The transpiration rate sensitivity to increasing evaporative demand differs between soil textures, even in wet soil

•Transpiration regulation during rising VPD is soil texture-specific even in wet soil.•Leaf area and root:shoot-ratio do not consistently differ between soils.•Maximum canopy conductance scales with soil hydraulic conductivity in the wet range.•Plants limit transpiration at lower VPD when their maxi...

Full description

Saved in:
Bibliographic Details
Published inPlant stress (Amsterdam) Vol. 12; p. 100506
Main Authors Koehler, Tina, Botezatu, Ákos, Murugesan, Tharanya, Kaliamoorthy, Sivasakthi, Kholová, Jana, Sadok, Walid, Ahmed, Mutez Ali, Carminati, Andrea
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Transpiration regulation during rising VPD is soil texture-specific even in wet soil.•Leaf area and root:shoot-ratio do not consistently differ between soils.•Maximum canopy conductance scales with soil hydraulic conductivity in the wet range.•Plants limit transpiration at lower VPD when their maximum canopy conductance is high. Many efforts to improve crop yields in water-limited environments have been directed towards identifying genotypes capable of restricting their transpiration rate (TR) at high vapor pressure deficit (VPD). This has proven challenging due to the dependence of the TR-VPD relationship on environmental conditions. In this context, however, the impact of edaphic properties on the TR response to VPD has largely been overlooked as experiments investigating the TR-VPD relationship are usually performed in wet soil conditions. Hence, the soil is not expected to be limiting the water supply to the canopy at high VPD. Nonetheless, soil (hydraulic) properties are known to shape plant growth and the development of the plant hydraulic system. Thereby, they might indirectly affect plant water use during rising VPD, even in wet soils. To test the soil dependency of the TR-VPD relation, we measured the TR response of genotypes of three important C4 cereals - maize, sorghum, and pearl millet - to increasing VPD in two soil textural classes (sandy loam vs. clay loam). We show that the TR response to rising VPD differed among soil textures in wet conditions. Plants grown in sandy loam exhibited a higher initial slope in TR during increasing VPD (slope1), a restriction in TR at lower VPD (VPDBP), and a greater difference in TR before and after the VPDBP (slopediff.), compared to plants grown in clay loam. Additionally, plants grown in more conductive soils (i.e., sandy loam) systematically exhibited higher maximum canopy conductance (i.e., slope1) and restricted their transpiration rate at lower VPD levels (VPDBP), resulting in a greater reduction in transpiration. This aligns with a hydraulic mechanism underpinning TR response to VPD. We advocate that considering soil texture is valuable in breeding for water conservation based on TR restriction under increasing VPD.
AbstractList Many efforts to improve crop yields in water-limited environments have been directed towards identifying genotypes capable of restricting their transpiration rate (TR) at high vapor pressure deficit (VPD). This has proven challenging due to the dependence of the TR-VPD relationship on environmental conditions. In this context, however, the impact of edaphic properties on the TR response to VPD has largely been overlooked as experiments investigating the TR-VPD relationship are usually performed in wet soil conditions. Hence, the soil is not expected to be limiting the water supply to the canopy at high VPD. Nonetheless, soil (hydraulic) properties are known to shape plant growth and the development of the plant hydraulic system. Thereby, they might indirectly affect plant water use during rising VPD, even in wet soils. To test the soil dependency of the TR-VPD relation, we measured the TR response of genotypes of three important C4 cereals - maize, sorghum, and pearl millet - to increasing VPD in two soil textural classes (sandy loam vs. clay loam). We show that the TR response to rising VPD differed among soil textures in wet conditions. Plants grown in sandy loam exhibited a higher initial slope in TR during increasing VPD (slope1), a restriction in TR at lower VPD (VPDBP), and a greater difference in TR before and after the VPDBP (slopediff.), compared to plants grown in clay loam. Additionally, plants grown in more conductive soils (i.e., sandy loam) systematically exhibited higher maximum canopy conductance (i.e., slope1) and restricted their transpiration rate at lower VPD levels (VPDBP), resulting in a greater reduction in transpiration. This aligns with a hydraulic mechanism underpinning TR response to VPD. We advocate that considering soil texture is valuable in breeding for water conservation based on TR restriction under increasing VPD.
•Transpiration regulation during rising VPD is soil texture-specific even in wet soil.•Leaf area and root:shoot-ratio do not consistently differ between soils.•Maximum canopy conductance scales with soil hydraulic conductivity in the wet range.•Plants limit transpiration at lower VPD when their maximum canopy conductance is high. Many efforts to improve crop yields in water-limited environments have been directed towards identifying genotypes capable of restricting their transpiration rate (TR) at high vapor pressure deficit (VPD). This has proven challenging due to the dependence of the TR-VPD relationship on environmental conditions. In this context, however, the impact of edaphic properties on the TR response to VPD has largely been overlooked as experiments investigating the TR-VPD relationship are usually performed in wet soil conditions. Hence, the soil is not expected to be limiting the water supply to the canopy at high VPD. Nonetheless, soil (hydraulic) properties are known to shape plant growth and the development of the plant hydraulic system. Thereby, they might indirectly affect plant water use during rising VPD, even in wet soils. To test the soil dependency of the TR-VPD relation, we measured the TR response of genotypes of three important C4 cereals - maize, sorghum, and pearl millet - to increasing VPD in two soil textural classes (sandy loam vs. clay loam). We show that the TR response to rising VPD differed among soil textures in wet conditions. Plants grown in sandy loam exhibited a higher initial slope in TR during increasing VPD (slope1), a restriction in TR at lower VPD (VPDBP), and a greater difference in TR before and after the VPDBP (slopediff.), compared to plants grown in clay loam. Additionally, plants grown in more conductive soils (i.e., sandy loam) systematically exhibited higher maximum canopy conductance (i.e., slope1) and restricted their transpiration rate at lower VPD levels (VPDBP), resulting in a greater reduction in transpiration. This aligns with a hydraulic mechanism underpinning TR response to VPD. We advocate that considering soil texture is valuable in breeding for water conservation based on TR restriction under increasing VPD.
ArticleNumber 100506
Author Botezatu, Ákos
Kholová, Jana
Murugesan, Tharanya
Ahmed, Mutez Ali
Carminati, Andrea
Sadok, Walid
Koehler, Tina
Kaliamoorthy, Sivasakthi
Author_xml – sequence: 1
  givenname: Tina
  orcidid: 0000-0002-6423-6835
  surname: Koehler
  fullname: Koehler, Tina
  email: tina.koehler@tum.de
  organization: Root-Soil Interaction, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
– sequence: 2
  givenname: Ákos
  surname: Botezatu
  fullname: Botezatu, Ákos
  organization: Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
– sequence: 3
  givenname: Tharanya
  surname: Murugesan
  fullname: Murugesan, Tharanya
  organization: Crop Physiology, International Crops Research Institute for Semi-Arid Tropics, Patancheru, India
– sequence: 4
  givenname: Sivasakthi
  surname: Kaliamoorthy
  fullname: Kaliamoorthy, Sivasakthi
  organization: Crop Physiology, International Crops Research Institute for Semi-Arid Tropics, Patancheru, India
– sequence: 5
  givenname: Jana
  surname: Kholová
  fullname: Kholová, Jana
  organization: Crop Physiology, International Crops Research Institute for Semi-Arid Tropics, Patancheru, India
– sequence: 6
  givenname: Walid
  surname: Sadok
  fullname: Sadok, Walid
  organization: Department of Agronomy and Plant Genetics, University of Minnesota-Twin Cities, St. Paul, MN, USA
– sequence: 7
  givenname: Mutez Ali
  surname: Ahmed
  fullname: Ahmed, Mutez Ali
  organization: Root-Soil Interaction, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
– sequence: 8
  givenname: Andrea
  orcidid: 0000-0001-7415-0480
  surname: Carminati
  fullname: Carminati, Andrea
  organization: Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
BookMark eNqFkV9rFDEUxYNUaG37DfqQD-CuyUwmyfggSPFPoeBLC76FzM1Nvcs2syRxa7-92R0R8UGfbjjJ-XFzzit2kuaEjF1JsZZC6jebdakZS1l3olNNEoPQL9hZp7VZCa2-nvxxPmWXpWyEEJ2VsjP2jJW7b8hr9qnsKPtKc-JtIC-YClXaU33mdeaUIKMvlB447v1uPjzdIw_46FPggWLEXPiE9Qkx8TLTllf8Ub-3xV43R9Mo8Sesx6sL9jL6bcHLX_Oc3X_8cHf9eXX75dPN9fvbFfTK1pVFlIMGb_xkwtjHQSvRd3boBxQSADsFAsfJSo2gvDBWhRi1HQMaQBlFf85uFm6Y_cbtMj36_OxmT-4ozPnB-VwJtuimYDEaNB7GQYEefS_AxNBb6OMkvW0stbAgz6VkjL95UrhDD27jlh7coQe39NBsb_-yAdVjzC1z2v7P_G4xYwtpT5hdAcIEGCgj1PYL-jfgJ24rrGA
CitedBy_id crossref_primary_10_1111_nph_20020
crossref_primary_10_1111_nph_70056
crossref_primary_10_1007_s42853_024_00246_9
Cites_doi 10.1046/j.1365-3040.1999.00513.x
10.1016/j.eja.2019.03.009
10.1111/nph.14292
10.1016/j.eja.2008.07.009
10.2134/agronj15.0016
10.1016/j.tplants.2020.04.003
10.1126/science.1197985
10.1002/2014WR015937
10.1093/jxb/erv251
10.1046/j.1365-3040.1999.00494.x
10.2135/cropsci2013.05.0303
10.1093/jxb/ery183
10.1093/aob/mcad006
10.1111/ejss.12466
10.1093/jxb/eru040
10.1002/csc2.20664
10.1002/2014WR016107
10.1093/insilicoplants/diab038
10.1111/nph.14059
10.1111/j.1399-3054.2012.01693.x
10.1111/jac.12193
10.3389/fpls.2023.1068191
10.1093/jxb/erad221
10.1016/j.envexpbot.2015.02.007
10.1093/jxb/erq077
10.1071/FP13355
10.2134/agronj2009.0195
10.1111/jac.12010
10.1111/pce.12137
10.1071/FP20392
10.1093/jxb/erx124
10.1002/eco.2386
10.1071/FP15115
10.1016/j.plantsci.2016.05.018
10.1111/pce.14536
10.1111/plb.13147
10.1093/jxb/erab251
10.1093/jxb/erq013
10.1104/pp.108.130682
10.1007/s11104-022-05434-0
10.1071/FP13149
10.1146/annurev-arplant-042817-040218
10.1111/nph.16572
10.1111/j.1399-3054.2007.01028.x
10.1007/s11104-012-1507-x
10.1071/FP17161
10.1016/j.envexpbot.2007.05.004
10.1016/j.envexpbot.2020.104205
10.1007/s11104-022-05656-2
10.1111/ppl.12530
10.1093/plphys/kiab271
10.1111/nph.13354
10.1071/FP05047
10.1111/nph.15738
10.1016/j.envexpbot.2012.04.016
10.1093/jxb/err269
10.1046/j.1365-3040.1998.00287.x
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.stress.2024.100506
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2667-064X
ExternalDocumentID oai_doaj_org_article_bd8ef7e7ac954c69a30c7fd38c3fb1a8
10_1016_j_stress_2024_100506
S2667064X24001593
GroupedDBID 0R~
0SF
6I.
AAEDW
AAFTH
AAHBH
AAXUO
AEXQZ
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c348t-8ee156ca7ab7d93f5640328535e01cce24c0e9b816ec4a0784dff689de7ce1f03
IEDL.DBID DOA
ISSN 2667-064X
IngestDate Wed Aug 27 01:24:07 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Tue Jul 01 01:41:05 EDT 2025
Wed Jun 26 17:52:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Plant hydraulic conductance
Vapor pressure deficit (VPD)
Pearl millet
Soil texture
Sorghum
Maize
Canopy conductance
Restricted/ limited transpiration rate
Soil hydraulic conductivity
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-8ee156ca7ab7d93f5640328535e01cce24c0e9b816ec4a0784dff689de7ce1f03
ORCID 0000-0001-7415-0480
0000-0002-6423-6835
OpenAccessLink https://doaj.org/article/bd8ef7e7ac954c69a30c7fd38c3fb1a8
ParticipantIDs doaj_primary_oai_doaj_org_article_bd8ef7e7ac954c69a30c7fd38c3fb1a8
crossref_primary_10_1016_j_stress_2024_100506
crossref_citationtrail_10_1016_j_stress_2024_100506
elsevier_sciencedirect_doi_10_1016_j_stress_2024_100506
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Plant stress (Amsterdam)
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Iden, Durner (bib0013) 2014; 50
Mandour, Khazaei, Stoddard, Dodd (bib0027) 2023; 131
Sadok, Schoppach, Ghanem, Zucca, Sinclair (bib0036) 2019; 107
Tardieu (bib0050) 2012; 63
Tharanya, Sivasakthi, Barzana, Kholová, Thirunalasundari, Vadez (bib0053) 2018; 45
Choudhary, Sinclair, Messina, Cooper (bib0008) 2014; 54
Vadez, Kholova, Zaman-Allah, Belko (bib0057) 2013; 40
Eyland, Gambart, Swennen, Carpentier (bib0010) 2023; 14
Kholová, Zindy, Malayee (bib0022) 2016; 43
Ranawana, Siddique, Palta, Stefanova, Bramley (bib0035) 2021; 48
Carminati, Javaux (bib0006) 2020; 25
Sussmilch, Brodribb, McAdam (bib0048) 2017; 68
Franks, Farquhar (bib63) 1999; 22
Kholová, Hash, Kumar, Yadav, Kocová, Vadez (bib0020) 2010; 61
Peters (bib0033) 2014; 50
Bhattacharyya, Wani, Pal (bib0002) 2020
Oren, Sperry, Katul (bib0031) 1999; 22
Sperry, Adler, Campbell, Comstock (bib0045) 1998; 21
Sinclair, Hammer, van Oosterom (bib0040) 2005; 32
Tardieu (bib0051) 2016; 212
Vadez, Choudhary, Kholová (bib0055) 2021; 72
Tardieu, Simonneau, Muller (bib0052) 2018; 69
Fletcher, Sinclair, Allen (bib0011) 2007; 61
Messina, Sinclair, Hammer (bib0028) 2015; 107
Swaef, Pieters, Appeltans (bib0049) 2022; 4
Brodribb, McAdam (bib0003) 2011; 331
IPCC. 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
Gholipoor, Choudhary, Sinclair, Messina, Cooper (bib0012) 2013; 199
Jafarikouhini, Sinclair, Resende (bib0016) 2022; 62
Schoppach, Sadok (bib0038) 2012; 84
Cai, Carminati, Gleason, Javaux, Ahmed (bib0005) 2023; 46
Choudhary, Guha, Kholova (bib0007) 2020; 295
Poeplau, Kätterer (bib0034) 2017; 68
Lavoie-Lamoureux, Sacco, Risse, Lovisolo (bib0025) 2017; 159
Sparke, Wünsche (bib0044) 2020
Ahmed, Passioura, Carminati (bib0001) 2018; 69
Vadez, Kholova, Medina, Kakkera, Anderberg (bib0056) 2014; 65
Schoppach, Fleury, Sinclair, Sadok (bib0037) 2017; 203
Jarvis, McNaughton (bib0017) 1986
Katerji, Mastrorilli (bib0019) 2009; 30
Sinclair, Zwieniecki, Holbrook (bib0042) 2008; 132
Vadez, Kholová, Hummel, Zhokhavets, Gupta, Hash (bib0058) 2015; 66
Koehler, Wankmüller, Sadok, Carminati (bib0024) 2023; 74
Sinclair, Devi, Shekoofa (bib0039) 2017; 260
Riar, Mandeep, Sinclair, Thomas, Prasad, Vara (bib64) 2015; 115
Lynch (bib0026) 2019; 223
Wankmüller, Carminati (bib0061) 2022; 15
Kholová, Murugesan, Kaliamoorthy (bib0021) 2014; 41
Ocheltree, Nippert, Prasad (bib0030) 2014; 37
Tramontini, van Leeuwen, Domec (bib0054) 2013; 368
Cai, Carminati, Abdalla, Ahmed (bib0004) 2021; 187
Wang, Sperry, Anderegg, Venturas, Trugman (bib0060) 2020; 227
Sinclair, Messina, Beatty, Samples (bib0041) 2010; 102
Vetterlein, Phalempin, Lippold (bib0059) 2022; 478
Jafarikouhini, Pradhan, Sinclair (bib0015) 2020; 179
Ryan, Dodd, Rothwell, Jones, Tardieu, Draye, Davies (bib65) 2016; 251
Sivasakthi, Tharanya, Zaman-Allah, Kholová, Thirunalasundari, Vadez (bib0043) 2020; 22
Draye, Kim, Lobet, Javaux (bib0009) 2010; 61
Sperry, Love (bib0046) 2015; 207
Koehler, Moser, Botezatu (bib0023) 2022; 478
Seversike, Sermons, Sinclair, Carter, Thomas, Rufty (bib66) 2013; 148
Muggeo VMR. 2023. Regression Models with Break-Points /Change-Points (with Possibly Random Effects) Estimation, 2023-04-13.
Parent, Hachez, Redondo, Simonneau, Chaumont, Tardieu (bib0032) 2009; 149
Sperry, Wang, Wolfe (bib0047) 2016; 212
Franks (10.1016/j.stress.2024.100506_bib63) 1999; 22
Seversike (10.1016/j.stress.2024.100506_bib66) 2013; 148
Ocheltree (10.1016/j.stress.2024.100506_bib0030) 2014; 37
Cai (10.1016/j.stress.2024.100506_bib0005) 2023; 46
Vadez (10.1016/j.stress.2024.100506_bib0058) 2015; 66
Wankmüller (10.1016/j.stress.2024.100506_bib0061) 2022; 15
Schoppach (10.1016/j.stress.2024.100506_bib0037) 2017; 203
Poeplau (10.1016/j.stress.2024.100506_bib0034) 2017; 68
Fletcher (10.1016/j.stress.2024.100506_bib0011) 2007; 61
10.1016/j.stress.2024.100506_bib0014
Sparke (10.1016/j.stress.2024.100506_bib0044) 2020
Ahmed (10.1016/j.stress.2024.100506_bib0001) 2018; 69
Koehler (10.1016/j.stress.2024.100506_bib0023) 2022; 478
Jafarikouhini (10.1016/j.stress.2024.100506_bib0016) 2022; 62
Vadez (10.1016/j.stress.2024.100506_bib0057) 2013; 40
Sinclair (10.1016/j.stress.2024.100506_bib0041) 2010; 102
Wang (10.1016/j.stress.2024.100506_bib0060) 2020; 227
Jarvis (10.1016/j.stress.2024.100506_bib0017) 1986
Sivasakthi (10.1016/j.stress.2024.100506_bib0043) 2020; 22
Sperry (10.1016/j.stress.2024.100506_bib0045) 1998; 21
Ryan (10.1016/j.stress.2024.100506_bib65) 2016; 251
Choudhary (10.1016/j.stress.2024.100506_bib0008) 2014; 54
Tharanya (10.1016/j.stress.2024.100506_bib0053) 2018; 45
Sussmilch (10.1016/j.stress.2024.100506_bib0048) 2017; 68
Vetterlein (10.1016/j.stress.2024.100506_bib0059) 2022; 478
Oren (10.1016/j.stress.2024.100506_bib0031) 1999; 22
Tardieu (10.1016/j.stress.2024.100506_bib0051) 2016; 212
Katerji (10.1016/j.stress.2024.100506_bib0019) 2009; 30
Peters (10.1016/j.stress.2024.100506_bib0033) 2014; 50
Iden (10.1016/j.stress.2024.100506_bib0013) 2014; 50
Schoppach (10.1016/j.stress.2024.100506_bib0038) 2012; 84
Cai (10.1016/j.stress.2024.100506_bib0004) 2021; 187
Sperry (10.1016/j.stress.2024.100506_bib0046) 2015; 207
Parent (10.1016/j.stress.2024.100506_bib0032) 2009; 149
Kholová (10.1016/j.stress.2024.100506_bib0021) 2014; 41
Gholipoor (10.1016/j.stress.2024.100506_bib0012) 2013; 199
Sperry (10.1016/j.stress.2024.100506_bib0047) 2016; 212
Riar (10.1016/j.stress.2024.100506_bib64) 2015; 115
10.1016/j.stress.2024.100506_bib0029
Vadez (10.1016/j.stress.2024.100506_bib0056) 2014; 65
Lynch (10.1016/j.stress.2024.100506_bib0026) 2019; 223
Sinclair (10.1016/j.stress.2024.100506_bib0039) 2017; 260
Tardieu (10.1016/j.stress.2024.100506_bib0050) 2012; 63
Sinclair (10.1016/j.stress.2024.100506_bib0040) 2005; 32
Choudhary (10.1016/j.stress.2024.100506_bib0007) 2020; 295
Eyland (10.1016/j.stress.2024.100506_bib0010) 2023; 14
Sadok (10.1016/j.stress.2024.100506_bib0036) 2019; 107
Koehler (10.1016/j.stress.2024.100506_bib0024) 2023; 74
Messina (10.1016/j.stress.2024.100506_bib0028) 2015; 107
Lavoie-Lamoureux (10.1016/j.stress.2024.100506_bib0025) 2017; 159
Vadez (10.1016/j.stress.2024.100506_bib0055) 2021; 72
Tardieu (10.1016/j.stress.2024.100506_bib0052) 2018; 69
Kholová (10.1016/j.stress.2024.100506_bib0020) 2010; 61
Draye (10.1016/j.stress.2024.100506_bib0009) 2010; 61
Brodribb (10.1016/j.stress.2024.100506_bib0003) 2011; 331
Tramontini (10.1016/j.stress.2024.100506_bib0054) 2013; 368
Ranawana (10.1016/j.stress.2024.100506_bib0035) 2021; 48
Mandour (10.1016/j.stress.2024.100506_bib0027) 2023; 131
Carminati (10.1016/j.stress.2024.100506_bib0006) 2020; 25
Jafarikouhini (10.1016/j.stress.2024.100506_bib0015) 2020; 179
Kholová (10.1016/j.stress.2024.100506_bib0022) 2016; 43
Sinclair (10.1016/j.stress.2024.100506_bib0042) 2008; 132
Swaef (10.1016/j.stress.2024.100506_bib0049) 2022; 4
Bhattacharyya (10.1016/j.stress.2024.100506_bib0002) 2020
References_xml – volume: 212
  start-page: 577
  year: 2016
  end-page: 589
  ident: bib0047
  article-title: Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits
  publication-title: New Phytol.
– start-page: 1652
  year: 2020
  ident: bib0002
  article-title: India soils: yesterday, today and tomorrow
  publication-title: Curr. Sci.
– reference: IPCC. 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
– volume: 368
  start-page: 215
  year: 2013
  end-page: 230
  ident: bib0054
  article-title: Impact of soil texture and water availability on the hydraulic control of plant and grape-berry development
  publication-title: Plant Soil
– volume: 48
  start-page: 839
  year: 2021
  end-page: 850
  ident: bib0035
  article-title: Stomata coordinate with plant hydraulics to regulate transpiration response to vapour pressure deficit in wheat
  publication-title: Funct. Plant Biol. FPB
– volume: 22
  start-page: 769
  year: 2020
  end-page: 780
  ident: bib0043
  article-title: Transpiration difference under high evaporative demand in chickpea (Cicer arietinum L.) may be explained by differences in the water transport pathway in the root cylinder
  publication-title: Plant Biol.
– volume: 187
  start-page: 858
  year: 2021
  end-page: 872
  ident: bib0004
  article-title: Soil textures rather than root hairs dominate water uptake and soil-plant hydraulics under drought
  publication-title: Plant Physiol.
– volume: 223
  start-page: 548
  year: 2019
  end-page: 564
  ident: bib0026
  article-title: Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture
  publication-title: New Phytol..
– volume: 132
  start-page: 446
  year: 2008
  end-page: 451
  ident: bib0042
  article-title: Low leaf hydraulic conductance associated with drought tolerance in soybean
  publication-title: Physiol. Plant
– volume: 149
  start-page: 2000
  year: 2009
  end-page: 2012
  ident: bib0032
  article-title: Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach
  publication-title: Plant Physiol.
– volume: 61
  start-page: 2145
  year: 2010
  end-page: 2155
  ident: bib0009
  article-title: Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils
  publication-title: J. Exp. Bot.
– volume: 61
  start-page: 1431
  year: 2010
  end-page: 1440
  ident: bib0020
  article-title: Terminal drought-tolerant pearl millet Pennisetum glaucum (L.) R. Br. have high leaf ABA and limit transpiration at high vapour pressure deficit
  publication-title: J. Exp. Bot.
– volume: 65
  start-page: 6141
  year: 2014
  end-page: 6153
  ident: bib0056
  article-title: Transpiration efficiency: new insights into an old story
  publication-title: J. Exp. Bot.
– volume: 107
  start-page: 1978
  year: 2015
  end-page: 1986
  ident: bib0028
  article-title: Limited-transpiration trait may increase maize drought tolerance in the US corn belt
  publication-title: Agron. J.
– volume: 41
  start-page: 1019
  year: 2014
  end-page: 1034
  ident: bib0021
  article-title: Modelling the effect of plant water use traits on yield and stay-green expression in sorghum
  publication-title: Funct. Plant Biol. FPB
– volume: 32
  start-page: 945
  year: 2005
  end-page: 952
  ident: bib0040
  article-title: Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate
  publication-title: Funct. Plant Biol. FPB
– volume: 61
  start-page: 145
  year: 2007
  end-page: 151
  ident: bib0011
  article-title: Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’ and commercial soybean
  publication-title: Environ. Exp. Bot.
– volume: 207
  start-page: 14
  year: 2015
  end-page: 27
  ident: bib0046
  article-title: What plant hydraulics can tell us about responses to climate-change droughts
  publication-title: New Phytol.
– volume: 107
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib0036
  article-title: Wheat drought-tolerance to enhance food security in Tunisia, birthplace of the Arab Spring
  publication-title: Eur. J. Agronomy
– volume: 260
  start-page: 109
  year: 2017
  end-page: 118
  ident: bib0039
  article-title: Limited-transpiration response to high vapor pressure deficit in crop species
  publication-title: Plant Sci. Int. J. Exp. Plant Biol.
– volume: 478
  start-page: 43
  year: 2022
  end-page: 58
  ident: bib0023
  article-title: Going underground: soil hydraulic properties impacting maize responsiveness to water deficit
  publication-title: Plant Soil
– start-page: 1
  year: 1986
  end-page: 49
  ident: bib0017
  article-title: Stomatal Control of Transpiration: Scaling Up from Leaf to Region
– volume: 14
  year: 2023
  ident: bib0010
  article-title: Unravelling the diversity in water usage among wild banana species in response to vapour pressure deficit
  publication-title: Front. Plant Sci.
– volume: 46
  start-page: 3120
  year: 2023
  end-page: 3127
  ident: bib0005
  article-title: Soil-plant hydraulics explain stomatal efficiency-safety tradeoff
  publication-title: Plant Cell Environ.
– volume: 69
  start-page: 3255
  year: 2018
  end-page: 3265
  ident: bib0001
  article-title: Hydraulic processes in roots and the rhizosphere pertinent to increasing yield of water-limited grain crops: a critical review
  publication-title: J. Exp. Bot.
– volume: 212
  start-page: 802
  year: 2016
  end-page: 804
  ident: bib0051
  article-title: Too many partners in root-shoot signals. Does hydraulics qualify as the only signal that feeds back over time for reliable stomatal control?
  publication-title: New Phytol.
– volume: 37
  start-page: 132
  year: 2014
  end-page: 139
  ident: bib0030
  article-title: Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance
  publication-title: Plant Cell Environ.
– volume: 84
  start-page: 1
  year: 2012
  end-page: 10
  ident: bib0038
  article-title: Differential sensitivities of transpiration to evaporative demand and soil water deficit among wheat elite cultivars indicate different strategies for drought tolerance
  publication-title: Environ. Exp. Bot.
– volume: 131
  start-page: 533
  year: 2023
  end-page: 544
  ident: bib0027
  article-title: Identifying physiological and genetic determinants of faba bean transpiration response to evaporative demand
  publication-title: Ann. Bot.
– volume: 22
  start-page: 1515
  year: 1999
  end-page: 1526
  ident: bib0031
  article-title: Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit
  publication-title: Plant Cell Environ.
– volume: 115
  start-page: 58
  year: 2015
  end-page: 62
  ident: bib64
  article-title: Persistence of limited-transpiration-rate trait in sorghum at high temperature
  publication-title: Environ. Exp. Bot.
– volume: 66
  start-page: 5581
  year: 2015
  end-page: 5593
  ident: bib0058
  article-title: LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget
  publication-title: J. Exp. Bot.
– volume: 295
  year: 2020
  ident: bib0007
  article-title: Maize, sorghum, and pearl millet have highly contrasting species strategies to adapt to water stress and climate change-like conditions
  publication-title: Plant Sci. Int. J. Exp. Plant Biol.
– volume: 199
  start-page: 155
  year: 2013
  end-page: 160
  ident: bib0012
  article-title: Transpiration response of maize hybrids to atmospheric vapour pressure deficit
  publication-title: J. Agronomy Crop Sci.
– volume: 74
  start-page: 4789
  year: 2023
  end-page: 4807
  ident: bib0024
  article-title: Transpiration response to soil drying versus increasing vapor pressure deficit in crops: physical and physiological mechanisms and key plant traits
  publication-title: J. Exp. Bot.
– volume: 43
  start-page: 423
  year: 2016
  end-page: 437
  ident: bib0022
  article-title: Component traits of plant water use are modulated by vapour pressure deficit in pearl millet (Pennisetum glaucum (L.) R.Br.)
  publication-title: Funct. Plant Biol. FPB
– volume: 68
  start-page: 2913
  year: 2017
  end-page: 2918
  ident: bib0048
  article-title: Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required
  publication-title: J. Exp. Bot.
– volume: 102
  start-page: 475
  year: 2010
  end-page: 482
  ident: bib0041
  article-title: Assessment across the United States of the benefits of altered soybean drought traits
  publication-title: Agron. J.
– volume: 203
  start-page: 219
  year: 2017
  end-page: 226
  ident: bib0037
  article-title: Transpiration sensitivity to evaporative demand across 120 years of breeding of Australian wheat cultivars
  publication-title: J. Agronomy Crop Sci.
– volume: 50
  start-page: 7530
  year: 2014
  end-page: 7534
  ident: bib0013
  article-title: Comment on “Simple consistent models for water retention and hydraulic conductivity in the complete moisture range” by A. Peters
  publication-title: Water Resour. Res.
– volume: 227
  start-page: 311
  year: 2020
  end-page: 325
  ident: bib0060
  article-title: A theoretical and empirical assessment of stomatal optimization modeling
  publication-title: New Phytol.
– reference: Muggeo VMR. 2023. Regression Models with Break-Points /Change-Points (with Possibly Random Effects) Estimation, 2023-04-13.
– volume: 30
  start-page: 95
  year: 2009
  end-page: 100
  ident: bib0019
  article-title: The effect of soil texture on the water use efficiency of irrigated crops: results of a multi-year experiment carried out in the Mediterranean region
  publication-title: Eur. J. Agronomy
– volume: 159
  start-page: 468
  year: 2017
  end-page: 482
  ident: bib0025
  article-title: Factors influencing stomatal conductance in response to water availability in grapevine: a meta-analysis
  publication-title: Physiol. Plant
– volume: 50
  start-page: 7535
  year: 2014
  end-page: 7539
  ident: bib0033
  article-title: Reply to comment by S. Iden and W. Durner on “Simple consistent models for water retention and hydraulic conductivity in the complete moisture range
  publication-title: Water Resour. Res.
– volume: 25
  start-page: 868
  year: 2020
  end-page: 880
  ident: bib0006
  article-title: Soil rather than xylem vulnerability controls stomatal response to drought
  publication-title: Trends Plant Sci.
– volume: 45
  start-page: 719
  year: 2018
  end-page: 736
  ident: bib0053
  article-title: Pearl millet (Pennisetum glaucum) contrasting for the transpiration response to vapour pressure deficit also differ in their dependence on the symplastic and apoplastic water transport pathways
  publication-title: Funct. Plant Biol. FPB
– volume: 72
  start-page: 5221
  year: 2021
  end-page: 5234
  ident: bib0055
  article-title: Transpiration efficiency: insights from comparisons of C4 cereal species
  publication-title: J. Exp. Bot.
– volume: 62
  start-page: 374
  year: 2022
  end-page: 381
  ident: bib0016
  article-title: Limited-transpiration rate and plant conductance in a diverse sweet corn population
  publication-title: Crop Sci.
– volume: 63
  start-page: 25
  year: 2012
  end-page: 31
  ident: bib0050
  article-title: Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario
  publication-title: J. Exp. Bot.
– volume: 15
  year: 2022
  ident: bib0061
  article-title: Stomatal regulation prevents plants from critical water potentials during drought: result of a model linking soil–plant hydraulics to abscisic acid dynamics
  publication-title: Ecohydrology
– volume: 68
  start-page: 964
  year: 2017
  end-page: 970
  ident: bib0034
  article-title: Is soil texture a major controlling factor of root:shoot ratio in cereals?
  publication-title: Eur. J. Soil Sci.
– start-page: 43
  year: 2020
  end-page: 83
  ident: bib0044
  article-title: Mechanosensing of Plants
  publication-title: Horticultural Reviews
– volume: 69
  start-page: 733
  year: 2018
  end-page: 759
  ident: bib0052
  article-title: The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach
  publication-title: Annu. Rev. Plant Biol.
– volume: 22
  start-page: 1337
  year: 1999
  end-page: 1349
  ident: bib63
  article-title: A relationship between humidity response, growth form and photosynthetic operating point in C 3 plants
  publication-title: Plant Cell Environ
– volume: 54
  start-page: 1147
  year: 2014
  end-page: 1152
  ident: bib0008
  article-title: Hydraulic conductance of maize hybrids differing in transpiration response to vapor pressure deficit
  publication-title: Crop Sci.
– volume: 251
  start-page: 101
  year: 2016
  end-page: 109
  ident: bib65
  article-title: Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency
  publication-title: Plant Science : An Int. J. Exp. Plant Biol.
– volume: 331
  start-page: 582
  year: 2011
  end-page: 585
  ident: bib0003
  article-title: Passive origins of stomatal control in vascular plants
  publication-title: Science
– volume: 4
  year: 2022
  ident: bib0049
  article-title: On the pivotal role of water potential to model plant physiological processes
  publication-title: in silico Plants
– volume: 179
  year: 2020
  ident: bib0015
  article-title: Basis of limited-transpiration rate under elevated vapor pressure deficit and high temperature among sweet corn cultivars
  publication-title: Environ. Exp. Bot.
– volume: 148
  start-page: 62
  year: 2013
  end-page: 73
  ident: bib66
  article-title: Temperature interactions with transpiration response to vapor pressure deficit among cultivated and wild soybean genotypes
  publication-title: Physiol. Plant.
– volume: 21
  start-page: 347
  year: 1998
  end-page: 359
  ident: bib0045
  article-title: Limitation of plant water use by rhizosphere and xylem conductance: results from a model
  publication-title: Plant Cell Environ.
– volume: 40
  start-page: 1310
  year: 2013
  end-page: 1322
  ident: bib0057
  article-title: Water: the most important 'molecular' component of water stress tolerance research
  publication-title: Funct. Plant Biol. FPB
– volume: 478
  start-page: 119
  year: 2022
  end-page: 141
  ident: bib0059
  article-title: Root hairs matter at field scale for maize shoot growth and nutrient uptake, but root trait plasticity is primarily triggered by texture and drought
  publication-title: Plant Soil
– volume: 22
  start-page: 1515
  year: 1999
  ident: 10.1016/j.stress.2024.100506_bib0031
  article-title: Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.1999.00513.x
– volume: 107
  start-page: 1
  year: 2019
  ident: 10.1016/j.stress.2024.100506_bib0036
  article-title: Wheat drought-tolerance to enhance food security in Tunisia, birthplace of the Arab Spring
  publication-title: Eur. J. Agronomy
  doi: 10.1016/j.eja.2019.03.009
– volume: 212
  start-page: 802
  year: 2016
  ident: 10.1016/j.stress.2024.100506_bib0051
  article-title: Too many partners in root-shoot signals. Does hydraulics qualify as the only signal that feeds back over time for reliable stomatal control?
  publication-title: New Phytol.
  doi: 10.1111/nph.14292
– volume: 30
  start-page: 95
  year: 2009
  ident: 10.1016/j.stress.2024.100506_bib0019
  article-title: The effect of soil texture on the water use efficiency of irrigated crops: results of a multi-year experiment carried out in the Mediterranean region
  publication-title: Eur. J. Agronomy
  doi: 10.1016/j.eja.2008.07.009
– volume: 107
  start-page: 1978
  year: 2015
  ident: 10.1016/j.stress.2024.100506_bib0028
  article-title: Limited-transpiration trait may increase maize drought tolerance in the US corn belt
  publication-title: Agron. J.
  doi: 10.2134/agronj15.0016
– volume: 25
  start-page: 868
  year: 2020
  ident: 10.1016/j.stress.2024.100506_bib0006
  article-title: Soil rather than xylem vulnerability controls stomatal response to drought
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2020.04.003
– volume: 331
  start-page: 582
  year: 2011
  ident: 10.1016/j.stress.2024.100506_bib0003
  article-title: Passive origins of stomatal control in vascular plants
  publication-title: Science
  doi: 10.1126/science.1197985
– ident: 10.1016/j.stress.2024.100506_bib0014
– volume: 50
  start-page: 7530
  year: 2014
  ident: 10.1016/j.stress.2024.100506_bib0013
  article-title: Comment on “Simple consistent models for water retention and hydraulic conductivity in the complete moisture range” by A. Peters
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR015937
– volume: 66
  start-page: 5581
  year: 2015
  ident: 10.1016/j.stress.2024.100506_bib0058
  article-title: LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv251
– volume: 22
  start-page: 1337
  issue: 11
  year: 1999
  ident: 10.1016/j.stress.2024.100506_bib63
  article-title: A relationship between humidity response, growth form and photosynthetic operating point in C 3 plants
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1999.00494.x
– volume: 54
  start-page: 1147
  year: 2014
  ident: 10.1016/j.stress.2024.100506_bib0008
  article-title: Hydraulic conductance of maize hybrids differing in transpiration response to vapor pressure deficit
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2013.05.0303
– start-page: 43
  year: 2020
  ident: 10.1016/j.stress.2024.100506_bib0044
  article-title: Mechanosensing of Plants
– volume: 69
  start-page: 3255
  year: 2018
  ident: 10.1016/j.stress.2024.100506_bib0001
  article-title: Hydraulic processes in roots and the rhizosphere pertinent to increasing yield of water-limited grain crops: a critical review
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery183
– volume: 131
  start-page: 533
  year: 2023
  ident: 10.1016/j.stress.2024.100506_bib0027
  article-title: Identifying physiological and genetic determinants of faba bean transpiration response to evaporative demand
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcad006
– volume: 68
  start-page: 964
  year: 2017
  ident: 10.1016/j.stress.2024.100506_bib0034
  article-title: Is soil texture a major controlling factor of root:shoot ratio in cereals?
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12466
– volume: 65
  start-page: 6141
  year: 2014
  ident: 10.1016/j.stress.2024.100506_bib0056
  article-title: Transpiration efficiency: new insights into an old story
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru040
– volume: 62
  start-page: 374
  year: 2022
  ident: 10.1016/j.stress.2024.100506_bib0016
  article-title: Limited-transpiration rate and plant conductance in a diverse sweet corn population
  publication-title: Crop Sci.
  doi: 10.1002/csc2.20664
– volume: 50
  start-page: 7535
  year: 2014
  ident: 10.1016/j.stress.2024.100506_bib0033
  article-title: Reply to comment by S. Iden and W. Durner on “Simple consistent models for water retention and hydraulic conductivity in the complete moisture range
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR016107
– volume: 295
  year: 2020
  ident: 10.1016/j.stress.2024.100506_bib0007
  article-title: Maize, sorghum, and pearl millet have highly contrasting species strategies to adapt to water stress and climate change-like conditions
  publication-title: Plant Sci. Int. J. Exp. Plant Biol.
– volume: 4
  year: 2022
  ident: 10.1016/j.stress.2024.100506_bib0049
  article-title: On the pivotal role of water potential to model plant physiological processes
  publication-title: in silico Plants
  doi: 10.1093/insilicoplants/diab038
– volume: 212
  start-page: 577
  year: 2016
  ident: 10.1016/j.stress.2024.100506_bib0047
  article-title: Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits
  publication-title: New Phytol.
  doi: 10.1111/nph.14059
– volume: 148
  start-page: 62
  issue: 1
  year: 2013
  ident: 10.1016/j.stress.2024.100506_bib66
  article-title: Temperature interactions with transpiration response to vapor pressure deficit among cultivated and wild soybean genotypes
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2012.01693.x
– volume: 260
  start-page: 109
  year: 2017
  ident: 10.1016/j.stress.2024.100506_bib0039
  article-title: Limited-transpiration response to high vapor pressure deficit in crop species
  publication-title: Plant Sci. Int. J. Exp. Plant Biol.
– volume: 203
  start-page: 219
  year: 2017
  ident: 10.1016/j.stress.2024.100506_bib0037
  article-title: Transpiration sensitivity to evaporative demand across 120 years of breeding of Australian wheat cultivars
  publication-title: J. Agronomy Crop Sci.
  doi: 10.1111/jac.12193
– ident: 10.1016/j.stress.2024.100506_bib0029
– volume: 14
  year: 2023
  ident: 10.1016/j.stress.2024.100506_bib0010
  article-title: Unravelling the diversity in water usage among wild banana species in response to vapour pressure deficit
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2023.1068191
– volume: 74
  start-page: 4789
  year: 2023
  ident: 10.1016/j.stress.2024.100506_bib0024
  article-title: Transpiration response to soil drying versus increasing vapor pressure deficit in crops: physical and physiological mechanisms and key plant traits
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erad221
– volume: 115
  start-page: 58
  year: 2015
  ident: 10.1016/j.stress.2024.100506_bib64
  article-title: Persistence of limited-transpiration-rate trait in sorghum at high temperature
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2015.02.007
– volume: 61
  start-page: 2145
  year: 2010
  ident: 10.1016/j.stress.2024.100506_bib0009
  article-title: Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq077
– volume: 41
  start-page: 1019
  year: 2014
  ident: 10.1016/j.stress.2024.100506_bib0021
  article-title: Modelling the effect of plant water use traits on yield and stay-green expression in sorghum
  publication-title: Funct. Plant Biol. FPB
  doi: 10.1071/FP13355
– volume: 102
  start-page: 475
  year: 2010
  ident: 10.1016/j.stress.2024.100506_bib0041
  article-title: Assessment across the United States of the benefits of altered soybean drought traits
  publication-title: Agron. J.
  doi: 10.2134/agronj2009.0195
– volume: 199
  start-page: 155
  year: 2013
  ident: 10.1016/j.stress.2024.100506_bib0012
  article-title: Transpiration response of maize hybrids to atmospheric vapour pressure deficit
  publication-title: J. Agronomy Crop Sci.
  doi: 10.1111/jac.12010
– volume: 37
  start-page: 132
  year: 2014
  ident: 10.1016/j.stress.2024.100506_bib0030
  article-title: Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12137
– volume: 48
  start-page: 839
  year: 2021
  ident: 10.1016/j.stress.2024.100506_bib0035
  article-title: Stomata coordinate with plant hydraulics to regulate transpiration response to vapour pressure deficit in wheat
  publication-title: Funct. Plant Biol. FPB
  doi: 10.1071/FP20392
– volume: 68
  start-page: 2913
  year: 2017
  ident: 10.1016/j.stress.2024.100506_bib0048
  article-title: Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx124
– volume: 15
  year: 2022
  ident: 10.1016/j.stress.2024.100506_bib0061
  article-title: Stomatal regulation prevents plants from critical water potentials during drought: result of a model linking soil–plant hydraulics to abscisic acid dynamics
  publication-title: Ecohydrology
  doi: 10.1002/eco.2386
– volume: 43
  start-page: 423
  year: 2016
  ident: 10.1016/j.stress.2024.100506_bib0022
  article-title: Component traits of plant water use are modulated by vapour pressure deficit in pearl millet (Pennisetum glaucum (L.) R.Br.)
  publication-title: Funct. Plant Biol. FPB
  doi: 10.1071/FP15115
– volume: 251
  start-page: 101
  year: 2016
  ident: 10.1016/j.stress.2024.100506_bib65
  article-title: Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency
  publication-title: Plant Science : An Int. J. Exp. Plant Biol.
  doi: 10.1016/j.plantsci.2016.05.018
– volume: 46
  start-page: 3120
  issue: 10
  year: 2023
  ident: 10.1016/j.stress.2024.100506_bib0005
  article-title: Soil-plant hydraulics explain stomatal efficiency-safety tradeoff
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.14536
– volume: 22
  start-page: 769
  year: 2020
  ident: 10.1016/j.stress.2024.100506_bib0043
  article-title: Transpiration difference under high evaporative demand in chickpea (Cicer arietinum L.) may be explained by differences in the water transport pathway in the root cylinder
  publication-title: Plant Biol.
  doi: 10.1111/plb.13147
– volume: 72
  start-page: 5221
  year: 2021
  ident: 10.1016/j.stress.2024.100506_bib0055
  article-title: Transpiration efficiency: insights from comparisons of C4 cereal species
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erab251
– volume: 61
  start-page: 1431
  year: 2010
  ident: 10.1016/j.stress.2024.100506_bib0020
  article-title: Terminal drought-tolerant pearl millet Pennisetum glaucum (L.) R. Br. have high leaf ABA and limit transpiration at high vapour pressure deficit
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq013
– volume: 149
  start-page: 2000
  year: 2009
  ident: 10.1016/j.stress.2024.100506_bib0032
  article-title: Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.130682
– volume: 478
  start-page: 119
  year: 2022
  ident: 10.1016/j.stress.2024.100506_bib0059
  article-title: Root hairs matter at field scale for maize shoot growth and nutrient uptake, but root trait plasticity is primarily triggered by texture and drought
  publication-title: Plant Soil
  doi: 10.1007/s11104-022-05434-0
– volume: 40
  start-page: 1310
  year: 2013
  ident: 10.1016/j.stress.2024.100506_bib0057
  article-title: Water: the most important 'molecular' component of water stress tolerance research
  publication-title: Funct. Plant Biol. FPB
  doi: 10.1071/FP13149
– start-page: 1
  year: 1986
  ident: 10.1016/j.stress.2024.100506_bib0017
– volume: 69
  start-page: 733
  year: 2018
  ident: 10.1016/j.stress.2024.100506_bib0052
  article-title: The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042817-040218
– volume: 227
  start-page: 311
  year: 2020
  ident: 10.1016/j.stress.2024.100506_bib0060
  article-title: A theoretical and empirical assessment of stomatal optimization modeling
  publication-title: New Phytol.
  doi: 10.1111/nph.16572
– volume: 132
  start-page: 446
  year: 2008
  ident: 10.1016/j.stress.2024.100506_bib0042
  article-title: Low leaf hydraulic conductance associated with drought tolerance in soybean
  publication-title: Physiol. Plant
  doi: 10.1111/j.1399-3054.2007.01028.x
– volume: 368
  start-page: 215
  year: 2013
  ident: 10.1016/j.stress.2024.100506_bib0054
  article-title: Impact of soil texture and water availability on the hydraulic control of plant and grape-berry development
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1507-x
– start-page: 1652
  year: 2020
  ident: 10.1016/j.stress.2024.100506_bib0002
  article-title: India soils: yesterday, today and tomorrow
  publication-title: Curr. Sci.
– volume: 45
  start-page: 719
  year: 2018
  ident: 10.1016/j.stress.2024.100506_bib0053
  article-title: Pearl millet (Pennisetum glaucum) contrasting for the transpiration response to vapour pressure deficit also differ in their dependence on the symplastic and apoplastic water transport pathways
  publication-title: Funct. Plant Biol. FPB
  doi: 10.1071/FP17161
– volume: 61
  start-page: 145
  year: 2007
  ident: 10.1016/j.stress.2024.100506_bib0011
  article-title: Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’ and commercial soybean
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2007.05.004
– volume: 179
  year: 2020
  ident: 10.1016/j.stress.2024.100506_bib0015
  article-title: Basis of limited-transpiration rate under elevated vapor pressure deficit and high temperature among sweet corn cultivars
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2020.104205
– volume: 478
  start-page: 43
  year: 2022
  ident: 10.1016/j.stress.2024.100506_bib0023
  article-title: Going underground: soil hydraulic properties impacting maize responsiveness to water deficit
  publication-title: Plant Soil
  doi: 10.1007/s11104-022-05656-2
– volume: 159
  start-page: 468
  year: 2017
  ident: 10.1016/j.stress.2024.100506_bib0025
  article-title: Factors influencing stomatal conductance in response to water availability in grapevine: a meta-analysis
  publication-title: Physiol. Plant
  doi: 10.1111/ppl.12530
– volume: 187
  start-page: 858
  year: 2021
  ident: 10.1016/j.stress.2024.100506_bib0004
  article-title: Soil textures rather than root hairs dominate water uptake and soil-plant hydraulics under drought
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiab271
– volume: 207
  start-page: 14
  year: 2015
  ident: 10.1016/j.stress.2024.100506_bib0046
  article-title: What plant hydraulics can tell us about responses to climate-change droughts
  publication-title: New Phytol.
  doi: 10.1111/nph.13354
– volume: 32
  start-page: 945
  year: 2005
  ident: 10.1016/j.stress.2024.100506_bib0040
  article-title: Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate
  publication-title: Funct. Plant Biol. FPB
  doi: 10.1071/FP05047
– volume: 223
  start-page: 548
  year: 2019
  ident: 10.1016/j.stress.2024.100506_bib0026
  article-title: Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture
  publication-title: New Phytol..
  doi: 10.1111/nph.15738
– volume: 84
  start-page: 1
  year: 2012
  ident: 10.1016/j.stress.2024.100506_bib0038
  article-title: Differential sensitivities of transpiration to evaporative demand and soil water deficit among wheat elite cultivars indicate different strategies for drought tolerance
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2012.04.016
– volume: 63
  start-page: 25
  year: 2012
  ident: 10.1016/j.stress.2024.100506_bib0050
  article-title: Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err269
– volume: 21
  start-page: 347
  year: 1998
  ident: 10.1016/j.stress.2024.100506_bib0045
  article-title: Limitation of plant water use by rhizosphere and xylem conductance: results from a model
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.1998.00287.x
SSID ssj0002811278
Score 2.2853754
Snippet •Transpiration regulation during rising VPD is soil texture-specific even in wet soil.•Leaf area and root:shoot-ratio do not consistently differ between...
Many efforts to improve crop yields in water-limited environments have been directed towards identifying genotypes capable of restricting their transpiration...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100506
SubjectTerms Canopy conductance
Maize
Pearl millet
Plant hydraulic conductance
Restricted/ limited transpiration rate
Soil hydraulic conductivity
Soil texture
Sorghum
Vapor pressure deficit (VPD)
Title The transpiration rate sensitivity to increasing evaporative demand differs between soil textures, even in wet soil
URI https://dx.doi.org/10.1016/j.stress.2024.100506
https://doaj.org/article/bd8ef7e7ac954c69a30c7fd38c3fb1a8
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BatwwEBUh9JBLaJqUbtsUHXKMiW1Jlnzshl2WQnpKIDcjSyPYJfGGrNPSS7-9M5IdfMpeevHBlmUxM3iexJs3jF0YHbTPwWei1FUmfREyknXLBEARKhNkDlTgfPOzWt3JH_fqftLqizhhSR44Ge6q9QaCBm1draSraityp4MXxonQFjaW-WLOm2ymNvHICHGENmOtXCR0peIL3BKWkrgBipocTXJRlOyfpKRJmlm-Z8cDPuTf07pO2AF0H9i7-RYx3J9TtkOv8j7qka-T6zhJPfAd0dBTHwjeb_m6IyxIpwAcftmoVIw_Ne7h0Xaep54oOz5QtPhuu37gRAB5wZVfcpJ0whn4b-jjozN2t1zcXq-yoW1C5oQ0fWbQzKpyVttW-1oEVUkSzVNCQV44B6V0OdStKSpw0iJEkD6gW2oP2qGDcvGRHXbbDj4xXlZeK29smRsvrTct5K0qAyiLfii9nzExGrBxg6Y4tbZ4aEby2KZJZm_I7E0y-4xlr289JU2NPePn5JvXsaSIHW9gnDRDnDT74mTG9OjZZgAXCTTgVOs3P__5f3z-CzuiKRPJ7Cs77J9f4BzhTN9-i5GL15u_i3825fny
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+transpiration+rate+sensitivity+to+increasing+evaporative+demand+differs+between+soil+textures%2C+even+in+wet+soil&rft.jtitle=Plant+stress+%28Amsterdam%29&rft.au=Tina+Koehler&rft.au=%C3%81kos+Botezatu&rft.au=Tharanya+Murugesan&rft.au=Sivasakthi+Kaliamoorthy&rft.date=2024-06-01&rft.pub=Elsevier&rft.eissn=2667-064X&rft.volume=12&rft.spage=100506&rft_id=info:doi/10.1016%2Fj.stress.2024.100506&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bd8ef7e7ac954c69a30c7fd38c3fb1a8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-064X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-064X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-064X&client=summon