What chemical reaction dominates the CO2 and O2 in-situ uranium leaching? Insights from a three-dimensional multicomponent reactive transport model at the field scale

The complex behavior of uranium in recovery is mostly driven by water-rock interactions following lixiviant injection into ore-bearing aquifers. Significant challenges exist in exploring the geochemical processes responsible for uranium release and mobilization. Herein this study provides an illustr...

Full description

Saved in:
Bibliographic Details
Published inApplied geochemistry Vol. 148; p. 105522
Main Authors Qiu, Wenjie, Yang, Yun, Song, Jian, Que, Weimin, Liu, Zhengbang, Weng, Haicheng, Wu, Jianfeng, Wu, Jichun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The complex behavior of uranium in recovery is mostly driven by water-rock interactions following lixiviant injection into ore-bearing aquifers. Significant challenges exist in exploring the geochemical processes responsible for uranium release and mobilization. Herein this study provides an illustration of a ten-year field scale CO2 and O2in-situ leaching (ISL) process at a typical sandstone-hosted uranium deposit in northern China. We also conducte a three-dimensional (3-D) multicomponent reactive transport model to assess the effects of potential chemical reactions on uranium recovery, in particular, to focus on the role of sulfide mineral pyrite (FeS2). Numerical simulations are performed considering three potential ISL reaction pathways to determine the relative contributions to uranium release, and the results indicate that bicarbonate promotes the oxidative dissolution of uranium-bearing minerals and further accelerates the uranium leaching in a neutral geochemical system. Moreover, the presence of FeS2 exerts a strong competitive role in the uranium-bearing mineral dissolution by increasing oxygen consumption, favoring the formation of iron oxyhydroxide, and therefore causing an associated decrease in uranium recovery rates. The simulation model demonstrates that dissolution of carbonate neutralizes acidic water generated from pyrite oxidation and aqueous CO2 dissociation. In addition, the cation concentrations (i.e., Ca and Mg) are increasing in the pregnant solutions, showing that the recycling of lixiviants and kinetic dissolution of carbonate generates a larger number of dissolved Ca and Mg and inevitably triggers the secondary dolomite mineral precipitation. The findings improve our fundamental understanding of the geochemical processes in a long-term uranium ISL system and provide important environmental implications for the optimal design of uranium recovery, remediation, and risk exposure assessment. [Display omitted] •Process-based reactive transport modeling is developed for clarifying uranium recovery processes.•Assessment of multi-reaction showed dissolved oxygen dominates the CO2 and O2 in-situ leaching of uranium.•Co-existing pyrite plays a significant role in uranium mobilization.•Chemical clogging induced by secondary mineral precipitates is non-ignorable.
AbstractList The complex behavior of uranium in recovery is mostly driven by water-rock interactions following lixiviant injection into ore-bearing aquifers. Significant challenges exist in exploring the geochemical processes responsible for uranium release and mobilization. Herein this study provides an illustration of a ten-year field scale CO2 and O2in-situ leaching (ISL) process at a typical sandstone-hosted uranium deposit in northern China. We also conducte a three-dimensional (3-D) multicomponent reactive transport model to assess the effects of potential chemical reactions on uranium recovery, in particular, to focus on the role of sulfide mineral pyrite (FeS2). Numerical simulations are performed considering three potential ISL reaction pathways to determine the relative contributions to uranium release, and the results indicate that bicarbonate promotes the oxidative dissolution of uranium-bearing minerals and further accelerates the uranium leaching in a neutral geochemical system. Moreover, the presence of FeS2 exerts a strong competitive role in the uranium-bearing mineral dissolution by increasing oxygen consumption, favoring the formation of iron oxyhydroxide, and therefore causing an associated decrease in uranium recovery rates. The simulation model demonstrates that dissolution of carbonate neutralizes acidic water generated from pyrite oxidation and aqueous CO2 dissociation. In addition, the cation concentrations (i.e., Ca and Mg) are increasing in the pregnant solutions, showing that the recycling of lixiviants and kinetic dissolution of carbonate generates a larger number of dissolved Ca and Mg and inevitably triggers the secondary dolomite mineral precipitation. The findings improve our fundamental understanding of the geochemical processes in a long-term uranium ISL system and provide important environmental implications for the optimal design of uranium recovery, remediation, and risk exposure assessment. [Display omitted] •Process-based reactive transport modeling is developed for clarifying uranium recovery processes.•Assessment of multi-reaction showed dissolved oxygen dominates the CO2 and O2 in-situ leaching of uranium.•Co-existing pyrite plays a significant role in uranium mobilization.•Chemical clogging induced by secondary mineral precipitates is non-ignorable.
The complex behavior of uranium in recovery is mostly driven by water-rock interactions following lixiviant injection into ore-bearing aquifers. Significant challenges exist in exploring the geochemical processes responsible for uranium release and mobilization. Herein this study provides an illustration of a ten-year field scale CO₂ and O₂in-situ leaching (ISL) process at a typical sandstone-hosted uranium deposit in northern China. We also conducte a three-dimensional (3-D) multicomponent reactive transport model to assess the effects of potential chemical reactions on uranium recovery, in particular, to focus on the role of sulfide mineral pyrite (FeS₂). Numerical simulations are performed considering three potential ISL reaction pathways to determine the relative contributions to uranium release, and the results indicate that bicarbonate promotes the oxidative dissolution of uranium-bearing minerals and further accelerates the uranium leaching in a neutral geochemical system. Moreover, the presence of FeS₂ exerts a strong competitive role in the uranium-bearing mineral dissolution by increasing oxygen consumption, favoring the formation of iron oxyhydroxide, and therefore causing an associated decrease in uranium recovery rates. The simulation model demonstrates that dissolution of carbonate neutralizes acidic water generated from pyrite oxidation and aqueous CO₂ dissociation. In addition, the cation concentrations (i.e., Ca and Mg) are increasing in the pregnant solutions, showing that the recycling of lixiviants and kinetic dissolution of carbonate generates a larger number of dissolved Ca and Mg and inevitably triggers the secondary dolomite mineral precipitation. The findings improve our fundamental understanding of the geochemical processes in a long-term uranium ISL system and provide important environmental implications for the optimal design of uranium recovery, remediation, and risk exposure assessment.
ArticleNumber 105522
Author Qiu, Wenjie
Que, Weimin
Yang, Yun
Wu, Jichun
Liu, Zhengbang
Weng, Haicheng
Wu, Jianfeng
Song, Jian
Author_xml – sequence: 1
  givenname: Wenjie
  surname: Qiu
  fullname: Qiu, Wenjie
  organization: Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
– sequence: 2
  givenname: Yun
  surname: Yang
  fullname: Yang, Yun
  organization: School of Earth Sciences and Engineering, Hohai University, Nanjing, 211100, China
– sequence: 3
  givenname: Jian
  surname: Song
  fullname: Song, Jian
  organization: Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
– sequence: 4
  givenname: Weimin
  surname: Que
  fullname: Que, Weimin
  organization: Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing, 101149, China
– sequence: 5
  givenname: Zhengbang
  surname: Liu
  fullname: Liu, Zhengbang
  organization: Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing, 101149, China
– sequence: 6
  givenname: Haicheng
  surname: Weng
  fullname: Weng, Haicheng
  organization: Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing, 101149, China
– sequence: 7
  givenname: Jianfeng
  orcidid: 0000-0001-6095-7101
  surname: Wu
  fullname: Wu, Jianfeng
  email: jfwu@nju.edu.cn, jfwu.nju@gmail.com
  organization: Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
– sequence: 8
  givenname: Jichun
  surname: Wu
  fullname: Wu, Jichun
  organization: Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
BookMark eNqNkcuKFDEUhoOMYM_oM5ilm2pz6XRVL0SGxtGBgdkoLkNITnWdJpcySQ34Qj6nKXpw4UZXB5L_-8_lvyZXMUUg5C1nW874_v15a-YTJDtB2AomRHtVSogXZMOHXnQHLndXZMOGQXbiIPpX5LqUM2NM9UxsyK_vk6l0hdEaTzMYWzFF6lLAaCoUWiegx0dBTXS0FYxdwbrQJZuIS6C-ERPG00d6HwueplromFOgpoEZoHMYoH2k2NzD4ivaFOa2QazPzZ6A1uZV5pQrDcmBp22iteuI4B0tbS54TV6Oxhd481xvyLe7T1-PX7qHx8_3x9uHzsrdULvBmr3se7ZXyprejdZyPoxy19YV1sn-wA5K2F7KJhcSRsWsULBT3Ni9c1LIG_Lu4jvn9GOBUnXAYsF7EyEtRUuu5CClVKu0v0htTqVkGPWcMZj8U3Om12T0Wf9JRq_J6EsyjfzwF2mxmvXs7RDo_4O_vfDQLvGEkHWxCNGCwwy2apfwnx6_AUqltFY
CitedBy_id crossref_primary_10_1016_j_apgeochem_2024_106241
crossref_primary_10_1016_j_net_2025_103435
crossref_primary_10_1016_j_energy_2024_134348
crossref_primary_10_1016_j_hydromet_2024_106301
crossref_primary_10_3390_mining4010009
crossref_primary_10_1016_j_jhydrol_2024_132576
crossref_primary_10_1007_s43832_024_00139_0
crossref_primary_10_1016_j_hydromet_2025_106468
crossref_primary_10_1016_j_oregeorev_2024_106085
crossref_primary_10_1016_j_net_2024_05_021
crossref_primary_10_1111_1755_6724_15058
crossref_primary_10_3847_1538_4365_ad03ed
crossref_primary_10_1016_j_jcou_2025_103063
crossref_primary_10_1029_2022WR033980
crossref_primary_10_1016_j_net_2024_07_057
crossref_primary_10_1002_cssc_202400931
crossref_primary_10_1016_j_jconhyd_2024_104392
crossref_primary_10_1016_j_scitotenv_2023_168580
Cites_doi 10.1016/j.oregeorev.2021.104051
10.1016/j.apgeochem.2018.10.006
10.1016/0016-7037(86)90325-X
10.3390/min11050497
10.1016/j.surfrep.2010.08.003
10.1016/j.apgeochem.2020.104665
10.1016/j.oregeorev.2018.07.025
10.1021/es0606327
10.1180/minmag.1998.62A.3.136
10.1016/j.gca.2012.10.032
10.1016/j.oregeorev.2019.03.003
10.1021/acs.jced.9b01152
10.1016/j.cageo.2005.06.014
10.1016/j.apgeochem.2020.104620
10.1126/sciadv.abf9971
10.1016/j.jnucmat.2005.05.012
10.1016/S0016-7037(99)00237-9
10.1016/j.hydromet.2012.05.005
10.1016/j.oregeorev.2020.103768
10.1016/j.ijggc.2021.103266
10.1021/acs.jpcc.5b10949
10.1016/j.chemgeo.2009.03.028
10.1016/S0016-7037(02)01165-1
10.1007/s11631-021-00502-1
10.1029/94WR00955
10.1016/S0016-7037(98)00140-9
10.1016/j.gca.2009.07.012
10.1007/s10967-017-5207-0
10.1071/EN13117
10.1016/S0016-7037(99)00296-3
10.2138/rmg.2019.85.16
10.1007/s12517-018-4064-7
10.1002/2013WR014404
10.1029/91WR02028
10.1016/j.apenergy.2015.01.017
10.1002/(SICI)1097-4601(1997)29:4<261::AID-KIN4>3.0.CO;2-S
10.1126/science.167.3921.1121
10.1016/0016-7037(94)90241-0
10.1016/j.jnucmat.2005.05.019
10.1016/j.gca.2018.05.027
10.1016/j.ijggc.2016.09.010
10.1007/s10596-014-9443-x
10.1016/j.epsl.2005.09.017
10.2475/ajs.294.5.529
10.1016/0016-7037(94)90016-7
10.1021/es902194x
10.1016/j.apgeochem.2014.09.014
10.1021/es034166m
10.1016/0016-7037(88)90262-1
10.1016/j.gca.2020.05.019
10.1016/S0883-2927(97)00077-2
10.1016/j.oregeorev.2021.104512
10.1016/0016-7037(78)90001-7
10.1016/j.earscirev.2016.05.010
10.1007/s10596-020-10018-x
10.1029/2002JB001979
10.1016/j.jenvman.2016.08.049
10.1016/j.gca.2017.08.043
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apgeochem.2022.105522
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-9134
ExternalDocumentID 10_1016_j_apgeochem_2022_105522
S0883292722003262
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
VH1
WUQ
XPP
ZCA
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c348t-8ca63770655ca7dfcc118f340002cd3790952c733c3423ef50c25e451ac6dd323
IEDL.DBID .~1
ISSN 0883-2927
IngestDate Fri Aug 22 20:18:14 EDT 2025
Thu Apr 24 23:11:38 EDT 2025
Tue Jul 01 01:59:44 EDT 2025
Fri Feb 23 02:38:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords In-situ leaching (ISL) of uranium
Reactive transport modeling (RTM)
Carbonate minerals
Pyrite oxidation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-8ca63770655ca7dfcc118f340002cd3790952c733c3423ef50c25e451ac6dd323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6095-7101
PQID 3153833352
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153833352
crossref_primary_10_1016_j_apgeochem_2022_105522
crossref_citationtrail_10_1016_j_apgeochem_2022_105522
elsevier_sciencedirect_doi_10_1016_j_apgeochem_2022_105522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Applied geochemistry
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dos, Santos, de, Silva, Duarte (bib10) 2016; 120
Kirby, Brady (bib17) 1998; 13
Yang, Qiu, Liu, Song, Wu, Dou, Wang, Wu (bib64) 2022; 41
Steefel, Appelo, Arora, Jacques, Kalbacher, Kolditz, Lagneau, Lichtner, Mayer, Meeussen, Molins, Moulton, Shao, Simunek, Spycher, Yabusaki, Yeh (bib50) 2015; 19
Martens, Zhang, Prommer, Greskowiak, Jeffrey, Roberts (bib25) 2012; 125–126
Luquot, Gouze (bib24) 2009; 265
Krestou, Panias (bib18) 2004; 4
Lei, Li, Li, Jiang (bib23) 2016; 54
Williamson, Rimstidt (bib61) 1994; 58
Martens, Prommer, Sprocati, Sun, Dai, Crane, Jamieson, Tong, Rolle, Fourie (bib26) 2021; 7
Zhao, Li (bib68) 2021; 11
Zhou, Li, Xu, Liu, Sun, Shi (bib71) 2019; 191
Mühr-Ebert, Wagner, Walther (bib31) 2019; 100
Merritt (bib30) 1971; Vol. 1971
(bib34) 2020
Merino, Cera, Bruno, Quiñones, Casas, Clarens, Giménez, de, Rovira, Martínez-Esparza (bib29) 2005; 346
Rong, Jiao, Liu, Wu, Jia, Cao (bib42) 2020; 120
Shen, Li, Guo, Li (bib46) 2020; 65
Stewart, Mayes, Fendorf (bib51) 2010; 44
Yue, Jiao, Fayek, Wu, Rong (bib67) 2021; 139
Wang, Miao, Wang, Gan, Aftab, Li, Zhang, Wang (bib57) 2020; 118
Cumberland, Douglas, Grice, Moreau, J (bib7) 2016; 159
Lagneau, Regnault, Descostes (bib19) 2019; 85
Chandra, Gerson (bib6) 2010; 65
Bi, Hyun, Kukkadapu, Hayes (bib3) 2013; 102
Walter, Frind, Blowes, Ptacek, Molson (bib56) 1994; 30
Saunders, Pivetz, Voorhies, Wilkin (bib44) 2016; 183
Steefel, DePaolo, Lichtner (bib49) 2005; 240
Eliwa (bib12) 2017; 312
Ben, Thiry, Schmitt, Lagneau, Langlais, V, Bélières (bib2) 2014; 51
Dong, Brooks (bib9) 2006; 40
Rimstidt, Vaughan (bib41) 2003; 67
Odorowski, Jegou, De, Broudic, Jouan, Peuget, Martin (bib33) 2017; 219
Steefel, Lasaga (bib48) 1994; 294
Regnault, Lagneau, Fiet (bib40) 2015
Langmuir (bib21) 1978; 42
Cumberland, Evans, Douglas, de Jonge, Fisher, Howard, Moreau (bib8) 2021; 133
Qiu, Liu, Yang, Weng, Jia, Wu, Li, Liu, Wu (bib39) 2022; 52
Torrero, Baraj, De, Gimenez, Casas (bib53) 1997; 29
Xu, Sonnenthal, Spycher, Pruess (bib63) 2006; 32
Lasaga, Soler, Ganor, Burch, Nagy (bib22) 1994; 58
Pierce, Icenhower, Serne, Catalano (bib38) 2005; 345
Zhao, Deng, Xu, Zhang (bib69) 2018; 11
Wei, Li, Wang, Zhu, Liu, Liu, Su (bib60) 2015; 145
Nicholson, Gillham, Reardon (bib32) 1988; 52
Torrero, Casas, de, Duro, Bruno (bib54) 1998; 62
Yeh, Tripathi (bib65) 1991; 27
Casas, de Pablo, Giménez, Torrero, Bruno, Cera, Finch, Ewing (bib5) 1998; 62
Yue, Jiao, Wu, Rong, Xie, Wang, Yan (bib66) 2019; 107
Bonnetti, Zhou, Riegler, Brugger, Fairclough (bib4) 2020; 282
Wazne, Korfiatis, Meng (bib59) 2003; 37
Wang, Zhang, Lei, Wang, Liu, Li, Su (bib58) 2021; 107
Zhao, Cai, Jin, Li, Li, Wei, Guo, Zhang (bib70) 2018; 101
Guillaumont, Fanghänel, Fuger, Grenthe, Neck, Palmer, Rand (bib15) 2003
Pablo, Casas, Giménez, Molera, Rovira, Duro, Bruno (bib35) 1999; 63
Pablo, Casas, Giménez, Clarens, Bruno (bib36) 2003; 807
McKibben, Barnes (bib28) 1986; 50
Ulrich, Ilton, Veeramani, Sharp, Bernier-Latmani, Schofield, Bargar, Giammar (bib55) 2009; 73
Singer, Stumm (bib47) 1970; 167
Gudavalli, Katsenovich, Wellman, Lagos, Tansel (bib14) 2013; 10
Xu, Apps, Pruess (bib62) 2003; 108
Langanay, Romary, Freulon, Langlais, Petit, Lagneau (bib20) 2021; 25
Su, Liu, Yao, Du (bib52) 2020; 127
Belli, Taillefert (bib1) 2018; 235
Salmon, Rate, Rengel, Appleyard, Prommer, Hinz (bib43) 2014; 50
Holmes, Crundwell (bib16) 2000; 64
Lei (10.1016/j.apgeochem.2022.105522_bib23) 2016; 54
Martens (10.1016/j.apgeochem.2022.105522_bib26) 2021; 7
Wei (10.1016/j.apgeochem.2022.105522_bib60) 2015; 145
Saunders (10.1016/j.apgeochem.2022.105522_bib44) 2016; 183
Su (10.1016/j.apgeochem.2022.105522_bib52) 2020; 127
Yang (10.1016/j.apgeochem.2022.105522_bib64) 2022; 41
McKibben (10.1016/j.apgeochem.2022.105522_bib28) 1986; 50
Qiu (10.1016/j.apgeochem.2022.105522_bib39) 2022; 52
Zhou (10.1016/j.apgeochem.2022.105522_bib71) 2019; 191
Shen (10.1016/j.apgeochem.2022.105522_bib46) 2020; 65
Luquot (10.1016/j.apgeochem.2022.105522_bib24) 2009; 265
Xu (10.1016/j.apgeochem.2022.105522_bib63) 2006; 32
Yue (10.1016/j.apgeochem.2022.105522_bib67) 2021; 139
Steefel (10.1016/j.apgeochem.2022.105522_bib48) 1994; 294
Torrero (10.1016/j.apgeochem.2022.105522_bib54) 1998; 62
Wang (10.1016/j.apgeochem.2022.105522_bib57) 2020; 118
Nicholson (10.1016/j.apgeochem.2022.105522_bib32) 1988; 52
Odorowski (10.1016/j.apgeochem.2022.105522_bib33) 2017; 219
Rong (10.1016/j.apgeochem.2022.105522_bib42) 2020; 120
Pablo (10.1016/j.apgeochem.2022.105522_bib36) 2003; 807
Torrero (10.1016/j.apgeochem.2022.105522_bib53) 1997; 29
Bonnetti (10.1016/j.apgeochem.2022.105522_bib4) 2020; 282
Mühr-Ebert (10.1016/j.apgeochem.2022.105522_bib31) 2019; 100
Casas (10.1016/j.apgeochem.2022.105522_bib5) 1998; 62
Merritt (10.1016/j.apgeochem.2022.105522_bib30) 1971; Vol. 1971
Martens (10.1016/j.apgeochem.2022.105522_bib25) 2012; 125–126
Cumberland (10.1016/j.apgeochem.2022.105522_bib7) 2016; 159
Zhao (10.1016/j.apgeochem.2022.105522_bib68) 2021; 11
Langanay (10.1016/j.apgeochem.2022.105522_bib20) 2021; 25
Lagneau (10.1016/j.apgeochem.2022.105522_bib19) 2019; 85
Bi (10.1016/j.apgeochem.2022.105522_bib3) 2013; 102
Pierce (10.1016/j.apgeochem.2022.105522_bib38) 2005; 345
Singer (10.1016/j.apgeochem.2022.105522_bib47) 1970; 167
Wazne (10.1016/j.apgeochem.2022.105522_bib59) 2003; 37
Lasaga (10.1016/j.apgeochem.2022.105522_bib22) 1994; 58
Williamson (10.1016/j.apgeochem.2022.105522_bib61) 1994; 58
Yeh (10.1016/j.apgeochem.2022.105522_bib65) 1991; 27
Guillaumont (10.1016/j.apgeochem.2022.105522_bib15) 2003
Regnault (10.1016/j.apgeochem.2022.105522_bib40) 2015
(10.1016/j.apgeochem.2022.105522_bib34) 2020
Kirby (10.1016/j.apgeochem.2022.105522_bib17) 1998; 13
Steefel (10.1016/j.apgeochem.2022.105522_bib49) 2005; 240
Cumberland (10.1016/j.apgeochem.2022.105522_bib8) 2021; 133
Eliwa (10.1016/j.apgeochem.2022.105522_bib12) 2017; 312
Yue (10.1016/j.apgeochem.2022.105522_bib66) 2019; 107
Merino (10.1016/j.apgeochem.2022.105522_bib29) 2005; 346
Wang (10.1016/j.apgeochem.2022.105522_bib58) 2021; 107
Ben (10.1016/j.apgeochem.2022.105522_bib2) 2014; 51
Rimstidt (10.1016/j.apgeochem.2022.105522_bib41) 2003; 67
Dos (10.1016/j.apgeochem.2022.105522_bib10) 2016; 120
Zhao (10.1016/j.apgeochem.2022.105522_bib70) 2018; 101
Steefel (10.1016/j.apgeochem.2022.105522_bib50) 2015; 19
Salmon (10.1016/j.apgeochem.2022.105522_bib43) 2014; 50
Chandra (10.1016/j.apgeochem.2022.105522_bib6) 2010; 65
Krestou (10.1016/j.apgeochem.2022.105522_bib18) 2004; 4
Gudavalli (10.1016/j.apgeochem.2022.105522_bib14) 2013; 10
Stewart (10.1016/j.apgeochem.2022.105522_bib51) 2010; 44
Dong (10.1016/j.apgeochem.2022.105522_bib9) 2006; 40
Langmuir (10.1016/j.apgeochem.2022.105522_bib21) 1978; 42
Walter (10.1016/j.apgeochem.2022.105522_bib56) 1994; 30
Belli (10.1016/j.apgeochem.2022.105522_bib1) 2018; 235
Ulrich (10.1016/j.apgeochem.2022.105522_bib55) 2009; 73
Xu (10.1016/j.apgeochem.2022.105522_bib62) 2003; 108
Holmes (10.1016/j.apgeochem.2022.105522_bib16) 2000; 64
Zhao (10.1016/j.apgeochem.2022.105522_bib69) 2018; 11
Pablo (10.1016/j.apgeochem.2022.105522_bib35) 1999; 63
References_xml – volume: 50
  start-page: 1509
  year: 1986
  end-page: 1520
  ident: bib28
  article-title: Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures
  publication-title: Geochem. Cosmochim. Acta
– volume: 265
  start-page: 148
  year: 2009
  end-page: 159
  ident: bib24
  article-title: Experimental determination of porosity and permeability changes induced by injection of CO
  publication-title: Chem. Geol.
– volume: 240
  start-page: 539
  year: 2005
  end-page: 558
  ident: bib49
  article-title: Reactive transport modeling: an essential tool and a new research approach for the Earth sciences
  publication-title: Earth Planet Sci. Lett.
– volume: 62
  start-page: 2223
  year: 1998
  end-page: 2231
  ident: bib5
  article-title: The role of pe, pH, and carbonate on the solubility of UO
  publication-title: Geochem. Cosmochim. Acta
– volume: 25
  start-page: 831
  year: 2021
  end-page: 850
  ident: bib20
  article-title: Uncertainty quantification for uranium production in mining exploitation by in Situ Recovery
  publication-title: Comput. Geosci.
– volume: 294
  start-page: 529
  year: 1994
  end-page: 592
  ident: bib48
  article-title: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems
  publication-title: Am. J. Sci.
– volume: 63
  start-page: 3097
  year: 1999
  end-page: 3103
  ident: bib35
  article-title: The oxidative dissolution mechanism of uranium dioxide. I. The effect of temperature in hydrogen carbonate medium
  publication-title: Geochem. Cosmochim. Acta
– volume: 62
  start-page: 1529
  year: 1998
  end-page: 1530
  ident: bib54
  article-title: Oxidative dissolution mechanism of uranium dioxide at 25 C
  publication-title: Mineral. Mag.
– volume: 10
  start-page: 475
  year: 2013
  end-page: 485
  ident: bib14
  article-title: Quantification of kinetic rate law parameters of uranium release from sodium autunite as a function of aqueous bicarbonate concentrations
  publication-title: Environ. Chem.
– volume: 40
  start-page: 4689
  year: 2006
  end-page: 4695
  ident: bib9
  article-title: Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg
  publication-title: Environ. Sci. Technol.
– volume: 13
  start-page: 509
  year: 1998
  end-page: 520
  ident: bib17
  article-title: Field determination of Fe
  publication-title: Appl. Geochem.
– volume: 191
  year: 2019
  ident: bib71
  article-title: Uranium recovery from sandstone-type uranium deposit by acid in-situ leaching - an example from the Kujieertai
  publication-title: Hydrometallurgy
– volume: 312
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib12
  article-title: Kinetics and thermodynamics of carbonate dissolution process of uranium from Abu-Zeniema wet crude uranium concentrates
  publication-title: J. Radioanal. Nucl. Chem.
– volume: 167
  start-page: 1121
  year: 1970
  end-page: 1123
  ident: bib47
  article-title: Acidic mine drainage: the rate-determining step
  publication-title: Science
– volume: 101
  start-page: 273
  year: 2018
  end-page: 292
  ident: bib70
  article-title: Mineralogical and geochemical evidence for biogenic and petroleum-related uranium mineralization in the Qianjiadian deposit, NE China
  publication-title: Ore Geol. Rev.
– volume: 102
  start-page: 175
  year: 2013
  end-page: 190
  ident: bib3
  article-title: Oxidative dissolution of UO
  publication-title: Geochem. Cosmochim. Acta
– volume: 7
  year: 2021
  ident: bib26
  article-title: Toward a more sustainable mining future with electrokinetic in situ leaching
  publication-title: Sci. Adv.
– volume: 73
  start-page: 6065
  year: 2009
  end-page: 6083
  ident: bib55
  article-title: Comparative dissolution kinetics of biogenic and chemogenic uraninite under oxidizing conditions in the presence of carbonate
  publication-title: Geochem. Cosmochim. Acta
– volume: 19
  start-page: 445
  year: 2015
  end-page: 478
  ident: bib50
  article-title: Reactive transport cods for subsurface environmental simulation
  publication-title: Comput. Geosci.
– volume: 42
  start-page: 547
  year: 1978
  end-page: 569
  ident: bib21
  article-title: Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits
  publication-title: Geochem. Cosmochim. Acta
– volume: 30
  start-page: 3137
  year: 1994
  end-page: 3148
  ident: bib56
  article-title: Modeling of multicomponent reactive transport in groundwater: 1. Model development and evaluation
  publication-title: Water Resour. Res.
– volume: 133
  year: 2021
  ident: bib8
  article-title: Characterisation of uranium-pyrite associations within organic-rich Eocene sediments using EM, XFM-μXANES and μXRD
  publication-title: Ore Geol. Rev.
– volume: 183
  start-page: 67
  year: 2016
  end-page: 83
  ident: bib44
  article-title: Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites
  publication-title: J. Environ. Manag.
– volume: 145
  start-page: 198
  year: 2015
  end-page: 210
  ident: bib60
  article-title: Geochemical impact of aquifer storage for impure CO
  publication-title: Appl. Energy
– volume: 85
  start-page: 499
  year: 2019
  end-page: 528
  ident: bib19
  article-title: Industrial deployment of reactive transport simulation: an application to uranium in situ recovery
  publication-title: Rev. Mineral. Geochem.
– volume: 219
  start-page: 1
  year: 2017
  end-page: 21
  ident: bib33
  article-title: Effect of metallic iron on the oxidative dissolution of UO
  publication-title: Geochem. Cosmochim. Acta
– volume: 67
  start-page: 873
  year: 2003
  end-page: 880
  ident: bib41
  article-title: Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism
  publication-title: Geochem. Cosmochim. Acta
– volume: 51
  start-page: 116
  year: 2014
  end-page: 129
  ident: bib2
  article-title: Kinetic reactive transport modelling of column tests for uranium in Situ Recovery (ISR) mining
  publication-title: Appl. Geochem.
– volume: 120
  year: 2020
  ident: bib42
  article-title: Effects of basic intrusions on REE mobility of sandstones and their geological significance: a case study from the Qianjiadian sandstone-hosted uranium deposit in the Songliao Basin
  publication-title: Appl. Geochem.
– volume: 118
  year: 2020
  ident: bib57
  article-title: Simulation of uranium mobilization potential in a deep aquifer under geological carbon storage conditions
  publication-title: Appl. Geochem.
– volume: 65
  start-page: 2017
  year: 2020
  end-page: 2031
  ident: bib46
  article-title: Thermodynamic modeling of in situ leaching of sandstone-type uranium minerals
  publication-title: J. Chem. Eng. Data
– volume: 58
  start-page: 2361
  year: 1994
  end-page: 2386
  ident: bib22
  article-title: Chemical weathering rate laws and global geochemical cycles
  publication-title: Geochem. Cosmochim. Acta
– volume: 29
  start-page: 261
  year: 1997
  end-page: 267
  ident: bib53
  article-title: Kinetics of corrosion and dissolution of uranium dioxide as a function of pH
  publication-title: Int. J. Chem. Kinet.
– volume: 11
  start-page: 707
  year: 2018
  ident: bib69
  article-title: Mineral alteration and pore-plugging caused by acid in situ leaching: a case study of the Wuyier uranium deposit, Xinjiang, NW China
  publication-title: Arabian J. Geosci.
– volume: 37
  start-page: 3619
  year: 2003
  end-page: 3624
  ident: bib59
  article-title: Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 4924
  year: 2014
  end-page: 4952
  ident: bib43
  article-title: Reactive transport controls on sandy acid sulfate soils and impacts on shallow groundwater quality
  publication-title: Water Resour. Res.
– volume: 807
  start-page: 618
  year: 2003
  end-page: 623
  ident: bib36
  article-title: The oxidative dissolution mechanism of uranium dioxide. The effect of pH and oxygen partial pressure
  publication-title: Online Proc. Lib. Archive.
– volume: 32
  start-page: 145
  year: 2006
  end-page: 165
  ident: bib63
  article-title: TOUGHREACT - a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO
  publication-title: Comput. Geosci.
– volume: 4
  start-page: 113
  year: 2004
  end-page: 129
  ident: bib18
  article-title: Uranium (VI) speciation diagrams in the UO2 2+/CO3 2-/H2O system at 25°C
  publication-title: Eur. J. Miner. Process. Environ. Protect.
– volume: 52
  start-page: 627
  year: 2022
  end-page: 638
  ident: bib39
  article-title: Reactive transport numerical modeling of CO
  publication-title: Scientia Sinica Technologica
– volume: 159
  start-page: 160
  year: 2016
  end-page: 185
  ident: bib7
  article-title: Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes
  publication-title: Earth Sci. Rev.
– volume: 346
  start-page: 40
  year: 2005
  end-page: 47
  ident: bib29
  article-title: Radiolytic modelling of spent fuel oxidative dissolution mechanism. Calibration against UO
  publication-title: J. Nucl. Mater.
– volume: 107
  year: 2021
  ident: bib58
  article-title: Potential for uranium release under geologic CO
  publication-title: Int. J. Greenh. Gas Control
– volume: 235
  start-page: 431
  year: 2018
  end-page: 449
  ident: bib1
  article-title: Geochemical controls of the microbially mediated redox cycling of uranium and iron
  publication-title: Geochem. Cosmochim. Acta
– volume: 65
  start-page: 293
  year: 2010
  end-page: 315
  ident: bib6
  article-title: The mechanisms of pyrite oxidation and leaching: a fundamental perspective
  publication-title: Surf. Sci. Rep.
– volume: 107
  start-page: 532
  year: 2019
  end-page: 545
  ident: bib66
  article-title: Selective crystallization and precipitation of authigenic pyrite during diagenesis in uranium reservoir sandbodies in Ordos Basin
  publication-title: Ore Geol. Rev.
– volume: Vol. 1971
  start-page: 59
  year: 1971
  end-page: 83
  ident: bib30
  publication-title: The extractive metallurgy of uranium
– volume: 127
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib52
  article-title: Petrology, mineralogy, and ore leaching of sandstone-hosted uranium deposits in the Ordos Basin, North China
  publication-title: Ore Geol. Rev.
– volume: 64
  start-page: 263
  year: 2000
  end-page: 274
  ident: bib16
  article-title: The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study
  publication-title: Geochem. Cosmochim. Acta
– volume: 41
  start-page: 50
  year: 2022
  end-page: 63
  ident: bib64
  article-title: Quantifying the impact of mineralogical heterogeneity on reactive transport modeling of CO
  publication-title: Acta Geochimica
– year: 2020
  ident: bib34
  article-title: Uranium 2020: Resources, Production and Demand. Red Book 2020. Redbook NEA No. 7551 Nuclear Energy Agency and the International Atomic Energy Agency
– volume: 139
  year: 2021
  ident: bib67
  article-title: Micromorphologies and sulfur isotopic compositions of pyrite in sandstone-hosted uranium deposits: a review and implications for ore genesis
  publication-title: Ore Geol. Rev.
– volume: 100
  start-page: 213
  year: 2019
  end-page: 222
  ident: bib31
  article-title: Speciation of uranium: compilation of a thermodynamic database and its experimental evaluation using different analytical techniques
  publication-title: Appl. Geochem.
– year: 2003
  ident: bib15
  article-title: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium
– volume: 345
  start-page: 206
  year: 2005
  end-page: 218
  ident: bib38
  article-title: Experimental determination of UO
  publication-title: J. Nucl. Mater.
– volume: 11
  start-page: 497
  year: 2021
  ident: bib68
  article-title: Relationship between chamosite alteration and Fe-plugging in sandstone pores during acid in situ leaching of uranium
  publication-title: Minerals
– volume: 282
  start-page: 113
  year: 2020
  end-page: 132
  ident: bib4
  article-title: Large S isotope and trace element fractionations in pyrite of uranium roll front systems result from internally-driven biogeochemical cycle
  publication-title: Geochem. Cosmochim. Acta
– volume: 54
  start-page: 228
  year: 2016
  end-page: 241
  ident: bib23
  article-title: Numerical modeling of co-injection of N
  publication-title: Int. J. Greenh. Gas Control
– volume: 52
  start-page: 1077
  year: 1988
  end-page: 1085
  ident: bib32
  article-title: Pyrite oxidation in carbonate-buffered solution: 1. Experimental kinetics
  publication-title: Geochem. Cosmochim. Acta
– volume: 58
  start-page: 5443
  year: 1994
  end-page: 5454
  ident: bib61
  article-title: The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation
  publication-title: Geochem. Cosmochim. Acta
– volume: 120
  start-page: 2760
  year: 2016
  end-page: 2768
  ident: bib10
  article-title: Pyrite oxidation mechanism by oxygen in aqueous medium
  publication-title: J. Phys. Chem. C
– volume: 27
  start-page: 3075
  year: 1991
  end-page: 3094
  ident: bib65
  article-title: A model for simulating transport of reactive multispecies components: model development and demonstration
  publication-title: Water Resour. Res.
– volume: 125–126
  start-page: 16
  year: 2012
  end-page: 23
  ident: bib25
  article-title: In situ recovery of gold: column leaching experiments and reactive transport modeling
  publication-title: Hydrometallurgy
– year: 2015
  ident: bib40
  article-title: 3D reactive transport simulations of uranium in situ leaching: forecast and process optimization
  publication-title: Uranium - Past and Future Challenges
– volume: 44
  start-page: 928
  year: 2010
  end-page: 934
  ident: bib51
  article-title: Impact of uranyl-calcium-carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments
  publication-title: Environ. Sci. Technol.
– volume: 108
  start-page: 2071
  year: 2003
  ident: bib62
  article-title: Reactive geochemical transport simulation to study mineral trapping for CO
  publication-title: J. Geophys. Res. Solid Earth
– volume: 133
  year: 2021
  ident: 10.1016/j.apgeochem.2022.105522_bib8
  article-title: Characterisation of uranium-pyrite associations within organic-rich Eocene sediments using EM, XFM-μXANES and μXRD
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2021.104051
– volume: 100
  start-page: 213
  year: 2019
  ident: 10.1016/j.apgeochem.2022.105522_bib31
  article-title: Speciation of uranium: compilation of a thermodynamic database and its experimental evaluation using different analytical techniques
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2018.10.006
– volume: 50
  start-page: 1509
  year: 1986
  ident: 10.1016/j.apgeochem.2022.105522_bib28
  article-title: Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/0016-7037(86)90325-X
– volume: 11
  start-page: 497
  issue: 5
  year: 2021
  ident: 10.1016/j.apgeochem.2022.105522_bib68
  article-title: Relationship between chamosite alteration and Fe-plugging in sandstone pores during acid in situ leaching of uranium
  publication-title: Minerals
  doi: 10.3390/min11050497
– volume: 65
  start-page: 293
  year: 2010
  ident: 10.1016/j.apgeochem.2022.105522_bib6
  article-title: The mechanisms of pyrite oxidation and leaching: a fundamental perspective
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/j.surfrep.2010.08.003
– volume: 120
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105522_bib42
  article-title: Effects of basic intrusions on REE mobility of sandstones and their geological significance: a case study from the Qianjiadian sandstone-hosted uranium deposit in the Songliao Basin
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2020.104665
– volume: 101
  start-page: 273
  year: 2018
  ident: 10.1016/j.apgeochem.2022.105522_bib70
  article-title: Mineralogical and geochemical evidence for biogenic and petroleum-related uranium mineralization in the Qianjiadian deposit, NE China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2018.07.025
– volume: 40
  start-page: 4689
  year: 2006
  ident: 10.1016/j.apgeochem.2022.105522_bib9
  article-title: Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg2+, Ca2+, Sr2+, and Ba2+) using anion exchange method
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0606327
– volume: 62
  start-page: 1529
  year: 1998
  ident: 10.1016/j.apgeochem.2022.105522_bib54
  article-title: Oxidative dissolution mechanism of uranium dioxide at 25 C
  publication-title: Mineral. Mag.
  doi: 10.1180/minmag.1998.62A.3.136
– volume: 102
  start-page: 175
  year: 2013
  ident: 10.1016/j.apgeochem.2022.105522_bib3
  article-title: Oxidative dissolution of UO2 in a simulated groundwater containing synthetic nanocrystalline mackinawite
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2012.10.032
– volume: 107
  start-page: 532
  year: 2019
  ident: 10.1016/j.apgeochem.2022.105522_bib66
  article-title: Selective crystallization and precipitation of authigenic pyrite during diagenesis in uranium reservoir sandbodies in Ordos Basin
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2019.03.003
– volume: 65
  start-page: 2017
  issue: 4
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105522_bib46
  article-title: Thermodynamic modeling of in situ leaching of sandstone-type uranium minerals
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.9b01152
– volume: 32
  start-page: 145
  year: 2006
  ident: 10.1016/j.apgeochem.2022.105522_bib63
  article-title: TOUGHREACT - a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geologic sequestration
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.06.014
– volume: 52
  start-page: 627
  year: 2022
  ident: 10.1016/j.apgeochem.2022.105522_bib39
  article-title: Reactive transport numerical modeling of CO2+O2 in-situ leaching in sandstone-type uranium ore
  publication-title: Scientia Sinica Technologica
– volume: 118
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105522_bib57
  article-title: Simulation of uranium mobilization potential in a deep aquifer under geological carbon storage conditions
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2020.104620
– volume: 7
  issue: 18
  year: 2021
  ident: 10.1016/j.apgeochem.2022.105522_bib26
  article-title: Toward a more sustainable mining future with electrokinetic in situ leaching
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf9971
– volume: 345
  start-page: 206
  year: 2005
  ident: 10.1016/j.apgeochem.2022.105522_bib38
  article-title: Experimental determination of UO2(cr) dissolution kinetics: effects of solution saturation state and pH
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2005.05.012
– volume: 63
  start-page: 3097
  year: 1999
  ident: 10.1016/j.apgeochem.2022.105522_bib35
  article-title: The oxidative dissolution mechanism of uranium dioxide. I. The effect of temperature in hydrogen carbonate medium
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00237-9
– volume: 125–126
  start-page: 16
  year: 2012
  ident: 10.1016/j.apgeochem.2022.105522_bib25
  article-title: In situ recovery of gold: column leaching experiments and reactive transport modeling
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.05.005
– volume: 127
  start-page: 1
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105522_bib52
  article-title: Petrology, mineralogy, and ore leaching of sandstone-hosted uranium deposits in the Ordos Basin, North China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2020.103768
– volume: 107
  year: 2021
  ident: 10.1016/j.apgeochem.2022.105522_bib58
  article-title: Potential for uranium release under geologic CO2 storage conditions: the impact of Fe(III)
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2021.103266
– volume: 120
  start-page: 2760
  year: 2016
  ident: 10.1016/j.apgeochem.2022.105522_bib10
  article-title: Pyrite oxidation mechanism by oxygen in aqueous medium
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b10949
– volume: 4
  start-page: 113
  issue: 2
  year: 2004
  ident: 10.1016/j.apgeochem.2022.105522_bib18
  article-title: Uranium (VI) speciation diagrams in the UO2 2+/CO3 2-/H2O system at 25°C
  publication-title: Eur. J. Miner. Process. Environ. Protect.
– volume: 265
  start-page: 148
  year: 2009
  ident: 10.1016/j.apgeochem.2022.105522_bib24
  article-title: Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2009.03.028
– volume: 67
  start-page: 873
  year: 2003
  ident: 10.1016/j.apgeochem.2022.105522_bib41
  article-title: Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/S0016-7037(02)01165-1
– volume: 41
  start-page: 50
  year: 2022
  ident: 10.1016/j.apgeochem.2022.105522_bib64
  article-title: Quantifying the impact of mineralogical heterogeneity on reactive transport modeling of CO2 + O2 in-situ leaching of uranium
  publication-title: Acta Geochimica
  doi: 10.1007/s11631-021-00502-1
– volume: 30
  start-page: 3137
  year: 1994
  ident: 10.1016/j.apgeochem.2022.105522_bib56
  article-title: Modeling of multicomponent reactive transport in groundwater: 1. Model development and evaluation
  publication-title: Water Resour. Res.
  doi: 10.1029/94WR00955
– volume: 62
  start-page: 2223
  year: 1998
  ident: 10.1016/j.apgeochem.2022.105522_bib5
  article-title: The role of pe, pH, and carbonate on the solubility of UO2 and uraninite under nominally reducing conditions
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/S0016-7037(98)00140-9
– volume: 73
  start-page: 6065
  year: 2009
  ident: 10.1016/j.apgeochem.2022.105522_bib55
  article-title: Comparative dissolution kinetics of biogenic and chemogenic uraninite under oxidizing conditions in the presence of carbonate
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2009.07.012
– volume: 312
  start-page: 1
  year: 2017
  ident: 10.1016/j.apgeochem.2022.105522_bib12
  article-title: Kinetics and thermodynamics of carbonate dissolution process of uranium from Abu-Zeniema wet crude uranium concentrates
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-017-5207-0
– volume: Vol. 1971
  start-page: 59
  year: 1971
  ident: 10.1016/j.apgeochem.2022.105522_bib30
– volume: 10
  start-page: 475
  issue: 6
  year: 2013
  ident: 10.1016/j.apgeochem.2022.105522_bib14
  article-title: Quantification of kinetic rate law parameters of uranium release from sodium autunite as a function of aqueous bicarbonate concentrations
  publication-title: Environ. Chem.
  doi: 10.1071/EN13117
– volume: 64
  start-page: 263
  year: 2000
  ident: 10.1016/j.apgeochem.2022.105522_bib16
  article-title: The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00296-3
– volume: 85
  start-page: 499
  year: 2019
  ident: 10.1016/j.apgeochem.2022.105522_bib19
  article-title: Industrial deployment of reactive transport simulation: an application to uranium in situ recovery
  publication-title: Rev. Mineral. Geochem.
  doi: 10.2138/rmg.2019.85.16
– volume: 11
  start-page: 707
  year: 2018
  ident: 10.1016/j.apgeochem.2022.105522_bib69
  article-title: Mineral alteration and pore-plugging caused by acid in situ leaching: a case study of the Wuyier uranium deposit, Xinjiang, NW China
  publication-title: Arabian J. Geosci.
  doi: 10.1007/s12517-018-4064-7
– volume: 50
  start-page: 4924
  year: 2014
  ident: 10.1016/j.apgeochem.2022.105522_bib43
  article-title: Reactive transport controls on sandy acid sulfate soils and impacts on shallow groundwater quality
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014404
– volume: 27
  start-page: 3075
  year: 1991
  ident: 10.1016/j.apgeochem.2022.105522_bib65
  article-title: A model for simulating transport of reactive multispecies components: model development and demonstration
  publication-title: Water Resour. Res.
  doi: 10.1029/91WR02028
– year: 2015
  ident: 10.1016/j.apgeochem.2022.105522_bib40
  article-title: 3D reactive transport simulations of uranium in situ leaching: forecast and process optimization
– volume: 145
  start-page: 198
  year: 2015
  ident: 10.1016/j.apgeochem.2022.105522_bib60
  article-title: Geochemical impact of aquifer storage for impure CO2 containing O2 and N2: tongliao field experiment
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.01.017
– volume: 29
  start-page: 261
  year: 1997
  ident: 10.1016/j.apgeochem.2022.105522_bib53
  article-title: Kinetics of corrosion and dissolution of uranium dioxide as a function of pH
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/(SICI)1097-4601(1997)29:4<261::AID-KIN4>3.0.CO;2-S
– volume: 167
  start-page: 1121
  year: 1970
  ident: 10.1016/j.apgeochem.2022.105522_bib47
  article-title: Acidic mine drainage: the rate-determining step
  publication-title: Science
  doi: 10.1126/science.167.3921.1121
– volume: 58
  start-page: 5443
  year: 1994
  ident: 10.1016/j.apgeochem.2022.105522_bib61
  article-title: The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)90241-0
– volume: 346
  start-page: 40
  issue: 1
  year: 2005
  ident: 10.1016/j.apgeochem.2022.105522_bib29
  article-title: Radiolytic modelling of spent fuel oxidative dissolution mechanism. Calibration against UO2 dynamic leaching experiments
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2005.05.019
– volume: 235
  start-page: 431
  year: 2018
  ident: 10.1016/j.apgeochem.2022.105522_bib1
  article-title: Geochemical controls of the microbially mediated redox cycling of uranium and iron
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2018.05.027
– volume: 54
  start-page: 228
  year: 2016
  ident: 10.1016/j.apgeochem.2022.105522_bib23
  article-title: Numerical modeling of co-injection of N2 and O2 with CO2 into aquifers at the Tongliao CCS site
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2016.09.010
– volume: 19
  start-page: 445
  year: 2015
  ident: 10.1016/j.apgeochem.2022.105522_bib50
  article-title: Reactive transport cods for subsurface environmental simulation
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-014-9443-x
– volume: 240
  start-page: 539
  year: 2005
  ident: 10.1016/j.apgeochem.2022.105522_bib49
  article-title: Reactive transport modeling: an essential tool and a new research approach for the Earth sciences
  publication-title: Earth Planet Sci. Lett.
  doi: 10.1016/j.epsl.2005.09.017
– volume: 294
  start-page: 529
  issue: 5
  year: 1994
  ident: 10.1016/j.apgeochem.2022.105522_bib48
  article-title: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems
  publication-title: Am. J. Sci.
  doi: 10.2475/ajs.294.5.529
– volume: 58
  start-page: 2361
  year: 1994
  ident: 10.1016/j.apgeochem.2022.105522_bib22
  article-title: Chemical weathering rate laws and global geochemical cycles
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)90016-7
– volume: 44
  start-page: 928
  year: 2010
  ident: 10.1016/j.apgeochem.2022.105522_bib51
  article-title: Impact of uranyl-calcium-carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902194x
– volume: 51
  start-page: 116
  year: 2014
  ident: 10.1016/j.apgeochem.2022.105522_bib2
  article-title: Kinetic reactive transport modelling of column tests for uranium in Situ Recovery (ISR) mining
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2014.09.014
– volume: 37
  start-page: 3619
  year: 2003
  ident: 10.1016/j.apgeochem.2022.105522_bib59
  article-title: Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es034166m
– volume: 52
  start-page: 1077
  year: 1988
  ident: 10.1016/j.apgeochem.2022.105522_bib32
  article-title: Pyrite oxidation in carbonate-buffered solution: 1. Experimental kinetics
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/0016-7037(88)90262-1
– volume: 191
  year: 2019
  ident: 10.1016/j.apgeochem.2022.105522_bib71
  article-title: Uranium recovery from sandstone-type uranium deposit by acid in-situ leaching - an example from the Kujieertai
  publication-title: Hydrometallurgy
– volume: 282
  start-page: 113
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105522_bib4
  article-title: Large S isotope and trace element fractionations in pyrite of uranium roll front systems result from internally-driven biogeochemical cycle
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2020.05.019
– volume: 13
  start-page: 509
  year: 1998
  ident: 10.1016/j.apgeochem.2022.105522_bib17
  article-title: Field determination of Fe2+ oxidation rates in acid mine drainage using a continuously-stirred tank reactor
  publication-title: Appl. Geochem.
  doi: 10.1016/S0883-2927(97)00077-2
– volume: 139
  year: 2021
  ident: 10.1016/j.apgeochem.2022.105522_bib67
  article-title: Micromorphologies and sulfur isotopic compositions of pyrite in sandstone-hosted uranium deposits: a review and implications for ore genesis
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2021.104512
– year: 2003
  ident: 10.1016/j.apgeochem.2022.105522_bib15
– volume: 42
  start-page: 547
  year: 1978
  ident: 10.1016/j.apgeochem.2022.105522_bib21
  article-title: Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/0016-7037(78)90001-7
– volume: 159
  start-page: 160
  year: 2016
  ident: 10.1016/j.apgeochem.2022.105522_bib7
  article-title: Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2016.05.010
– volume: 25
  start-page: 831
  year: 2021
  ident: 10.1016/j.apgeochem.2022.105522_bib20
  article-title: Uncertainty quantification for uranium production in mining exploitation by in Situ Recovery
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-020-10018-x
– volume: 108
  start-page: 2071
  issue: B2
  year: 2003
  ident: 10.1016/j.apgeochem.2022.105522_bib62
  article-title: Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2002JB001979
– year: 2020
  ident: 10.1016/j.apgeochem.2022.105522_bib34
– volume: 807
  start-page: 618
  year: 2003
  ident: 10.1016/j.apgeochem.2022.105522_bib36
  article-title: The oxidative dissolution mechanism of uranium dioxide. The effect of pH and oxygen partial pressure
  publication-title: Online Proc. Lib. Archive.
– volume: 183
  start-page: 67
  year: 2016
  ident: 10.1016/j.apgeochem.2022.105522_bib44
  article-title: Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2016.08.049
– volume: 219
  start-page: 1
  year: 2017
  ident: 10.1016/j.apgeochem.2022.105522_bib33
  article-title: Effect of metallic iron on the oxidative dissolution of UO2 doped with a radioactive alpha emitter in synthetic Callovian-Oxfordian groundwater
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2017.08.043
SSID ssj0005702
Score 2.5081375
Snippet The complex behavior of uranium in recovery is mostly driven by water-rock interactions following lixiviant injection into ore-bearing aquifers. Significant...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105522
SubjectTerms bicarbonates
carbon dioxide
Carbonate minerals
carbonates
cations
China
dissociation
dolomite
exposure assessment
geochemistry
In-situ leaching (ISL) of uranium
iron oxyhydroxides
oxidation
oxygen consumption
pyrite
Pyrite oxidation
Reactive transport modeling (RTM)
remediation
risk
simulation models
uranium
Title What chemical reaction dominates the CO2 and O2 in-situ uranium leaching? Insights from a three-dimensional multicomponent reactive transport model at the field scale
URI https://dx.doi.org/10.1016/j.apgeochem.2022.105522
https://www.proquest.com/docview/3153833352
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BSx0xEA6iFLyU2lq0rTJCr-vzJZvNbi8iD-3TUnuwgreQl2TLiu57uLuFXvpz_J3OZLOignjwtLAkm5BJZiY738zH2FcrC1M6mSfl2OMFZYzXnQLtRuJdbkPcz2eUnPzzNJuepycX8mKJTYZcGIJVRt3f6_SgreObUVzN0aKqRmd4PgQv8HuEr-JBD6epol2--_8BzEMF3CE1Tqj1I4yXWfzxRExFKemcE-et5Pw5C_VEVwcDdPSOvY2eIxz0k1tjS75-z958D8y8_z6wWyrCDTbm_wP6giFjAdycwC7oUAK6ejD5xcHUDvBR1UlTtR10aK2q7hquIq5yH47rhq7sDVDuCRjseON94ogHoK_hAQGGSGj0eY1GKw7210M7lEqHwLADOCMaNcDkoMF5-XV2fnT4ezJNIglDYkWat0luTSYUBUOlNcqV1uKVpBQpqVLrhCrQR-NWCWGplqAv5Z7l0qdybGzmnODiI1uucTIbDERqClUoZ2YUUfZmJm0mDCoMY1Ov8mKTZcPCaxsrlBNRxpUeoGiX-l5imiSme4ltsr37jou-SMfLXb4NktWP9ptGU_Jy551hL2g8jRRiMbWfd40WZEAE5bF9es0An9kq0dr3v3q-sOX2pvNb6Py0s-2wu7fZysHxj-npHVQ5Bng
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZhQ0kuoW0a8uhjCrmazUqWH72UZWm62ySbQxPITWglObik3iW2A_1D_Z2dkeUtCZQcejIYjzVo5Hl4vplh7NjIXBdWZlExchigjDDcydFuRM5mxuf9XELFyRfzZHodf7uRNxts0tfCEKwy6P5Op3ttHe4Mw24OV2U5_I7fh-A5vo_wVZz08CZ1p5IDtjmenU3nf5EeqYce0vMRETyCeenVraPZVFSVzjmNvZWc_8tIPVHX3gadvmQ7wXmEccffK7bhqtfsxVc_nPfXLvtNfbjBhBYAgO6gL1oAuyS8C_qUgN4eTC456MoCXsoqqsumhRYNVtn-hLsArfwMs6qmqL0GKj8BjYT3zkWWRgF0bTzAIxEJkL6s0G6FxR4cNH23dPBDdgA5olU9Ug5q5Mu9YdenX64m0yjMYYiMiLMmyoxOREr5UGl0agtjMCopREza1FiR5uimcZMKYaidoCvkieHSxXKkTWKt4GKPDSpkZp-BiHWe5qnVC0oqO72QJhEadYY2sUuz_IAl_cYrE5qU06yMO9Wj0X6otcQUSUx1EjtgJ2vCVden43mST71k1aMjp9CaPE_8sT8LCj9IyrLoyi3bWgmyIYJK2Q7_Z4EPbGt6dXGuzmfzsyO2TVPuuz8_b9mguW_dO_SFmsX7cNb_AEPdCSk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+chemical+reaction+dominates+the+CO2+and+O2+in-situ+uranium+leaching%3F+Insights+from+a+three-dimensional+multicomponent+reactive+transport+model+at+the+field+scale&rft.jtitle=Applied+geochemistry&rft.au=Qiu%2C+Wenjie&rft.au=Yang%2C+Yun&rft.au=Song%2C+Jian&rft.au=Que%2C+Weimin&rft.date=2023-01-01&rft.issn=0883-2927&rft.volume=148&rft.spage=105522&rft_id=info:doi/10.1016%2Fj.apgeochem.2022.105522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apgeochem_2022_105522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon