A Method based on One-class SVM for News Recommendation

In order to provide intelligent recommendation and personalized service for users on news website, this paper presents a method based on One-Class SVM for news recommendation algorithm. By analyzing the news webpages and user's browsing history, and by building One-Class SVM model, this algorit...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 31; pp. 281 - 290
Main Authors Cui, Limeng, Shi, Yong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to provide intelligent recommendation and personalized service for users on news website, this paper presents a method based on One-Class SVM for news recommendation algorithm. By analyzing the news webpages and user's browsing history, and by building One-Class SVM model, this algorithm can recommend news for user. The main work of this paper is to study this news recommendation algorithm and to show its experimental results under Dot NET platform. First, this algorithm preprocesses the webpages from Sogou Labs, each of which has its inherent domain and builds One-Class SVM models for these domains. Next, it builds user interest models for each user by analyzing their browsing histories. Then it finds the user's most interested domains by comparing each domain models and user interest model. Finally, it utilizes the webpages of these domains and user's browsing history to build One-Class SVM model to calculate the most relevant webpages to user interest, and recommends these webpages to user. This algorithm takes the lead in calculate the similarity between user interests and webpages using One-Class SVM model and apply hierarchical model to make the results more accurate. From the results, we can find that this algorithm is running pretty well.
AbstractList In order to provide intelligent recommendation and personalized service for users on news website, this paper presents a method based on One-Class SVM for news recommendation algorithm. By analyzing the news webpages and user's browsing history, and by building One-Class SVM model, this algorithm can recommend news for user. The main work of this paper is to study this news recommendation algorithm and to show its experimental results under Dot NET platform. First, this algorithm preprocesses the webpages from Sogou Labs, each of which has its inherent domain and builds One-Class SVM models for these domains. Next, it builds user interest models for each user by analyzing their browsing histories. Then it finds the user's most interested domains by comparing each domain models and user interest model. Finally, it utilizes the webpages of these domains and user's browsing history to build One-Class SVM model to calculate the most relevant webpages to user interest, and recommends these webpages to user. This algorithm takes the lead in calculate the similarity between user interests and webpages using One-Class SVM model and apply hierarchical model to make the results more accurate. From the results, we can find that this algorithm is running pretty well.
Author Shi, Yong
Cui, Limeng
Author_xml – sequence: 1
  givenname: Limeng
  surname: Cui
  fullname: Cui, Limeng
  email: lmcui932@163.com
  organization: University of Chinese Academy of Sciences, Beijing, 100049, China
– sequence: 2
  givenname: Yong
  surname: Shi
  fullname: Shi, Yong
  email: yshi@ucas.ac.cn
  organization: University of Chinese Academy of Sciences, Beijing, 100049, China
BookMark eNqFj81OAjEUhRuDiYg8gZu-wIz9mZl2Fi4IUTEBSfzbNqW9jSXQknai8e0dwIVxoXdz7uY7Od85GoQYAKFLSkpKaHO1LncpmlwyQquS1CUT5AQNqRSiIDVpBz_-MzTOeU3641K2VAyRmOAFdG_R4pXOYHEMeBmgMBudM356XWAXE36Aj4wfwcTtFoLVnY_hAp06vckw_s4Rerm9eZ7Oivny7n46mReGV7IrpLaVJAS4sZYLAy1bSQogWs4ta5yumHOybbjkTNta0lrwhhDrKmEqqjnjI8SPvSbFnBM4tUt-q9OnokTt9dVaHfTVXl-RWvX6PdX-oozvDru7pP3mH_b6yEKv9e4hqWw8BAPWJzCdstH_yX8Bgm53ww
CitedBy_id crossref_primary_10_56294_piii2025376
crossref_primary_10_1007_s00521_019_04344_0
crossref_primary_10_1109_TASE_2016_2564419
crossref_primary_10_1016_j_procs_2015_07_151
crossref_primary_10_1108_EL_07_2020_0209
crossref_primary_10_1007_s10044_020_00876_7
Cites_doi 10.1007/978-0-85729-504-0
10.1145/1719970.1719976
10.1162/089976601750264965
10.1109/TKDE.2005.99
10.1007/11518655_12
10.1006/ijhc.1996.0113
10.1007/11731139_28
ContentType Journal Article
Copyright 2014
Copyright_xml – notice: 2014
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2014.05.270
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 290
ExternalDocumentID 10_1016_j_procs_2014_05_270
S1877050914004475
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c348t-8ad4800e3cdd37ce92b81ee7933d26fa42ff8963832ad581573600df47c41a323
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Tue Jul 01 01:26:53 EDT 2025
Thu Apr 24 23:11:27 EDT 2025
Wed May 17 02:10:30 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hierarchical recommendation algorithm
News recommendation
One-Class SVM
Similarity calculation
Vector Space Model (VSM)
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-8ad4800e3cdd37ce92b81ee7933d26fa42ff8963832ad581573600df47c41a323
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050914004475
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_procs_2014_05_270
crossref_citationtrail_10_1016_j_procs_2014_05_270
elsevier_sciencedirect_doi_10_1016_j_procs_2014_05_270
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014
2014-00-00
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle Procedia computer science
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References 2006, 33(11): 86-88.
2007, 33(17): 196-198.
Manevitz L M, Yousef M. One-class SVMs for document classification.
Springer Berlin Heidelberg, 2005: 123-135.
IEEE Transactions on, 2005, 17(6): 734-749.
2009, 6: 002.
Kamba T, Sakagami H, Koseki Y. ANATAGONOMY: a personalized newspaper on the World Wide Web.
Lin S, Liu Z. Parameter selection in SVM with RBF kernel function.
Yong Shi, Yingjie Tian, Gang Kou, Yi Peng, Jianping Li.
Lin S M, Wang G S, Chen Y Q. User modeling and feature selection in personalized recommending system.
Schölkopf B, Platt J C, Shawe-Taylor J, et al. Estimating the support of a high-dimensional distribution. Neural computation, 2001, 13(7): 1443-1471.
SHAO Hua, GAO Feng-Rong, XING Chun-Xiao, JIANG Li-Hua. A Hierarchical Webpage Recommendation Algorithm Based on Vector Space Model.
2002, 2: 139-154.
2007, 35(2): 163.
(Natural Science Edition), 2012, 1: 009.
Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions.
1999, 8.
Wang X M, Peng H. One-class SVM Based on Data Distribution.
Yajima Y. One-class support vector machines for recommendation tasks.
de Campos L M, Fernández-Luna J M, Gómez M, et al. A decision-based approach for recommending in hierarchical domains.
FENG A, LIU X, SUN T. Embedding Target Data's Structural Distribution Information into-One-Class SVM and Its Linear Programming Algorithm.
Hu W C, Chen Y, Schmalz M S, et al. An overview of world wide web search technologies. The proceedings of 5th World Multi Conference on Systems, Cybernetics, Informatics, SCI2001, Orlando, Florida. 2001: 22-25.
1997, 46(6): 789-803.
Cooley R, Tan P N, Srivastava J. Websift: the web site information filter system.
ACM, 2010: 31-40.
Springer Berlin Heidelberg, 2006: 230-239.
Liu J, Dolan P, Pedersen E R. Personalized news recommendation based on click behavior.
Springer, 2011.
10.1016/j.procs.2014.05.270_bib0010
10.1016/j.procs.2014.05.270_bib0065
10.1016/j.procs.2014.05.270_bib0020
10.1016/j.procs.2014.05.270_bib0075
10.1016/j.procs.2014.05.270_bib0045
10.1016/j.procs.2014.05.270_bib0055
10.1016/j.procs.2014.05.270_bib0025
10.1016/j.procs.2014.05.270_bib0035
10.1016/j.procs.2014.05.270_bib0005
10.1016/j.procs.2014.05.270_bib0015
10.1016/j.procs.2014.05.270_bib0070
10.1016/j.procs.2014.05.270_bib0050
10.1016/j.procs.2014.05.270_bib0060
10.1016/j.procs.2014.05.270_bib0030
10.1016/j.procs.2014.05.270_bib0040
References_xml – reference: Cooley R, Tan P N, Srivastava J. Websift: the web site information filter system.
– reference: , 1997, 46(6): 789-803.
– reference: Manevitz L M, Yousef M. One-class SVMs for document classification.
– reference: , 2006, 33(11): 86-88.
– reference: Wang X M, Peng H. One-class SVM Based on Data Distribution.
– reference: Schölkopf B, Platt J C, Shawe-Taylor J, et al. Estimating the support of a high-dimensional distribution. Neural computation, 2001, 13(7): 1443-1471.
– reference: , IEEE Transactions on, 2005, 17(6): 734-749.
– reference: Hu W C, Chen Y, Schmalz M S, et al. An overview of world wide web search technologies. The proceedings of 5th World Multi Conference on Systems, Cybernetics, Informatics, SCI2001, Orlando, Florida. 2001: 22-25.
– reference: , 2007, 33(17): 196-198.
– reference: de Campos L M, Fernández-Luna J M, Gómez M, et al. A decision-based approach for recommending in hierarchical domains.
– reference: Springer, 2011.
– reference: ACM, 2010: 31-40.
– reference: , 2009, 6: 002.
– reference: Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions.
– reference: FENG A, LIU X, SUN T. Embedding Target Data's Structural Distribution Information into-One-Class SVM and Its Linear Programming Algorithm.
– reference: 1999, 8.
– reference: , 2007, 35(2): 163.
– reference: Lin S, Liu Z. Parameter selection in SVM with RBF kernel function.
– reference: , 2002, 2: 139-154.
– reference: SHAO Hua, GAO Feng-Rong, XING Chun-Xiao, JIANG Li-Hua. A Hierarchical Webpage Recommendation Algorithm Based on Vector Space Model.
– reference: (Natural Science Edition), 2012, 1: 009.
– reference: Lin S M, Wang G S, Chen Y Q. User modeling and feature selection in personalized recommending system.
– reference: Springer Berlin Heidelberg, 2006: 230-239.
– reference: Yajima Y. One-class support vector machines for recommendation tasks.
– reference: . Springer Berlin Heidelberg, 2005: 123-135.
– reference: Kamba T, Sakagami H, Koseki Y. ANATAGONOMY: a personalized newspaper on the World Wide Web.
– reference: Liu J, Dolan P, Pedersen E R. Personalized news recommendation based on click behavior.
– reference: Yong Shi, Yingjie Tian, Gang Kou, Yi Peng, Jianping Li.
– ident: 10.1016/j.procs.2014.05.270_bib0015
– ident: 10.1016/j.procs.2014.05.270_bib0065
– ident: 10.1016/j.procs.2014.05.270_bib0055
  doi: 10.1007/978-0-85729-504-0
– ident: 10.1016/j.procs.2014.05.270_bib0070
– ident: 10.1016/j.procs.2014.05.270_bib0010
  doi: 10.1145/1719970.1719976
– ident: 10.1016/j.procs.2014.05.270_bib0050
  doi: 10.1162/089976601750264965
– ident: 10.1016/j.procs.2014.05.270_bib0060
  doi: 10.1109/TKDE.2005.99
– ident: 10.1016/j.procs.2014.05.270_bib0035
– ident: 10.1016/j.procs.2014.05.270_bib0030
– ident: 10.1016/j.procs.2014.05.270_bib0075
– ident: 10.1016/j.procs.2014.05.270_bib0045
– ident: 10.1016/j.procs.2014.05.270_bib0040
  doi: 10.1007/11518655_12
– ident: 10.1016/j.procs.2014.05.270_bib0020
  doi: 10.1006/ijhc.1996.0113
– ident: 10.1016/j.procs.2014.05.270_bib0005
– ident: 10.1016/j.procs.2014.05.270_bib0025
  doi: 10.1007/11731139_28
SSID ssj0000388917
Score 2.0220423
Snippet In order to provide intelligent recommendation and personalized service for users on news website, this paper presents a method based on One-Class SVM for news...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 281
SubjectTerms Hierarchical recommendation algorithm
News recommendation
One-Class SVM
Similarity calculation
Vector Space Model (VSM)
Title A Method based on One-class SVM for News Recommendation
URI https://dx.doi.org/10.1016/j.procs.2014.05.270
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jvvjiXZyXkQcfDWtuTfs4h2M4puCc7i10SQoT1w2Z_9-cLBUF2YOPbXOg_ZpzSTj5PoSuufExznJGqEslEZZRkhUqJWVimfGLXJ9EA9vnQzqYiPupnDZQrz4LA22VMfZvYnqI1vFOJ6LZWc3nnTHNlAL2EgrTUCg4aM5FFg7xTW-_91mA7SQPwrswnoBBTT4U2rwgTwBtNxXA4MlAtPivBPUj6fQP0F6sFnF380KHqOGqI7RfKzHg6JjHSHXxKEhBY8hKFi8r_Fg5YqA0xuOXEfalKYZ4hmG5uVi4KKV0gib9u-fegERJBGL8t609jlb4Es9xYy1XxuVsllHnvJNxy9KyEKwsM_ApzgorMyoV9xWNLYUyghac8VPUrJaVO0O4TKjNk9RkuX9saFFI5WbSOlE6WiSyaCFW46BN5AsH2Yp3XTeGvekAngbwdCK1B6-Fbr6NVhu6jO3D0xpg_euvax_Qtxme_9fwAu3C1WYT5RI11x-f7sqXFetZG-10h0-vw3aYP18E_MpQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUqOMCFHVFWH-BG1HhJnBw4lKVq6cKhLerNpLYjFdG0giLEd_GDeLJUIKEekHqNM5L1MnoztibvIXTOlOU4zahDjO85XFPiBJHwndjVVNlDri2iqdpnx6_3-f3AG5TQV_EvDIxV5tyfcXrK1vmTSo5mZToaVbokEALUSwikIRfFZGXTfH7Yc9vbVePWfuQLSmt3vZu6k1sLOIrxYGb3o7ltlQxTWjOhTEiHATHGJivT1I8jTuM4gNxkNNJeQDzBbGegYy4UJxEDtQPL-6u2-xDABo3B9fxiB-RVwtTpFzbowA4LtaN0rgwKE-iEEw6SoRRckv-qiD-qXG0LbeTtKa5mCGyjkkl20GZh_YBzJthFoorbqfc0hjKo8STBD4lxFPTiuPvYxrYXxkCgGM6347HJvZv2UH8pQO2jlWSSmAOEY5fo0PVVENplRaLIE2boacNjQyLXi8qIFjhIlQuUg0_Giywm0Z5lCp4E8KTrSQteGV3Og6aZPsfi1_0CYPkrzaStIIsCD_8beIbW6r12S7YaneYRWoeV7AbnGK3MXt_Nie1pZsPTNIcwelp20n4DPYQFBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+based+on+One-class+SVM+for+News+Recommendation&rft.jtitle=Procedia+computer+science&rft.au=Cui%2C+Limeng&rft.au=Shi%2C+Yong&rft.date=2014&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=31&rft.spage=281&rft.epage=290&rft_id=info:doi/10.1016%2Fj.procs.2014.05.270&rft.externalDocID=S1877050914004475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon