A Method based on One-class SVM for News Recommendation
In order to provide intelligent recommendation and personalized service for users on news website, this paper presents a method based on One-Class SVM for news recommendation algorithm. By analyzing the news webpages and user's browsing history, and by building One-Class SVM model, this algorit...
Saved in:
Published in | Procedia computer science Vol. 31; pp. 281 - 290 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to provide intelligent recommendation and personalized service for users on news website, this paper presents a method based on One-Class SVM for news recommendation algorithm. By analyzing the news webpages and user's browsing history, and by building One-Class SVM model, this algorithm can recommend news for user. The main work of this paper is to study this news recommendation algorithm and to show its experimental results under Dot NET platform. First, this algorithm preprocesses the webpages from Sogou Labs, each of which has its inherent domain and builds One-Class SVM models for these domains. Next, it builds user interest models for each user by analyzing their browsing histories. Then it finds the user's most interested domains by comparing each domain models and user interest model. Finally, it utilizes the webpages of these domains and user's browsing history to build One-Class SVM model to calculate the most relevant webpages to user interest, and recommends these webpages to user. This algorithm takes the lead in calculate the similarity between user interests and webpages using One-Class SVM model and apply hierarchical model to make the results more accurate. From the results, we can find that this algorithm is running pretty well. |
---|---|
AbstractList | In order to provide intelligent recommendation and personalized service for users on news website, this paper presents a method based on One-Class SVM for news recommendation algorithm. By analyzing the news webpages and user's browsing history, and by building One-Class SVM model, this algorithm can recommend news for user. The main work of this paper is to study this news recommendation algorithm and to show its experimental results under Dot NET platform. First, this algorithm preprocesses the webpages from Sogou Labs, each of which has its inherent domain and builds One-Class SVM models for these domains. Next, it builds user interest models for each user by analyzing their browsing histories. Then it finds the user's most interested domains by comparing each domain models and user interest model. Finally, it utilizes the webpages of these domains and user's browsing history to build One-Class SVM model to calculate the most relevant webpages to user interest, and recommends these webpages to user. This algorithm takes the lead in calculate the similarity between user interests and webpages using One-Class SVM model and apply hierarchical model to make the results more accurate. From the results, we can find that this algorithm is running pretty well. |
Author | Shi, Yong Cui, Limeng |
Author_xml | – sequence: 1 givenname: Limeng surname: Cui fullname: Cui, Limeng email: lmcui932@163.com organization: University of Chinese Academy of Sciences, Beijing, 100049, China – sequence: 2 givenname: Yong surname: Shi fullname: Shi, Yong email: yshi@ucas.ac.cn organization: University of Chinese Academy of Sciences, Beijing, 100049, China |
BookMark | eNqFj81OAjEUhRuDiYg8gZu-wIz9mZl2Fi4IUTEBSfzbNqW9jSXQknai8e0dwIVxoXdz7uY7Od85GoQYAKFLSkpKaHO1LncpmlwyQquS1CUT5AQNqRSiIDVpBz_-MzTOeU3641K2VAyRmOAFdG_R4pXOYHEMeBmgMBudM356XWAXE36Aj4wfwcTtFoLVnY_hAp06vckw_s4Rerm9eZ7Oivny7n46mReGV7IrpLaVJAS4sZYLAy1bSQogWs4ta5yumHOybbjkTNta0lrwhhDrKmEqqjnjI8SPvSbFnBM4tUt-q9OnokTt9dVaHfTVXl-RWvX6PdX-oozvDru7pP3mH_b6yEKv9e4hqWw8BAPWJzCdstH_yX8Bgm53ww |
CitedBy_id | crossref_primary_10_56294_piii2025376 crossref_primary_10_1007_s00521_019_04344_0 crossref_primary_10_1109_TASE_2016_2564419 crossref_primary_10_1016_j_procs_2015_07_151 crossref_primary_10_1108_EL_07_2020_0209 crossref_primary_10_1007_s10044_020_00876_7 |
Cites_doi | 10.1007/978-0-85729-504-0 10.1145/1719970.1719976 10.1162/089976601750264965 10.1109/TKDE.2005.99 10.1007/11518655_12 10.1006/ijhc.1996.0113 10.1007/11731139_28 |
ContentType | Journal Article |
Copyright | 2014 |
Copyright_xml | – notice: 2014 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2014.05.270 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 290 |
ExternalDocumentID | 10_1016_j_procs_2014_05_270 S1877050914004475 |
GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c348t-8ad4800e3cdd37ce92b81ee7933d26fa42ff8963832ad581573600df47c41a323 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Tue Jul 01 01:26:53 EDT 2025 Thu Apr 24 23:11:27 EDT 2025 Wed May 17 02:10:30 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hierarchical recommendation algorithm News recommendation One-Class SVM Similarity calculation Vector Space Model (VSM) |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-8ad4800e3cdd37ce92b81ee7933d26fa42ff8963832ad581573600df47c41a323 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050914004475 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2014_05_270 crossref_citationtrail_10_1016_j_procs_2014_05_270 elsevier_sciencedirect_doi_10_1016_j_procs_2014_05_270 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014 2014-00-00 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – year: 2014 text: 2014 |
PublicationDecade | 2010 |
PublicationTitle | Procedia computer science |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | 2006, 33(11): 86-88. 2007, 33(17): 196-198. Manevitz L M, Yousef M. One-class SVMs for document classification. Springer Berlin Heidelberg, 2005: 123-135. IEEE Transactions on, 2005, 17(6): 734-749. 2009, 6: 002. Kamba T, Sakagami H, Koseki Y. ANATAGONOMY: a personalized newspaper on the World Wide Web. Lin S, Liu Z. Parameter selection in SVM with RBF kernel function. Yong Shi, Yingjie Tian, Gang Kou, Yi Peng, Jianping Li. Lin S M, Wang G S, Chen Y Q. User modeling and feature selection in personalized recommending system. Schölkopf B, Platt J C, Shawe-Taylor J, et al. Estimating the support of a high-dimensional distribution. Neural computation, 2001, 13(7): 1443-1471. SHAO Hua, GAO Feng-Rong, XING Chun-Xiao, JIANG Li-Hua. A Hierarchical Webpage Recommendation Algorithm Based on Vector Space Model. 2002, 2: 139-154. 2007, 35(2): 163. (Natural Science Edition), 2012, 1: 009. Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. 1999, 8. Wang X M, Peng H. One-class SVM Based on Data Distribution. Yajima Y. One-class support vector machines for recommendation tasks. de Campos L M, Fernández-Luna J M, Gómez M, et al. A decision-based approach for recommending in hierarchical domains. FENG A, LIU X, SUN T. Embedding Target Data's Structural Distribution Information into-One-Class SVM and Its Linear Programming Algorithm. Hu W C, Chen Y, Schmalz M S, et al. An overview of world wide web search technologies. The proceedings of 5th World Multi Conference on Systems, Cybernetics, Informatics, SCI2001, Orlando, Florida. 2001: 22-25. 1997, 46(6): 789-803. Cooley R, Tan P N, Srivastava J. Websift: the web site information filter system. ACM, 2010: 31-40. Springer Berlin Heidelberg, 2006: 230-239. Liu J, Dolan P, Pedersen E R. Personalized news recommendation based on click behavior. Springer, 2011. 10.1016/j.procs.2014.05.270_bib0010 10.1016/j.procs.2014.05.270_bib0065 10.1016/j.procs.2014.05.270_bib0020 10.1016/j.procs.2014.05.270_bib0075 10.1016/j.procs.2014.05.270_bib0045 10.1016/j.procs.2014.05.270_bib0055 10.1016/j.procs.2014.05.270_bib0025 10.1016/j.procs.2014.05.270_bib0035 10.1016/j.procs.2014.05.270_bib0005 10.1016/j.procs.2014.05.270_bib0015 10.1016/j.procs.2014.05.270_bib0070 10.1016/j.procs.2014.05.270_bib0050 10.1016/j.procs.2014.05.270_bib0060 10.1016/j.procs.2014.05.270_bib0030 10.1016/j.procs.2014.05.270_bib0040 |
References_xml | – reference: Cooley R, Tan P N, Srivastava J. Websift: the web site information filter system. – reference: , 1997, 46(6): 789-803. – reference: Manevitz L M, Yousef M. One-class SVMs for document classification. – reference: , 2006, 33(11): 86-88. – reference: Wang X M, Peng H. One-class SVM Based on Data Distribution. – reference: Schölkopf B, Platt J C, Shawe-Taylor J, et al. Estimating the support of a high-dimensional distribution. Neural computation, 2001, 13(7): 1443-1471. – reference: , IEEE Transactions on, 2005, 17(6): 734-749. – reference: Hu W C, Chen Y, Schmalz M S, et al. An overview of world wide web search technologies. The proceedings of 5th World Multi Conference on Systems, Cybernetics, Informatics, SCI2001, Orlando, Florida. 2001: 22-25. – reference: , 2007, 33(17): 196-198. – reference: de Campos L M, Fernández-Luna J M, Gómez M, et al. A decision-based approach for recommending in hierarchical domains. – reference: Springer, 2011. – reference: ACM, 2010: 31-40. – reference: , 2009, 6: 002. – reference: Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. – reference: FENG A, LIU X, SUN T. Embedding Target Data's Structural Distribution Information into-One-Class SVM and Its Linear Programming Algorithm. – reference: 1999, 8. – reference: , 2007, 35(2): 163. – reference: Lin S, Liu Z. Parameter selection in SVM with RBF kernel function. – reference: , 2002, 2: 139-154. – reference: SHAO Hua, GAO Feng-Rong, XING Chun-Xiao, JIANG Li-Hua. A Hierarchical Webpage Recommendation Algorithm Based on Vector Space Model. – reference: (Natural Science Edition), 2012, 1: 009. – reference: Lin S M, Wang G S, Chen Y Q. User modeling and feature selection in personalized recommending system. – reference: Springer Berlin Heidelberg, 2006: 230-239. – reference: Yajima Y. One-class support vector machines for recommendation tasks. – reference: . Springer Berlin Heidelberg, 2005: 123-135. – reference: Kamba T, Sakagami H, Koseki Y. ANATAGONOMY: a personalized newspaper on the World Wide Web. – reference: Liu J, Dolan P, Pedersen E R. Personalized news recommendation based on click behavior. – reference: Yong Shi, Yingjie Tian, Gang Kou, Yi Peng, Jianping Li. – ident: 10.1016/j.procs.2014.05.270_bib0015 – ident: 10.1016/j.procs.2014.05.270_bib0065 – ident: 10.1016/j.procs.2014.05.270_bib0055 doi: 10.1007/978-0-85729-504-0 – ident: 10.1016/j.procs.2014.05.270_bib0070 – ident: 10.1016/j.procs.2014.05.270_bib0010 doi: 10.1145/1719970.1719976 – ident: 10.1016/j.procs.2014.05.270_bib0050 doi: 10.1162/089976601750264965 – ident: 10.1016/j.procs.2014.05.270_bib0060 doi: 10.1109/TKDE.2005.99 – ident: 10.1016/j.procs.2014.05.270_bib0035 – ident: 10.1016/j.procs.2014.05.270_bib0030 – ident: 10.1016/j.procs.2014.05.270_bib0075 – ident: 10.1016/j.procs.2014.05.270_bib0045 – ident: 10.1016/j.procs.2014.05.270_bib0040 doi: 10.1007/11518655_12 – ident: 10.1016/j.procs.2014.05.270_bib0020 doi: 10.1006/ijhc.1996.0113 – ident: 10.1016/j.procs.2014.05.270_bib0005 – ident: 10.1016/j.procs.2014.05.270_bib0025 doi: 10.1007/11731139_28 |
SSID | ssj0000388917 |
Score | 2.0220423 |
Snippet | In order to provide intelligent recommendation and personalized service for users on news website, this paper presents a method based on One-Class SVM for news... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 281 |
SubjectTerms | Hierarchical recommendation algorithm News recommendation One-Class SVM Similarity calculation Vector Space Model (VSM) |
Title | A Method based on One-class SVM for News Recommendation |
URI | https://dx.doi.org/10.1016/j.procs.2014.05.270 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jvvjiXZyXkQcfDWtuTfs4h2M4puCc7i10SQoT1w2Z_9-cLBUF2YOPbXOg_ZpzSTj5PoSuufExznJGqEslEZZRkhUqJWVimfGLXJ9EA9vnQzqYiPupnDZQrz4LA22VMfZvYnqI1vFOJ6LZWc3nnTHNlAL2EgrTUCg4aM5FFg7xTW-_91mA7SQPwrswnoBBTT4U2rwgTwBtNxXA4MlAtPivBPUj6fQP0F6sFnF380KHqOGqI7RfKzHg6JjHSHXxKEhBY8hKFi8r_Fg5YqA0xuOXEfalKYZ4hmG5uVi4KKV0gib9u-fegERJBGL8t609jlb4Es9xYy1XxuVsllHnvJNxy9KyEKwsM_ApzgorMyoV9xWNLYUyghac8VPUrJaVO0O4TKjNk9RkuX9saFFI5WbSOlE6WiSyaCFW46BN5AsH2Yp3XTeGvekAngbwdCK1B6-Fbr6NVhu6jO3D0xpg_euvax_Qtxme_9fwAu3C1WYT5RI11x-f7sqXFetZG-10h0-vw3aYP18E_MpQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUqOMCFHVFWH-BG1HhJnBw4lKVq6cKhLerNpLYjFdG0giLEd_GDeLJUIKEekHqNM5L1MnoztibvIXTOlOU4zahDjO85XFPiBJHwndjVVNlDri2iqdpnx6_3-f3AG5TQV_EvDIxV5tyfcXrK1vmTSo5mZToaVbokEALUSwikIRfFZGXTfH7Yc9vbVePWfuQLSmt3vZu6k1sLOIrxYGb3o7ltlQxTWjOhTEiHATHGJivT1I8jTuM4gNxkNNJeQDzBbGegYy4UJxEDtQPL-6u2-xDABo3B9fxiB-RVwtTpFzbowA4LtaN0rgwKE-iEEw6SoRRckv-qiD-qXG0LbeTtKa5mCGyjkkl20GZh_YBzJthFoorbqfc0hjKo8STBD4lxFPTiuPvYxrYXxkCgGM6347HJvZv2UH8pQO2jlWSSmAOEY5fo0PVVENplRaLIE2boacNjQyLXi8qIFjhIlQuUg0_Giywm0Z5lCp4E8KTrSQteGV3Og6aZPsfi1_0CYPkrzaStIIsCD_8beIbW6r12S7YaneYRWoeV7AbnGK3MXt_Nie1pZsPTNIcwelp20n4DPYQFBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+based+on+One-class+SVM+for+News+Recommendation&rft.jtitle=Procedia+computer+science&rft.au=Cui%2C+Limeng&rft.au=Shi%2C+Yong&rft.date=2014&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=31&rft.spage=281&rft.epage=290&rft_id=info:doi/10.1016%2Fj.procs.2014.05.270&rft.externalDocID=S1877050914004475 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |