Deeper learning in electrocatalysis: realizing opportunities and addressing challenges
Emerging techniques in deep learning have created exciting opportunities for next-generation electrochemical technologies. While deep learning has been revolutionizing many research fields, strategies for its implementation for electrocatalysis remain nascent. This Opinion calls on the electrocataly...
Saved in:
Published in | Current opinion in chemical engineering Vol. 36; p. 100824 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2022
|
Online Access | Get full text |
ISSN | 2211-3398 2211-3398 |
DOI | 10.1016/j.coche.2022.100824 |
Cover
Loading…
Abstract | Emerging techniques in deep learning have created exciting opportunities for next-generation electrochemical technologies. While deep learning has been revolutionizing many research fields, strategies for its implementation for electrocatalysis remain nascent. This Opinion calls on the electrocatalysis community to join together and introduce a paradigm shift by establishing standards for reporting and sharing data from electrocatalysis investigations. We speculate on a possible future where crowd-sourced and standardized data from experimental and computational researchers can be analyzed collectively to better understand fundamental electrochemistry, yielding unprecedented insights for the development of new electrocatalysts. We identify key barriers to realizing this opportunity and how they might be overcome. |
---|---|
AbstractList | Emerging techniques in deep learning have created exciting opportunities for next-generation electrochemical technologies. While deep learning has been revolutionizing many research fields, strategies for its implementation for electrocatalysis remain nascent. This Opinion calls on the electrocatalysis community to join together and introduce a paradigm shift by establishing standards for reporting and sharing data from electrocatalysis investigations. We speculate on a possible future where crowd-sourced and standardized data from experimental and computational researchers can be analyzed collectively to better understand fundamental electrochemistry, yielding unprecedented insights for the development of new electrocatalysts. We identify key barriers to realizing this opportunity and how they might be overcome. |
ArticleNumber | 100824 |
Author | Tang, Maureen H Snyder, Joshua D Keith, John A McKone, James R |
Author_xml | – sequence: 1 givenname: John A surname: Keith fullname: Keith, John A email: jakeith@pitt.edu organization: Department of Chemical and Petroleum Engineering Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States – sequence: 2 givenname: James R surname: McKone fullname: McKone, James R organization: Department of Chemical and Petroleum Engineering Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States – sequence: 3 givenname: Joshua D surname: Snyder fullname: Snyder, Joshua D organization: Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, United States – sequence: 4 givenname: Maureen H surname: Tang fullname: Tang, Maureen H organization: Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, United States |
BookMark | eNqFkE1LAzEQhoNUsGp_gZf9A1uTzX4kggepn1Dwol5DmkzalJgsSRTqr3fXehAPOpcZ5uUZmOcYTXzwgNAZwXOCSXu-naugNjCvcFUNG8yq-gBNq4qQklLOJj_mIzRLaYuHalrC626KXq4BeoiFAxm99evC-gIcqByDklm6XbLpooggnf0Y49D3IeY3b7OFVEivC6l1hJTGUG2kc-DXkE7RoZEuwey7n6Dn25unxX25fLx7WFwtS0VrlksGmuIVbWvNOWjdSWqwaVasUca0DWAqO80kobVqGDeEs440K80l01zhlhp6guj-roohpQhG9NG-yrgTBIvRjtiKLztitCP2dgaK_6KUzTLb4HOU1v3DXu5ZGN56txBFUha8Am3joE3oYP_kPwFx2oVf |
CitedBy_id | crossref_primary_10_1007_s11244_023_01799_3 crossref_primary_10_1002_adfm_202416117 crossref_primary_10_1016_j_matt_2022_11_018 crossref_primary_10_1016_j_coche_2022_100875 crossref_primary_10_1016_j_jenvman_2023_118756 crossref_primary_10_4108_eetiot_5377 crossref_primary_10_1039_D3TA06247C crossref_primary_10_1063_5_0235572 |
Cites_doi | 10.1073/pnas.1909985116 10.1021/acs.chemrev.1c00107 10.1021/jacs.1c06572 10.1021/acs.jpca.0c08961 10.1002/fuce.201600077 10.1080/1478422X.2020.1850070 10.1149/2.0012001JES 10.1016/j.jmat.2017.08.002 10.1149/1.2132707 10.1021/acs.jpcc.7b06535 10.1039/C7EE03457A 10.1007/s11837-020-04436-6 10.1002/cctc.202001132 10.1038/sdata.2016.18 10.1149/1.2115811 10.1002/batt.202100117 10.1007/s00216-006-0530-2 10.1149/1945-7111/ac001c 10.1126/science.aad4998 10.1149/1.2407436 10.3390/pr9040704 10.1038/sdata.2019.2 10.1038/s42004-021-00550-x 10.1038/s41560-019-0407-1 10.5006/1.3290350 10.1021/acsenergylett.1c00870 10.1016/j.joule.2017.07.008 10.1021/acs.jpcb.0c04299 10.1021/acscatal.5b00538 10.1016/j.coche.2019.02.009 10.1021/ci500593j 10.1021/acsnano.8b07700 10.1038/s41929-018-0188-0 10.1021/acs.iecr.0c04414 10.1021/acscatal.0c02201 10.1021/jacsau.1c00092 10.1016/j.ijhydene.2019.02.074 10.1371/journal.pone.0239598 10.1021/jacs.0c09105 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.coche.2022.100824 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2211-3398 |
ExternalDocumentID | 10_1016_j_coche_2022_100824 S221133982200034X |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD ENUVR FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ KOM M41 MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSG SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c348t-8ed30b364d99edd7a3f0f5b85cff65e03a7d8a134c589f198715bd9a8d9c063f3 |
IEDL.DBID | .~1 |
ISSN | 2211-3398 |
IngestDate | Thu Apr 24 23:03:46 EDT 2025 Tue Jul 01 04:33:13 EDT 2025 Fri Feb 23 02:40:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-8ed30b364d99edd7a3f0f5b85cff65e03a7d8a134c589f198715bd9a8d9c063f3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S221133982200034X |
ParticipantIDs | crossref_primary_10_1016_j_coche_2022_100824 crossref_citationtrail_10_1016_j_coche_2022_100824 elsevier_sciencedirect_doi_10_1016_j_coche_2022_100824 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationTitle | Current opinion in chemical engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gopeesingh, Ardagh, Shetty, Burke, Dauenhauer, Abdelrahman (bib26) 2020; 10 Denisov, Evdokimov, Martemianov, Thomas, Adiutantov (bib21) 2017; 17 Blanco, Lee, Modestino (bib27) 2019; 116 Wang, Kingsbury, McDermott, Horton, Jain, Ong, Dwaraknath, Persson (bib32) 2021; 11 Liu, Zhao, Ju, Shi (bib3) 2017; 3 Voiry, Chhowalla, Gogotsi, Kotov, Li, Penner, Schaak, Weiss (bib10) 2018; 12 Sun (bib43) 2021; 6 Seh, Kibsgaard, Dickens, Chorkendorff, Nørskov, Jaramillo (bib7) 2017; 355 Maldonado, Hagiwara, Choi, Eckert, Schwarz, Sundararaman, Otani, Keith (bib34) 2021; 125 Parrish, Newman (bib13) 1970; 117 Bender, Carmo, Smolinka, Gago, Danilovic, Mueller, Ganci, Fallisch, Lettenmeier, Friedrich, Ayers, Pivovar, Mergel, Stolten (bib39) 2019; 44 Siegmund, Metz, Peinecke, Warner, Cremers, Grevé, Smolinka, Segets, Apfel (bib41) 2021; 1 Govoni, Munakami, Tanikanti, Skone, Runesha, Giberti, de Pablo, Galli (bib37) 2019; 6 Huber, Zoupanos, Uhrin, Talirz, Kahle, Häuselmann, Gresch, Müller, Yakutovich, Andersen, Ramirez, Adorf, Gargiulo, Kumbhar, Passaro, Johnston, Merkys, Cepellotti, Mounet, Marzari, Kozinsky, Pizzi (bib35) 2020; 7 Cottis (bib20) 2001; 57 Christensen, Yunker, Adedeji, Häse, Roch, Gensch, dosPassosGomes, Zepel, Sigman, Aspuru-Guzik, Hein (bib4) 2021; 4 Lee, Tang (bib19) 2021; 168 Alkire, Gould (bib22) 1976; 123 Álvarez-Moreno, De Graaf, López, Maseras, Poblet, Bo (bib36) 2015; 55 Schneider (bib30) 2017; 121 Román, Spivey, Medlin, Holewinski (bib25) 2020; 59 Wagner (bib12) 1951; 98 Haghighatlari, Hachmann (bib5) 2019; 23 Wilkinson, Dumontier, Aalbersberg, Appleton, Axton, Baak, Blomberg, Boiten, da Silva Santos, Bourne, Bouwman, Brookes, Clark, Crosas, Dillo, Dumon, Edmunds, Evelo, Finkers, Gonzalez-Beltran, Gray, Groth, Goble, Grethe, Heringa, t Hoen, Hooft, Kuhn, Kok, Kok, Lusher, Martone, Mons, Packer, Persson, Rocca-Serra, Roos, van Schaik, Sansone, Schultes, Sengstag, Slater, Strawn, Swertz, Thompson, van der Lei, van Mulligen, Velterop, Waagmeester, Wittenburg, Wolstencroft, Zhao, Mons (bib14) 2016; 3 Castelli, Arismendi-Arrieta, Bhowmik, Cekic-Laskovic, Clark, Dominko, Flores, Flowers, UlvskovFrederiksen, Friis, Grimaud, Hansen, Hardwick, Hermansson, Königer, Lauritzen, LeCras, Li, Lyonnard, Lorrmann, Marzari, Niedzicki, Pizzi, Rahmanian, Stein, Uhrin, Wenzel, Winter, Wölke, Vegge (bib16) 2021; 4 Kollenz, Herten, Buckup (bib29) 2020; 124 Gabriel, Paulson, Duong, Tavazza, Becker, Chaudhuri, Stan (bib33) 2021; 73 Brady, Gould, West (bib17) 2020; 167 Fedkiw, Scott (bib23) 1984; 131 Anantharaj, Ede, Karthick, SamSankar, Sangeetha, Karthik, Kundu (bib9) 2018; 11 Keith, Vassilev-Galindo, Cheng, Chmiela, Gastegger, Müller, Tkatchenko (bib1) 2021; 121 Kibsgaard, Chorkendorff (bib8) 2019; 4 (bib11) 2018; 1 Hardwicke, Goodman (bib42) 2020; 15 Francis-Xavier, Kubannek, Schenkendorf (bib18) 2021; 9 Cortina, Duran, Alegret, delValle (bib28) 2006; 385 Moosavi, Jablonka, Smit (bib2) 2020; 142 Schiffer, Manthiram (bib6) 2017; 1 Zhan, Kitchin (bib31) 2021 Mendes, Siradze, Pirro, Thybaut (bib15) 2021; 13 Ritter, Bosch, Huet, Ngo, Cottis, Bakalli, Curioni, Herbst, Heyn, Macak, Novotny, Öijerholm, Saario, Sanchez-Amaya, Takenouti, Zajec, Zhang (bib40) 2021; 56 Kitchin (bib38) 2015; 5 Kawamata, Hayashi, Carlson, Shaji, Waldmann, Simmons, Edwards, Zapf, Saito, Baran (bib24) 2021; 143 Bender (10.1016/j.coche.2022.100824_sbref39) 2019; 44 Mendes (10.1016/j.coche.2022.100824_sbref15) 2021; 13 Gabriel (10.1016/j.coche.2022.100824_bib33) 2021; 73 Hardwicke (10.1016/j.coche.2022.100824_bib42) 2020; 15 Castelli (10.1016/j.coche.2022.100824_sbref16) 2021; 4 (10.1016/j.coche.2022.100824_bib11) 2018; 1 Schneider (10.1016/j.coche.2022.100824_bib30) 2017; 121 Kitchin (10.1016/j.coche.2022.100824_bib38) 2015; 5 Kibsgaard (10.1016/j.coche.2022.100824_bib8) 2019; 4 Blanco (10.1016/j.coche.2022.100824_sbref27) 2019; 116 Cottis (10.1016/j.coche.2022.100824_bib20) 2001; 57 Maldonado (10.1016/j.coche.2022.100824_bib34) 2021; 125 Voiry (10.1016/j.coche.2022.100824_sbref10) 2018; 12 Christensen (10.1016/j.coche.2022.100824_bib4) 2021; 4 Denisov (10.1016/j.coche.2022.100824_bib21) 2017; 17 Brady (10.1016/j.coche.2022.100824_sbref17) 2020; 167 Moosavi (10.1016/j.coche.2022.100824_bib2) 2020; 142 Govoni (10.1016/j.coche.2022.100824_bib37) 2019; 6 Alkire (10.1016/j.coche.2022.100824_bib22) 1976; 123 Parrish (10.1016/j.coche.2022.100824_bib13) 1970; 117 Lee (10.1016/j.coche.2022.100824_bib19) 2021; 168 Kawamata (10.1016/j.coche.2022.100824_bib24) 2021; 143 Zhan (10.1016/j.coche.2022.100824_bib31) 2021 Ritter (10.1016/j.coche.2022.100824_bib40) 2021; 56 Álvarez-Moreno (10.1016/j.coche.2022.100824_bib36) 2015; 55 Huber (10.1016/j.coche.2022.100824_bib35) 2020; 7 Haghighatlari (10.1016/j.coche.2022.100824_bib5) 2019; 23 Francis-Xavier (10.1016/j.coche.2022.100824_bib18) 2021; 9 Sun (10.1016/j.coche.2022.100824_bib43) 2021; 6 Keith (10.1016/j.coche.2022.100824_sbref1) 2021; 121 Wagner (10.1016/j.coche.2022.100824_bib12) 1951; 98 Gopeesingh (10.1016/j.coche.2022.100824_bib26) 2020; 10 Kollenz (10.1016/j.coche.2022.100824_sbref29) 2020; 124 Siegmund (10.1016/j.coche.2022.100824_bib41) 2021; 1 Schiffer (10.1016/j.coche.2022.100824_sbref6) 2017; 1 Wilkinson (10.1016/j.coche.2022.100824_bib14) 2016; 3 Fedkiw (10.1016/j.coche.2022.100824_bib23) 1984; 131 Wang (10.1016/j.coche.2022.100824_bib32) 2021; 11 Seh (10.1016/j.coche.2022.100824_sbref7) 2017; 355 Román (10.1016/j.coche.2022.100824_bib25) 2020; 59 Cortina (10.1016/j.coche.2022.100824_bib28) 2006; 385 Liu (10.1016/j.coche.2022.100824_bib3) 2017; 3 Anantharaj (10.1016/j.coche.2022.100824_bib9) 2018; 11 |
References_xml | – volume: 44 start-page: 9174 year: 2019 end-page: 9187 ident: bib39 article-title: Initial approaches in benchmarking and round robin testing for proton exchange membrane water electrolyzers publication-title: Int J Hydrog Energy – volume: 142 start-page: 20273 year: 2020 end-page: 20287 ident: bib2 article-title: The role of machine learning in the understanding and design of materials publication-title: J Am Chem Soc – volume: 73 start-page: 149 year: 2021 end-page: 163 ident: bib33 article-title: Uncertainty quantification in atomistic modeling of metals and its effect on mesoscale and continuum modeling: a review publication-title: JOM – volume: 55 start-page: 95 year: 2015 end-page: 103 ident: bib36 article-title: Managing the computational chemistry big data problem: the ioChem-BD platform publication-title: J Chem Inf Model – volume: 167 year: 2020 ident: bib17 article-title: Quantitative parameter estimation, model selection, and variable selection in battery science publication-title: J Electrochem Soc – volume: 168 year: 2021 ident: bib19 article-title: Asymmetric interdigitated electrodes for amperometric detection of soluble products publication-title: J Electrochem Soc – volume: 131 year: 1984 ident: bib23 article-title: Selectivity changes in electrochemical reaction sequences by modulated potential control publication-title: J Electrochem Soc – volume: 1 start-page: 527 year: 2021 end-page: 535 ident: bib41 article-title: Crossing the valley of death: from fundamental to applied research in electrolysis publication-title: JACS Au – year: 2021 ident: bib31 article-title: Uncertainty quantification in machine learning and nonlinear least squares regression models publication-title: AIChE J – volume: 11 start-page: 744 year: 2018 end-page: 771 ident: bib9 article-title: Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment publication-title: Energy Environ Sci – volume: 121 start-page: 9816 year: 2021 end-page: 9872 ident: bib1 article-title: Combining machine learning and computational chemistry for predictive insights into chemical systems publication-title: Chem Rev – volume: 1 start-page: 10 year: 2017 end-page: 14 ident: bib6 article-title: Electrification and decarbonization of the chemical industry publication-title: Joule – volume: 57 start-page: 265 year: 2001 end-page: 285 ident: bib20 article-title: Interpretation of electrochemical noise data publication-title: Corrosion – volume: 123 year: 1976 ident: bib22 article-title: Analysis of multiple reaction sequences in flow-? Through porous electrodes publication-title: J Electrochem Soc – volume: 125 start-page: 154 year: 2021 end-page: 164 ident: bib34 article-title: Quantifying uncertainties in solvation procedures for modeling aqueous phase reaction mechanisms publication-title: J Phys Chem A – volume: 12 start-page: 9635 year: 2018 end-page: 9638 ident: bib10 article-title: Best practices for reporting electrocatalytic performance of nanomaterials publication-title: ACS Nano – volume: 4 start-page: 1803 year: 2021 end-page: 1812 ident: bib16 article-title: Data management plans: the importance of data management in the BIG-MAP project publication-title: Batter Supercaps – volume: 3 year: 2016 ident: bib14 article-title: The FAIR Guiding Principles for scientific data management and stewardship publication-title: Sci Data – volume: 4 year: 2021 ident: bib4 article-title: Data-science driven autonomous process optimization publication-title: Commun Chem – volume: 59 start-page: 19999 year: 2020 end-page: 20010 ident: bib25 article-title: Accelerating electro-oxidation turnover rates via potential-modulated stimulation of electrocatalytic activity publication-title: Ind Eng Chem Res – volume: 10 start-page: 9932 year: 2020 end-page: 9942 ident: bib26 article-title: Resonance-promoted formic acid oxidation via dynamic electrocatalytic modulation publication-title: ACS Catal – volume: 17 start-page: 225 year: 2017 end-page: 237 ident: bib21 article-title: Electrochemical noise as a diagnostic tool for PEMFC publication-title: Fuel Cells – volume: 56 start-page: 254 year: 2021 end-page: 268 ident: bib40 article-title: Results of an international round-robin exercise on electrochemical impedance spectroscopy publication-title: Corros Eng Sci Technol – volume: 23 start-page: 51 year: 2019 end-page: 57 ident: bib5 article-title: Advances of machine learning in molecular modeling and simulation publication-title: Curr Opin Chem Eng – volume: 116 start-page: 17683 year: 2019 end-page: 17689 ident: bib27 article-title: Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence publication-title: Proc Natl Acad Sci USA – volume: 121 start-page: 15491 year: 2017 end-page: 15492 ident: bib30 article-title: New physical insights from a computational catalysis perspective publication-title: J Phys Chem C – volume: 11 year: 2021 ident: bib32 article-title: A framework for quantifying uncertainty in DFT energy corrections publication-title: Sci Rep – volume: 124 start-page: 6358 year: 2020 end-page: 6368 ident: bib29 article-title: Unravelling the kinetic model of photochemical reactions via deep learning publication-title: J Phys Chem B – volume: 1 start-page: 807 year: 2018 end-page: 808 ident: bib11 article-title: Mind the gap publication-title: Nat Catal – volume: 385 start-page: 1186 year: 2006 end-page: 1194 ident: bib28 article-title: A sequential injection electronic tongue employing the transient response from potentiometric sensors for anion multidetermination publication-title: Anal Bioanal Chem – volume: 5 start-page: 3894 year: 2015 end-page: 3899 ident: bib38 article-title: Examples of effective data sharing in scientific publishing publication-title: ACS Catal – volume: 98 year: 1951 ident: bib12 article-title: Theoretical analysis of the current density distribution in electrolytic cells publication-title: J Electrochem Soc – volume: 355 year: 2017 ident: bib7 article-title: Combining theory and experiment in electrocatalysis: Insights into materials design publication-title: Science – volume: 4 start-page: 430 year: 2019 end-page: 433 ident: bib8 article-title: Considerations for the scaling-up of water splitting catalysts publication-title: Nat Energy – volume: 7 year: 2020 ident: bib35 article-title: AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance publication-title: Sci Data – volume: 13 start-page: 836 year: 2021 end-page: 850 ident: bib15 article-title: Open data in catalysis: from today's big picture to the future of small data publication-title: ChemCatChem – volume: 6 start-page: 2187 year: 2021 end-page: 2189 ident: bib43 article-title: An experimental checklist for reporting battery performances publication-title: ACS Energy Lett – volume: 143 start-page: 16580 year: 2021 end-page: 16588 ident: bib24 article-title: Chemoselective electrosynthesis using rapid alternating polarity publication-title: J Am Chem Soc – volume: 9 year: 2021 ident: bib18 article-title: Hybrid process models in electrochemical syntheses under deep uncertainty publication-title: Processes – volume: 3 start-page: 159 year: 2017 end-page: 177 ident: bib3 article-title: Materials discovery and design using machine learning publication-title: J Materiomics – volume: 15 year: 2020 ident: bib42 article-title: How often do leading biomedical journals use statistical experts to evaluate statistical methods? The results of a survey publication-title: PLoS One – volume: 117 year: 1970 ident: bib13 article-title: Current distributions on plane, parallel electrodes in channel flow publication-title: J Electrochem Soc – volume: 6 year: 2019 ident: bib37 article-title: Qresp, a tool for curating, discovering and exploring reproducible scientific papers publication-title: Sci Data – volume: 116 start-page: 17683 year: 2019 ident: 10.1016/j.coche.2022.100824_sbref27 article-title: Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1909985116 – volume: 121 start-page: 9816 year: 2021 ident: 10.1016/j.coche.2022.100824_sbref1 article-title: Combining machine learning and computational chemistry for predictive insights into chemical systems publication-title: Chem Rev doi: 10.1021/acs.chemrev.1c00107 – volume: 143 start-page: 16580 year: 2021 ident: 10.1016/j.coche.2022.100824_bib24 article-title: Chemoselective electrosynthesis using rapid alternating polarity publication-title: J Am Chem Soc doi: 10.1021/jacs.1c06572 – volume: 125 start-page: 154 year: 2021 ident: 10.1016/j.coche.2022.100824_bib34 article-title: Quantifying uncertainties in solvation procedures for modeling aqueous phase reaction mechanisms publication-title: J Phys Chem A doi: 10.1021/acs.jpca.0c08961 – volume: 17 start-page: 225 year: 2017 ident: 10.1016/j.coche.2022.100824_bib21 article-title: Electrochemical noise as a diagnostic tool for PEMFC publication-title: Fuel Cells doi: 10.1002/fuce.201600077 – volume: 56 start-page: 254 year: 2021 ident: 10.1016/j.coche.2022.100824_bib40 article-title: Results of an international round-robin exercise on electrochemical impedance spectroscopy publication-title: Corros Eng Sci Technol doi: 10.1080/1478422X.2020.1850070 – volume: 167 year: 2020 ident: 10.1016/j.coche.2022.100824_sbref17 article-title: Quantitative parameter estimation, model selection, and variable selection in battery science publication-title: J Electrochem Soc doi: 10.1149/2.0012001JES – volume: 7 year: 2020 ident: 10.1016/j.coche.2022.100824_bib35 article-title: AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance publication-title: Sci Data – volume: 3 start-page: 159 year: 2017 ident: 10.1016/j.coche.2022.100824_bib3 article-title: Materials discovery and design using machine learning publication-title: J Materiomics doi: 10.1016/j.jmat.2017.08.002 – volume: 123 year: 1976 ident: 10.1016/j.coche.2022.100824_bib22 article-title: Analysis of multiple reaction sequences in flow-? Through porous electrodes publication-title: J Electrochem Soc doi: 10.1149/1.2132707 – volume: 121 start-page: 15491 year: 2017 ident: 10.1016/j.coche.2022.100824_bib30 article-title: New physical insights from a computational catalysis perspective publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.7b06535 – volume: 11 start-page: 744 year: 2018 ident: 10.1016/j.coche.2022.100824_bib9 article-title: Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment publication-title: Energy Environ Sci doi: 10.1039/C7EE03457A – volume: 73 start-page: 149 year: 2021 ident: 10.1016/j.coche.2022.100824_bib33 article-title: Uncertainty quantification in atomistic modeling of metals and its effect on mesoscale and continuum modeling: a review publication-title: JOM doi: 10.1007/s11837-020-04436-6 – volume: 13 start-page: 836 year: 2021 ident: 10.1016/j.coche.2022.100824_sbref15 article-title: Open data in catalysis: from today's big picture to the future of small data publication-title: ChemCatChem doi: 10.1002/cctc.202001132 – volume: 3 year: 2016 ident: 10.1016/j.coche.2022.100824_bib14 article-title: The FAIR Guiding Principles for scientific data management and stewardship publication-title: Sci Data doi: 10.1038/sdata.2016.18 – volume: 131 year: 1984 ident: 10.1016/j.coche.2022.100824_bib23 article-title: Selectivity changes in electrochemical reaction sequences by modulated potential control publication-title: J Electrochem Soc doi: 10.1149/1.2115811 – year: 2021 ident: 10.1016/j.coche.2022.100824_bib31 article-title: Uncertainty quantification in machine learning and nonlinear least squares regression models publication-title: AIChE J – volume: 4 start-page: 1803 year: 2021 ident: 10.1016/j.coche.2022.100824_sbref16 article-title: Data management plans: the importance of data management in the BIG-MAP project publication-title: Batter Supercaps doi: 10.1002/batt.202100117 – volume: 385 start-page: 1186 year: 2006 ident: 10.1016/j.coche.2022.100824_bib28 article-title: A sequential injection electronic tongue employing the transient response from potentiometric sensors for anion multidetermination publication-title: Anal Bioanal Chem doi: 10.1007/s00216-006-0530-2 – volume: 168 year: 2021 ident: 10.1016/j.coche.2022.100824_bib19 article-title: Asymmetric interdigitated electrodes for amperometric detection of soluble products publication-title: J Electrochem Soc doi: 10.1149/1945-7111/ac001c – volume: 355 year: 2017 ident: 10.1016/j.coche.2022.100824_sbref7 article-title: Combining theory and experiment in electrocatalysis: Insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – volume: 117 year: 1970 ident: 10.1016/j.coche.2022.100824_bib13 article-title: Current distributions on plane, parallel electrodes in channel flow publication-title: J Electrochem Soc doi: 10.1149/1.2407436 – volume: 9 year: 2021 ident: 10.1016/j.coche.2022.100824_bib18 article-title: Hybrid process models in electrochemical syntheses under deep uncertainty publication-title: Processes doi: 10.3390/pr9040704 – volume: 6 year: 2019 ident: 10.1016/j.coche.2022.100824_bib37 article-title: Qresp, a tool for curating, discovering and exploring reproducible scientific papers publication-title: Sci Data doi: 10.1038/sdata.2019.2 – volume: 4 year: 2021 ident: 10.1016/j.coche.2022.100824_bib4 article-title: Data-science driven autonomous process optimization publication-title: Commun Chem doi: 10.1038/s42004-021-00550-x – volume: 4 start-page: 430 year: 2019 ident: 10.1016/j.coche.2022.100824_bib8 article-title: Considerations for the scaling-up of water splitting catalysts publication-title: Nat Energy doi: 10.1038/s41560-019-0407-1 – volume: 57 start-page: 265 year: 2001 ident: 10.1016/j.coche.2022.100824_bib20 article-title: Interpretation of electrochemical noise data publication-title: Corrosion doi: 10.5006/1.3290350 – volume: 6 start-page: 2187 year: 2021 ident: 10.1016/j.coche.2022.100824_bib43 article-title: An experimental checklist for reporting battery performances publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.1c00870 – volume: 98 year: 1951 ident: 10.1016/j.coche.2022.100824_bib12 article-title: Theoretical analysis of the current density distribution in electrolytic cells publication-title: J Electrochem Soc – volume: 1 start-page: 10 year: 2017 ident: 10.1016/j.coche.2022.100824_sbref6 article-title: Electrification and decarbonization of the chemical industry publication-title: Joule doi: 10.1016/j.joule.2017.07.008 – volume: 124 start-page: 6358 year: 2020 ident: 10.1016/j.coche.2022.100824_sbref29 article-title: Unravelling the kinetic model of photochemical reactions via deep learning publication-title: J Phys Chem B doi: 10.1021/acs.jpcb.0c04299 – volume: 5 start-page: 3894 year: 2015 ident: 10.1016/j.coche.2022.100824_bib38 article-title: Examples of effective data sharing in scientific publishing publication-title: ACS Catal doi: 10.1021/acscatal.5b00538 – volume: 23 start-page: 51 year: 2019 ident: 10.1016/j.coche.2022.100824_bib5 article-title: Advances of machine learning in molecular modeling and simulation publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2019.02.009 – volume: 55 start-page: 95 year: 2015 ident: 10.1016/j.coche.2022.100824_bib36 article-title: Managing the computational chemistry big data problem: the ioChem-BD platform publication-title: J Chem Inf Model doi: 10.1021/ci500593j – volume: 12 start-page: 9635 year: 2018 ident: 10.1016/j.coche.2022.100824_sbref10 article-title: Best practices for reporting electrocatalytic performance of nanomaterials publication-title: ACS Nano doi: 10.1021/acsnano.8b07700 – volume: 1 start-page: 807 year: 2018 ident: 10.1016/j.coche.2022.100824_bib11 article-title: Mind the gap publication-title: Nat Catal doi: 10.1038/s41929-018-0188-0 – volume: 59 start-page: 19999 year: 2020 ident: 10.1016/j.coche.2022.100824_bib25 article-title: Accelerating electro-oxidation turnover rates via potential-modulated stimulation of electrocatalytic activity publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.0c04414 – volume: 10 start-page: 9932 year: 2020 ident: 10.1016/j.coche.2022.100824_bib26 article-title: Resonance-promoted formic acid oxidation via dynamic electrocatalytic modulation publication-title: ACS Catal doi: 10.1021/acscatal.0c02201 – volume: 11 year: 2021 ident: 10.1016/j.coche.2022.100824_bib32 article-title: A framework for quantifying uncertainty in DFT energy corrections publication-title: Sci Rep – volume: 1 start-page: 527 year: 2021 ident: 10.1016/j.coche.2022.100824_bib41 article-title: Crossing the valley of death: from fundamental to applied research in electrolysis publication-title: JACS Au doi: 10.1021/jacsau.1c00092 – volume: 44 start-page: 9174 year: 2019 ident: 10.1016/j.coche.2022.100824_sbref39 article-title: Initial approaches in benchmarking and round robin testing for proton exchange membrane water electrolyzers publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2019.02.074 – volume: 15 year: 2020 ident: 10.1016/j.coche.2022.100824_bib42 article-title: How often do leading biomedical journals use statistical experts to evaluate statistical methods? The results of a survey publication-title: PLoS One doi: 10.1371/journal.pone.0239598 – volume: 142 start-page: 20273 year: 2020 ident: 10.1016/j.coche.2022.100824_bib2 article-title: The role of machine learning in the understanding and design of materials publication-title: J Am Chem Soc doi: 10.1021/jacs.0c09105 |
SSID | ssj0000561947 |
Score | 2.2940252 |
SecondaryResourceType | review_article |
Snippet | Emerging techniques in deep learning have created exciting opportunities for next-generation electrochemical technologies. While deep learning has been... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100824 |
Title | Deeper learning in electrocatalysis: realizing opportunities and addressing challenges |
URI | https://dx.doi.org/10.1016/j.coche.2022.100824 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpnlYGR0CS2E4etKlQFRBco6hbFLxRUpVFpFwZ-Oz7HqYqEOjDG9knR6Xwvnb8PoSvgGuA8lL5SmvokF8znAAigzSINREgSC7v4PIqHY_I4oZMW6jdvYWCs0vn-2qdbb-1Wuk6b3aooui-RqV0wBvw5i7IygRfsJAErv_kOV30WyJBTyzMG530QaMCH7JiXAGIqUydGEQwMsIj8HaDWgs5gD-26bNHr1T-0j1qqPEA7axiCh-jtTqlKzT1H__DuFaXnuG1sawYQR249kxpOiy_YnlWQcS9Li6Tq5aX0jO-xw7BmUzTUKp9HaDy4f-0PfUeW4AtM2MJnSuKA45jINFVSJjnWgaacUaF1TFWA80SyPMREUJZqaDWElMs0ZzIVJk3R-Bi1y1mpTpAnFU8CHksWalPPQEznAZYx5uayJillpyhqNJQJhyQOhBbTrBkZ-8isWjNQa1ar9RRdr4SqGkhj8_G4UX32yx4y4-o3CZ79V_AcbcNXPQZ2gdqL-VJdmoRjwTvWojpoq_fwNBz9AJMJ1XA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH7UelAP4op1zcGjoUkmk0y8lWqpdrm40FvIbFIpsWh78dc7bzIpCuLB67w8CB-Tt_HyfQCXqDXAeSh9pTT140IwnyMhgDaHNBBhnFraxdE46T_F9xM6aUC3_hcG1ypd7K9iuo3W7qTt0GzPp9P2Q2R6F0KQf86yrEzWYB3ZqWgT1jt3g_54NWrBIjmzUmPo4qNPzT9kN70EalOZVjGKcGeARfHvOepb3untwLYrGL1O9U670FDlHmx9oxHch-cbpebq3XMKEC_etPScvI2dziDpyLVnqsPZ9BPNb3MsupelJVP1ilJ6JvzYfVhjFLW6yscBPPVuH7t93-kl-ILEbOEzJUnASRLLLFNSpgXRgaacUaF1QlVAilSyIiSxoCzTOG0IKZdZwWQmTKWiySE0y7dSHYEnFU8DnkgWatPSYFrnAZEJ4eZ7TTPKWhDVCOXCkYmjpsUsr7fGXnMLa46w5hWsLbhaOc0rLo2_H09q6PMfVyI30f4vx-P_Ol7ARv9xNMyHd-PBCWyipdoKO4Xm4n2pzkz9seDn7n59AfHt2CE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deeper+learning+in+electrocatalysis%3A+realizing+opportunities+and+addressing+challenges&rft.jtitle=Current+opinion+in+chemical+engineering&rft.au=Keith%2C+John+A&rft.au=McKone%2C+James+R&rft.au=Snyder%2C+Joshua+D&rft.au=Tang%2C+Maureen+H&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=2211-3398&rft.eissn=2211-3398&rft.volume=36&rft_id=info:doi/10.1016%2Fj.coche.2022.100824&rft.externalDocID=S221133982200034X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3398&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3398&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3398&client=summon |