Grazing decreased water use efficiency in Central Asia from 1979 to 2011
•A significant evapotranspiration (ET) decreasing trend of 1.47–2.72 mm m−2 yr−1 during 1979-2011 was experienced throughout Central Asia.•Water use efficiency (WUE) exhibited increasing trends at a rate of 0.004 g C kg−1 H2O yr−1.•Grazing lowered ET and WUE by 7.47% and 3.60%, respectively, in Cent...
Saved in:
Published in | Ecological modelling Vol. 388; pp. 72 - 79 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
24.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-3800 1872-7026 |
DOI | 10.1016/j.ecolmodel.2018.09.020 |
Cover
Loading…
Abstract | •A significant evapotranspiration (ET) decreasing trend of 1.47–2.72 mm m−2 yr−1 during 1979-2011 was experienced throughout Central Asia.•Water use efficiency (WUE) exhibited increasing trends at a rate of 0.004 g C kg−1 H2O yr−1.•Grazing lowered ET and WUE by 7.47% and 3.60%, respectively, in Central Asia from 1979 to 2011.•Grazing intensity in Central Asia should be controlled to 0.17–0.39 head/ha, to achieve the maximum utilization of water efficiency.
Accurate predictions of water vapor at large temporal and spatial scales are particularly important in global studies. In recent years, Central Asian grasslands have been subject to both intensive grazing and variability in climatic conditions. However, uncertainties about grazing on water cycling under climate change still exist. Therefore, the Biome-BGC grazing model was applied to assess the effects of grazing on evapotranspiration (ET) and water use efficiency (WUE). Three grassland types were studied during the period 1979–2011: forest meadow (FM), temperate grassland (TG) and desert grassland (DG). ET shows a gradual decreasing trend from FM (365.65 ± 36.86 mm m−2 yr−1) to DG (183.32 ± 21.15 mm m−2 yr−1), and WUE ranging from 0.62 ± 0.03 g C kg-1 H2O in FM to 1.12 ± 0.10 g C kg−1 H2O in TG, with an average of 0.83 ± 0.05 g C kg−1 H2O. Although there was a significant decrease in ET of 1.47–2.72 mm m−2 yr−1, WUE increased at a rate of 0.004 g C kg−1 H2O yr−1 in Central Asia. From 1979 to 2011, grazing lowered ET by 7.47% in Central Asia; the reduction rates for FM, TG and DG were 3.10%, 12.70% and 7.42%, respectively. In general, grazing decreased WUE by 3.60%. From non-grazed to grazed scenario, WUE increased by 6.86% for FM, but WUE decreased by 7.27% and 5.61% for TG and DG. An over-compensation of GPP under grazing might account for the higher WUE under certain grazing intensities. In order to achieve maximum utilization of water efficiency, proper grazing intensity for TG, DG and FM should be limited to 0.17, 0.39 and 0.38 head/ha, respectively. |
---|---|
AbstractList | Accurate predictions of water vapor at large temporal and spatial scales are particularly important in global studies. In recent years, Central Asian grasslands have been subject to both intensive grazing and variability in climatic conditions. However, uncertainties about grazing on water cycling under climate change still exist. Therefore, the Biome-BGC grazing model was applied to assess the effects of grazing on evapotranspiration (ET) and water use efficiency (WUE). Three grassland types were studied during the period 1979–2011: forest meadow (FM), temperate grassland (TG) and desert grassland (DG). ET shows a gradual decreasing trend from FM (365.65 ± 36.86 mm m−2 yr−1) to DG (183.32 ± 21.15 mm m−2 yr−1), and WUE ranging from 0.62 ± 0.03 g C kg-1 H2O in FM to 1.12 ± 0.10 g C kg−1 H2O in TG, with an average of 0.83 ± 0.05 g C kg−1 H2O. Although there was a significant decrease in ET of 1.47–2.72 mm m−2 yr−1, WUE increased at a rate of 0.004 g C kg−1 H2O yr−1 in Central Asia. From 1979 to 2011, grazing lowered ET by 7.47% in Central Asia; the reduction rates for FM, TG and DG were 3.10%, 12.70% and 7.42%, respectively. In general, grazing decreased WUE by 3.60%. From non-grazed to grazed scenario, WUE increased by 6.86% for FM, but WUE decreased by 7.27% and 5.61% for TG and DG. An over-compensation of GPP under grazing might account for the higher WUE under certain grazing intensities. In order to achieve maximum utilization of water efficiency, proper grazing intensity for TG, DG and FM should be limited to 0.17, 0.39 and 0.38 head/ha, respectively. •A significant evapotranspiration (ET) decreasing trend of 1.47–2.72 mm m−2 yr−1 during 1979-2011 was experienced throughout Central Asia.•Water use efficiency (WUE) exhibited increasing trends at a rate of 0.004 g C kg−1 H2O yr−1.•Grazing lowered ET and WUE by 7.47% and 3.60%, respectively, in Central Asia from 1979 to 2011.•Grazing intensity in Central Asia should be controlled to 0.17–0.39 head/ha, to achieve the maximum utilization of water efficiency. Accurate predictions of water vapor at large temporal and spatial scales are particularly important in global studies. In recent years, Central Asian grasslands have been subject to both intensive grazing and variability in climatic conditions. However, uncertainties about grazing on water cycling under climate change still exist. Therefore, the Biome-BGC grazing model was applied to assess the effects of grazing on evapotranspiration (ET) and water use efficiency (WUE). Three grassland types were studied during the period 1979–2011: forest meadow (FM), temperate grassland (TG) and desert grassland (DG). ET shows a gradual decreasing trend from FM (365.65 ± 36.86 mm m−2 yr−1) to DG (183.32 ± 21.15 mm m−2 yr−1), and WUE ranging from 0.62 ± 0.03 g C kg-1 H2O in FM to 1.12 ± 0.10 g C kg−1 H2O in TG, with an average of 0.83 ± 0.05 g C kg−1 H2O. Although there was a significant decrease in ET of 1.47–2.72 mm m−2 yr−1, WUE increased at a rate of 0.004 g C kg−1 H2O yr−1 in Central Asia. From 1979 to 2011, grazing lowered ET by 7.47% in Central Asia; the reduction rates for FM, TG and DG were 3.10%, 12.70% and 7.42%, respectively. In general, grazing decreased WUE by 3.60%. From non-grazed to grazed scenario, WUE increased by 6.86% for FM, but WUE decreased by 7.27% and 5.61% for TG and DG. An over-compensation of GPP under grazing might account for the higher WUE under certain grazing intensities. In order to achieve maximum utilization of water efficiency, proper grazing intensity for TG, DG and FM should be limited to 0.17, 0.39 and 0.38 head/ha, respectively. |
Author | Zhao, Chengyi Han, Qifei Li, Shoubo Zhang, Yaoqi Li, Chaofan |
Author_xml | – sequence: 1 givenname: Qifei surname: Han fullname: Han, Qifei organization: Land Science Research Center, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science & Technology, Nanjing 210044, China – sequence: 2 givenname: Chaofan surname: Li fullname: Li, Chaofan organization: School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China – sequence: 3 givenname: Chengyi surname: Zhao fullname: Zhao, Chengyi email: zcy@ms.xjb.ac.cn organization: School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China – sequence: 4 givenname: Yaoqi surname: Zhang fullname: Zhang, Yaoqi email: zhangy3@auburn.edu organization: School of Forestry and Wildlife Sciences, Auburn University, AL 36849, USA – sequence: 5 givenname: Shoubo surname: Li fullname: Li, Shoubo organization: School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China |
BookMark | eNqNkLFOwzAQhi0EEqXwDHhkSTjbTe0MDFUFLRISC8yWY5-RqzQudgoqT09KEQMLTLf833933xk57mKHhFwyKBmw6fWqRBvbdXTYlhyYKqEugcMRGTEleSGBT4_JCARMCqEATslZzisAYFzxEVkukvkI3Qt1aBOajI6-mx4T3Wak6H2wATu7o6Gjc-z6ZFo6y8FQn-KaslrWtI90WMvOyYk3bcaL7zkmz3e3T_Nl8fC4uJ_PHgorJqovlKskq9R0OLT2DVSiUuCA1cI3QnCHrDI1R4PgnRXWc9Y0TEhrba2mjRSNGJOrQ-8mxdct5l6vQ7bYtqbDuM2acyErkILLIXpziNoUc07otQ296UPc_xFazUDvDeqV_jGo9wY11HowOPDyF79JYW3S7h_k7EDiYOItYNL5yyO6kND22sXwZ8cnAFGQmw |
CitedBy_id | crossref_primary_10_1016_j_accre_2021_05_004 crossref_primary_10_1016_j_jenvman_2023_118734 crossref_primary_10_3390_rs14235999 crossref_primary_10_1088_1748_9326_ab8e8b crossref_primary_10_3390_su12010427 crossref_primary_10_1016_j_esr_2021_100756 crossref_primary_10_1051_e3sconf_201913202005 crossref_primary_10_1016_j_ecolind_2021_107936 crossref_primary_10_1016_j_ecolmodel_2024_111011 crossref_primary_10_1016_j_scitotenv_2023_161710 crossref_primary_10_7717_peerj_7665 crossref_primary_10_1016_j_jenvman_2020_110984 crossref_primary_10_3390_rs16071296 crossref_primary_10_3390_rs14051210 crossref_primary_10_1007_s40333_021_0084_3 crossref_primary_10_3390_atmos14061046 crossref_primary_10_3390_f14071474 |
Cites_doi | 10.1007/s11258-011-9985-0 10.2111/REM-D-12-00051.1 10.1016/j.coldregions.2014.02.001 10.1016/j.agrformet.2011.04.008 10.1016/j.ecolmodel.2011.11.008 10.1016/j.agrformet.2006.03.010 10.1016/j.ecocom.2012.04.004 10.1016/S1360-1385(00)01679-4 10.1016/j.jhydrol.2004.07.017 10.1016/j.agrformet.2009.06.011 10.1007/s10021-010-9365-y 10.1126/science.278.5344.1798 10.1016/j.jhydrol.2010.11.001 10.1016/j.agrformet.2015.10.007 10.1175/JHM569.1 10.1016/j.agrformet.2008.06.010 10.2134/agronj2001.932338x 10.2307/2426594 10.2134/agronj2003.1504 10.1016/S0168-1923(00)00101-5 10.1016/j.jseaes.2006.07.001 10.1029/92JD00256 10.1016/j.jaridenv.2006.09.013 10.1016/0168-1923(95)02272-4 10.1016/0304-3800(92)90012-4 10.1016/j.agrformet.2015.11.008 10.1016/j.jaridenv.2007.01.002 10.1016/j.jaridenv.2011.05.009 10.1016/j.agwat.2017.02.015 10.1006/jare.1996.0088 10.1016/S0168-1923(02)00104-1 10.1016/j.foreco.2009.10.009 10.1111/j.1365-2486.2008.01599.x 10.1016/j.jhydrol.2014.10.048 |
ContentType | Journal Article |
Copyright | 2018 |
Copyright_xml | – notice: 2018 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.ecolmodel.2018.09.020 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
EISSN | 1872-7026 |
EndPage | 79 |
ExternalDocumentID | 10_1016_j_ecolmodel_2018_09_020 S030438001830317X |
GeographicLocations | Central Asia |
GeographicLocations_xml | – name: Central Asia |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFNM ABFYP ABGRD ABLST ABMAC ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SDF SDG SDP SES SPCBC SSA SSJ SSZ T5K WH7 Y6R ~02 ~G- 29G 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ R2- RIG SEN SEW SSH VH1 WUQ ZY4 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c348t-8d5715860189fb053580d0193fb332de15a92eae0fdc3cf21bb137ccc986b73b3 |
IEDL.DBID | .~1 |
ISSN | 0304-3800 |
IngestDate | Fri Sep 05 00:03:26 EDT 2025 Tue Jul 01 03:09:09 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 Fri Feb 23 02:24:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water use efficiency Grazing Central Asia Evapotranspiration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-8d5715860189fb053580d0193fb332de15a92eae0fdc3cf21bb137ccc986b73b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2237507327 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2237507327 crossref_citationtrail_10_1016_j_ecolmodel_2018_09_020 crossref_primary_10_1016_j_ecolmodel_2018_09_020 elsevier_sciencedirect_doi_10_1016_j_ecolmodel_2018_09_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-24 |
PublicationDateYYYYMMDD | 2018-11-24 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-24 day: 24 |
PublicationDecade | 2010 |
PublicationTitle | Ecological modelling |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tian, Chen, Liu, Zhang, Sun, Lu, Xu, Ren, Pan, Chappelka (bib0195) 2010; 259 Wu, Zhang, Shen, Shi, Xu, Li (bib0205) 2013; 66 Lapitan, Parton (bib0095) 1996; 79 Brümmer, Black, Jassal, Grant, Spittlehouse, Chen, Nesic, Amiro, Arain, Barr, Bourque, Coursolle, Dunn, Flanagan, Humphreys, Lafleur, Margolis, McCaughey, Wofsy (bib0020) 2012; 153 Palmer, Yunusa (bib0145) 2011; 75 Kerven, Steimann, Ashley, Dear, ur-Rahim (bib0090) 2011 Li, Harazono, Oikawa, Zhao, Ying, Chang (bib0105) 2000; 102 Miao, Chen, Chen, Zhang, Zhang, Wei, Han, Lin (bib0130) 2009; 149 Thornton (bib0190) 1998 Luo, Han, Zhou, Li, Chen, Li, Hu, Li (bib0120) 2012; 11 Olejniczak (bib0140) 2011; 212 Polley, Frank, Sanabria, Phillips (bib0155) 2008; 14 Alfieri, Blanken, Yates, Steffen (bib0010) 2007; 8 Environmental Modeling Center, N.C.f.E.P.N.W.S.N.U.S.D.o.C (bib0060) 2010 FAO/IIASA/ISRIC/ISS-CAS/JRC (bib0065) 2012 Peng, Jiang, Liu, Niu, Liu, Biswas (bib0150) 2007; 70 Running, Hunt (bib0165) 1993 Hidy, Barcza, Haszpra, Churkina, Pinter, Nagy (bib0080) 2012; 226 Wint, Robinson (bib0200) 2007 Agrawal (bib0005) 2000; 5 Buslov, De Grave, Bataleva, Batalev (bib0030) 2007; 29 NRC (bib0135) 1985 Cowan (bib0040) 2007; 69 Hupet, Vanclooster (bib0085) 2005; 303 Li, Eugster, Asanuma, Kotani, Davaa, Oyunbaatar, Sugita (bib0110) 2006; 137 Qiu, Wang, He, Zhang, Chen, Chen, Yang (bib0160) 2008; 148 Day, Detling (bib0050) 1994; 132 Eichelmann, Wagner-Riddle, Warland, Deen, Voroney (bib0055) 2016; 217 Law, Falge, Gu, Baldocchi, Bakwin, Berbigier, Davis, Dolman, Falk, Fuentes, Goldstein, Granier, Grelle, Hollinger, Janssens, Jarvis, Jensen, Katul, Mahli, Matteucci, Meyers, Monson, Munger, Oechel, Olson, Pilegaard, Paw U, Thorgeirsson, Valentini, Verma, Vesala, Wilson, Wofsy (bib0100) 2002; 113 Seligman, Cavagnaro, Horno (bib0170) 1992; 60 Stewart, Verma (bib0185) 1992; 97 Cowan, Farquhar (bib0045) 1977 Bremer, Auen, Ham, Owensby (bib0015) 2001; 93 McNaughton, Banyikwa, McNaughton (bib0125) 1997; 278 Frank (bib0070) 2003; 95 Brutsaert (bib0025) 1982 Yang, Zhou (bib0210) 2011; 396 Song, Ryu, Jeon (bib0180) 2014; 519 Luo, Sun, Wang, Ren, Xu (bib0115) 2010; 13 Coronato, Bertiller (bib0035) 1996; 34 Han, Luo, Li, Shakir, Wu, Saidov (bib0075) 2016; 216 Singh, Boote, Angadi, Grover (bib0175) 2017; 185 Zhang, Li, Ma, Zhao, Li, Chen, Jiang, Huang (bib0215) 2014; 102 Han (10.1016/j.ecolmodel.2018.09.020_bib0075) 2016; 216 Luo (10.1016/j.ecolmodel.2018.09.020_bib0120) 2012; 11 Peng (10.1016/j.ecolmodel.2018.09.020_bib0150) 2007; 70 Hupet (10.1016/j.ecolmodel.2018.09.020_bib0085) 2005; 303 Coronato (10.1016/j.ecolmodel.2018.09.020_bib0035) 1996; 34 Luo (10.1016/j.ecolmodel.2018.09.020_bib0115) 2010; 13 Brümmer (10.1016/j.ecolmodel.2018.09.020_bib0020) 2012; 153 Frank (10.1016/j.ecolmodel.2018.09.020_bib0070) 2003; 95 Law (10.1016/j.ecolmodel.2018.09.020_bib0100) 2002; 113 Agrawal (10.1016/j.ecolmodel.2018.09.020_bib0005) 2000; 5 Cowan (10.1016/j.ecolmodel.2018.09.020_bib0045) 1977 Kerven (10.1016/j.ecolmodel.2018.09.020_bib0090) 2011 Zhang (10.1016/j.ecolmodel.2018.09.020_bib0215) 2014; 102 Brutsaert (10.1016/j.ecolmodel.2018.09.020_bib0025) 1982 McNaughton (10.1016/j.ecolmodel.2018.09.020_bib0125) 1997; 278 Olejniczak (10.1016/j.ecolmodel.2018.09.020_bib0140) 2011; 212 Eichelmann (10.1016/j.ecolmodel.2018.09.020_bib0055) 2016; 217 Song (10.1016/j.ecolmodel.2018.09.020_bib0180) 2014; 519 Tian (10.1016/j.ecolmodel.2018.09.020_bib0195) 2010; 259 Palmer (10.1016/j.ecolmodel.2018.09.020_bib0145) 2011; 75 Buslov (10.1016/j.ecolmodel.2018.09.020_bib0030) 2007; 29 Day (10.1016/j.ecolmodel.2018.09.020_bib0050) 1994; 132 Running (10.1016/j.ecolmodel.2018.09.020_bib0165) 1993 Seligman (10.1016/j.ecolmodel.2018.09.020_bib0170) 1992; 60 Wu (10.1016/j.ecolmodel.2018.09.020_bib0205) 2013; 66 Li (10.1016/j.ecolmodel.2018.09.020_bib0105) 2000; 102 Lapitan (10.1016/j.ecolmodel.2018.09.020_bib0095) 1996; 79 Cowan (10.1016/j.ecolmodel.2018.09.020_bib0040) 2007; 69 Yang (10.1016/j.ecolmodel.2018.09.020_bib0210) 2011; 396 Environmental Modeling Center (10.1016/j.ecolmodel.2018.09.020_bib0060) 2010 FAO/IIASA/ISRIC/ISS-CAS/JRC (10.1016/j.ecolmodel.2018.09.020_bib0065) 2012 Hidy (10.1016/j.ecolmodel.2018.09.020_bib0080) 2012; 226 Singh (10.1016/j.ecolmodel.2018.09.020_bib0175) 2017; 185 Thornton (10.1016/j.ecolmodel.2018.09.020_bib0190) 1998 Miao (10.1016/j.ecolmodel.2018.09.020_bib0130) 2009; 149 Qiu (10.1016/j.ecolmodel.2018.09.020_bib0160) 2008; 148 Stewart (10.1016/j.ecolmodel.2018.09.020_bib0185) 1992; 97 NRC (10.1016/j.ecolmodel.2018.09.020_bib0135) 1985 Wint (10.1016/j.ecolmodel.2018.09.020_bib0200) 2007 Alfieri (10.1016/j.ecolmodel.2018.09.020_bib0010) 2007; 8 Li (10.1016/j.ecolmodel.2018.09.020_bib0110) 2006; 137 Bremer (10.1016/j.ecolmodel.2018.09.020_bib0015) 2001; 93 Polley (10.1016/j.ecolmodel.2018.09.020_bib0155) 2008; 14 |
References_xml | – volume: 95 start-page: 1504 year: 2003 end-page: 1509 ident: bib0070 article-title: Evapotranspiration from northern semiarid grasslands publication-title: Agron. J. – volume: 259 start-page: 1311 year: 2010 end-page: 1327 ident: bib0195 article-title: Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007 publication-title: For. Ecol. Manage. – volume: 217 start-page: 108 year: 2016 end-page: 119 ident: bib0055 article-title: Evapotranspiration, water use efficiency, and energy partitioning of a mature switchgrass stand publication-title: Agric. For. Meteorol. – volume: 212 start-page: 1927 year: 2011 end-page: 1935 ident: bib0140 article-title: Overcompensation in response to simulated herbivory in the perennial herb Sedum maximum publication-title: Plant Ecol. – volume: 137 start-page: 89 year: 2006 end-page: 106 ident: bib0110 article-title: Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia publication-title: Agric. For. Meteorol. – year: 1998 ident: bib0190 article-title: Description of a Numerical Simulation Model for Pre-dicting the Dynamics of Energy, Water, Carbon and Nitrogen in a Terrestrial Ecosystem – volume: 11 start-page: 126 year: 2012 end-page: 136 ident: bib0120 article-title: Moderate grazing can promote aboveground primary production of grassland under water stress publication-title: Ecol. Complex. – volume: 149 start-page: 1810 year: 2009 end-page: 1819 ident: bib0130 article-title: Cultivation and grazing altered evapotranspiration and dynamics in Inner Mongolia steppes publication-title: Agric. For. Meteorol. – year: 2012 ident: bib0065 article-title: Harmonized World Soil Database (version 1.2) – volume: 70 start-page: 304 year: 2007 end-page: 315 ident: bib0150 article-title: Photosynthesis, transpiration and water use efficiency of four plant species with grazing intensities in Hunshandak Sandland, China publication-title: J. Arid Environ. – volume: 93 start-page: 338 year: 2001 end-page: 348 ident: bib0015 article-title: Evapotranspiration in a Prairie ecosystem: effects of grazing by cattle publication-title: Agron. J. – year: 1993 ident: bib0165 article-title: Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale-models publication-title: Scaling Physiological Processes: Leaf to Globe – volume: 29 start-page: 205 year: 2007 end-page: 214 ident: bib0030 article-title: Cenozoic tectonic and geodynamic evolution of the Kyrgyz Tien Shan Mountains: a review of geological, thermochronological and geophysical data publication-title: J. Asian Earth Sci. – volume: 8 start-page: 207 year: 2007 end-page: 220 ident: bib0010 article-title: Variability in the environmental factors driving evapotranspiration from a grazed rangeland during severe drought conditions publication-title: J. Hydrometeorol. – volume: 60 start-page: 45 year: 1992 end-page: 61 ident: bib0170 article-title: Simulation of defoliation effects on primary production of a warm-season, semiarid perennial-species grassland publication-title: Ecol. Modell. – volume: 185 start-page: 137 year: 2017 end-page: 144 ident: bib0175 article-title: Estimating water balance, evapotranspiration and water use efficiency of spring safflower using the CROPGRO model publication-title: Agric. Water Manage. – year: 1982 ident: bib0025 article-title: Evaporation into the Atmosphere: Theory, History, and Applications – volume: 303 start-page: 247 year: 2005 end-page: 270 ident: bib0085 article-title: Micro-variability of hydrological processes at the maize row scale: implications for soil water content measurements and evapotranspiration estimates publication-title: J. Hydrol. – year: 2010 ident: bib0060 article-title: NCEP Climate Forecast System Reanalysis (CFSR) Selected Hourly Time-Series Products, January 1979 to December 2010. Research Data Archive at the National Center for Atmospheric Research – volume: 75 start-page: 1223 year: 2011 end-page: 1227 ident: bib0145 article-title: Biomass production, evapotranspiration and water use efficiency of arid rangelands in the Northern Cape, South Africa publication-title: J. Arid Environ. – volume: 278 start-page: 1798 year: 1997 end-page: 1800 ident: bib0125 article-title: Promotion of the cycling of diet-enhancing nutrients by African grazers publication-title: Science – volume: 14 start-page: 1620 year: 2008 end-page: 1632 ident: bib0155 article-title: Interannual variability in carbon dioxide fluxes and flux-climate relationships on grazed and ungrazed northern mixed-grass prairie publication-title: Glob. Change Biol. Bioenergy – volume: 226 start-page: 99 year: 2012 end-page: 119 ident: bib0080 article-title: Development of the Biome-BGC model for simulation of managed herbaceous ecosystems publication-title: Ecol. Modell. – volume: 97 year: 1992 ident: bib0185 article-title: Comparisons of surface fluxes and conductances at two contrasting sites within the FIFE area publication-title: J. Geophys. Res. – year: 1977 ident: bib0045 article-title: Stomatal function in relation to leaf metabolism and environment publication-title: Integration of Activity in the Higher Plant – year: 1985 ident: bib0135 article-title: Nutrient Requirements of Sheep – volume: 148 start-page: 1848 year: 2008 end-page: 1859 ident: bib0160 article-title: Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the north China plain publication-title: Agric. For. Meteorol. – volume: 79 start-page: 113 year: 1996 end-page: 130 ident: bib0095 article-title: Seasonal variabilities in the distribution of the microclimatic factors and evapotranspiration in a shortgrass steppe publication-title: Agric. For. Meteorol. – volume: 113 start-page: 97 year: 2002 end-page: 120 ident: bib0100 article-title: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation publication-title: Agric. For. Meteorol. – volume: 519 start-page: 3531 year: 2014 end-page: 3540 ident: bib0180 article-title: Interannual variability of regional evapotranspiration under precipitation extremes: a case study of the Youngsan River basin in Korea publication-title: J. Hydrol. – volume: 216 start-page: 203 year: 2016 end-page: 214 ident: bib0075 article-title: Simulated grazing effects on carbon emission in Central Asia publication-title: Agric. For. Meteorol. – volume: 13 start-page: 949 year: 2010 end-page: 965 ident: bib0115 article-title: Modeling productivity in mangrove forests as impacted by effective soil water availability and its sensitivity to climate change using biome-BGC publication-title: Ecosystems – volume: 396 start-page: 139 year: 2011 end-page: 147 ident: bib0210 article-title: Characteristics and modeling of evapotranspiration over a temperate desert steppe in Inner Mongolia, China publication-title: J. Hydrol. – volume: 153 start-page: 14 year: 2012 end-page: 30 ident: bib0020 article-title: How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems publication-title: Agric. For. Meteorol. – volume: 102 start-page: 125 year: 2000 end-page: 137 ident: bib0105 article-title: Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia publication-title: Agric. For. Meteorol. – volume: 69 start-page: 359 year: 2007 end-page: 363 ident: bib0040 article-title: Geographic usage of the terms Middle Asia and Central Asia publication-title: J. Arid Environ. – volume: 5 start-page: 309 year: 2000 end-page: 313 ident: bib0005 article-title: Overcompensation of plants in response to herbivory and the by-product benefits of mutualism publication-title: Trends Plant Sci. – year: 2007 ident: bib0200 article-title: Gridded Livestock of the World 2007 – volume: 132 start-page: 381 year: 1994 end-page: 392 ident: bib0050 article-title: Water relations of Agropyron smithii and Bouteloua gracilis and community evapotranspiration following long-term grazing by prairie dogs publication-title: Am. Midl. Nat. – year: 2011 ident: bib0090 article-title: Pastoralism and Farming in Central Asia’s Mountains: A Research Review[in English and Russian], MSRC Background Paper No. 1 – volume: 34 start-page: 1 year: 1996 end-page: 9 ident: bib0035 article-title: Precipitation and landscape related effects on soil moisture in semi-arid rangelands of Patagonia publication-title: J. Arid Environ. – volume: 102 start-page: 8 year: 2014 end-page: 20 ident: bib0215 article-title: Interannual and seasonal variability in evapotranspiration and energy partitioning over the alpine riparian shrub Myricaria squamosa Desv. on Qinghai–Tibet Plateau publication-title: Cold Reg. Sci. Technol. – volume: 66 start-page: 454 year: 2013 end-page: 461 ident: bib0205 article-title: Grazing-exclusion effects on aboveground biomass and water-use efficiency of alpine grasslands on the northern Tibetan plateau publication-title: Rangel. Ecol. Manage. – year: 1985 ident: 10.1016/j.ecolmodel.2018.09.020_bib0135 – volume: 212 start-page: 1927 year: 2011 ident: 10.1016/j.ecolmodel.2018.09.020_bib0140 article-title: Overcompensation in response to simulated herbivory in the perennial herb Sedum maximum publication-title: Plant Ecol. doi: 10.1007/s11258-011-9985-0 – year: 2011 ident: 10.1016/j.ecolmodel.2018.09.020_bib0090 – volume: 66 start-page: 454 year: 2013 ident: 10.1016/j.ecolmodel.2018.09.020_bib0205 article-title: Grazing-exclusion effects on aboveground biomass and water-use efficiency of alpine grasslands on the northern Tibetan plateau publication-title: Rangel. Ecol. Manage. doi: 10.2111/REM-D-12-00051.1 – volume: 102 start-page: 8 year: 2014 ident: 10.1016/j.ecolmodel.2018.09.020_bib0215 article-title: Interannual and seasonal variability in evapotranspiration and energy partitioning over the alpine riparian shrub Myricaria squamosa Desv. on Qinghai–Tibet Plateau publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2014.02.001 – volume: 153 start-page: 14 year: 2012 ident: 10.1016/j.ecolmodel.2018.09.020_bib0020 article-title: How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2011.04.008 – volume: 226 start-page: 99 year: 2012 ident: 10.1016/j.ecolmodel.2018.09.020_bib0080 article-title: Development of the Biome-BGC model for simulation of managed herbaceous ecosystems publication-title: Ecol. Modell. doi: 10.1016/j.ecolmodel.2011.11.008 – volume: 137 start-page: 89 year: 2006 ident: 10.1016/j.ecolmodel.2018.09.020_bib0110 article-title: Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2006.03.010 – volume: 11 start-page: 126 year: 2012 ident: 10.1016/j.ecolmodel.2018.09.020_bib0120 article-title: Moderate grazing can promote aboveground primary production of grassland under water stress publication-title: Ecol. Complex. doi: 10.1016/j.ecocom.2012.04.004 – volume: 5 start-page: 309 year: 2000 ident: 10.1016/j.ecolmodel.2018.09.020_bib0005 article-title: Overcompensation of plants in response to herbivory and the by-product benefits of mutualism publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(00)01679-4 – year: 2012 ident: 10.1016/j.ecolmodel.2018.09.020_bib0065 – volume: 303 start-page: 247 year: 2005 ident: 10.1016/j.ecolmodel.2018.09.020_bib0085 article-title: Micro-variability of hydrological processes at the maize row scale: implications for soil water content measurements and evapotranspiration estimates publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.07.017 – volume: 149 start-page: 1810 year: 2009 ident: 10.1016/j.ecolmodel.2018.09.020_bib0130 article-title: Cultivation and grazing altered evapotranspiration and dynamics in Inner Mongolia steppes publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2009.06.011 – volume: 13 start-page: 949 year: 2010 ident: 10.1016/j.ecolmodel.2018.09.020_bib0115 article-title: Modeling productivity in mangrove forests as impacted by effective soil water availability and its sensitivity to climate change using biome-BGC publication-title: Ecosystems doi: 10.1007/s10021-010-9365-y – volume: 278 start-page: 1798 year: 1997 ident: 10.1016/j.ecolmodel.2018.09.020_bib0125 article-title: Promotion of the cycling of diet-enhancing nutrients by African grazers publication-title: Science doi: 10.1126/science.278.5344.1798 – volume: 396 start-page: 139 year: 2011 ident: 10.1016/j.ecolmodel.2018.09.020_bib0210 article-title: Characteristics and modeling of evapotranspiration over a temperate desert steppe in Inner Mongolia, China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.11.001 – volume: 216 start-page: 203 year: 2016 ident: 10.1016/j.ecolmodel.2018.09.020_bib0075 article-title: Simulated grazing effects on carbon emission in Central Asia publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.10.007 – volume: 8 start-page: 207 year: 2007 ident: 10.1016/j.ecolmodel.2018.09.020_bib0010 article-title: Variability in the environmental factors driving evapotranspiration from a grazed rangeland during severe drought conditions publication-title: J. Hydrometeorol. doi: 10.1175/JHM569.1 – year: 2007 ident: 10.1016/j.ecolmodel.2018.09.020_bib0200 – volume: 148 start-page: 1848 year: 2008 ident: 10.1016/j.ecolmodel.2018.09.020_bib0160 article-title: Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the north China plain publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2008.06.010 – volume: 93 start-page: 338 year: 2001 ident: 10.1016/j.ecolmodel.2018.09.020_bib0015 article-title: Evapotranspiration in a Prairie ecosystem: effects of grazing by cattle publication-title: Agron. J. doi: 10.2134/agronj2001.932338x – year: 2010 ident: 10.1016/j.ecolmodel.2018.09.020_bib0060 – year: 1998 ident: 10.1016/j.ecolmodel.2018.09.020_bib0190 – volume: 132 start-page: 381 year: 1994 ident: 10.1016/j.ecolmodel.2018.09.020_bib0050 article-title: Water relations of Agropyron smithii and Bouteloua gracilis and community evapotranspiration following long-term grazing by prairie dogs publication-title: Am. Midl. Nat. doi: 10.2307/2426594 – volume: 95 start-page: 1504 year: 2003 ident: 10.1016/j.ecolmodel.2018.09.020_bib0070 article-title: Evapotranspiration from northern semiarid grasslands publication-title: Agron. J. doi: 10.2134/agronj2003.1504 – volume: 102 start-page: 125 year: 2000 ident: 10.1016/j.ecolmodel.2018.09.020_bib0105 article-title: Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(00)00101-5 – volume: 29 start-page: 205 year: 2007 ident: 10.1016/j.ecolmodel.2018.09.020_bib0030 article-title: Cenozoic tectonic and geodynamic evolution of the Kyrgyz Tien Shan Mountains: a review of geological, thermochronological and geophysical data publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2006.07.001 – volume: 97 year: 1992 ident: 10.1016/j.ecolmodel.2018.09.020_bib0185 article-title: Comparisons of surface fluxes and conductances at two contrasting sites within the FIFE area publication-title: J. Geophys. Res. doi: 10.1029/92JD00256 – volume: 69 start-page: 359 year: 2007 ident: 10.1016/j.ecolmodel.2018.09.020_bib0040 article-title: Geographic usage of the terms Middle Asia and Central Asia publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2006.09.013 – volume: 79 start-page: 113 year: 1996 ident: 10.1016/j.ecolmodel.2018.09.020_bib0095 article-title: Seasonal variabilities in the distribution of the microclimatic factors and evapotranspiration in a shortgrass steppe publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(95)02272-4 – volume: 60 start-page: 45 year: 1992 ident: 10.1016/j.ecolmodel.2018.09.020_bib0170 article-title: Simulation of defoliation effects on primary production of a warm-season, semiarid perennial-species grassland publication-title: Ecol. Modell. doi: 10.1016/0304-3800(92)90012-4 – volume: 217 start-page: 108 year: 2016 ident: 10.1016/j.ecolmodel.2018.09.020_bib0055 article-title: Evapotranspiration, water use efficiency, and energy partitioning of a mature switchgrass stand publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.11.008 – year: 1977 ident: 10.1016/j.ecolmodel.2018.09.020_bib0045 article-title: Stomatal function in relation to leaf metabolism and environment – volume: 70 start-page: 304 year: 2007 ident: 10.1016/j.ecolmodel.2018.09.020_bib0150 article-title: Photosynthesis, transpiration and water use efficiency of four plant species with grazing intensities in Hunshandak Sandland, China publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2007.01.002 – volume: 75 start-page: 1223 year: 2011 ident: 10.1016/j.ecolmodel.2018.09.020_bib0145 article-title: Biomass production, evapotranspiration and water use efficiency of arid rangelands in the Northern Cape, South Africa publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2011.05.009 – volume: 185 start-page: 137 year: 2017 ident: 10.1016/j.ecolmodel.2018.09.020_bib0175 article-title: Estimating water balance, evapotranspiration and water use efficiency of spring safflower using the CROPGRO model publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2017.02.015 – year: 1982 ident: 10.1016/j.ecolmodel.2018.09.020_bib0025 – volume: 34 start-page: 1 year: 1996 ident: 10.1016/j.ecolmodel.2018.09.020_bib0035 article-title: Precipitation and landscape related effects on soil moisture in semi-arid rangelands of Patagonia publication-title: J. Arid Environ. doi: 10.1006/jare.1996.0088 – volume: 113 start-page: 97 year: 2002 ident: 10.1016/j.ecolmodel.2018.09.020_bib0100 article-title: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(02)00104-1 – year: 1993 ident: 10.1016/j.ecolmodel.2018.09.020_bib0165 article-title: Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale-models – volume: 259 start-page: 1311 year: 2010 ident: 10.1016/j.ecolmodel.2018.09.020_bib0195 article-title: Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007 publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2009.10.009 – volume: 14 start-page: 1620 year: 2008 ident: 10.1016/j.ecolmodel.2018.09.020_bib0155 article-title: Interannual variability in carbon dioxide fluxes and flux-climate relationships on grazed and ungrazed northern mixed-grass prairie publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/j.1365-2486.2008.01599.x – volume: 519 start-page: 3531 issue: Part D year: 2014 ident: 10.1016/j.ecolmodel.2018.09.020_bib0180 article-title: Interannual variability of regional evapotranspiration under precipitation extremes: a case study of the Youngsan River basin in Korea publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.10.048 |
SSID | ssj0001282 |
Score | 2.3561294 |
Snippet | •A significant evapotranspiration (ET) decreasing trend of 1.47–2.72 mm m−2 yr−1 during 1979-2011 was experienced throughout Central Asia.•Water use efficiency... Accurate predictions of water vapor at large temporal and spatial scales are particularly important in global studies. In recent years, Central Asian... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 72 |
SubjectTerms | Central Asia climate change climatic factors Evapotranspiration forests Grazing grazing intensity meadows prediction uncertainty Water use efficiency water vapor |
Title | Grazing decreased water use efficiency in Central Asia from 1979 to 2011 |
URI | https://dx.doi.org/10.1016/j.ecolmodel.2018.09.020 https://www.proquest.com/docview/2237507327 |
Volume | 388 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9DEbyIn_g5InitW5q0Sb0N2ZyKu6iwW8hXZSLdWDfEi3-7eV3qUIQdPLYkpLwk7_3SvN_vIXShHLNcMBYJpWzEVJJHInUkEkliqdOCGgrc4YdB2n9md8Nk2EDXNRcG0iqD71_49MpbhzetYM3WZDRqPcKlHhVQVc67YcKHwGBnHPTzLz-XaR7e_4abBBZB6x85Xv6E91ZVnIEcL1EJnkLh778j1C9fXQWg3jbaCsgRdxYft4MarthFG91KdfpjFx10l5Q13yzs2XIP9W-mICH9gm2FEEtn8bsHmFM8Lx12lYIE0C_xqMDhVy_ulCOFgXiCScYzPBtjCOD76LnXfbruR6F-QmQoE7NI2ISTRPgjl8hyDUIuom09pKO5pjS2jiQqi51y7dwaavKYaE0oN8ZkItWcanqA1opx4Q4RTm2WGyV0pnLNOBWKW-qPalwpo4ii5Ailtc2kCeLiUOPiTdZZZK_y29gSjC3bmfTGPkLt746Thb7G6i5X9aTIH0tF-iiwuvN5PY3SbyS4HVGFG89L6XGSR0-cxvz4PwOcoE14ArpizE7R2mw6d2cet8x0s1qYTbTeub3vD74A9WPtAQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xoBVcEI9FvDHSXqPWcRI73CpUCK9eFqTeLL-CilCKmlaIf48ndYpASBz2mmSUaGx_8zme-Qbgr3KJ5SJJIqGUjRKVlpHIHI1EmlrmtGCGYe3w3SArHpLrYTpcgvO2FgbTKgP2zzG9QetwpRO82XkZjTr_8FCPCewq52GY8uEvWEF1Kj_ZV3pXN8VgAcgegsNhQhKhwac0L7_Je26azmCal2g0T7H39_dB6gtcNzHoYgPWA3kkvfn3bcKSq7bgd78Rnn7bgp3-R9Wafyws23obissJqkg_EtuQxNpZ8uo55oTMakdcIyKBFZhkVJHwt5f06pEiWHtCaM5zMh0TjOF_4OGif39eRKGFQmRYIqaRsCmnqfC7LpGXGrVcRNd6VsdKzVhsHU1VHjvluqU1zJQx1ZoybozJRaY502wHlqtx5XaBZDYvjRI6V6X2XhaKW-Z3a1wpo6hidA-y1mfSBH1xbHPxLNtEsie5cLZEZ8tuLr2z96C7MHyZS2z8bHLWDor8NFukDwQ_G5-2wyj9WsIDElW58ayWnip5AsVZzPf_5wUnsFrc393K26vBzQGs4R2sXoyTQ1ieTmbuyNOYqT4O0_QdGQbvsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grazing+decreased+water+use+efficiency+in+Central+Asia+from+1979+to+2011&rft.jtitle=Ecological+modelling&rft.au=Han%2C+Qifei&rft.au=Li%2C+Chaofan&rft.au=Zhao%2C+Chengyi&rft.au=Zhang%2C+Yaoqi&rft.date=2018-11-24&rft.pub=Elsevier+B.V&rft.issn=0304-3800&rft.eissn=1872-7026&rft.volume=388&rft.spage=72&rft.epage=79&rft_id=info:doi/10.1016%2Fj.ecolmodel.2018.09.020&rft.externalDocID=S030438001830317X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon |