Grazing decreased water use efficiency in Central Asia from 1979 to 2011

•A significant evapotranspiration (ET) decreasing trend of 1.47–2.72 mm m−2 yr−1 during 1979-2011 was experienced throughout Central Asia.•Water use efficiency (WUE) exhibited increasing trends at a rate of 0.004 g C kg−1 H2O yr−1.•Grazing lowered ET and WUE by 7.47% and 3.60%, respectively, in Cent...

Full description

Saved in:
Bibliographic Details
Published inEcological modelling Vol. 388; pp. 72 - 79
Main Authors Han, Qifei, Li, Chaofan, Zhao, Chengyi, Zhang, Yaoqi, Li, Shoubo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 24.11.2018
Subjects
Online AccessGet full text
ISSN0304-3800
1872-7026
DOI10.1016/j.ecolmodel.2018.09.020

Cover

Loading…
Abstract •A significant evapotranspiration (ET) decreasing trend of 1.47–2.72 mm m−2 yr−1 during 1979-2011 was experienced throughout Central Asia.•Water use efficiency (WUE) exhibited increasing trends at a rate of 0.004 g C kg−1 H2O yr−1.•Grazing lowered ET and WUE by 7.47% and 3.60%, respectively, in Central Asia from 1979 to 2011.•Grazing intensity in Central Asia should be controlled to 0.17–0.39 head/ha, to achieve the maximum utilization of water efficiency. Accurate predictions of water vapor at large temporal and spatial scales are particularly important in global studies. In recent years, Central Asian grasslands have been subject to both intensive grazing and variability in climatic conditions. However, uncertainties about grazing on water cycling under climate change still exist. Therefore, the Biome-BGC grazing model was applied to assess the effects of grazing on evapotranspiration (ET) and water use efficiency (WUE). Three grassland types were studied during the period 1979–2011: forest meadow (FM), temperate grassland (TG) and desert grassland (DG). ET shows a gradual decreasing trend from FM (365.65 ± 36.86 mm m−2 yr−1) to DG (183.32 ± 21.15 mm m−2 yr−1), and WUE ranging from 0.62 ± 0.03 g C kg-1 H2O in FM to 1.12 ± 0.10 g C kg−1 H2O in TG, with an average of 0.83 ± 0.05 g C kg−1 H2O. Although there was a significant decrease in ET of 1.47–2.72 mm m−2 yr−1, WUE increased at a rate of 0.004 g C kg−1 H2O yr−1 in Central Asia. From 1979 to 2011, grazing lowered ET by 7.47% in Central Asia; the reduction rates for FM, TG and DG were 3.10%, 12.70% and 7.42%, respectively. In general, grazing decreased WUE by 3.60%. From non-grazed to grazed scenario, WUE increased by 6.86% for FM, but WUE decreased by 7.27% and 5.61% for TG and DG. An over-compensation of GPP under grazing might account for the higher WUE under certain grazing intensities. In order to achieve maximum utilization of water efficiency, proper grazing intensity for TG, DG and FM should be limited to 0.17, 0.39 and 0.38 head/ha, respectively.
AbstractList Accurate predictions of water vapor at large temporal and spatial scales are particularly important in global studies. In recent years, Central Asian grasslands have been subject to both intensive grazing and variability in climatic conditions. However, uncertainties about grazing on water cycling under climate change still exist. Therefore, the Biome-BGC grazing model was applied to assess the effects of grazing on evapotranspiration (ET) and water use efficiency (WUE). Three grassland types were studied during the period 1979–2011: forest meadow (FM), temperate grassland (TG) and desert grassland (DG). ET shows a gradual decreasing trend from FM (365.65 ± 36.86 mm m−2 yr−1) to DG (183.32 ± 21.15 mm m−2 yr−1), and WUE ranging from 0.62 ± 0.03 g C kg-1 H2O in FM to 1.12 ± 0.10 g C kg−1 H2O in TG, with an average of 0.83 ± 0.05 g C kg−1 H2O. Although there was a significant decrease in ET of 1.47–2.72 mm m−2 yr−1, WUE increased at a rate of 0.004 g C kg−1 H2O yr−1 in Central Asia. From 1979 to 2011, grazing lowered ET by 7.47% in Central Asia; the reduction rates for FM, TG and DG were 3.10%, 12.70% and 7.42%, respectively. In general, grazing decreased WUE by 3.60%. From non-grazed to grazed scenario, WUE increased by 6.86% for FM, but WUE decreased by 7.27% and 5.61% for TG and DG. An over-compensation of GPP under grazing might account for the higher WUE under certain grazing intensities. In order to achieve maximum utilization of water efficiency, proper grazing intensity for TG, DG and FM should be limited to 0.17, 0.39 and 0.38 head/ha, respectively.
•A significant evapotranspiration (ET) decreasing trend of 1.47–2.72 mm m−2 yr−1 during 1979-2011 was experienced throughout Central Asia.•Water use efficiency (WUE) exhibited increasing trends at a rate of 0.004 g C kg−1 H2O yr−1.•Grazing lowered ET and WUE by 7.47% and 3.60%, respectively, in Central Asia from 1979 to 2011.•Grazing intensity in Central Asia should be controlled to 0.17–0.39 head/ha, to achieve the maximum utilization of water efficiency. Accurate predictions of water vapor at large temporal and spatial scales are particularly important in global studies. In recent years, Central Asian grasslands have been subject to both intensive grazing and variability in climatic conditions. However, uncertainties about grazing on water cycling under climate change still exist. Therefore, the Biome-BGC grazing model was applied to assess the effects of grazing on evapotranspiration (ET) and water use efficiency (WUE). Three grassland types were studied during the period 1979–2011: forest meadow (FM), temperate grassland (TG) and desert grassland (DG). ET shows a gradual decreasing trend from FM (365.65 ± 36.86 mm m−2 yr−1) to DG (183.32 ± 21.15 mm m−2 yr−1), and WUE ranging from 0.62 ± 0.03 g C kg-1 H2O in FM to 1.12 ± 0.10 g C kg−1 H2O in TG, with an average of 0.83 ± 0.05 g C kg−1 H2O. Although there was a significant decrease in ET of 1.47–2.72 mm m−2 yr−1, WUE increased at a rate of 0.004 g C kg−1 H2O yr−1 in Central Asia. From 1979 to 2011, grazing lowered ET by 7.47% in Central Asia; the reduction rates for FM, TG and DG were 3.10%, 12.70% and 7.42%, respectively. In general, grazing decreased WUE by 3.60%. From non-grazed to grazed scenario, WUE increased by 6.86% for FM, but WUE decreased by 7.27% and 5.61% for TG and DG. An over-compensation of GPP under grazing might account for the higher WUE under certain grazing intensities. In order to achieve maximum utilization of water efficiency, proper grazing intensity for TG, DG and FM should be limited to 0.17, 0.39 and 0.38 head/ha, respectively.
Author Zhao, Chengyi
Han, Qifei
Li, Shoubo
Zhang, Yaoqi
Li, Chaofan
Author_xml – sequence: 1
  givenname: Qifei
  surname: Han
  fullname: Han, Qifei
  organization: Land Science Research Center, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science & Technology, Nanjing 210044, China
– sequence: 2
  givenname: Chaofan
  surname: Li
  fullname: Li, Chaofan
  organization: School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
– sequence: 3
  givenname: Chengyi
  surname: Zhao
  fullname: Zhao, Chengyi
  email: zcy@ms.xjb.ac.cn
  organization: School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
– sequence: 4
  givenname: Yaoqi
  surname: Zhang
  fullname: Zhang, Yaoqi
  email: zhangy3@auburn.edu
  organization: School of Forestry and Wildlife Sciences, Auburn University, AL 36849, USA
– sequence: 5
  givenname: Shoubo
  surname: Li
  fullname: Li, Shoubo
  organization: School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
BookMark eNqNkLFOwzAQhi0EEqXwDHhkSTjbTe0MDFUFLRISC8yWY5-RqzQudgoqT09KEQMLTLf833933xk57mKHhFwyKBmw6fWqRBvbdXTYlhyYKqEugcMRGTEleSGBT4_JCARMCqEATslZzisAYFzxEVkukvkI3Qt1aBOajI6-mx4T3Wak6H2wATu7o6Gjc-z6ZFo6y8FQn-KaslrWtI90WMvOyYk3bcaL7zkmz3e3T_Nl8fC4uJ_PHgorJqovlKskq9R0OLT2DVSiUuCA1cI3QnCHrDI1R4PgnRXWc9Y0TEhrba2mjRSNGJOrQ-8mxdct5l6vQ7bYtqbDuM2acyErkILLIXpziNoUc07otQ296UPc_xFazUDvDeqV_jGo9wY11HowOPDyF79JYW3S7h_k7EDiYOItYNL5yyO6kND22sXwZ8cnAFGQmw
CitedBy_id crossref_primary_10_1016_j_accre_2021_05_004
crossref_primary_10_1016_j_jenvman_2023_118734
crossref_primary_10_3390_rs14235999
crossref_primary_10_1088_1748_9326_ab8e8b
crossref_primary_10_3390_su12010427
crossref_primary_10_1016_j_esr_2021_100756
crossref_primary_10_1051_e3sconf_201913202005
crossref_primary_10_1016_j_ecolind_2021_107936
crossref_primary_10_1016_j_ecolmodel_2024_111011
crossref_primary_10_1016_j_scitotenv_2023_161710
crossref_primary_10_7717_peerj_7665
crossref_primary_10_1016_j_jenvman_2020_110984
crossref_primary_10_3390_rs16071296
crossref_primary_10_3390_rs14051210
crossref_primary_10_1007_s40333_021_0084_3
crossref_primary_10_3390_atmos14061046
crossref_primary_10_3390_f14071474
Cites_doi 10.1007/s11258-011-9985-0
10.2111/REM-D-12-00051.1
10.1016/j.coldregions.2014.02.001
10.1016/j.agrformet.2011.04.008
10.1016/j.ecolmodel.2011.11.008
10.1016/j.agrformet.2006.03.010
10.1016/j.ecocom.2012.04.004
10.1016/S1360-1385(00)01679-4
10.1016/j.jhydrol.2004.07.017
10.1016/j.agrformet.2009.06.011
10.1007/s10021-010-9365-y
10.1126/science.278.5344.1798
10.1016/j.jhydrol.2010.11.001
10.1016/j.agrformet.2015.10.007
10.1175/JHM569.1
10.1016/j.agrformet.2008.06.010
10.2134/agronj2001.932338x
10.2307/2426594
10.2134/agronj2003.1504
10.1016/S0168-1923(00)00101-5
10.1016/j.jseaes.2006.07.001
10.1029/92JD00256
10.1016/j.jaridenv.2006.09.013
10.1016/0168-1923(95)02272-4
10.1016/0304-3800(92)90012-4
10.1016/j.agrformet.2015.11.008
10.1016/j.jaridenv.2007.01.002
10.1016/j.jaridenv.2011.05.009
10.1016/j.agwat.2017.02.015
10.1006/jare.1996.0088
10.1016/S0168-1923(02)00104-1
10.1016/j.foreco.2009.10.009
10.1111/j.1365-2486.2008.01599.x
10.1016/j.jhydrol.2014.10.048
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.ecolmodel.2018.09.020
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1872-7026
EndPage 79
ExternalDocumentID 10_1016_j_ecolmodel_2018_09_020
S030438001830317X
GeographicLocations Central Asia
GeographicLocations_xml – name: Central Asia
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPCBC
SSA
SSJ
SSZ
T5K
WH7
Y6R
~02
~G-
29G
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
VH1
WUQ
ZY4
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c348t-8d5715860189fb053580d0193fb332de15a92eae0fdc3cf21bb137ccc986b73b3
IEDL.DBID .~1
ISSN 0304-3800
IngestDate Fri Sep 05 00:03:26 EDT 2025
Tue Jul 01 03:09:09 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
Fri Feb 23 02:24:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Water use efficiency
Grazing
Central Asia
Evapotranspiration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-8d5715860189fb053580d0193fb332de15a92eae0fdc3cf21bb137ccc986b73b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2237507327
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2237507327
crossref_citationtrail_10_1016_j_ecolmodel_2018_09_020
crossref_primary_10_1016_j_ecolmodel_2018_09_020
elsevier_sciencedirect_doi_10_1016_j_ecolmodel_2018_09_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-24
PublicationDateYYYYMMDD 2018-11-24
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-24
  day: 24
PublicationDecade 2010
PublicationTitle Ecological modelling
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tian, Chen, Liu, Zhang, Sun, Lu, Xu, Ren, Pan, Chappelka (bib0195) 2010; 259
Wu, Zhang, Shen, Shi, Xu, Li (bib0205) 2013; 66
Lapitan, Parton (bib0095) 1996; 79
Brümmer, Black, Jassal, Grant, Spittlehouse, Chen, Nesic, Amiro, Arain, Barr, Bourque, Coursolle, Dunn, Flanagan, Humphreys, Lafleur, Margolis, McCaughey, Wofsy (bib0020) 2012; 153
Palmer, Yunusa (bib0145) 2011; 75
Kerven, Steimann, Ashley, Dear, ur-Rahim (bib0090) 2011
Li, Harazono, Oikawa, Zhao, Ying, Chang (bib0105) 2000; 102
Miao, Chen, Chen, Zhang, Zhang, Wei, Han, Lin (bib0130) 2009; 149
Thornton (bib0190) 1998
Luo, Han, Zhou, Li, Chen, Li, Hu, Li (bib0120) 2012; 11
Olejniczak (bib0140) 2011; 212
Polley, Frank, Sanabria, Phillips (bib0155) 2008; 14
Alfieri, Blanken, Yates, Steffen (bib0010) 2007; 8
Environmental Modeling Center, N.C.f.E.P.N.W.S.N.U.S.D.o.C (bib0060) 2010
FAO/IIASA/ISRIC/ISS-CAS/JRC (bib0065) 2012
Peng, Jiang, Liu, Niu, Liu, Biswas (bib0150) 2007; 70
Running, Hunt (bib0165) 1993
Hidy, Barcza, Haszpra, Churkina, Pinter, Nagy (bib0080) 2012; 226
Wint, Robinson (bib0200) 2007
Agrawal (bib0005) 2000; 5
Buslov, De Grave, Bataleva, Batalev (bib0030) 2007; 29
NRC (bib0135) 1985
Cowan (bib0040) 2007; 69
Hupet, Vanclooster (bib0085) 2005; 303
Li, Eugster, Asanuma, Kotani, Davaa, Oyunbaatar, Sugita (bib0110) 2006; 137
Qiu, Wang, He, Zhang, Chen, Chen, Yang (bib0160) 2008; 148
Day, Detling (bib0050) 1994; 132
Eichelmann, Wagner-Riddle, Warland, Deen, Voroney (bib0055) 2016; 217
Law, Falge, Gu, Baldocchi, Bakwin, Berbigier, Davis, Dolman, Falk, Fuentes, Goldstein, Granier, Grelle, Hollinger, Janssens, Jarvis, Jensen, Katul, Mahli, Matteucci, Meyers, Monson, Munger, Oechel, Olson, Pilegaard, Paw U, Thorgeirsson, Valentini, Verma, Vesala, Wilson, Wofsy (bib0100) 2002; 113
Seligman, Cavagnaro, Horno (bib0170) 1992; 60
Stewart, Verma (bib0185) 1992; 97
Cowan, Farquhar (bib0045) 1977
Bremer, Auen, Ham, Owensby (bib0015) 2001; 93
McNaughton, Banyikwa, McNaughton (bib0125) 1997; 278
Frank (bib0070) 2003; 95
Brutsaert (bib0025) 1982
Yang, Zhou (bib0210) 2011; 396
Song, Ryu, Jeon (bib0180) 2014; 519
Luo, Sun, Wang, Ren, Xu (bib0115) 2010; 13
Coronato, Bertiller (bib0035) 1996; 34
Han, Luo, Li, Shakir, Wu, Saidov (bib0075) 2016; 216
Singh, Boote, Angadi, Grover (bib0175) 2017; 185
Zhang, Li, Ma, Zhao, Li, Chen, Jiang, Huang (bib0215) 2014; 102
Han (10.1016/j.ecolmodel.2018.09.020_bib0075) 2016; 216
Luo (10.1016/j.ecolmodel.2018.09.020_bib0120) 2012; 11
Peng (10.1016/j.ecolmodel.2018.09.020_bib0150) 2007; 70
Hupet (10.1016/j.ecolmodel.2018.09.020_bib0085) 2005; 303
Coronato (10.1016/j.ecolmodel.2018.09.020_bib0035) 1996; 34
Luo (10.1016/j.ecolmodel.2018.09.020_bib0115) 2010; 13
Brümmer (10.1016/j.ecolmodel.2018.09.020_bib0020) 2012; 153
Frank (10.1016/j.ecolmodel.2018.09.020_bib0070) 2003; 95
Law (10.1016/j.ecolmodel.2018.09.020_bib0100) 2002; 113
Agrawal (10.1016/j.ecolmodel.2018.09.020_bib0005) 2000; 5
Cowan (10.1016/j.ecolmodel.2018.09.020_bib0045) 1977
Kerven (10.1016/j.ecolmodel.2018.09.020_bib0090) 2011
Zhang (10.1016/j.ecolmodel.2018.09.020_bib0215) 2014; 102
Brutsaert (10.1016/j.ecolmodel.2018.09.020_bib0025) 1982
McNaughton (10.1016/j.ecolmodel.2018.09.020_bib0125) 1997; 278
Olejniczak (10.1016/j.ecolmodel.2018.09.020_bib0140) 2011; 212
Eichelmann (10.1016/j.ecolmodel.2018.09.020_bib0055) 2016; 217
Song (10.1016/j.ecolmodel.2018.09.020_bib0180) 2014; 519
Tian (10.1016/j.ecolmodel.2018.09.020_bib0195) 2010; 259
Palmer (10.1016/j.ecolmodel.2018.09.020_bib0145) 2011; 75
Buslov (10.1016/j.ecolmodel.2018.09.020_bib0030) 2007; 29
Day (10.1016/j.ecolmodel.2018.09.020_bib0050) 1994; 132
Running (10.1016/j.ecolmodel.2018.09.020_bib0165) 1993
Seligman (10.1016/j.ecolmodel.2018.09.020_bib0170) 1992; 60
Wu (10.1016/j.ecolmodel.2018.09.020_bib0205) 2013; 66
Li (10.1016/j.ecolmodel.2018.09.020_bib0105) 2000; 102
Lapitan (10.1016/j.ecolmodel.2018.09.020_bib0095) 1996; 79
Cowan (10.1016/j.ecolmodel.2018.09.020_bib0040) 2007; 69
Yang (10.1016/j.ecolmodel.2018.09.020_bib0210) 2011; 396
Environmental Modeling Center (10.1016/j.ecolmodel.2018.09.020_bib0060) 2010
FAO/IIASA/ISRIC/ISS-CAS/JRC (10.1016/j.ecolmodel.2018.09.020_bib0065) 2012
Hidy (10.1016/j.ecolmodel.2018.09.020_bib0080) 2012; 226
Singh (10.1016/j.ecolmodel.2018.09.020_bib0175) 2017; 185
Thornton (10.1016/j.ecolmodel.2018.09.020_bib0190) 1998
Miao (10.1016/j.ecolmodel.2018.09.020_bib0130) 2009; 149
Qiu (10.1016/j.ecolmodel.2018.09.020_bib0160) 2008; 148
Stewart (10.1016/j.ecolmodel.2018.09.020_bib0185) 1992; 97
NRC (10.1016/j.ecolmodel.2018.09.020_bib0135) 1985
Wint (10.1016/j.ecolmodel.2018.09.020_bib0200) 2007
Alfieri (10.1016/j.ecolmodel.2018.09.020_bib0010) 2007; 8
Li (10.1016/j.ecolmodel.2018.09.020_bib0110) 2006; 137
Bremer (10.1016/j.ecolmodel.2018.09.020_bib0015) 2001; 93
Polley (10.1016/j.ecolmodel.2018.09.020_bib0155) 2008; 14
References_xml – volume: 95
  start-page: 1504
  year: 2003
  end-page: 1509
  ident: bib0070
  article-title: Evapotranspiration from northern semiarid grasslands
  publication-title: Agron. J.
– volume: 259
  start-page: 1311
  year: 2010
  end-page: 1327
  ident: bib0195
  article-title: Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007
  publication-title: For. Ecol. Manage.
– volume: 217
  start-page: 108
  year: 2016
  end-page: 119
  ident: bib0055
  article-title: Evapotranspiration, water use efficiency, and energy partitioning of a mature switchgrass stand
  publication-title: Agric. For. Meteorol.
– volume: 212
  start-page: 1927
  year: 2011
  end-page: 1935
  ident: bib0140
  article-title: Overcompensation in response to simulated herbivory in the perennial herb Sedum maximum
  publication-title: Plant Ecol.
– volume: 137
  start-page: 89
  year: 2006
  end-page: 106
  ident: bib0110
  article-title: Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia
  publication-title: Agric. For. Meteorol.
– year: 1998
  ident: bib0190
  article-title: Description of a Numerical Simulation Model for Pre-dicting the Dynamics of Energy, Water, Carbon and Nitrogen in a Terrestrial Ecosystem
– volume: 11
  start-page: 126
  year: 2012
  end-page: 136
  ident: bib0120
  article-title: Moderate grazing can promote aboveground primary production of grassland under water stress
  publication-title: Ecol. Complex.
– volume: 149
  start-page: 1810
  year: 2009
  end-page: 1819
  ident: bib0130
  article-title: Cultivation and grazing altered evapotranspiration and dynamics in Inner Mongolia steppes
  publication-title: Agric. For. Meteorol.
– year: 2012
  ident: bib0065
  article-title: Harmonized World Soil Database (version 1.2)
– volume: 70
  start-page: 304
  year: 2007
  end-page: 315
  ident: bib0150
  article-title: Photosynthesis, transpiration and water use efficiency of four plant species with grazing intensities in Hunshandak Sandland, China
  publication-title: J. Arid Environ.
– volume: 93
  start-page: 338
  year: 2001
  end-page: 348
  ident: bib0015
  article-title: Evapotranspiration in a Prairie ecosystem: effects of grazing by cattle
  publication-title: Agron. J.
– year: 1993
  ident: bib0165
  article-title: Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale-models
  publication-title: Scaling Physiological Processes: Leaf to Globe
– volume: 29
  start-page: 205
  year: 2007
  end-page: 214
  ident: bib0030
  article-title: Cenozoic tectonic and geodynamic evolution of the Kyrgyz Tien Shan Mountains: a review of geological, thermochronological and geophysical data
  publication-title: J. Asian Earth Sci.
– volume: 8
  start-page: 207
  year: 2007
  end-page: 220
  ident: bib0010
  article-title: Variability in the environmental factors driving evapotranspiration from a grazed rangeland during severe drought conditions
  publication-title: J. Hydrometeorol.
– volume: 60
  start-page: 45
  year: 1992
  end-page: 61
  ident: bib0170
  article-title: Simulation of defoliation effects on primary production of a warm-season, semiarid perennial-species grassland
  publication-title: Ecol. Modell.
– volume: 185
  start-page: 137
  year: 2017
  end-page: 144
  ident: bib0175
  article-title: Estimating water balance, evapotranspiration and water use efficiency of spring safflower using the CROPGRO model
  publication-title: Agric. Water Manage.
– year: 1982
  ident: bib0025
  article-title: Evaporation into the Atmosphere: Theory, History, and Applications
– volume: 303
  start-page: 247
  year: 2005
  end-page: 270
  ident: bib0085
  article-title: Micro-variability of hydrological processes at the maize row scale: implications for soil water content measurements and evapotranspiration estimates
  publication-title: J. Hydrol.
– year: 2010
  ident: bib0060
  article-title: NCEP Climate Forecast System Reanalysis (CFSR) Selected Hourly Time-Series Products, January 1979 to December 2010. Research Data Archive at the National Center for Atmospheric Research
– volume: 75
  start-page: 1223
  year: 2011
  end-page: 1227
  ident: bib0145
  article-title: Biomass production, evapotranspiration and water use efficiency of arid rangelands in the Northern Cape, South Africa
  publication-title: J. Arid Environ.
– volume: 278
  start-page: 1798
  year: 1997
  end-page: 1800
  ident: bib0125
  article-title: Promotion of the cycling of diet-enhancing nutrients by African grazers
  publication-title: Science
– volume: 14
  start-page: 1620
  year: 2008
  end-page: 1632
  ident: bib0155
  article-title: Interannual variability in carbon dioxide fluxes and flux-climate relationships on grazed and ungrazed northern mixed-grass prairie
  publication-title: Glob. Change Biol. Bioenergy
– volume: 226
  start-page: 99
  year: 2012
  end-page: 119
  ident: bib0080
  article-title: Development of the Biome-BGC model for simulation of managed herbaceous ecosystems
  publication-title: Ecol. Modell.
– volume: 97
  year: 1992
  ident: bib0185
  article-title: Comparisons of surface fluxes and conductances at two contrasting sites within the FIFE area
  publication-title: J. Geophys. Res.
– year: 1977
  ident: bib0045
  article-title: Stomatal function in relation to leaf metabolism and environment
  publication-title: Integration of Activity in the Higher Plant
– year: 1985
  ident: bib0135
  article-title: Nutrient Requirements of Sheep
– volume: 148
  start-page: 1848
  year: 2008
  end-page: 1859
  ident: bib0160
  article-title: Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the north China plain
  publication-title: Agric. For. Meteorol.
– volume: 79
  start-page: 113
  year: 1996
  end-page: 130
  ident: bib0095
  article-title: Seasonal variabilities in the distribution of the microclimatic factors and evapotranspiration in a shortgrass steppe
  publication-title: Agric. For. Meteorol.
– volume: 113
  start-page: 97
  year: 2002
  end-page: 120
  ident: bib0100
  article-title: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation
  publication-title: Agric. For. Meteorol.
– volume: 519
  start-page: 3531
  year: 2014
  end-page: 3540
  ident: bib0180
  article-title: Interannual variability of regional evapotranspiration under precipitation extremes: a case study of the Youngsan River basin in Korea
  publication-title: J. Hydrol.
– volume: 216
  start-page: 203
  year: 2016
  end-page: 214
  ident: bib0075
  article-title: Simulated grazing effects on carbon emission in Central Asia
  publication-title: Agric. For. Meteorol.
– volume: 13
  start-page: 949
  year: 2010
  end-page: 965
  ident: bib0115
  article-title: Modeling productivity in mangrove forests as impacted by effective soil water availability and its sensitivity to climate change using biome-BGC
  publication-title: Ecosystems
– volume: 396
  start-page: 139
  year: 2011
  end-page: 147
  ident: bib0210
  article-title: Characteristics and modeling of evapotranspiration over a temperate desert steppe in Inner Mongolia, China
  publication-title: J. Hydrol.
– volume: 153
  start-page: 14
  year: 2012
  end-page: 30
  ident: bib0020
  article-title: How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems
  publication-title: Agric. For. Meteorol.
– volume: 102
  start-page: 125
  year: 2000
  end-page: 137
  ident: bib0105
  article-title: Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia
  publication-title: Agric. For. Meteorol.
– volume: 69
  start-page: 359
  year: 2007
  end-page: 363
  ident: bib0040
  article-title: Geographic usage of the terms Middle Asia and Central Asia
  publication-title: J. Arid Environ.
– volume: 5
  start-page: 309
  year: 2000
  end-page: 313
  ident: bib0005
  article-title: Overcompensation of plants in response to herbivory and the by-product benefits of mutualism
  publication-title: Trends Plant Sci.
– year: 2007
  ident: bib0200
  article-title: Gridded Livestock of the World 2007
– volume: 132
  start-page: 381
  year: 1994
  end-page: 392
  ident: bib0050
  article-title: Water relations of Agropyron smithii and Bouteloua gracilis and community evapotranspiration following long-term grazing by prairie dogs
  publication-title: Am. Midl. Nat.
– year: 2011
  ident: bib0090
  article-title: Pastoralism and Farming in Central Asia’s Mountains: A Research Review[in English and Russian], MSRC Background Paper No. 1
– volume: 34
  start-page: 1
  year: 1996
  end-page: 9
  ident: bib0035
  article-title: Precipitation and landscape related effects on soil moisture in semi-arid rangelands of Patagonia
  publication-title: J. Arid Environ.
– volume: 102
  start-page: 8
  year: 2014
  end-page: 20
  ident: bib0215
  article-title: Interannual and seasonal variability in evapotranspiration and energy partitioning over the alpine riparian shrub Myricaria squamosa Desv. on Qinghai–Tibet Plateau
  publication-title: Cold Reg. Sci. Technol.
– volume: 66
  start-page: 454
  year: 2013
  end-page: 461
  ident: bib0205
  article-title: Grazing-exclusion effects on aboveground biomass and water-use efficiency of alpine grasslands on the northern Tibetan plateau
  publication-title: Rangel. Ecol. Manage.
– year: 1985
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0135
– volume: 212
  start-page: 1927
  year: 2011
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0140
  article-title: Overcompensation in response to simulated herbivory in the perennial herb Sedum maximum
  publication-title: Plant Ecol.
  doi: 10.1007/s11258-011-9985-0
– year: 2011
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0090
– volume: 66
  start-page: 454
  year: 2013
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0205
  article-title: Grazing-exclusion effects on aboveground biomass and water-use efficiency of alpine grasslands on the northern Tibetan plateau
  publication-title: Rangel. Ecol. Manage.
  doi: 10.2111/REM-D-12-00051.1
– volume: 102
  start-page: 8
  year: 2014
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0215
  article-title: Interannual and seasonal variability in evapotranspiration and energy partitioning over the alpine riparian shrub Myricaria squamosa Desv. on Qinghai–Tibet Plateau
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2014.02.001
– volume: 153
  start-page: 14
  year: 2012
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0020
  article-title: How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2011.04.008
– volume: 226
  start-page: 99
  year: 2012
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0080
  article-title: Development of the Biome-BGC model for simulation of managed herbaceous ecosystems
  publication-title: Ecol. Modell.
  doi: 10.1016/j.ecolmodel.2011.11.008
– volume: 137
  start-page: 89
  year: 2006
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0110
  article-title: Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2006.03.010
– volume: 11
  start-page: 126
  year: 2012
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0120
  article-title: Moderate grazing can promote aboveground primary production of grassland under water stress
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2012.04.004
– volume: 5
  start-page: 309
  year: 2000
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0005
  article-title: Overcompensation of plants in response to herbivory and the by-product benefits of mutualism
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(00)01679-4
– year: 2012
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0065
– volume: 303
  start-page: 247
  year: 2005
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0085
  article-title: Micro-variability of hydrological processes at the maize row scale: implications for soil water content measurements and evapotranspiration estimates
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.07.017
– volume: 149
  start-page: 1810
  year: 2009
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0130
  article-title: Cultivation and grazing altered evapotranspiration and dynamics in Inner Mongolia steppes
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2009.06.011
– volume: 13
  start-page: 949
  year: 2010
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0115
  article-title: Modeling productivity in mangrove forests as impacted by effective soil water availability and its sensitivity to climate change using biome-BGC
  publication-title: Ecosystems
  doi: 10.1007/s10021-010-9365-y
– volume: 278
  start-page: 1798
  year: 1997
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0125
  article-title: Promotion of the cycling of diet-enhancing nutrients by African grazers
  publication-title: Science
  doi: 10.1126/science.278.5344.1798
– volume: 396
  start-page: 139
  year: 2011
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0210
  article-title: Characteristics and modeling of evapotranspiration over a temperate desert steppe in Inner Mongolia, China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.11.001
– volume: 216
  start-page: 203
  year: 2016
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0075
  article-title: Simulated grazing effects on carbon emission in Central Asia
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.10.007
– volume: 8
  start-page: 207
  year: 2007
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0010
  article-title: Variability in the environmental factors driving evapotranspiration from a grazed rangeland during severe drought conditions
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM569.1
– year: 2007
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0200
– volume: 148
  start-page: 1848
  year: 2008
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0160
  article-title: Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the north China plain
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2008.06.010
– volume: 93
  start-page: 338
  year: 2001
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0015
  article-title: Evapotranspiration in a Prairie ecosystem: effects of grazing by cattle
  publication-title: Agron. J.
  doi: 10.2134/agronj2001.932338x
– year: 2010
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0060
– year: 1998
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0190
– volume: 132
  start-page: 381
  year: 1994
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0050
  article-title: Water relations of Agropyron smithii and Bouteloua gracilis and community evapotranspiration following long-term grazing by prairie dogs
  publication-title: Am. Midl. Nat.
  doi: 10.2307/2426594
– volume: 95
  start-page: 1504
  year: 2003
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0070
  article-title: Evapotranspiration from northern semiarid grasslands
  publication-title: Agron. J.
  doi: 10.2134/agronj2003.1504
– volume: 102
  start-page: 125
  year: 2000
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0105
  article-title: Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(00)00101-5
– volume: 29
  start-page: 205
  year: 2007
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0030
  article-title: Cenozoic tectonic and geodynamic evolution of the Kyrgyz Tien Shan Mountains: a review of geological, thermochronological and geophysical data
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2006.07.001
– volume: 97
  year: 1992
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0185
  article-title: Comparisons of surface fluxes and conductances at two contrasting sites within the FIFE area
  publication-title: J. Geophys. Res.
  doi: 10.1029/92JD00256
– volume: 69
  start-page: 359
  year: 2007
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0040
  article-title: Geographic usage of the terms Middle Asia and Central Asia
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2006.09.013
– volume: 79
  start-page: 113
  year: 1996
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0095
  article-title: Seasonal variabilities in the distribution of the microclimatic factors and evapotranspiration in a shortgrass steppe
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(95)02272-4
– volume: 60
  start-page: 45
  year: 1992
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0170
  article-title: Simulation of defoliation effects on primary production of a warm-season, semiarid perennial-species grassland
  publication-title: Ecol. Modell.
  doi: 10.1016/0304-3800(92)90012-4
– volume: 217
  start-page: 108
  year: 2016
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0055
  article-title: Evapotranspiration, water use efficiency, and energy partitioning of a mature switchgrass stand
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.11.008
– year: 1977
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0045
  article-title: Stomatal function in relation to leaf metabolism and environment
– volume: 70
  start-page: 304
  year: 2007
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0150
  article-title: Photosynthesis, transpiration and water use efficiency of four plant species with grazing intensities in Hunshandak Sandland, China
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2007.01.002
– volume: 75
  start-page: 1223
  year: 2011
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0145
  article-title: Biomass production, evapotranspiration and water use efficiency of arid rangelands in the Northern Cape, South Africa
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2011.05.009
– volume: 185
  start-page: 137
  year: 2017
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0175
  article-title: Estimating water balance, evapotranspiration and water use efficiency of spring safflower using the CROPGRO model
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2017.02.015
– year: 1982
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0025
– volume: 34
  start-page: 1
  year: 1996
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0035
  article-title: Precipitation and landscape related effects on soil moisture in semi-arid rangelands of Patagonia
  publication-title: J. Arid Environ.
  doi: 10.1006/jare.1996.0088
– volume: 113
  start-page: 97
  year: 2002
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0100
  article-title: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(02)00104-1
– year: 1993
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0165
  article-title: Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale-models
– volume: 259
  start-page: 1311
  year: 2010
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0195
  article-title: Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2009.10.009
– volume: 14
  start-page: 1620
  year: 2008
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0155
  article-title: Interannual variability in carbon dioxide fluxes and flux-climate relationships on grazed and ungrazed northern mixed-grass prairie
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/j.1365-2486.2008.01599.x
– volume: 519
  start-page: 3531
  issue: Part D
  year: 2014
  ident: 10.1016/j.ecolmodel.2018.09.020_bib0180
  article-title: Interannual variability of regional evapotranspiration under precipitation extremes: a case study of the Youngsan River basin in Korea
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.10.048
SSID ssj0001282
Score 2.3561294
Snippet •A significant evapotranspiration (ET) decreasing trend of 1.47–2.72 mm m−2 yr−1 during 1979-2011 was experienced throughout Central Asia.•Water use efficiency...
Accurate predictions of water vapor at large temporal and spatial scales are particularly important in global studies. In recent years, Central Asian...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 72
SubjectTerms Central Asia
climate change
climatic factors
Evapotranspiration
forests
Grazing
grazing intensity
meadows
prediction
uncertainty
Water use efficiency
water vapor
Title Grazing decreased water use efficiency in Central Asia from 1979 to 2011
URI https://dx.doi.org/10.1016/j.ecolmodel.2018.09.020
https://www.proquest.com/docview/2237507327
Volume 388
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9DEbyIn_g5InitW5q0Sb0N2ZyKu6iwW8hXZSLdWDfEi3-7eV3qUIQdPLYkpLwk7_3SvN_vIXShHLNcMBYJpWzEVJJHInUkEkliqdOCGgrc4YdB2n9md8Nk2EDXNRcG0iqD71_49MpbhzetYM3WZDRqPcKlHhVQVc67YcKHwGBnHPTzLz-XaR7e_4abBBZB6x85Xv6E91ZVnIEcL1EJnkLh778j1C9fXQWg3jbaCsgRdxYft4MarthFG91KdfpjFx10l5Q13yzs2XIP9W-mICH9gm2FEEtn8bsHmFM8Lx12lYIE0C_xqMDhVy_ulCOFgXiCScYzPBtjCOD76LnXfbruR6F-QmQoE7NI2ISTRPgjl8hyDUIuom09pKO5pjS2jiQqi51y7dwaavKYaE0oN8ZkItWcanqA1opx4Q4RTm2WGyV0pnLNOBWKW-qPalwpo4ii5Ailtc2kCeLiUOPiTdZZZK_y29gSjC3bmfTGPkLt746Thb7G6i5X9aTIH0tF-iiwuvN5PY3SbyS4HVGFG89L6XGSR0-cxvz4PwOcoE14ArpizE7R2mw6d2cet8x0s1qYTbTeub3vD74A9WPtAQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xoBVcEI9FvDHSXqPWcRI73CpUCK9eFqTeLL-CilCKmlaIf48ndYpASBz2mmSUaGx_8zme-Qbgr3KJ5SJJIqGUjRKVlpHIHI1EmlrmtGCGYe3w3SArHpLrYTpcgvO2FgbTKgP2zzG9QetwpRO82XkZjTr_8FCPCewq52GY8uEvWEF1Kj_ZV3pXN8VgAcgegsNhQhKhwac0L7_Je26azmCal2g0T7H39_dB6gtcNzHoYgPWA3kkvfn3bcKSq7bgd78Rnn7bgp3-R9Wafyws23obissJqkg_EtuQxNpZ8uo55oTMakdcIyKBFZhkVJHwt5f06pEiWHtCaM5zMh0TjOF_4OGif39eRKGFQmRYIqaRsCmnqfC7LpGXGrVcRNd6VsdKzVhsHU1VHjvluqU1zJQx1ZoybozJRaY502wHlqtx5XaBZDYvjRI6V6X2XhaKW-Z3a1wpo6hidA-y1mfSBH1xbHPxLNtEsie5cLZEZ8tuLr2z96C7MHyZS2z8bHLWDor8NFukDwQ_G5-2wyj9WsIDElW58ayWnip5AsVZzPf_5wUnsFrc393K26vBzQGs4R2sXoyTQ1ieTmbuyNOYqT4O0_QdGQbvsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grazing+decreased+water+use+efficiency+in+Central+Asia+from+1979+to+2011&rft.jtitle=Ecological+modelling&rft.au=Han%2C+Qifei&rft.au=Li%2C+Chaofan&rft.au=Zhao%2C+Chengyi&rft.au=Zhang%2C+Yaoqi&rft.date=2018-11-24&rft.pub=Elsevier+B.V&rft.issn=0304-3800&rft.eissn=1872-7026&rft.volume=388&rft.spage=72&rft.epage=79&rft_id=info:doi/10.1016%2Fj.ecolmodel.2018.09.020&rft.externalDocID=S030438001830317X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon