Deeper learning in electrocatalysis: realizing opportunities and addressing challenges

Emerging techniques in deep learning have created exciting opportunities for next-generation electrochemical technologies. While deep learning has been revolutionizing many research fields, strategies for its implementation for electrocatalysis remain nascent. This Opinion calls on the electrocataly...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in chemical engineering Vol. 36; p. 100824
Main Authors Keith, John A, McKone, James R, Snyder, Joshua D, Tang, Maureen H
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2022
Online AccessGet full text
ISSN2211-3398
2211-3398
DOI10.1016/j.coche.2022.100824

Cover

Loading…
Abstract Emerging techniques in deep learning have created exciting opportunities for next-generation electrochemical technologies. While deep learning has been revolutionizing many research fields, strategies for its implementation for electrocatalysis remain nascent. This Opinion calls on the electrocatalysis community to join together and introduce a paradigm shift by establishing standards for reporting and sharing data from electrocatalysis investigations. We speculate on a possible future where crowd-sourced and standardized data from experimental and computational researchers can be analyzed collectively to better understand fundamental electrochemistry, yielding unprecedented insights for the development of new electrocatalysts. We identify key barriers to realizing this opportunity and how they might be overcome.
AbstractList Emerging techniques in deep learning have created exciting opportunities for next-generation electrochemical technologies. While deep learning has been revolutionizing many research fields, strategies for its implementation for electrocatalysis remain nascent. This Opinion calls on the electrocatalysis community to join together and introduce a paradigm shift by establishing standards for reporting and sharing data from electrocatalysis investigations. We speculate on a possible future where crowd-sourced and standardized data from experimental and computational researchers can be analyzed collectively to better understand fundamental electrochemistry, yielding unprecedented insights for the development of new electrocatalysts. We identify key barriers to realizing this opportunity and how they might be overcome.
ArticleNumber 100824
Author Tang, Maureen H
Snyder, Joshua D
Keith, John A
McKone, James R
Author_xml – sequence: 1
  givenname: John A
  surname: Keith
  fullname: Keith, John A
  email: jakeith@pitt.edu
  organization: Department of Chemical and Petroleum Engineering Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
– sequence: 2
  givenname: James R
  surname: McKone
  fullname: McKone, James R
  organization: Department of Chemical and Petroleum Engineering Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
– sequence: 3
  givenname: Joshua D
  surname: Snyder
  fullname: Snyder, Joshua D
  organization: Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, United States
– sequence: 4
  givenname: Maureen H
  surname: Tang
  fullname: Tang, Maureen H
  organization: Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, United States
BookMark eNqFkE1LAzEQhoNUsGp_gZf9A1uTzX4kggepn1Dwol5DmkzalJgsSRTqr3fXehAPOpcZ5uUZmOcYTXzwgNAZwXOCSXu-naugNjCvcFUNG8yq-gBNq4qQklLOJj_mIzRLaYuHalrC626KXq4BeoiFAxm99evC-gIcqByDklm6XbLpooggnf0Y49D3IeY3b7OFVEivC6l1hJTGUG2kc-DXkE7RoZEuwey7n6Dn25unxX25fLx7WFwtS0VrlksGmuIVbWvNOWjdSWqwaVasUca0DWAqO80kobVqGDeEs440K80l01zhlhp6guj-roohpQhG9NG-yrgTBIvRjtiKLztitCP2dgaK_6KUzTLb4HOU1v3DXu5ZGN56txBFUha8Am3joE3oYP_kPwFx2oVf
CitedBy_id crossref_primary_10_1007_s11244_023_01799_3
crossref_primary_10_1002_adfm_202416117
crossref_primary_10_1016_j_matt_2022_11_018
crossref_primary_10_1016_j_coche_2022_100875
crossref_primary_10_1016_j_jenvman_2023_118756
crossref_primary_10_4108_eetiot_5377
crossref_primary_10_1039_D3TA06247C
crossref_primary_10_1063_5_0235572
Cites_doi 10.1073/pnas.1909985116
10.1021/acs.chemrev.1c00107
10.1021/jacs.1c06572
10.1021/acs.jpca.0c08961
10.1002/fuce.201600077
10.1080/1478422X.2020.1850070
10.1149/2.0012001JES
10.1016/j.jmat.2017.08.002
10.1149/1.2132707
10.1021/acs.jpcc.7b06535
10.1039/C7EE03457A
10.1007/s11837-020-04436-6
10.1002/cctc.202001132
10.1038/sdata.2016.18
10.1149/1.2115811
10.1002/batt.202100117
10.1007/s00216-006-0530-2
10.1149/1945-7111/ac001c
10.1126/science.aad4998
10.1149/1.2407436
10.3390/pr9040704
10.1038/sdata.2019.2
10.1038/s42004-021-00550-x
10.1038/s41560-019-0407-1
10.5006/1.3290350
10.1021/acsenergylett.1c00870
10.1016/j.joule.2017.07.008
10.1021/acs.jpcb.0c04299
10.1021/acscatal.5b00538
10.1016/j.coche.2019.02.009
10.1021/ci500593j
10.1021/acsnano.8b07700
10.1038/s41929-018-0188-0
10.1021/acs.iecr.0c04414
10.1021/acscatal.0c02201
10.1021/jacsau.1c00092
10.1016/j.ijhydene.2019.02.074
10.1371/journal.pone.0239598
10.1021/jacs.0c09105
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.coche.2022.100824
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2211-3398
ExternalDocumentID 10_1016_j_coche_2022_100824
S221133982200034X
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
ENUVR
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
KOM
M41
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSG
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c348t-8ed30b364d99edd7a3f0f5b85cff65e03a7d8a134c589f198715bd9a8d9c063f3
IEDL.DBID .~1
ISSN 2211-3398
IngestDate Thu Apr 24 23:03:46 EDT 2025
Tue Jul 01 04:33:13 EDT 2025
Fri Feb 23 02:40:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-8ed30b364d99edd7a3f0f5b85cff65e03a7d8a134c589f198715bd9a8d9c063f3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S221133982200034X
ParticipantIDs crossref_primary_10_1016_j_coche_2022_100824
crossref_citationtrail_10_1016_j_coche_2022_100824
elsevier_sciencedirect_doi_10_1016_j_coche_2022_100824
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Current opinion in chemical engineering
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gopeesingh, Ardagh, Shetty, Burke, Dauenhauer, Abdelrahman (bib26) 2020; 10
Denisov, Evdokimov, Martemianov, Thomas, Adiutantov (bib21) 2017; 17
Blanco, Lee, Modestino (bib27) 2019; 116
Wang, Kingsbury, McDermott, Horton, Jain, Ong, Dwaraknath, Persson (bib32) 2021; 11
Liu, Zhao, Ju, Shi (bib3) 2017; 3
Voiry, Chhowalla, Gogotsi, Kotov, Li, Penner, Schaak, Weiss (bib10) 2018; 12
Sun (bib43) 2021; 6
Seh, Kibsgaard, Dickens, Chorkendorff, Nørskov, Jaramillo (bib7) 2017; 355
Maldonado, Hagiwara, Choi, Eckert, Schwarz, Sundararaman, Otani, Keith (bib34) 2021; 125
Parrish, Newman (bib13) 1970; 117
Bender, Carmo, Smolinka, Gago, Danilovic, Mueller, Ganci, Fallisch, Lettenmeier, Friedrich, Ayers, Pivovar, Mergel, Stolten (bib39) 2019; 44
Siegmund, Metz, Peinecke, Warner, Cremers, Grevé, Smolinka, Segets, Apfel (bib41) 2021; 1
Govoni, Munakami, Tanikanti, Skone, Runesha, Giberti, de Pablo, Galli (bib37) 2019; 6
Huber, Zoupanos, Uhrin, Talirz, Kahle, Häuselmann, Gresch, Müller, Yakutovich, Andersen, Ramirez, Adorf, Gargiulo, Kumbhar, Passaro, Johnston, Merkys, Cepellotti, Mounet, Marzari, Kozinsky, Pizzi (bib35) 2020; 7
Cottis (bib20) 2001; 57
Christensen, Yunker, Adedeji, Häse, Roch, Gensch, dosPassosGomes, Zepel, Sigman, Aspuru-Guzik, Hein (bib4) 2021; 4
Lee, Tang (bib19) 2021; 168
Alkire, Gould (bib22) 1976; 123
Álvarez-Moreno, De Graaf, López, Maseras, Poblet, Bo (bib36) 2015; 55
Schneider (bib30) 2017; 121
Román, Spivey, Medlin, Holewinski (bib25) 2020; 59
Wagner (bib12) 1951; 98
Haghighatlari, Hachmann (bib5) 2019; 23
Wilkinson, Dumontier, Aalbersberg, Appleton, Axton, Baak, Blomberg, Boiten, da Silva Santos, Bourne, Bouwman, Brookes, Clark, Crosas, Dillo, Dumon, Edmunds, Evelo, Finkers, Gonzalez-Beltran, Gray, Groth, Goble, Grethe, Heringa, t Hoen, Hooft, Kuhn, Kok, Kok, Lusher, Martone, Mons, Packer, Persson, Rocca-Serra, Roos, van Schaik, Sansone, Schultes, Sengstag, Slater, Strawn, Swertz, Thompson, van der Lei, van Mulligen, Velterop, Waagmeester, Wittenburg, Wolstencroft, Zhao, Mons (bib14) 2016; 3
Castelli, Arismendi-Arrieta, Bhowmik, Cekic-Laskovic, Clark, Dominko, Flores, Flowers, UlvskovFrederiksen, Friis, Grimaud, Hansen, Hardwick, Hermansson, Königer, Lauritzen, LeCras, Li, Lyonnard, Lorrmann, Marzari, Niedzicki, Pizzi, Rahmanian, Stein, Uhrin, Wenzel, Winter, Wölke, Vegge (bib16) 2021; 4
Kollenz, Herten, Buckup (bib29) 2020; 124
Gabriel, Paulson, Duong, Tavazza, Becker, Chaudhuri, Stan (bib33) 2021; 73
Brady, Gould, West (bib17) 2020; 167
Fedkiw, Scott (bib23) 1984; 131
Anantharaj, Ede, Karthick, SamSankar, Sangeetha, Karthik, Kundu (bib9) 2018; 11
Keith, Vassilev-Galindo, Cheng, Chmiela, Gastegger, Müller, Tkatchenko (bib1) 2021; 121
Kibsgaard, Chorkendorff (bib8) 2019; 4
(bib11) 2018; 1
Hardwicke, Goodman (bib42) 2020; 15
Francis-Xavier, Kubannek, Schenkendorf (bib18) 2021; 9
Cortina, Duran, Alegret, delValle (bib28) 2006; 385
Moosavi, Jablonka, Smit (bib2) 2020; 142
Schiffer, Manthiram (bib6) 2017; 1
Zhan, Kitchin (bib31) 2021
Mendes, Siradze, Pirro, Thybaut (bib15) 2021; 13
Ritter, Bosch, Huet, Ngo, Cottis, Bakalli, Curioni, Herbst, Heyn, Macak, Novotny, Öijerholm, Saario, Sanchez-Amaya, Takenouti, Zajec, Zhang (bib40) 2021; 56
Kitchin (bib38) 2015; 5
Kawamata, Hayashi, Carlson, Shaji, Waldmann, Simmons, Edwards, Zapf, Saito, Baran (bib24) 2021; 143
Bender (10.1016/j.coche.2022.100824_sbref39) 2019; 44
Mendes (10.1016/j.coche.2022.100824_sbref15) 2021; 13
Gabriel (10.1016/j.coche.2022.100824_bib33) 2021; 73
Hardwicke (10.1016/j.coche.2022.100824_bib42) 2020; 15
Castelli (10.1016/j.coche.2022.100824_sbref16) 2021; 4
(10.1016/j.coche.2022.100824_bib11) 2018; 1
Schneider (10.1016/j.coche.2022.100824_bib30) 2017; 121
Kitchin (10.1016/j.coche.2022.100824_bib38) 2015; 5
Kibsgaard (10.1016/j.coche.2022.100824_bib8) 2019; 4
Blanco (10.1016/j.coche.2022.100824_sbref27) 2019; 116
Cottis (10.1016/j.coche.2022.100824_bib20) 2001; 57
Maldonado (10.1016/j.coche.2022.100824_bib34) 2021; 125
Voiry (10.1016/j.coche.2022.100824_sbref10) 2018; 12
Christensen (10.1016/j.coche.2022.100824_bib4) 2021; 4
Denisov (10.1016/j.coche.2022.100824_bib21) 2017; 17
Brady (10.1016/j.coche.2022.100824_sbref17) 2020; 167
Moosavi (10.1016/j.coche.2022.100824_bib2) 2020; 142
Govoni (10.1016/j.coche.2022.100824_bib37) 2019; 6
Alkire (10.1016/j.coche.2022.100824_bib22) 1976; 123
Parrish (10.1016/j.coche.2022.100824_bib13) 1970; 117
Lee (10.1016/j.coche.2022.100824_bib19) 2021; 168
Kawamata (10.1016/j.coche.2022.100824_bib24) 2021; 143
Zhan (10.1016/j.coche.2022.100824_bib31) 2021
Ritter (10.1016/j.coche.2022.100824_bib40) 2021; 56
Álvarez-Moreno (10.1016/j.coche.2022.100824_bib36) 2015; 55
Huber (10.1016/j.coche.2022.100824_bib35) 2020; 7
Haghighatlari (10.1016/j.coche.2022.100824_bib5) 2019; 23
Francis-Xavier (10.1016/j.coche.2022.100824_bib18) 2021; 9
Sun (10.1016/j.coche.2022.100824_bib43) 2021; 6
Keith (10.1016/j.coche.2022.100824_sbref1) 2021; 121
Wagner (10.1016/j.coche.2022.100824_bib12) 1951; 98
Gopeesingh (10.1016/j.coche.2022.100824_bib26) 2020; 10
Kollenz (10.1016/j.coche.2022.100824_sbref29) 2020; 124
Siegmund (10.1016/j.coche.2022.100824_bib41) 2021; 1
Schiffer (10.1016/j.coche.2022.100824_sbref6) 2017; 1
Wilkinson (10.1016/j.coche.2022.100824_bib14) 2016; 3
Fedkiw (10.1016/j.coche.2022.100824_bib23) 1984; 131
Wang (10.1016/j.coche.2022.100824_bib32) 2021; 11
Seh (10.1016/j.coche.2022.100824_sbref7) 2017; 355
Román (10.1016/j.coche.2022.100824_bib25) 2020; 59
Cortina (10.1016/j.coche.2022.100824_bib28) 2006; 385
Liu (10.1016/j.coche.2022.100824_bib3) 2017; 3
Anantharaj (10.1016/j.coche.2022.100824_bib9) 2018; 11
References_xml – volume: 44
  start-page: 9174
  year: 2019
  end-page: 9187
  ident: bib39
  article-title: Initial approaches in benchmarking and round robin testing for proton exchange membrane water electrolyzers
  publication-title: Int J Hydrog Energy
– volume: 142
  start-page: 20273
  year: 2020
  end-page: 20287
  ident: bib2
  article-title: The role of machine learning in the understanding and design of materials
  publication-title: J Am Chem Soc
– volume: 73
  start-page: 149
  year: 2021
  end-page: 163
  ident: bib33
  article-title: Uncertainty quantification in atomistic modeling of metals and its effect on mesoscale and continuum modeling: a review
  publication-title: JOM
– volume: 55
  start-page: 95
  year: 2015
  end-page: 103
  ident: bib36
  article-title: Managing the computational chemistry big data problem: the ioChem-BD platform
  publication-title: J Chem Inf Model
– volume: 167
  year: 2020
  ident: bib17
  article-title: Quantitative parameter estimation, model selection, and variable selection in battery science
  publication-title: J Electrochem Soc
– volume: 168
  year: 2021
  ident: bib19
  article-title: Asymmetric interdigitated electrodes for amperometric detection of soluble products
  publication-title: J Electrochem Soc
– volume: 131
  year: 1984
  ident: bib23
  article-title: Selectivity changes in electrochemical reaction sequences by modulated potential control
  publication-title: J Electrochem Soc
– volume: 1
  start-page: 527
  year: 2021
  end-page: 535
  ident: bib41
  article-title: Crossing the valley of death: from fundamental to applied research in electrolysis
  publication-title: JACS Au
– year: 2021
  ident: bib31
  article-title: Uncertainty quantification in machine learning and nonlinear least squares regression models
  publication-title: AIChE J
– volume: 11
  start-page: 744
  year: 2018
  end-page: 771
  ident: bib9
  article-title: Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment
  publication-title: Energy Environ Sci
– volume: 121
  start-page: 9816
  year: 2021
  end-page: 9872
  ident: bib1
  article-title: Combining machine learning and computational chemistry for predictive insights into chemical systems
  publication-title: Chem Rev
– volume: 1
  start-page: 10
  year: 2017
  end-page: 14
  ident: bib6
  article-title: Electrification and decarbonization of the chemical industry
  publication-title: Joule
– volume: 57
  start-page: 265
  year: 2001
  end-page: 285
  ident: bib20
  article-title: Interpretation of electrochemical noise data
  publication-title: Corrosion
– volume: 123
  year: 1976
  ident: bib22
  article-title: Analysis of multiple reaction sequences in flow-? Through porous electrodes
  publication-title: J Electrochem Soc
– volume: 125
  start-page: 154
  year: 2021
  end-page: 164
  ident: bib34
  article-title: Quantifying uncertainties in solvation procedures for modeling aqueous phase reaction mechanisms
  publication-title: J Phys Chem A
– volume: 12
  start-page: 9635
  year: 2018
  end-page: 9638
  ident: bib10
  article-title: Best practices for reporting electrocatalytic performance of nanomaterials
  publication-title: ACS Nano
– volume: 4
  start-page: 1803
  year: 2021
  end-page: 1812
  ident: bib16
  article-title: Data management plans: the importance of data management in the BIG-MAP project
  publication-title: Batter Supercaps
– volume: 3
  year: 2016
  ident: bib14
  article-title: The FAIR Guiding Principles for scientific data management and stewardship
  publication-title: Sci Data
– volume: 4
  year: 2021
  ident: bib4
  article-title: Data-science driven autonomous process optimization
  publication-title: Commun Chem
– volume: 59
  start-page: 19999
  year: 2020
  end-page: 20010
  ident: bib25
  article-title: Accelerating electro-oxidation turnover rates via potential-modulated stimulation of electrocatalytic activity
  publication-title: Ind Eng Chem Res
– volume: 10
  start-page: 9932
  year: 2020
  end-page: 9942
  ident: bib26
  article-title: Resonance-promoted formic acid oxidation via dynamic electrocatalytic modulation
  publication-title: ACS Catal
– volume: 17
  start-page: 225
  year: 2017
  end-page: 237
  ident: bib21
  article-title: Electrochemical noise as a diagnostic tool for PEMFC
  publication-title: Fuel Cells
– volume: 56
  start-page: 254
  year: 2021
  end-page: 268
  ident: bib40
  article-title: Results of an international round-robin exercise on electrochemical impedance spectroscopy
  publication-title: Corros Eng Sci Technol
– volume: 23
  start-page: 51
  year: 2019
  end-page: 57
  ident: bib5
  article-title: Advances of machine learning in molecular modeling and simulation
  publication-title: Curr Opin Chem Eng
– volume: 116
  start-page: 17683
  year: 2019
  end-page: 17689
  ident: bib27
  article-title: Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence
  publication-title: Proc Natl Acad Sci USA
– volume: 121
  start-page: 15491
  year: 2017
  end-page: 15492
  ident: bib30
  article-title: New physical insights from a computational catalysis perspective
  publication-title: J Phys Chem C
– volume: 11
  year: 2021
  ident: bib32
  article-title: A framework for quantifying uncertainty in DFT energy corrections
  publication-title: Sci Rep
– volume: 124
  start-page: 6358
  year: 2020
  end-page: 6368
  ident: bib29
  article-title: Unravelling the kinetic model of photochemical reactions via deep learning
  publication-title: J Phys Chem B
– volume: 1
  start-page: 807
  year: 2018
  end-page: 808
  ident: bib11
  article-title: Mind the gap
  publication-title: Nat Catal
– volume: 385
  start-page: 1186
  year: 2006
  end-page: 1194
  ident: bib28
  article-title: A sequential injection electronic tongue employing the transient response from potentiometric sensors for anion multidetermination
  publication-title: Anal Bioanal Chem
– volume: 5
  start-page: 3894
  year: 2015
  end-page: 3899
  ident: bib38
  article-title: Examples of effective data sharing in scientific publishing
  publication-title: ACS Catal
– volume: 98
  year: 1951
  ident: bib12
  article-title: Theoretical analysis of the current density distribution in electrolytic cells
  publication-title: J Electrochem Soc
– volume: 355
  year: 2017
  ident: bib7
  article-title: Combining theory and experiment in electrocatalysis: Insights into materials design
  publication-title: Science
– volume: 4
  start-page: 430
  year: 2019
  end-page: 433
  ident: bib8
  article-title: Considerations for the scaling-up of water splitting catalysts
  publication-title: Nat Energy
– volume: 7
  year: 2020
  ident: bib35
  article-title: AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance
  publication-title: Sci Data
– volume: 13
  start-page: 836
  year: 2021
  end-page: 850
  ident: bib15
  article-title: Open data in catalysis: from today's big picture to the future of small data
  publication-title: ChemCatChem
– volume: 6
  start-page: 2187
  year: 2021
  end-page: 2189
  ident: bib43
  article-title: An experimental checklist for reporting battery performances
  publication-title: ACS Energy Lett
– volume: 143
  start-page: 16580
  year: 2021
  end-page: 16588
  ident: bib24
  article-title: Chemoselective electrosynthesis using rapid alternating polarity
  publication-title: J Am Chem Soc
– volume: 9
  year: 2021
  ident: bib18
  article-title: Hybrid process models in electrochemical syntheses under deep uncertainty
  publication-title: Processes
– volume: 3
  start-page: 159
  year: 2017
  end-page: 177
  ident: bib3
  article-title: Materials discovery and design using machine learning
  publication-title: J Materiomics
– volume: 15
  year: 2020
  ident: bib42
  article-title: How often do leading biomedical journals use statistical experts to evaluate statistical methods? The results of a survey
  publication-title: PLoS One
– volume: 117
  year: 1970
  ident: bib13
  article-title: Current distributions on plane, parallel electrodes in channel flow
  publication-title: J Electrochem Soc
– volume: 6
  year: 2019
  ident: bib37
  article-title: Qresp, a tool for curating, discovering and exploring reproducible scientific papers
  publication-title: Sci Data
– volume: 116
  start-page: 17683
  year: 2019
  ident: 10.1016/j.coche.2022.100824_sbref27
  article-title: Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1909985116
– volume: 121
  start-page: 9816
  year: 2021
  ident: 10.1016/j.coche.2022.100824_sbref1
  article-title: Combining machine learning and computational chemistry for predictive insights into chemical systems
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.1c00107
– volume: 143
  start-page: 16580
  year: 2021
  ident: 10.1016/j.coche.2022.100824_bib24
  article-title: Chemoselective electrosynthesis using rapid alternating polarity
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.1c06572
– volume: 125
  start-page: 154
  year: 2021
  ident: 10.1016/j.coche.2022.100824_bib34
  article-title: Quantifying uncertainties in solvation procedures for modeling aqueous phase reaction mechanisms
  publication-title: J Phys Chem A
  doi: 10.1021/acs.jpca.0c08961
– volume: 17
  start-page: 225
  year: 2017
  ident: 10.1016/j.coche.2022.100824_bib21
  article-title: Electrochemical noise as a diagnostic tool for PEMFC
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201600077
– volume: 56
  start-page: 254
  year: 2021
  ident: 10.1016/j.coche.2022.100824_bib40
  article-title: Results of an international round-robin exercise on electrochemical impedance spectroscopy
  publication-title: Corros Eng Sci Technol
  doi: 10.1080/1478422X.2020.1850070
– volume: 167
  year: 2020
  ident: 10.1016/j.coche.2022.100824_sbref17
  article-title: Quantitative parameter estimation, model selection, and variable selection in battery science
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0012001JES
– volume: 7
  year: 2020
  ident: 10.1016/j.coche.2022.100824_bib35
  article-title: AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance
  publication-title: Sci Data
– volume: 3
  start-page: 159
  year: 2017
  ident: 10.1016/j.coche.2022.100824_bib3
  article-title: Materials discovery and design using machine learning
  publication-title: J Materiomics
  doi: 10.1016/j.jmat.2017.08.002
– volume: 123
  year: 1976
  ident: 10.1016/j.coche.2022.100824_bib22
  article-title: Analysis of multiple reaction sequences in flow-? Through porous electrodes
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2132707
– volume: 121
  start-page: 15491
  year: 2017
  ident: 10.1016/j.coche.2022.100824_bib30
  article-title: New physical insights from a computational catalysis perspective
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.7b06535
– volume: 11
  start-page: 744
  year: 2018
  ident: 10.1016/j.coche.2022.100824_bib9
  article-title: Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE03457A
– volume: 73
  start-page: 149
  year: 2021
  ident: 10.1016/j.coche.2022.100824_bib33
  article-title: Uncertainty quantification in atomistic modeling of metals and its effect on mesoscale and continuum modeling: a review
  publication-title: JOM
  doi: 10.1007/s11837-020-04436-6
– volume: 13
  start-page: 836
  year: 2021
  ident: 10.1016/j.coche.2022.100824_sbref15
  article-title: Open data in catalysis: from today's big picture to the future of small data
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202001132
– volume: 3
  year: 2016
  ident: 10.1016/j.coche.2022.100824_bib14
  article-title: The FAIR Guiding Principles for scientific data management and stewardship
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.18
– volume: 131
  year: 1984
  ident: 10.1016/j.coche.2022.100824_bib23
  article-title: Selectivity changes in electrochemical reaction sequences by modulated potential control
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2115811
– year: 2021
  ident: 10.1016/j.coche.2022.100824_bib31
  article-title: Uncertainty quantification in machine learning and nonlinear least squares regression models
  publication-title: AIChE J
– volume: 4
  start-page: 1803
  year: 2021
  ident: 10.1016/j.coche.2022.100824_sbref16
  article-title: Data management plans: the importance of data management in the BIG-MAP project
  publication-title: Batter Supercaps
  doi: 10.1002/batt.202100117
– volume: 385
  start-page: 1186
  year: 2006
  ident: 10.1016/j.coche.2022.100824_bib28
  article-title: A sequential injection electronic tongue employing the transient response from potentiometric sensors for anion multidetermination
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-006-0530-2
– volume: 168
  year: 2021
  ident: 10.1016/j.coche.2022.100824_bib19
  article-title: Asymmetric interdigitated electrodes for amperometric detection of soluble products
  publication-title: J Electrochem Soc
  doi: 10.1149/1945-7111/ac001c
– volume: 355
  year: 2017
  ident: 10.1016/j.coche.2022.100824_sbref7
  article-title: Combining theory and experiment in electrocatalysis: Insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 117
  year: 1970
  ident: 10.1016/j.coche.2022.100824_bib13
  article-title: Current distributions on plane, parallel electrodes in channel flow
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2407436
– volume: 9
  year: 2021
  ident: 10.1016/j.coche.2022.100824_bib18
  article-title: Hybrid process models in electrochemical syntheses under deep uncertainty
  publication-title: Processes
  doi: 10.3390/pr9040704
– volume: 6
  year: 2019
  ident: 10.1016/j.coche.2022.100824_bib37
  article-title: Qresp, a tool for curating, discovering and exploring reproducible scientific papers
  publication-title: Sci Data
  doi: 10.1038/sdata.2019.2
– volume: 4
  year: 2021
  ident: 10.1016/j.coche.2022.100824_bib4
  article-title: Data-science driven autonomous process optimization
  publication-title: Commun Chem
  doi: 10.1038/s42004-021-00550-x
– volume: 4
  start-page: 430
  year: 2019
  ident: 10.1016/j.coche.2022.100824_bib8
  article-title: Considerations for the scaling-up of water splitting catalysts
  publication-title: Nat Energy
  doi: 10.1038/s41560-019-0407-1
– volume: 57
  start-page: 265
  year: 2001
  ident: 10.1016/j.coche.2022.100824_bib20
  article-title: Interpretation of electrochemical noise data
  publication-title: Corrosion
  doi: 10.5006/1.3290350
– volume: 6
  start-page: 2187
  year: 2021
  ident: 10.1016/j.coche.2022.100824_bib43
  article-title: An experimental checklist for reporting battery performances
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.1c00870
– volume: 98
  year: 1951
  ident: 10.1016/j.coche.2022.100824_bib12
  article-title: Theoretical analysis of the current density distribution in electrolytic cells
  publication-title: J Electrochem Soc
– volume: 1
  start-page: 10
  year: 2017
  ident: 10.1016/j.coche.2022.100824_sbref6
  article-title: Electrification and decarbonization of the chemical industry
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.008
– volume: 124
  start-page: 6358
  year: 2020
  ident: 10.1016/j.coche.2022.100824_sbref29
  article-title: Unravelling the kinetic model of photochemical reactions via deep learning
  publication-title: J Phys Chem B
  doi: 10.1021/acs.jpcb.0c04299
– volume: 5
  start-page: 3894
  year: 2015
  ident: 10.1016/j.coche.2022.100824_bib38
  article-title: Examples of effective data sharing in scientific publishing
  publication-title: ACS Catal
  doi: 10.1021/acscatal.5b00538
– volume: 23
  start-page: 51
  year: 2019
  ident: 10.1016/j.coche.2022.100824_bib5
  article-title: Advances of machine learning in molecular modeling and simulation
  publication-title: Curr Opin Chem Eng
  doi: 10.1016/j.coche.2019.02.009
– volume: 55
  start-page: 95
  year: 2015
  ident: 10.1016/j.coche.2022.100824_bib36
  article-title: Managing the computational chemistry big data problem: the ioChem-BD platform
  publication-title: J Chem Inf Model
  doi: 10.1021/ci500593j
– volume: 12
  start-page: 9635
  year: 2018
  ident: 10.1016/j.coche.2022.100824_sbref10
  article-title: Best practices for reporting electrocatalytic performance of nanomaterials
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b07700
– volume: 1
  start-page: 807
  year: 2018
  ident: 10.1016/j.coche.2022.100824_bib11
  article-title: Mind the gap
  publication-title: Nat Catal
  doi: 10.1038/s41929-018-0188-0
– volume: 59
  start-page: 19999
  year: 2020
  ident: 10.1016/j.coche.2022.100824_bib25
  article-title: Accelerating electro-oxidation turnover rates via potential-modulated stimulation of electrocatalytic activity
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.0c04414
– volume: 10
  start-page: 9932
  year: 2020
  ident: 10.1016/j.coche.2022.100824_bib26
  article-title: Resonance-promoted formic acid oxidation via dynamic electrocatalytic modulation
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c02201
– volume: 11
  year: 2021
  ident: 10.1016/j.coche.2022.100824_bib32
  article-title: A framework for quantifying uncertainty in DFT energy corrections
  publication-title: Sci Rep
– volume: 1
  start-page: 527
  year: 2021
  ident: 10.1016/j.coche.2022.100824_bib41
  article-title: Crossing the valley of death: from fundamental to applied research in electrolysis
  publication-title: JACS Au
  doi: 10.1021/jacsau.1c00092
– volume: 44
  start-page: 9174
  year: 2019
  ident: 10.1016/j.coche.2022.100824_sbref39
  article-title: Initial approaches in benchmarking and round robin testing for proton exchange membrane water electrolyzers
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2019.02.074
– volume: 15
  year: 2020
  ident: 10.1016/j.coche.2022.100824_bib42
  article-title: How often do leading biomedical journals use statistical experts to evaluate statistical methods? The results of a survey
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0239598
– volume: 142
  start-page: 20273
  year: 2020
  ident: 10.1016/j.coche.2022.100824_bib2
  article-title: The role of machine learning in the understanding and design of materials
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.0c09105
SSID ssj0000561947
Score 2.2940252
SecondaryResourceType review_article
Snippet Emerging techniques in deep learning have created exciting opportunities for next-generation electrochemical technologies. While deep learning has been...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100824
Title Deeper learning in electrocatalysis: realizing opportunities and addressing challenges
URI https://dx.doi.org/10.1016/j.coche.2022.100824
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpnlYGR0CS2E4etKlQFRBco6hbFLxRUpVFpFwZ-Oz7HqYqEOjDG9knR6Xwvnb8PoSvgGuA8lL5SmvokF8znAAigzSINREgSC7v4PIqHY_I4oZMW6jdvYWCs0vn-2qdbb-1Wuk6b3aooui-RqV0wBvw5i7IygRfsJAErv_kOV30WyJBTyzMG530QaMCH7JiXAGIqUydGEQwMsIj8HaDWgs5gD-26bNHr1T-0j1qqPEA7axiCh-jtTqlKzT1H__DuFaXnuG1sawYQR249kxpOiy_YnlWQcS9Li6Tq5aX0jO-xw7BmUzTUKp9HaDy4f-0PfUeW4AtM2MJnSuKA45jINFVSJjnWgaacUaF1TFWA80SyPMREUJZqaDWElMs0ZzIVJk3R-Bi1y1mpTpAnFU8CHksWalPPQEznAZYx5uayJillpyhqNJQJhyQOhBbTrBkZ-8isWjNQa1ar9RRdr4SqGkhj8_G4UX32yx4y4-o3CZ79V_AcbcNXPQZ2gdqL-VJdmoRjwTvWojpoq_fwNBz9AJMJ1XA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH7UelAP4op1zcGjoUkmk0y8lWqpdrm40FvIbFIpsWh78dc7bzIpCuLB67w8CB-Tt_HyfQCXqDXAeSh9pTT140IwnyMhgDaHNBBhnFraxdE46T_F9xM6aUC3_hcG1ypd7K9iuo3W7qTt0GzPp9P2Q2R6F0KQf86yrEzWYB3ZqWgT1jt3g_54NWrBIjmzUmPo4qNPzT9kN70EalOZVjGKcGeARfHvOepb3untwLYrGL1O9U670FDlHmx9oxHch-cbpebq3XMKEC_etPScvI2dziDpyLVnqsPZ9BPNb3MsupelJVP1ilJ6JvzYfVhjFLW6yscBPPVuH7t93-kl-ILEbOEzJUnASRLLLFNSpgXRgaacUaF1QlVAilSyIiSxoCzTOG0IKZdZwWQmTKWiySE0y7dSHYEnFU8DnkgWatPSYFrnAZEJ4eZ7TTPKWhDVCOXCkYmjpsUsr7fGXnMLa46w5hWsLbhaOc0rLo2_H09q6PMfVyI30f4vx-P_Ol7ARv9xNMyHd-PBCWyipdoKO4Xm4n2pzkz9seDn7n59AfHt2CE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deeper+learning+in+electrocatalysis%3A+realizing+opportunities+and+addressing+challenges&rft.jtitle=Current+opinion+in+chemical+engineering&rft.au=Keith%2C+John+A&rft.au=McKone%2C+James+R&rft.au=Snyder%2C+Joshua+D&rft.au=Tang%2C+Maureen+H&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=2211-3398&rft.eissn=2211-3398&rft.volume=36&rft_id=info:doi/10.1016%2Fj.coche.2022.100824&rft.externalDocID=S221133982200034X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3398&client=summon