What chemical reaction dominates the CO2 and O2 in-situ uranium leaching? Insights from a three-dimensional multicomponent reactive transport model at the field scale
The complex behavior of uranium in recovery is mostly driven by water-rock interactions following lixiviant injection into ore-bearing aquifers. Significant challenges exist in exploring the geochemical processes responsible for uranium release and mobilization. Herein this study provides an illustr...
Saved in:
Published in | Applied geochemistry Vol. 148; p. 105522 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The complex behavior of uranium in recovery is mostly driven by water-rock interactions following lixiviant injection into ore-bearing aquifers. Significant challenges exist in exploring the geochemical processes responsible for uranium release and mobilization. Herein this study provides an illustration of a ten-year field scale CO2 and O2in-situ leaching (ISL) process at a typical sandstone-hosted uranium deposit in northern China. We also conducte a three-dimensional (3-D) multicomponent reactive transport model to assess the effects of potential chemical reactions on uranium recovery, in particular, to focus on the role of sulfide mineral pyrite (FeS2). Numerical simulations are performed considering three potential ISL reaction pathways to determine the relative contributions to uranium release, and the results indicate that bicarbonate promotes the oxidative dissolution of uranium-bearing minerals and further accelerates the uranium leaching in a neutral geochemical system. Moreover, the presence of FeS2 exerts a strong competitive role in the uranium-bearing mineral dissolution by increasing oxygen consumption, favoring the formation of iron oxyhydroxide, and therefore causing an associated decrease in uranium recovery rates. The simulation model demonstrates that dissolution of carbonate neutralizes acidic water generated from pyrite oxidation and aqueous CO2 dissociation. In addition, the cation concentrations (i.e., Ca and Mg) are increasing in the pregnant solutions, showing that the recycling of lixiviants and kinetic dissolution of carbonate generates a larger number of dissolved Ca and Mg and inevitably triggers the secondary dolomite mineral precipitation. The findings improve our fundamental understanding of the geochemical processes in a long-term uranium ISL system and provide important environmental implications for the optimal design of uranium recovery, remediation, and risk exposure assessment.
[Display omitted]
•Process-based reactive transport modeling is developed for clarifying uranium recovery processes.•Assessment of multi-reaction showed dissolved oxygen dominates the CO2 and O2 in-situ leaching of uranium.•Co-existing pyrite plays a significant role in uranium mobilization.•Chemical clogging induced by secondary mineral precipitates is non-ignorable. |
---|---|
AbstractList | The complex behavior of uranium in recovery is mostly driven by water-rock interactions following lixiviant injection into ore-bearing aquifers. Significant challenges exist in exploring the geochemical processes responsible for uranium release and mobilization. Herein this study provides an illustration of a ten-year field scale CO2 and O2in-situ leaching (ISL) process at a typical sandstone-hosted uranium deposit in northern China. We also conducte a three-dimensional (3-D) multicomponent reactive transport model to assess the effects of potential chemical reactions on uranium recovery, in particular, to focus on the role of sulfide mineral pyrite (FeS2). Numerical simulations are performed considering three potential ISL reaction pathways to determine the relative contributions to uranium release, and the results indicate that bicarbonate promotes the oxidative dissolution of uranium-bearing minerals and further accelerates the uranium leaching in a neutral geochemical system. Moreover, the presence of FeS2 exerts a strong competitive role in the uranium-bearing mineral dissolution by increasing oxygen consumption, favoring the formation of iron oxyhydroxide, and therefore causing an associated decrease in uranium recovery rates. The simulation model demonstrates that dissolution of carbonate neutralizes acidic water generated from pyrite oxidation and aqueous CO2 dissociation. In addition, the cation concentrations (i.e., Ca and Mg) are increasing in the pregnant solutions, showing that the recycling of lixiviants and kinetic dissolution of carbonate generates a larger number of dissolved Ca and Mg and inevitably triggers the secondary dolomite mineral precipitation. The findings improve our fundamental understanding of the geochemical processes in a long-term uranium ISL system and provide important environmental implications for the optimal design of uranium recovery, remediation, and risk exposure assessment.
[Display omitted]
•Process-based reactive transport modeling is developed for clarifying uranium recovery processes.•Assessment of multi-reaction showed dissolved oxygen dominates the CO2 and O2 in-situ leaching of uranium.•Co-existing pyrite plays a significant role in uranium mobilization.•Chemical clogging induced by secondary mineral precipitates is non-ignorable. The complex behavior of uranium in recovery is mostly driven by water-rock interactions following lixiviant injection into ore-bearing aquifers. Significant challenges exist in exploring the geochemical processes responsible for uranium release and mobilization. Herein this study provides an illustration of a ten-year field scale CO₂ and O₂in-situ leaching (ISL) process at a typical sandstone-hosted uranium deposit in northern China. We also conducte a three-dimensional (3-D) multicomponent reactive transport model to assess the effects of potential chemical reactions on uranium recovery, in particular, to focus on the role of sulfide mineral pyrite (FeS₂). Numerical simulations are performed considering three potential ISL reaction pathways to determine the relative contributions to uranium release, and the results indicate that bicarbonate promotes the oxidative dissolution of uranium-bearing minerals and further accelerates the uranium leaching in a neutral geochemical system. Moreover, the presence of FeS₂ exerts a strong competitive role in the uranium-bearing mineral dissolution by increasing oxygen consumption, favoring the formation of iron oxyhydroxide, and therefore causing an associated decrease in uranium recovery rates. The simulation model demonstrates that dissolution of carbonate neutralizes acidic water generated from pyrite oxidation and aqueous CO₂ dissociation. In addition, the cation concentrations (i.e., Ca and Mg) are increasing in the pregnant solutions, showing that the recycling of lixiviants and kinetic dissolution of carbonate generates a larger number of dissolved Ca and Mg and inevitably triggers the secondary dolomite mineral precipitation. The findings improve our fundamental understanding of the geochemical processes in a long-term uranium ISL system and provide important environmental implications for the optimal design of uranium recovery, remediation, and risk exposure assessment. |
ArticleNumber | 105522 |
Author | Qiu, Wenjie Que, Weimin Yang, Yun Wu, Jichun Liu, Zhengbang Weng, Haicheng Wu, Jianfeng Song, Jian |
Author_xml | – sequence: 1 givenname: Wenjie surname: Qiu fullname: Qiu, Wenjie organization: Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China – sequence: 2 givenname: Yun surname: Yang fullname: Yang, Yun organization: School of Earth Sciences and Engineering, Hohai University, Nanjing, 211100, China – sequence: 3 givenname: Jian surname: Song fullname: Song, Jian organization: Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China – sequence: 4 givenname: Weimin surname: Que fullname: Que, Weimin organization: Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing, 101149, China – sequence: 5 givenname: Zhengbang surname: Liu fullname: Liu, Zhengbang organization: Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing, 101149, China – sequence: 6 givenname: Haicheng surname: Weng fullname: Weng, Haicheng organization: Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing, 101149, China – sequence: 7 givenname: Jianfeng orcidid: 0000-0001-6095-7101 surname: Wu fullname: Wu, Jianfeng email: jfwu@nju.edu.cn, jfwu.nju@gmail.com organization: Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China – sequence: 8 givenname: Jichun surname: Wu fullname: Wu, Jichun organization: Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China |
BookMark | eNqNkcuKFDEUhoOMYM_oM5ilm2pz6XRVL0SGxtGBgdkoLkNITnWdJpcySQ34Qj6nKXpw4UZXB5L_-8_lvyZXMUUg5C1nW874_v15a-YTJDtB2AomRHtVSogXZMOHXnQHLndXZMOGQXbiIPpX5LqUM2NM9UxsyK_vk6l0hdEaTzMYWzFF6lLAaCoUWiegx0dBTXS0FYxdwbrQJZuIS6C-ERPG00d6HwueplromFOgpoEZoHMYoH2k2NzD4ivaFOa2QazPzZ6A1uZV5pQrDcmBp22iteuI4B0tbS54TV6Oxhd481xvyLe7T1-PX7qHx8_3x9uHzsrdULvBmr3se7ZXyprejdZyPoxy19YV1sn-wA5K2F7KJhcSRsWsULBT3Ni9c1LIG_Lu4jvn9GOBUnXAYsF7EyEtRUuu5CClVKu0v0htTqVkGPWcMZj8U3Om12T0Wf9JRq_J6EsyjfzwF2mxmvXs7RDo_4O_vfDQLvGEkHWxCNGCwwy2apfwnx6_AUqltFY |
CitedBy_id | crossref_primary_10_1016_j_apgeochem_2024_106241 crossref_primary_10_1016_j_net_2025_103435 crossref_primary_10_1016_j_energy_2024_134348 crossref_primary_10_1016_j_hydromet_2024_106301 crossref_primary_10_3390_mining4010009 crossref_primary_10_1016_j_jhydrol_2024_132576 crossref_primary_10_1007_s43832_024_00139_0 crossref_primary_10_1016_j_hydromet_2025_106468 crossref_primary_10_1016_j_oregeorev_2024_106085 crossref_primary_10_1016_j_net_2024_05_021 crossref_primary_10_1111_1755_6724_15058 crossref_primary_10_3847_1538_4365_ad03ed crossref_primary_10_1016_j_jcou_2025_103063 crossref_primary_10_1029_2022WR033980 crossref_primary_10_1016_j_net_2024_07_057 crossref_primary_10_1002_cssc_202400931 crossref_primary_10_1016_j_jconhyd_2024_104392 crossref_primary_10_1016_j_scitotenv_2023_168580 |
Cites_doi | 10.1016/j.oregeorev.2021.104051 10.1016/j.apgeochem.2018.10.006 10.1016/0016-7037(86)90325-X 10.3390/min11050497 10.1016/j.surfrep.2010.08.003 10.1016/j.apgeochem.2020.104665 10.1016/j.oregeorev.2018.07.025 10.1021/es0606327 10.1180/minmag.1998.62A.3.136 10.1016/j.gca.2012.10.032 10.1016/j.oregeorev.2019.03.003 10.1021/acs.jced.9b01152 10.1016/j.cageo.2005.06.014 10.1016/j.apgeochem.2020.104620 10.1126/sciadv.abf9971 10.1016/j.jnucmat.2005.05.012 10.1016/S0016-7037(99)00237-9 10.1016/j.hydromet.2012.05.005 10.1016/j.oregeorev.2020.103768 10.1016/j.ijggc.2021.103266 10.1021/acs.jpcc.5b10949 10.1016/j.chemgeo.2009.03.028 10.1016/S0016-7037(02)01165-1 10.1007/s11631-021-00502-1 10.1029/94WR00955 10.1016/S0016-7037(98)00140-9 10.1016/j.gca.2009.07.012 10.1007/s10967-017-5207-0 10.1071/EN13117 10.1016/S0016-7037(99)00296-3 10.2138/rmg.2019.85.16 10.1007/s12517-018-4064-7 10.1002/2013WR014404 10.1029/91WR02028 10.1016/j.apenergy.2015.01.017 10.1002/(SICI)1097-4601(1997)29:4<261::AID-KIN4>3.0.CO;2-S 10.1126/science.167.3921.1121 10.1016/0016-7037(94)90241-0 10.1016/j.jnucmat.2005.05.019 10.1016/j.gca.2018.05.027 10.1016/j.ijggc.2016.09.010 10.1007/s10596-014-9443-x 10.1016/j.epsl.2005.09.017 10.2475/ajs.294.5.529 10.1016/0016-7037(94)90016-7 10.1021/es902194x 10.1016/j.apgeochem.2014.09.014 10.1021/es034166m 10.1016/0016-7037(88)90262-1 10.1016/j.gca.2020.05.019 10.1016/S0883-2927(97)00077-2 10.1016/j.oregeorev.2021.104512 10.1016/0016-7037(78)90001-7 10.1016/j.earscirev.2016.05.010 10.1007/s10596-020-10018-x 10.1029/2002JB001979 10.1016/j.jenvman.2016.08.049 10.1016/j.gca.2017.08.043 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apgeochem.2022.105522 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-9134 |
ExternalDocumentID | 10_1016_j_apgeochem_2022_105522 S0883292722003262 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABEFU ABFNM ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 VH1 WUQ XPP ZCA ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c348t-8ca63770655ca7dfcc118f340002cd3790952c733c3423ef50c25e451ac6dd323 |
IEDL.DBID | .~1 |
ISSN | 0883-2927 |
IngestDate | Fri Aug 22 20:18:14 EDT 2025 Thu Apr 24 23:11:38 EDT 2025 Tue Jul 01 01:59:44 EDT 2025 Fri Feb 23 02:38:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | In-situ leaching (ISL) of uranium Reactive transport modeling (RTM) Carbonate minerals Pyrite oxidation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-8ca63770655ca7dfcc118f340002cd3790952c733c3423ef50c25e451ac6dd323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6095-7101 |
PQID | 3153833352 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153833352 crossref_primary_10_1016_j_apgeochem_2022_105522 crossref_citationtrail_10_1016_j_apgeochem_2022_105522 elsevier_sciencedirect_doi_10_1016_j_apgeochem_2022_105522 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Applied geochemistry |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dos, Santos, de, Silva, Duarte (bib10) 2016; 120 Kirby, Brady (bib17) 1998; 13 Yang, Qiu, Liu, Song, Wu, Dou, Wang, Wu (bib64) 2022; 41 Steefel, Appelo, Arora, Jacques, Kalbacher, Kolditz, Lagneau, Lichtner, Mayer, Meeussen, Molins, Moulton, Shao, Simunek, Spycher, Yabusaki, Yeh (bib50) 2015; 19 Martens, Zhang, Prommer, Greskowiak, Jeffrey, Roberts (bib25) 2012; 125–126 Luquot, Gouze (bib24) 2009; 265 Krestou, Panias (bib18) 2004; 4 Lei, Li, Li, Jiang (bib23) 2016; 54 Williamson, Rimstidt (bib61) 1994; 58 Martens, Prommer, Sprocati, Sun, Dai, Crane, Jamieson, Tong, Rolle, Fourie (bib26) 2021; 7 Zhao, Li (bib68) 2021; 11 Zhou, Li, Xu, Liu, Sun, Shi (bib71) 2019; 191 Mühr-Ebert, Wagner, Walther (bib31) 2019; 100 Merritt (bib30) 1971; Vol. 1971 (bib34) 2020 Merino, Cera, Bruno, Quiñones, Casas, Clarens, Giménez, de, Rovira, Martínez-Esparza (bib29) 2005; 346 Rong, Jiao, Liu, Wu, Jia, Cao (bib42) 2020; 120 Shen, Li, Guo, Li (bib46) 2020; 65 Stewart, Mayes, Fendorf (bib51) 2010; 44 Yue, Jiao, Fayek, Wu, Rong (bib67) 2021; 139 Wang, Miao, Wang, Gan, Aftab, Li, Zhang, Wang (bib57) 2020; 118 Cumberland, Douglas, Grice, Moreau, J (bib7) 2016; 159 Lagneau, Regnault, Descostes (bib19) 2019; 85 Chandra, Gerson (bib6) 2010; 65 Bi, Hyun, Kukkadapu, Hayes (bib3) 2013; 102 Walter, Frind, Blowes, Ptacek, Molson (bib56) 1994; 30 Saunders, Pivetz, Voorhies, Wilkin (bib44) 2016; 183 Steefel, DePaolo, Lichtner (bib49) 2005; 240 Eliwa (bib12) 2017; 312 Ben, Thiry, Schmitt, Lagneau, Langlais, V, Bélières (bib2) 2014; 51 Dong, Brooks (bib9) 2006; 40 Rimstidt, Vaughan (bib41) 2003; 67 Odorowski, Jegou, De, Broudic, Jouan, Peuget, Martin (bib33) 2017; 219 Steefel, Lasaga (bib48) 1994; 294 Regnault, Lagneau, Fiet (bib40) 2015 Langmuir (bib21) 1978; 42 Cumberland, Evans, Douglas, de Jonge, Fisher, Howard, Moreau (bib8) 2021; 133 Qiu, Liu, Yang, Weng, Jia, Wu, Li, Liu, Wu (bib39) 2022; 52 Torrero, Baraj, De, Gimenez, Casas (bib53) 1997; 29 Xu, Sonnenthal, Spycher, Pruess (bib63) 2006; 32 Lasaga, Soler, Ganor, Burch, Nagy (bib22) 1994; 58 Pierce, Icenhower, Serne, Catalano (bib38) 2005; 345 Zhao, Deng, Xu, Zhang (bib69) 2018; 11 Wei, Li, Wang, Zhu, Liu, Liu, Su (bib60) 2015; 145 Nicholson, Gillham, Reardon (bib32) 1988; 52 Torrero, Casas, de, Duro, Bruno (bib54) 1998; 62 Yeh, Tripathi (bib65) 1991; 27 Casas, de Pablo, Giménez, Torrero, Bruno, Cera, Finch, Ewing (bib5) 1998; 62 Yue, Jiao, Wu, Rong, Xie, Wang, Yan (bib66) 2019; 107 Bonnetti, Zhou, Riegler, Brugger, Fairclough (bib4) 2020; 282 Wazne, Korfiatis, Meng (bib59) 2003; 37 Wang, Zhang, Lei, Wang, Liu, Li, Su (bib58) 2021; 107 Zhao, Cai, Jin, Li, Li, Wei, Guo, Zhang (bib70) 2018; 101 Guillaumont, Fanghänel, Fuger, Grenthe, Neck, Palmer, Rand (bib15) 2003 Pablo, Casas, Giménez, Molera, Rovira, Duro, Bruno (bib35) 1999; 63 Pablo, Casas, Giménez, Clarens, Bruno (bib36) 2003; 807 McKibben, Barnes (bib28) 1986; 50 Ulrich, Ilton, Veeramani, Sharp, Bernier-Latmani, Schofield, Bargar, Giammar (bib55) 2009; 73 Singer, Stumm (bib47) 1970; 167 Gudavalli, Katsenovich, Wellman, Lagos, Tansel (bib14) 2013; 10 Xu, Apps, Pruess (bib62) 2003; 108 Langanay, Romary, Freulon, Langlais, Petit, Lagneau (bib20) 2021; 25 Su, Liu, Yao, Du (bib52) 2020; 127 Belli, Taillefert (bib1) 2018; 235 Salmon, Rate, Rengel, Appleyard, Prommer, Hinz (bib43) 2014; 50 Holmes, Crundwell (bib16) 2000; 64 Lei (10.1016/j.apgeochem.2022.105522_bib23) 2016; 54 Martens (10.1016/j.apgeochem.2022.105522_bib26) 2021; 7 Wei (10.1016/j.apgeochem.2022.105522_bib60) 2015; 145 Saunders (10.1016/j.apgeochem.2022.105522_bib44) 2016; 183 Su (10.1016/j.apgeochem.2022.105522_bib52) 2020; 127 Yang (10.1016/j.apgeochem.2022.105522_bib64) 2022; 41 McKibben (10.1016/j.apgeochem.2022.105522_bib28) 1986; 50 Qiu (10.1016/j.apgeochem.2022.105522_bib39) 2022; 52 Zhou (10.1016/j.apgeochem.2022.105522_bib71) 2019; 191 Shen (10.1016/j.apgeochem.2022.105522_bib46) 2020; 65 Luquot (10.1016/j.apgeochem.2022.105522_bib24) 2009; 265 Xu (10.1016/j.apgeochem.2022.105522_bib63) 2006; 32 Yue (10.1016/j.apgeochem.2022.105522_bib67) 2021; 139 Steefel (10.1016/j.apgeochem.2022.105522_bib48) 1994; 294 Torrero (10.1016/j.apgeochem.2022.105522_bib54) 1998; 62 Wang (10.1016/j.apgeochem.2022.105522_bib57) 2020; 118 Nicholson (10.1016/j.apgeochem.2022.105522_bib32) 1988; 52 Odorowski (10.1016/j.apgeochem.2022.105522_bib33) 2017; 219 Rong (10.1016/j.apgeochem.2022.105522_bib42) 2020; 120 Pablo (10.1016/j.apgeochem.2022.105522_bib36) 2003; 807 Torrero (10.1016/j.apgeochem.2022.105522_bib53) 1997; 29 Bonnetti (10.1016/j.apgeochem.2022.105522_bib4) 2020; 282 Mühr-Ebert (10.1016/j.apgeochem.2022.105522_bib31) 2019; 100 Casas (10.1016/j.apgeochem.2022.105522_bib5) 1998; 62 Merritt (10.1016/j.apgeochem.2022.105522_bib30) 1971; Vol. 1971 Martens (10.1016/j.apgeochem.2022.105522_bib25) 2012; 125–126 Cumberland (10.1016/j.apgeochem.2022.105522_bib7) 2016; 159 Zhao (10.1016/j.apgeochem.2022.105522_bib68) 2021; 11 Langanay (10.1016/j.apgeochem.2022.105522_bib20) 2021; 25 Lagneau (10.1016/j.apgeochem.2022.105522_bib19) 2019; 85 Bi (10.1016/j.apgeochem.2022.105522_bib3) 2013; 102 Pierce (10.1016/j.apgeochem.2022.105522_bib38) 2005; 345 Singer (10.1016/j.apgeochem.2022.105522_bib47) 1970; 167 Wazne (10.1016/j.apgeochem.2022.105522_bib59) 2003; 37 Lasaga (10.1016/j.apgeochem.2022.105522_bib22) 1994; 58 Williamson (10.1016/j.apgeochem.2022.105522_bib61) 1994; 58 Yeh (10.1016/j.apgeochem.2022.105522_bib65) 1991; 27 Guillaumont (10.1016/j.apgeochem.2022.105522_bib15) 2003 Regnault (10.1016/j.apgeochem.2022.105522_bib40) 2015 (10.1016/j.apgeochem.2022.105522_bib34) 2020 Kirby (10.1016/j.apgeochem.2022.105522_bib17) 1998; 13 Steefel (10.1016/j.apgeochem.2022.105522_bib49) 2005; 240 Cumberland (10.1016/j.apgeochem.2022.105522_bib8) 2021; 133 Eliwa (10.1016/j.apgeochem.2022.105522_bib12) 2017; 312 Yue (10.1016/j.apgeochem.2022.105522_bib66) 2019; 107 Merino (10.1016/j.apgeochem.2022.105522_bib29) 2005; 346 Wang (10.1016/j.apgeochem.2022.105522_bib58) 2021; 107 Ben (10.1016/j.apgeochem.2022.105522_bib2) 2014; 51 Rimstidt (10.1016/j.apgeochem.2022.105522_bib41) 2003; 67 Dos (10.1016/j.apgeochem.2022.105522_bib10) 2016; 120 Zhao (10.1016/j.apgeochem.2022.105522_bib70) 2018; 101 Steefel (10.1016/j.apgeochem.2022.105522_bib50) 2015; 19 Salmon (10.1016/j.apgeochem.2022.105522_bib43) 2014; 50 Chandra (10.1016/j.apgeochem.2022.105522_bib6) 2010; 65 Krestou (10.1016/j.apgeochem.2022.105522_bib18) 2004; 4 Gudavalli (10.1016/j.apgeochem.2022.105522_bib14) 2013; 10 Stewart (10.1016/j.apgeochem.2022.105522_bib51) 2010; 44 Dong (10.1016/j.apgeochem.2022.105522_bib9) 2006; 40 Langmuir (10.1016/j.apgeochem.2022.105522_bib21) 1978; 42 Walter (10.1016/j.apgeochem.2022.105522_bib56) 1994; 30 Belli (10.1016/j.apgeochem.2022.105522_bib1) 2018; 235 Ulrich (10.1016/j.apgeochem.2022.105522_bib55) 2009; 73 Xu (10.1016/j.apgeochem.2022.105522_bib62) 2003; 108 Holmes (10.1016/j.apgeochem.2022.105522_bib16) 2000; 64 Zhao (10.1016/j.apgeochem.2022.105522_bib69) 2018; 11 Pablo (10.1016/j.apgeochem.2022.105522_bib35) 1999; 63 |
References_xml | – volume: 50 start-page: 1509 year: 1986 end-page: 1520 ident: bib28 article-title: Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures publication-title: Geochem. Cosmochim. Acta – volume: 265 start-page: 148 year: 2009 end-page: 159 ident: bib24 article-title: Experimental determination of porosity and permeability changes induced by injection of CO publication-title: Chem. Geol. – volume: 240 start-page: 539 year: 2005 end-page: 558 ident: bib49 article-title: Reactive transport modeling: an essential tool and a new research approach for the Earth sciences publication-title: Earth Planet Sci. Lett. – volume: 62 start-page: 2223 year: 1998 end-page: 2231 ident: bib5 article-title: The role of pe, pH, and carbonate on the solubility of UO publication-title: Geochem. Cosmochim. Acta – volume: 25 start-page: 831 year: 2021 end-page: 850 ident: bib20 article-title: Uncertainty quantification for uranium production in mining exploitation by in Situ Recovery publication-title: Comput. Geosci. – volume: 294 start-page: 529 year: 1994 end-page: 592 ident: bib48 article-title: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems publication-title: Am. J. Sci. – volume: 63 start-page: 3097 year: 1999 end-page: 3103 ident: bib35 article-title: The oxidative dissolution mechanism of uranium dioxide. I. The effect of temperature in hydrogen carbonate medium publication-title: Geochem. Cosmochim. Acta – volume: 62 start-page: 1529 year: 1998 end-page: 1530 ident: bib54 article-title: Oxidative dissolution mechanism of uranium dioxide at 25 C publication-title: Mineral. Mag. – volume: 10 start-page: 475 year: 2013 end-page: 485 ident: bib14 article-title: Quantification of kinetic rate law parameters of uranium release from sodium autunite as a function of aqueous bicarbonate concentrations publication-title: Environ. Chem. – volume: 40 start-page: 4689 year: 2006 end-page: 4695 ident: bib9 article-title: Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg publication-title: Environ. Sci. Technol. – volume: 13 start-page: 509 year: 1998 end-page: 520 ident: bib17 article-title: Field determination of Fe publication-title: Appl. Geochem. – volume: 191 year: 2019 ident: bib71 article-title: Uranium recovery from sandstone-type uranium deposit by acid in-situ leaching - an example from the Kujieertai publication-title: Hydrometallurgy – volume: 312 start-page: 1 year: 2017 end-page: 11 ident: bib12 article-title: Kinetics and thermodynamics of carbonate dissolution process of uranium from Abu-Zeniema wet crude uranium concentrates publication-title: J. Radioanal. Nucl. Chem. – volume: 167 start-page: 1121 year: 1970 end-page: 1123 ident: bib47 article-title: Acidic mine drainage: the rate-determining step publication-title: Science – volume: 101 start-page: 273 year: 2018 end-page: 292 ident: bib70 article-title: Mineralogical and geochemical evidence for biogenic and petroleum-related uranium mineralization in the Qianjiadian deposit, NE China publication-title: Ore Geol. Rev. – volume: 102 start-page: 175 year: 2013 end-page: 190 ident: bib3 article-title: Oxidative dissolution of UO publication-title: Geochem. Cosmochim. Acta – volume: 7 year: 2021 ident: bib26 article-title: Toward a more sustainable mining future with electrokinetic in situ leaching publication-title: Sci. Adv. – volume: 73 start-page: 6065 year: 2009 end-page: 6083 ident: bib55 article-title: Comparative dissolution kinetics of biogenic and chemogenic uraninite under oxidizing conditions in the presence of carbonate publication-title: Geochem. Cosmochim. Acta – volume: 19 start-page: 445 year: 2015 end-page: 478 ident: bib50 article-title: Reactive transport cods for subsurface environmental simulation publication-title: Comput. Geosci. – volume: 42 start-page: 547 year: 1978 end-page: 569 ident: bib21 article-title: Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits publication-title: Geochem. Cosmochim. Acta – volume: 30 start-page: 3137 year: 1994 end-page: 3148 ident: bib56 article-title: Modeling of multicomponent reactive transport in groundwater: 1. Model development and evaluation publication-title: Water Resour. Res. – volume: 133 year: 2021 ident: bib8 article-title: Characterisation of uranium-pyrite associations within organic-rich Eocene sediments using EM, XFM-μXANES and μXRD publication-title: Ore Geol. Rev. – volume: 183 start-page: 67 year: 2016 end-page: 83 ident: bib44 article-title: Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites publication-title: J. Environ. Manag. – volume: 145 start-page: 198 year: 2015 end-page: 210 ident: bib60 article-title: Geochemical impact of aquifer storage for impure CO publication-title: Appl. Energy – volume: 85 start-page: 499 year: 2019 end-page: 528 ident: bib19 article-title: Industrial deployment of reactive transport simulation: an application to uranium in situ recovery publication-title: Rev. Mineral. Geochem. – volume: 219 start-page: 1 year: 2017 end-page: 21 ident: bib33 article-title: Effect of metallic iron on the oxidative dissolution of UO publication-title: Geochem. Cosmochim. Acta – volume: 67 start-page: 873 year: 2003 end-page: 880 ident: bib41 article-title: Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism publication-title: Geochem. Cosmochim. Acta – volume: 51 start-page: 116 year: 2014 end-page: 129 ident: bib2 article-title: Kinetic reactive transport modelling of column tests for uranium in Situ Recovery (ISR) mining publication-title: Appl. Geochem. – volume: 120 year: 2020 ident: bib42 article-title: Effects of basic intrusions on REE mobility of sandstones and their geological significance: a case study from the Qianjiadian sandstone-hosted uranium deposit in the Songliao Basin publication-title: Appl. Geochem. – volume: 118 year: 2020 ident: bib57 article-title: Simulation of uranium mobilization potential in a deep aquifer under geological carbon storage conditions publication-title: Appl. Geochem. – volume: 65 start-page: 2017 year: 2020 end-page: 2031 ident: bib46 article-title: Thermodynamic modeling of in situ leaching of sandstone-type uranium minerals publication-title: J. Chem. Eng. Data – volume: 58 start-page: 2361 year: 1994 end-page: 2386 ident: bib22 article-title: Chemical weathering rate laws and global geochemical cycles publication-title: Geochem. Cosmochim. Acta – volume: 29 start-page: 261 year: 1997 end-page: 267 ident: bib53 article-title: Kinetics of corrosion and dissolution of uranium dioxide as a function of pH publication-title: Int. J. Chem. Kinet. – volume: 11 start-page: 707 year: 2018 ident: bib69 article-title: Mineral alteration and pore-plugging caused by acid in situ leaching: a case study of the Wuyier uranium deposit, Xinjiang, NW China publication-title: Arabian J. Geosci. – volume: 37 start-page: 3619 year: 2003 end-page: 3624 ident: bib59 article-title: Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide publication-title: Environ. Sci. Technol. – volume: 50 start-page: 4924 year: 2014 end-page: 4952 ident: bib43 article-title: Reactive transport controls on sandy acid sulfate soils and impacts on shallow groundwater quality publication-title: Water Resour. Res. – volume: 807 start-page: 618 year: 2003 end-page: 623 ident: bib36 article-title: The oxidative dissolution mechanism of uranium dioxide. The effect of pH and oxygen partial pressure publication-title: Online Proc. Lib. Archive. – volume: 32 start-page: 145 year: 2006 end-page: 165 ident: bib63 article-title: TOUGHREACT - a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO publication-title: Comput. Geosci. – volume: 4 start-page: 113 year: 2004 end-page: 129 ident: bib18 article-title: Uranium (VI) speciation diagrams in the UO2 2+/CO3 2-/H2O system at 25°C publication-title: Eur. J. Miner. Process. Environ. Protect. – volume: 52 start-page: 627 year: 2022 end-page: 638 ident: bib39 article-title: Reactive transport numerical modeling of CO publication-title: Scientia Sinica Technologica – volume: 159 start-page: 160 year: 2016 end-page: 185 ident: bib7 article-title: Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes publication-title: Earth Sci. Rev. – volume: 346 start-page: 40 year: 2005 end-page: 47 ident: bib29 article-title: Radiolytic modelling of spent fuel oxidative dissolution mechanism. Calibration against UO publication-title: J. Nucl. Mater. – volume: 107 year: 2021 ident: bib58 article-title: Potential for uranium release under geologic CO publication-title: Int. J. Greenh. Gas Control – volume: 235 start-page: 431 year: 2018 end-page: 449 ident: bib1 article-title: Geochemical controls of the microbially mediated redox cycling of uranium and iron publication-title: Geochem. Cosmochim. Acta – volume: 65 start-page: 293 year: 2010 end-page: 315 ident: bib6 article-title: The mechanisms of pyrite oxidation and leaching: a fundamental perspective publication-title: Surf. Sci. Rep. – volume: 107 start-page: 532 year: 2019 end-page: 545 ident: bib66 article-title: Selective crystallization and precipitation of authigenic pyrite during diagenesis in uranium reservoir sandbodies in Ordos Basin publication-title: Ore Geol. Rev. – volume: Vol. 1971 start-page: 59 year: 1971 end-page: 83 ident: bib30 publication-title: The extractive metallurgy of uranium – volume: 127 start-page: 1 year: 2020 end-page: 11 ident: bib52 article-title: Petrology, mineralogy, and ore leaching of sandstone-hosted uranium deposits in the Ordos Basin, North China publication-title: Ore Geol. Rev. – volume: 64 start-page: 263 year: 2000 end-page: 274 ident: bib16 article-title: The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study publication-title: Geochem. Cosmochim. Acta – volume: 41 start-page: 50 year: 2022 end-page: 63 ident: bib64 article-title: Quantifying the impact of mineralogical heterogeneity on reactive transport modeling of CO publication-title: Acta Geochimica – year: 2020 ident: bib34 article-title: Uranium 2020: Resources, Production and Demand. Red Book 2020. Redbook NEA No. 7551 Nuclear Energy Agency and the International Atomic Energy Agency – volume: 139 year: 2021 ident: bib67 article-title: Micromorphologies and sulfur isotopic compositions of pyrite in sandstone-hosted uranium deposits: a review and implications for ore genesis publication-title: Ore Geol. Rev. – volume: 100 start-page: 213 year: 2019 end-page: 222 ident: bib31 article-title: Speciation of uranium: compilation of a thermodynamic database and its experimental evaluation using different analytical techniques publication-title: Appl. Geochem. – year: 2003 ident: bib15 article-title: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium – volume: 345 start-page: 206 year: 2005 end-page: 218 ident: bib38 article-title: Experimental determination of UO publication-title: J. Nucl. Mater. – volume: 11 start-page: 497 year: 2021 ident: bib68 article-title: Relationship between chamosite alteration and Fe-plugging in sandstone pores during acid in situ leaching of uranium publication-title: Minerals – volume: 282 start-page: 113 year: 2020 end-page: 132 ident: bib4 article-title: Large S isotope and trace element fractionations in pyrite of uranium roll front systems result from internally-driven biogeochemical cycle publication-title: Geochem. Cosmochim. Acta – volume: 54 start-page: 228 year: 2016 end-page: 241 ident: bib23 article-title: Numerical modeling of co-injection of N publication-title: Int. J. Greenh. Gas Control – volume: 52 start-page: 1077 year: 1988 end-page: 1085 ident: bib32 article-title: Pyrite oxidation in carbonate-buffered solution: 1. Experimental kinetics publication-title: Geochem. Cosmochim. Acta – volume: 58 start-page: 5443 year: 1994 end-page: 5454 ident: bib61 article-title: The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation publication-title: Geochem. Cosmochim. Acta – volume: 120 start-page: 2760 year: 2016 end-page: 2768 ident: bib10 article-title: Pyrite oxidation mechanism by oxygen in aqueous medium publication-title: J. Phys. Chem. C – volume: 27 start-page: 3075 year: 1991 end-page: 3094 ident: bib65 article-title: A model for simulating transport of reactive multispecies components: model development and demonstration publication-title: Water Resour. Res. – volume: 125–126 start-page: 16 year: 2012 end-page: 23 ident: bib25 article-title: In situ recovery of gold: column leaching experiments and reactive transport modeling publication-title: Hydrometallurgy – year: 2015 ident: bib40 article-title: 3D reactive transport simulations of uranium in situ leaching: forecast and process optimization publication-title: Uranium - Past and Future Challenges – volume: 44 start-page: 928 year: 2010 end-page: 934 ident: bib51 article-title: Impact of uranyl-calcium-carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments publication-title: Environ. Sci. Technol. – volume: 108 start-page: 2071 year: 2003 ident: bib62 article-title: Reactive geochemical transport simulation to study mineral trapping for CO publication-title: J. Geophys. Res. Solid Earth – volume: 133 year: 2021 ident: 10.1016/j.apgeochem.2022.105522_bib8 article-title: Characterisation of uranium-pyrite associations within organic-rich Eocene sediments using EM, XFM-μXANES and μXRD publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2021.104051 – volume: 100 start-page: 213 year: 2019 ident: 10.1016/j.apgeochem.2022.105522_bib31 article-title: Speciation of uranium: compilation of a thermodynamic database and its experimental evaluation using different analytical techniques publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2018.10.006 – volume: 50 start-page: 1509 year: 1986 ident: 10.1016/j.apgeochem.2022.105522_bib28 article-title: Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures publication-title: Geochem. Cosmochim. Acta doi: 10.1016/0016-7037(86)90325-X – volume: 11 start-page: 497 issue: 5 year: 2021 ident: 10.1016/j.apgeochem.2022.105522_bib68 article-title: Relationship between chamosite alteration and Fe-plugging in sandstone pores during acid in situ leaching of uranium publication-title: Minerals doi: 10.3390/min11050497 – volume: 65 start-page: 293 year: 2010 ident: 10.1016/j.apgeochem.2022.105522_bib6 article-title: The mechanisms of pyrite oxidation and leaching: a fundamental perspective publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2010.08.003 – volume: 120 year: 2020 ident: 10.1016/j.apgeochem.2022.105522_bib42 article-title: Effects of basic intrusions on REE mobility of sandstones and their geological significance: a case study from the Qianjiadian sandstone-hosted uranium deposit in the Songliao Basin publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2020.104665 – volume: 101 start-page: 273 year: 2018 ident: 10.1016/j.apgeochem.2022.105522_bib70 article-title: Mineralogical and geochemical evidence for biogenic and petroleum-related uranium mineralization in the Qianjiadian deposit, NE China publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2018.07.025 – volume: 40 start-page: 4689 year: 2006 ident: 10.1016/j.apgeochem.2022.105522_bib9 article-title: Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg2+, Ca2+, Sr2+, and Ba2+) using anion exchange method publication-title: Environ. Sci. Technol. doi: 10.1021/es0606327 – volume: 62 start-page: 1529 year: 1998 ident: 10.1016/j.apgeochem.2022.105522_bib54 article-title: Oxidative dissolution mechanism of uranium dioxide at 25 C publication-title: Mineral. Mag. doi: 10.1180/minmag.1998.62A.3.136 – volume: 102 start-page: 175 year: 2013 ident: 10.1016/j.apgeochem.2022.105522_bib3 article-title: Oxidative dissolution of UO2 in a simulated groundwater containing synthetic nanocrystalline mackinawite publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2012.10.032 – volume: 107 start-page: 532 year: 2019 ident: 10.1016/j.apgeochem.2022.105522_bib66 article-title: Selective crystallization and precipitation of authigenic pyrite during diagenesis in uranium reservoir sandbodies in Ordos Basin publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2019.03.003 – volume: 65 start-page: 2017 issue: 4 year: 2020 ident: 10.1016/j.apgeochem.2022.105522_bib46 article-title: Thermodynamic modeling of in situ leaching of sandstone-type uranium minerals publication-title: J. Chem. Eng. Data doi: 10.1021/acs.jced.9b01152 – volume: 32 start-page: 145 year: 2006 ident: 10.1016/j.apgeochem.2022.105522_bib63 article-title: TOUGHREACT - a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geologic sequestration publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.06.014 – volume: 52 start-page: 627 year: 2022 ident: 10.1016/j.apgeochem.2022.105522_bib39 article-title: Reactive transport numerical modeling of CO2+O2 in-situ leaching in sandstone-type uranium ore publication-title: Scientia Sinica Technologica – volume: 118 year: 2020 ident: 10.1016/j.apgeochem.2022.105522_bib57 article-title: Simulation of uranium mobilization potential in a deep aquifer under geological carbon storage conditions publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2020.104620 – volume: 7 issue: 18 year: 2021 ident: 10.1016/j.apgeochem.2022.105522_bib26 article-title: Toward a more sustainable mining future with electrokinetic in situ leaching publication-title: Sci. Adv. doi: 10.1126/sciadv.abf9971 – volume: 345 start-page: 206 year: 2005 ident: 10.1016/j.apgeochem.2022.105522_bib38 article-title: Experimental determination of UO2(cr) dissolution kinetics: effects of solution saturation state and pH publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2005.05.012 – volume: 63 start-page: 3097 year: 1999 ident: 10.1016/j.apgeochem.2022.105522_bib35 article-title: The oxidative dissolution mechanism of uranium dioxide. I. The effect of temperature in hydrogen carbonate medium publication-title: Geochem. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00237-9 – volume: 125–126 start-page: 16 year: 2012 ident: 10.1016/j.apgeochem.2022.105522_bib25 article-title: In situ recovery of gold: column leaching experiments and reactive transport modeling publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.05.005 – volume: 127 start-page: 1 year: 2020 ident: 10.1016/j.apgeochem.2022.105522_bib52 article-title: Petrology, mineralogy, and ore leaching of sandstone-hosted uranium deposits in the Ordos Basin, North China publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2020.103768 – volume: 107 year: 2021 ident: 10.1016/j.apgeochem.2022.105522_bib58 article-title: Potential for uranium release under geologic CO2 storage conditions: the impact of Fe(III) publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2021.103266 – volume: 120 start-page: 2760 year: 2016 ident: 10.1016/j.apgeochem.2022.105522_bib10 article-title: Pyrite oxidation mechanism by oxygen in aqueous medium publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b10949 – volume: 4 start-page: 113 issue: 2 year: 2004 ident: 10.1016/j.apgeochem.2022.105522_bib18 article-title: Uranium (VI) speciation diagrams in the UO2 2+/CO3 2-/H2O system at 25°C publication-title: Eur. J. Miner. Process. Environ. Protect. – volume: 265 start-page: 148 year: 2009 ident: 10.1016/j.apgeochem.2022.105522_bib24 article-title: Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2009.03.028 – volume: 67 start-page: 873 year: 2003 ident: 10.1016/j.apgeochem.2022.105522_bib41 article-title: Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism publication-title: Geochem. Cosmochim. Acta doi: 10.1016/S0016-7037(02)01165-1 – volume: 41 start-page: 50 year: 2022 ident: 10.1016/j.apgeochem.2022.105522_bib64 article-title: Quantifying the impact of mineralogical heterogeneity on reactive transport modeling of CO2 + O2 in-situ leaching of uranium publication-title: Acta Geochimica doi: 10.1007/s11631-021-00502-1 – volume: 30 start-page: 3137 year: 1994 ident: 10.1016/j.apgeochem.2022.105522_bib56 article-title: Modeling of multicomponent reactive transport in groundwater: 1. Model development and evaluation publication-title: Water Resour. Res. doi: 10.1029/94WR00955 – volume: 62 start-page: 2223 year: 1998 ident: 10.1016/j.apgeochem.2022.105522_bib5 article-title: The role of pe, pH, and carbonate on the solubility of UO2 and uraninite under nominally reducing conditions publication-title: Geochem. Cosmochim. Acta doi: 10.1016/S0016-7037(98)00140-9 – volume: 73 start-page: 6065 year: 2009 ident: 10.1016/j.apgeochem.2022.105522_bib55 article-title: Comparative dissolution kinetics of biogenic and chemogenic uraninite under oxidizing conditions in the presence of carbonate publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2009.07.012 – volume: 312 start-page: 1 year: 2017 ident: 10.1016/j.apgeochem.2022.105522_bib12 article-title: Kinetics and thermodynamics of carbonate dissolution process of uranium from Abu-Zeniema wet crude uranium concentrates publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-017-5207-0 – volume: Vol. 1971 start-page: 59 year: 1971 ident: 10.1016/j.apgeochem.2022.105522_bib30 – volume: 10 start-page: 475 issue: 6 year: 2013 ident: 10.1016/j.apgeochem.2022.105522_bib14 article-title: Quantification of kinetic rate law parameters of uranium release from sodium autunite as a function of aqueous bicarbonate concentrations publication-title: Environ. Chem. doi: 10.1071/EN13117 – volume: 64 start-page: 263 year: 2000 ident: 10.1016/j.apgeochem.2022.105522_bib16 article-title: The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study publication-title: Geochem. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00296-3 – volume: 85 start-page: 499 year: 2019 ident: 10.1016/j.apgeochem.2022.105522_bib19 article-title: Industrial deployment of reactive transport simulation: an application to uranium in situ recovery publication-title: Rev. Mineral. Geochem. doi: 10.2138/rmg.2019.85.16 – volume: 11 start-page: 707 year: 2018 ident: 10.1016/j.apgeochem.2022.105522_bib69 article-title: Mineral alteration and pore-plugging caused by acid in situ leaching: a case study of the Wuyier uranium deposit, Xinjiang, NW China publication-title: Arabian J. Geosci. doi: 10.1007/s12517-018-4064-7 – volume: 50 start-page: 4924 year: 2014 ident: 10.1016/j.apgeochem.2022.105522_bib43 article-title: Reactive transport controls on sandy acid sulfate soils and impacts on shallow groundwater quality publication-title: Water Resour. Res. doi: 10.1002/2013WR014404 – volume: 27 start-page: 3075 year: 1991 ident: 10.1016/j.apgeochem.2022.105522_bib65 article-title: A model for simulating transport of reactive multispecies components: model development and demonstration publication-title: Water Resour. Res. doi: 10.1029/91WR02028 – year: 2015 ident: 10.1016/j.apgeochem.2022.105522_bib40 article-title: 3D reactive transport simulations of uranium in situ leaching: forecast and process optimization – volume: 145 start-page: 198 year: 2015 ident: 10.1016/j.apgeochem.2022.105522_bib60 article-title: Geochemical impact of aquifer storage for impure CO2 containing O2 and N2: tongliao field experiment publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.01.017 – volume: 29 start-page: 261 year: 1997 ident: 10.1016/j.apgeochem.2022.105522_bib53 article-title: Kinetics of corrosion and dissolution of uranium dioxide as a function of pH publication-title: Int. J. Chem. Kinet. doi: 10.1002/(SICI)1097-4601(1997)29:4<261::AID-KIN4>3.0.CO;2-S – volume: 167 start-page: 1121 year: 1970 ident: 10.1016/j.apgeochem.2022.105522_bib47 article-title: Acidic mine drainage: the rate-determining step publication-title: Science doi: 10.1126/science.167.3921.1121 – volume: 58 start-page: 5443 year: 1994 ident: 10.1016/j.apgeochem.2022.105522_bib61 article-title: The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation publication-title: Geochem. Cosmochim. Acta doi: 10.1016/0016-7037(94)90241-0 – volume: 346 start-page: 40 issue: 1 year: 2005 ident: 10.1016/j.apgeochem.2022.105522_bib29 article-title: Radiolytic modelling of spent fuel oxidative dissolution mechanism. Calibration against UO2 dynamic leaching experiments publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2005.05.019 – volume: 235 start-page: 431 year: 2018 ident: 10.1016/j.apgeochem.2022.105522_bib1 article-title: Geochemical controls of the microbially mediated redox cycling of uranium and iron publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2018.05.027 – volume: 54 start-page: 228 year: 2016 ident: 10.1016/j.apgeochem.2022.105522_bib23 article-title: Numerical modeling of co-injection of N2 and O2 with CO2 into aquifers at the Tongliao CCS site publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2016.09.010 – volume: 19 start-page: 445 year: 2015 ident: 10.1016/j.apgeochem.2022.105522_bib50 article-title: Reactive transport cods for subsurface environmental simulation publication-title: Comput. Geosci. doi: 10.1007/s10596-014-9443-x – volume: 240 start-page: 539 year: 2005 ident: 10.1016/j.apgeochem.2022.105522_bib49 article-title: Reactive transport modeling: an essential tool and a new research approach for the Earth sciences publication-title: Earth Planet Sci. Lett. doi: 10.1016/j.epsl.2005.09.017 – volume: 294 start-page: 529 issue: 5 year: 1994 ident: 10.1016/j.apgeochem.2022.105522_bib48 article-title: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems publication-title: Am. J. Sci. doi: 10.2475/ajs.294.5.529 – volume: 58 start-page: 2361 year: 1994 ident: 10.1016/j.apgeochem.2022.105522_bib22 article-title: Chemical weathering rate laws and global geochemical cycles publication-title: Geochem. Cosmochim. Acta doi: 10.1016/0016-7037(94)90016-7 – volume: 44 start-page: 928 year: 2010 ident: 10.1016/j.apgeochem.2022.105522_bib51 article-title: Impact of uranyl-calcium-carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments publication-title: Environ. Sci. Technol. doi: 10.1021/es902194x – volume: 51 start-page: 116 year: 2014 ident: 10.1016/j.apgeochem.2022.105522_bib2 article-title: Kinetic reactive transport modelling of column tests for uranium in Situ Recovery (ISR) mining publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2014.09.014 – volume: 37 start-page: 3619 year: 2003 ident: 10.1016/j.apgeochem.2022.105522_bib59 article-title: Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide publication-title: Environ. Sci. Technol. doi: 10.1021/es034166m – volume: 52 start-page: 1077 year: 1988 ident: 10.1016/j.apgeochem.2022.105522_bib32 article-title: Pyrite oxidation in carbonate-buffered solution: 1. Experimental kinetics publication-title: Geochem. Cosmochim. Acta doi: 10.1016/0016-7037(88)90262-1 – volume: 191 year: 2019 ident: 10.1016/j.apgeochem.2022.105522_bib71 article-title: Uranium recovery from sandstone-type uranium deposit by acid in-situ leaching - an example from the Kujieertai publication-title: Hydrometallurgy – volume: 282 start-page: 113 year: 2020 ident: 10.1016/j.apgeochem.2022.105522_bib4 article-title: Large S isotope and trace element fractionations in pyrite of uranium roll front systems result from internally-driven biogeochemical cycle publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2020.05.019 – volume: 13 start-page: 509 year: 1998 ident: 10.1016/j.apgeochem.2022.105522_bib17 article-title: Field determination of Fe2+ oxidation rates in acid mine drainage using a continuously-stirred tank reactor publication-title: Appl. Geochem. doi: 10.1016/S0883-2927(97)00077-2 – volume: 139 year: 2021 ident: 10.1016/j.apgeochem.2022.105522_bib67 article-title: Micromorphologies and sulfur isotopic compositions of pyrite in sandstone-hosted uranium deposits: a review and implications for ore genesis publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2021.104512 – year: 2003 ident: 10.1016/j.apgeochem.2022.105522_bib15 – volume: 42 start-page: 547 year: 1978 ident: 10.1016/j.apgeochem.2022.105522_bib21 article-title: Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits publication-title: Geochem. Cosmochim. Acta doi: 10.1016/0016-7037(78)90001-7 – volume: 159 start-page: 160 year: 2016 ident: 10.1016/j.apgeochem.2022.105522_bib7 article-title: Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2016.05.010 – volume: 25 start-page: 831 year: 2021 ident: 10.1016/j.apgeochem.2022.105522_bib20 article-title: Uncertainty quantification for uranium production in mining exploitation by in Situ Recovery publication-title: Comput. Geosci. doi: 10.1007/s10596-020-10018-x – volume: 108 start-page: 2071 issue: B2 year: 2003 ident: 10.1016/j.apgeochem.2022.105522_bib62 article-title: Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2002JB001979 – year: 2020 ident: 10.1016/j.apgeochem.2022.105522_bib34 – volume: 807 start-page: 618 year: 2003 ident: 10.1016/j.apgeochem.2022.105522_bib36 article-title: The oxidative dissolution mechanism of uranium dioxide. The effect of pH and oxygen partial pressure publication-title: Online Proc. Lib. Archive. – volume: 183 start-page: 67 year: 2016 ident: 10.1016/j.apgeochem.2022.105522_bib44 article-title: Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2016.08.049 – volume: 219 start-page: 1 year: 2017 ident: 10.1016/j.apgeochem.2022.105522_bib33 article-title: Effect of metallic iron on the oxidative dissolution of UO2 doped with a radioactive alpha emitter in synthetic Callovian-Oxfordian groundwater publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2017.08.043 |
SSID | ssj0005702 |
Score | 2.5081375 |
Snippet | The complex behavior of uranium in recovery is mostly driven by water-rock interactions following lixiviant injection into ore-bearing aquifers. Significant... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105522 |
SubjectTerms | bicarbonates carbon dioxide Carbonate minerals carbonates cations China dissociation dolomite exposure assessment geochemistry In-situ leaching (ISL) of uranium iron oxyhydroxides oxidation oxygen consumption pyrite Pyrite oxidation Reactive transport modeling (RTM) remediation risk simulation models uranium |
Title | What chemical reaction dominates the CO2 and O2 in-situ uranium leaching? Insights from a three-dimensional multicomponent reactive transport model at the field scale |
URI | https://dx.doi.org/10.1016/j.apgeochem.2022.105522 https://www.proquest.com/docview/3153833352 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BSx0xEA6iFLyU2lq0rTJCr-vzJZvNbi8iD-3TUnuwgreQl2TLiu57uLuFXvpz_J3OZLOignjwtLAkm5BJZiY738zH2FcrC1M6mSfl2OMFZYzXnQLtRuJdbkPcz2eUnPzzNJuepycX8mKJTYZcGIJVRt3f6_SgreObUVzN0aKqRmd4PgQv8HuEr-JBD6epol2--_8BzEMF3CE1Tqj1I4yXWfzxRExFKemcE-et5Pw5C_VEVwcDdPSOvY2eIxz0k1tjS75-z958D8y8_z6wWyrCDTbm_wP6giFjAdycwC7oUAK6ejD5xcHUDvBR1UlTtR10aK2q7hquIq5yH47rhq7sDVDuCRjseON94ogHoK_hAQGGSGj0eY1GKw7210M7lEqHwLADOCMaNcDkoMF5-XV2fnT4ezJNIglDYkWat0luTSYUBUOlNcqV1uKVpBQpqVLrhCrQR-NWCWGplqAv5Z7l0qdybGzmnODiI1uucTIbDERqClUoZ2YUUfZmJm0mDCoMY1Ov8mKTZcPCaxsrlBNRxpUeoGiX-l5imiSme4ltsr37jou-SMfLXb4NktWP9ptGU_Jy551hL2g8jRRiMbWfd40WZEAE5bF9es0An9kq0dr3v3q-sOX2pvNb6Py0s-2wu7fZysHxj-npHVQ5Bng |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZhQ0kuoW0a8uhjCrmazUqWH72UZWm62ySbQxPITWglObik3iW2A_1D_Z2dkeUtCZQcejIYjzVo5Hl4vplh7NjIXBdWZlExchigjDDcydFuRM5mxuf9XELFyRfzZHodf7uRNxts0tfCEKwy6P5Op3ttHe4Mw24OV2U5_I7fh-A5vo_wVZz08CZ1p5IDtjmenU3nf5EeqYce0vMRETyCeenVraPZVFSVzjmNvZWc_8tIPVHX3gadvmQ7wXmEccffK7bhqtfsxVc_nPfXLvtNfbjBhBYAgO6gL1oAuyS8C_qUgN4eTC456MoCXsoqqsumhRYNVtn-hLsArfwMs6qmqL0GKj8BjYT3zkWWRgF0bTzAIxEJkL6s0G6FxR4cNH23dPBDdgA5olU9Ug5q5Mu9YdenX64m0yjMYYiMiLMmyoxOREr5UGl0agtjMCopREza1FiR5uimcZMKYaidoCvkieHSxXKkTWKt4GKPDSpkZp-BiHWe5qnVC0oqO72QJhEadYY2sUuz_IAl_cYrE5qU06yMO9Wj0X6otcQUSUx1EjtgJ2vCVden43mST71k1aMjp9CaPE_8sT8LCj9IyrLoyi3bWgmyIYJK2Q7_Z4EPbGt6dXGuzmfzsyO2TVPuuz8_b9mguW_dO_SFmsX7cNb_AEPdCSk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+chemical+reaction+dominates+the+CO2+and+O2+in-situ+uranium+leaching%3F+Insights+from+a+three-dimensional+multicomponent+reactive+transport+model+at+the+field+scale&rft.jtitle=Applied+geochemistry&rft.au=Qiu%2C+Wenjie&rft.au=Yang%2C+Yun&rft.au=Song%2C+Jian&rft.au=Que%2C+Weimin&rft.date=2023-01-01&rft.issn=0883-2927&rft.volume=148&rft.spage=105522&rft_id=info:doi/10.1016%2Fj.apgeochem.2022.105522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apgeochem_2022_105522 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon |