the norm of pre-Schwarzian derivatives $||{T_f}(z)|| = \mathop {\sup }\limits_{|z| < 1} (1 - |z{|^2})\left| {\frac{{f''(z)}}{{f'(z)}}} \right|$ for subclasses of bi-univalent functions.

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 3; no. 4; pp. 600 - 607
Main Authors Rana, Shalini, Goswami, Pranay, Shanker Dubey, Ravi
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the present paper, we give the best estimates for the norm of pre-Schwarzian derivatives $||{T_f}(z)|| = \mathop {\sup }\limits_{|z| < 1} (1 - |z{|^2})\left| {\frac{{f''(z)}}{{f'(z)}}} \right|$ for subclasses of bi-univalent functions.
AbstractList In the present paper, we give the best estimates for the norm of pre-Schwarzian derivatives $||{T_f}(z)|| = \mathop {\sup }\limits_{|z| < 1} (1 - |z{|^2})\left| {\frac{{f''(z)}}{{f'(z)}}} \right|$ for subclasses of bi-univalent functions.
Author Shanker Dubey, Ravi
Rana, Shalini
Goswami, Pranay
Author_xml – sequence: 1
  givenname: Shalini
  surname: Rana
  fullname: Rana, Shalini
– sequence: 2
  givenname: Pranay
  surname: Goswami
  fullname: Goswami, Pranay
– sequence: 3
  givenname: Ravi
  surname: Shanker Dubey
  fullname: Shanker Dubey, Ravi
BookMark eNpNkMtOwzAQRS1UJErpmm1-IMGvJPYSVTwqtWJBWVu2M6GuUruy0yL4ehKKEKuZuTM6Gp1rNPHBA0K3BBdMMn631v22oJiIghcVxhdoSnnN8koKMfnXX6F5SjuMMSWU05pP0XqzhcyHuM9Cmx0i5K92-6Hjl9M-ayC6k-7dCbLgs3Q0ttMpQRpPjcuPfth24PusPXrbu-DTDbpsdZdg_ltn6O3xYbN4zlcvT8vF_Sq3jIs-l7jSUrSUV9gKSSyua0ZbXGvBrDCSEytLqIA0DfCSGV1zU5bDx4AxI8RgNkPLM7cJeqcO0e11_FRBO_UThPiudOyd7UBRbEitSSOI4VwME2jgVpNWCtkClAPr7syyMaQUof3jEaxGuWqUq0a5iqtBLvsGLdBu3w
CitedBy_id crossref_primary_10_1080_09720502_2020_1731978
ContentType Journal Article
CorporateAuthor 2 Department of Mathematics, AMITY School of Applied Science, AMITY University, 302003, Rajasthan
1 School of Liberal Studies, Ambedkar University Delhi, 110006, Delhi
CorporateAuthor_xml – name: <sup>1</sup> School of Liberal Studies, Ambedkar University Delhi, 110006, Delhi
– name: <sup>2</sup> Department of Mathematics, AMITY School of Applied Science, AMITY University, 302003, Rajasthan
DBID AAYXX
CITATION
DOA
DOI 10.3934/Math.2018.4.600
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 607
ExternalDocumentID oai_doaj_org_article_20b17a1d81b44820beae4ca1f989fee5
10_3934_Math_2018_4_600
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c348t-906a98f2460c891c07732f07a83c8b941c95e6e1dde453ba74b55124e00311b03
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Tue Oct 22 15:04:11 EDT 2024
Thu Sep 26 17:03:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-906a98f2460c891c07732f07a83c8b941c95e6e1dde453ba74b55124e00311b03
OpenAccessLink https://doaj.org/article/20b17a1d81b44820beae4ca1f989fee5
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_20b17a1d81b44820beae4ca1f989fee5
crossref_primary_10_3934_Math_2018_4_600
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationTitle AIMS mathematics
PublicationYear 2018
Publisher AIMS Press
Publisher_xml – name: AIMS Press
SSID ssj0002124274
Score 2.0795984
Snippet In the present paper, we give the best estimates for the norm of pre-Schwarzian derivatives $||{T_f}(z)|| = \mathop {\sup }\limits_{|z| < 1} (1 -...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 600
SubjectTerms bi-univalent functions| bi-starlike functions| subordination| pre-Schwarzian derivatives
Title The norm of pre-Schwarzian derivative on subclasses of bi-univalent functions
URI https://doaj.org/article/20b17a1d81b44820beae4ca1f989fee5
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWBgSYkf8WMERFUhlQUqdYvsiyNYUtQHSPx67pJSdWNhTGJFznfO3fdFl8-MXUso6so4lQmfIgoUAZmPokCVkkxCRgc2tg2yz2Y41k-TYrKx1Rf1hHX2wB1wKM6jsEFUSK9QSeBRCklDELV3vk6pcy_N_YaYohyMCVmj3uq8fJRX-naEhIo6uVxf9w39z7ZRhjbc-tuyMthneys-yO-6eRywrdQcst3R2kx1fsRGGEreILfk05pT18YLvH2F2TcGlle4gD5b724-bfh8GYHYcJrT0PieLRu8SnWFU_1ql9gxGw8eXx-G2WoXhAyUdovM5yZ4V0ttcnBeQG6tknVug1PgotcCfIG4CsxTulAxWB2RBUmd6H0VMVcnbLuZNumUcVRLFWhrIcSkQwXeSNRbALLSRoKEHrv5BaX86MwuShQJhF9JD14SfqUuEb8euyfQ1sPIpbo9gbErV7Er_4rd2X_c5Jzt0LS6zyIXbHsxW6ZLJAqLeNWuiR9g7Lwv
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+norm+of+pre-Schwarzian+derivative+on+subclasses+of+bi-univalent+functions&rft.jtitle=AIMS+mathematics&rft.au=Rana%2C+Shalini&rft.au=Goswami%2C+Pranay&rft.au=Shanker+Dubey%2C+Ravi&rft.date=2018-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=3&rft.issue=4&rft.spage=600&rft.epage=607&rft_id=info:doi/10.3934%2FMath.2018.4.600&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_Math_2018_4_600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon