The norm of pre-Schwarzian derivative on subclasses of bi-univalent functions
In the present paper, we give the best estimates for the norm of pre-Schwarzian derivatives $||{T_f}(z)|| = \mathop {\sup }\limits_{|z| < 1} (1 - |z{|^2})\left| {\frac{{f''(z)}}{{f'(z)}}} \right|$ for subclasses of bi-univalent functions.
Saved in:
Published in | AIMS mathematics Vol. 3; no. 4; pp. 600 - 607 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the present paper, we give the best estimates for the norm of pre-Schwarzian derivatives $||{T_f}(z)|| = \mathop {\sup }\limits_{|z| < 1} (1 - |z{|^2})\left| {\frac{{f''(z)}}{{f'(z)}}} \right|$ for subclasses of bi-univalent functions. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/Math.2018.4.600 |