A Circuit Topology Approach to Categorizing Changes in Biomolecular Structure
The biological world is composed of folded linear molecules of bewildering topological complexity and diversity. The topology of folded biomolecules such as proteins and ribonucleic acids is often subject to change during biological processes. Despite intense research, we lack a solid mathematical f...
Saved in:
Published in | Frontiers in physics Vol. 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
30.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-424X 2296-424X |
DOI | 10.3389/fphy.2020.00005 |
Cover
Loading…
Abstract | The biological world is composed of folded linear molecules of bewildering topological complexity and diversity. The topology of folded biomolecules such as proteins and ribonucleic acids is often subject to change during biological processes. Despite intense research, we lack a solid mathematical framework that summarizes these operations in a principled manner. Circuit topology, which formalizes the arrangements of intramolecular contacts, serves as a general mathematical framework to analyze the topological characteristics of folded linear molecules. In this work, we translate familiar molecular operations in biology, such as duplication, permutation, and elimination of contacts, into the language of circuit topology. We show that for such operations there are corresponding matrix representations as well as basic rules that serve as a foundation for understanding these operations within the context of a coherent algebraic framework. We present several biological examples and provide a simple computational framework for creating and analyzing the circuit diagrams of proteins and nucleic acids. We expect our study and future developments in this direction to facilitate a deeper understanding of natural molecular processes and to provide guidance to engineers for generating complex polymeric materials. |
---|---|
AbstractList | The biological world is composed of folded linear molecules of bewildering topological complexity and diversity. The topology of folded biomolecules such as proteins and ribonucleic acids is often subject to change during biological processes. Despite intense research, we lack a solid mathematical framework that summarizes these operations in a principled manner. Circuit topology, which formalizes the arrangements of intramolecular contacts, serves as a general mathematical framework to analyze the topological characteristics of folded linear molecules. In this work, we translate familiar molecular operations in biology, such as duplication, permutation, and elimination of contacts, into the language of circuit topology. We show that for such operations there are corresponding matrix representations as well as basic rules that serve as a foundation for understanding these operations within the context of a coherent algebraic framework. We present several biological examples and provide a simple computational framework for creating and analyzing the circuit diagrams of proteins and nucleic acids. We expect our study and future developments in this direction to facilitate a deeper understanding of natural molecular processes and to provide guidance to engineers for generating complex polymeric materials. |
Author | Mashaghi, Alireza Woodard, Jaie Schullian, Otto Tirandaz, Arash |
Author_xml | – sequence: 1 givenname: Otto surname: Schullian fullname: Schullian, Otto – sequence: 2 givenname: Jaie surname: Woodard fullname: Woodard, Jaie – sequence: 3 givenname: Arash surname: Tirandaz fullname: Tirandaz, Arash – sequence: 4 givenname: Alireza surname: Mashaghi fullname: Mashaghi, Alireza |
BookMark | eNp1kE9LAzEQxYNUsNaeveYLbJtNstvkWBf_FBQPVvAWZrPJNmW7WbLpoX56t62CCM5lhmHee8PvGo1a3xqEblMyY0zIue02hxkllMzIUNkFGlMq84RT_jH6NV-had9vh4uUZlJQPkYvS1y4oPcu4rXvfOPrA152XfCgNzh6XEA0tQ_u07U1LjbQ1qbHrsV3zu98Y_S-gYDfYtjruA_mBl1aaHoz_e4T9P5wvy6ekufXx1WxfE404yImAhhQXtmcSyALWVJBpeS04hVN89IIzaDSnAphZVny0kLOKzAsJUKnwChjE7Q6-1YetqoLbgfhoDw4dVr4UCsI0enGKKY1IxlovsiHOFOKIcTYEoZ0sJDB4JWdvXTwfR-MVdpFiM63MYBrVErUEbE6IlZHxOqEeNDN_-h-_vhP8QXn2YJU |
CitedBy_id | crossref_primary_10_1016_j_isci_2022_103866 crossref_primary_10_1021_acs_jcim_3c00391 crossref_primary_10_1016_j_isci_2020_101492 crossref_primary_10_1038_s41598_023_35771_8 crossref_primary_10_1016_j_trechm_2020_04_009 crossref_primary_10_1016_j_trechm_2021_02_002 crossref_primary_10_1021_acscentsci_0c00308 crossref_primary_10_1007_s12274_022_4355_x crossref_primary_10_1016_j_mex_2022_101861 crossref_primary_10_1002_prot_26342 |
Cites_doi | 10.1093/bioinformatics/btu823 10.1371/journal.pcbi.1005929 10.1038/nchem.1193 10.1093/nar/25.1.236 10.1074/jbc.M116.735977 10.1039/C5RA08106H 10.1371/journal.pcbi.1002445 10.1074/jbc.M115.673871 10.3389/fams.2016.00006 10.1126/science.1099216 10.1038/nsmb.2474 10.1039/C5SM01482D 10.1110/ps.062673207 10.1126/science.1082510 10.1016/0959-440x(95)80100-6 10.1006/jsbi.2001.4335 10.1126/science.1181085 10.1039/C7NR04220E 10.1017/CBO9780511626272 10.1039/C7CP02145C 10.1093/protein/6.3.279 10.1007/s00239-010-9379-2 10.1371/journal.pcbi.1005690 10.1039/C5NR08828C 10.1007/s00726-009-0457-y 10.1023/A:1015872125545 10.1039/C4CP03402C 10.1039/C1CS15262A 10.1016/j.str.2014.06.015 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fphy.2020.00005 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2296-424X |
ExternalDocumentID | oai_doaj_org_article_3cc305ac476649eb84d2efbadf6afa5a 10_3389_fphy_2020_00005 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c348t-8a3a24df649a079b2829942d4d216be8c3adc4288f9bb4bfa64dae3108c1a3233 |
IEDL.DBID | DOA |
ISSN | 2296-424X |
IngestDate | Wed Aug 27 01:29:16 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 Tue Jul 01 03:39:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-8a3a24df649a079b2829942d4d216be8c3adc4288f9bb4bfa64dae3108c1a3233 |
OpenAccessLink | https://doaj.org/article/3cc305ac476649eb84d2efbadf6afa5a |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3cc305ac476649eb84d2efbadf6afa5a crossref_citationtrail_10_3389_fphy_2020_00005 crossref_primary_10_3389_fphy_2020_00005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-30 |
PublicationDateYYYYMMDD | 2020-01-30 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in physics |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Cang (B11) 2017; 13 Prlić (B22) 2014; 31 Blankenship (B5) 2007; 16 Mashaghi (B20) 2015; 11 Hubbard (B25) 1997; 25 Kappé (B28) 2010; 71 Brown (B2) 2002; 13 Mugler (B14) 2014; 16 Flapan (B3) 2000 Cavalli (B10) 2013; 20 Ayme (B4) 2011; 11 Coskun (B6) 2012; 41 Bailor (B9) 2010; 327 Grishin (B26) 2001; 134 Mashaghi (B19) 2015; 5 Wang (B23) 2010; 39 Mizuguchi (B1) 1995; 5 Serebryany (B30) 2016; 291 Bachar (B21) 1993; 6 Verovšek (B15) 2016; 2 Satarifard (B18) 2017; 9 Cang (B12) 2017; 14 Branden (B24) 1999 Heidari (B17) 2017; 19 Nikoofard (B16) 2016; 8 Mashaghi (B13) 2014; 22 Siegel (B8) 2004; 304 Bliven (B27) 2012; 8 Kamien (B7) 2003; 299 Garcia-Manyes (B29) 2016; 291 |
References_xml | – volume: 31 start-page: 1316 year: 2014 ident: B22 article-title: Detection of circular permutations within protein structures using CE-CP publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btu823 – volume: 14 start-page: e1005929 year: 2017 ident: B12 article-title: Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005929 – year: 1999 ident: B24 article-title: Introduction to Protein Structure – volume: 11 start-page: 15 year: 2011 ident: B4 article-title: A synthetic molecular pentafoil knot publication-title: Nat Chem doi: 10.1038/nchem.1193 – volume: 25 start-page: 236 year: 1997 ident: B25 article-title: SCOP: a structural classification of proteins database publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.1.236 – volume: 291 start-page: 19172 year: 2016 ident: B30 article-title: An internal disulfide locks a misfolded aggregation-prone intermediate in cataract-linked mutants of human YD-crystallin publication-title: J Biol Chem doi: 10.1074/jbc.M116.735977 – volume: 5 start-page: 51682 year: 2015 ident: B19 article-title: Circuit topology of linear polymers: a statistical mechanical treatment publication-title: RSC Adv. doi: 10.1039/C5RA08106H – volume: 8 start-page: e1002445 year: 2012 ident: B27 article-title: Circular permutation in proteins publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002445 – volume: 291 start-page: 4226 year: 2016 ident: B29 article-title: Single-molecule force spectroscopy predicts a misfolded, domain-swapped conformation in human YD-crystallin protein publication-title: J Biol Chem doi: 10.1074/jbc.M115.673871 – volume: 2 start-page: 6 year: 2016 ident: B15 article-title: Extended topological persistence and contact arrangements in folded linear molecules publication-title: Front Appl Math Stat doi: 10.3389/fams.2016.00006 – volume: 304 start-page: 1256 year: 2004 ident: B8 article-title: Chemical topology and interlocking molecules publication-title: Science. doi: 10.1126/science.1099216 – volume: 20 start-page: 290 year: 2013 ident: B10 article-title: Functional implications of genome topology publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2474 – volume: 11 start-page: 6576 year: 2015 ident: B20 article-title: Distance measures and evolution of polymer chains in their topological space publication-title: Soft Matter. doi: 10.1039/C5SM01482D – volume: 16 start-page: 1249 year: 2007 ident: B5 article-title: Threading a peptide through a peptide: protein loops, rotaxanes, and knots publication-title: Protein Sci doi: 10.1110/ps.062673207 – volume: 299 start-page: 1671 year: 2003 ident: B7 article-title: Topology from the bottom up publication-title: Science. doi: 10.1126/science.1082510 – volume: 5 start-page: 377 year: 1995 ident: B1 article-title: Seeking significance in three-dimensional protein structure comparisons publication-title: Curr Opin Struct Biol doi: 10.1016/0959-440x(95)80100-6 – volume: 134 start-page: 167 year: 2001 ident: B26 article-title: Fold change in evolution of protein structures publication-title: J Struct Biol doi: 10.1006/jsbi.2001.4335 – volume: 327 start-page: 202 year: 2010 ident: B9 article-title: Topology links RNA secondary structure with global conformation, dynamics, and adaptation publication-title: Science doi: 10.1126/science.1181085 – volume: 9 start-page: 12170 year: 2017 ident: B18 article-title: Topology of polymer chains under nanoscale confinement publication-title: Nanoscale. doi: 10.1039/C7NR04220E – year: 2000 ident: B3 article-title: When Topology Meets Chemistry: A Topological Look at Molecular Chirality doi: 10.1017/CBO9780511626272 – volume: 19 start-page: 18389 year: 2017 ident: B17 article-title: Topology of internally constrained polymer chains publication-title: Phys Chem Chem Phys. doi: 10.1039/C7CP02145C – volume: 6 start-page: 279 year: 1993 ident: B21 article-title: A computer vision based technique for 3-D sequence-independent structural comparison of proteins publication-title: Protein Eng Design Select doi: 10.1093/protein/6.3.279 – volume: 71 start-page: 219 year: 2010 ident: B28 article-title: Explosive expansion of betagamma-crystallin genes in the ancestral vertebrate publication-title: J Mol Evol doi: 10.1007/s00239-010-9379-2 – volume: 13 start-page: e1005690 year: 2017 ident: B11 article-title: TopologyNet: topology based deep convolutional and multi-task neural networks for biomolecular property predictions publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005690 – volume: 8 start-page: 4643 year: 2016 ident: B16 article-title: Topology sorting and characterization of folded polymers using nano-pores publication-title: Nanoscale. doi: 10.1039/C5NR08828C – volume: 39 start-page: 417 year: 2010 ident: B23 article-title: SANA: an algorithm for sequential and non-sequential protein structure alignment publication-title: Amino Acids. doi: 10.1007/s00726-009-0457-y – volume: 13 start-page: 339 year: 2002 ident: B2 article-title: Topology and chemistry publication-title: Struct Chem. doi: 10.1023/A:1015872125545 – volume: 16 start-page: 22537 year: 2014 ident: B14 article-title: Circuit topology of self-interacting chains: implications for folding and unfolding dynamics publication-title: Phys Chem Chem Phys. doi: 10.1039/C4CP03402C – volume: 41 start-page: 19 year: 2012 ident: B6 article-title: Great expectations: can artificial molecular machines deliver on their promise? publication-title: Chem Soc Rev. doi: 10.1039/C1CS15262A – volume: 22 start-page: 1227 year: 2014 ident: B13 article-title: Circuit topology of proteins and nucleic acids publication-title: Structure. doi: 10.1016/j.str.2014.06.015 |
SSID | ssj0001259824 |
Score | 2.189195 |
Snippet | The biological world is composed of folded linear molecules of bewildering topological complexity and diversity. The topology of folded biomolecules such as... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | duplication matrix representation permutation protein engineering protein folding topology |
Title | A Circuit Topology Approach to Categorizing Changes in Biomolecular Structure |
URI | https://doaj.org/article/3cc305ac476649eb84d2efbadf6afa5a |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09a8MwEBUlUOhS-knTLzR06OLGkWRZHpPQEArp0gSyGX2CobVLmgztr-9JckI6lC5djWzO7wT37iy_h9Adk8QQYWgieWYT5lKRSKJ5wk1qHJRfmWs_Gpg-88mcPS2yxY7Vlz8TFuWBI3A9qjVsSalZzjkrrBLMEOuUNI5LJ7NAjaDm7TRTcbrihelY1PKBLqzoOYga2kGSBsXC7EcZ2lHrD2VlfIQOWz6IBzGOY7Rn6xO0H85l6o9TNB3gUbXU62qFZ9HO4BMPWhlwvGrwyAs9NMvqCyoQjn8KfOCqxsOqedsY3-KXoBG7XtozNB8_zkaTpHVASDRlYpUISSVh8KqskGleKP_Zs2DEAAZ9rqzQVBoNDYRwhVJMOcmZkRYYm9B9SQml56hTN7W9QDg3hWDWZQb4GRPAS5x3rZKZ5amlQvMuetgAUupWHty7VLyW0CZ4BEuPYOkRLAOCXXS_veE9KmP8vnToEd4u85LW4QIkumwTXf6V6Mv_eMgVOvBh-RkKTa9RB_C3N8AqVuo2bKBvwrfMyw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Circuit+Topology+Approach+to+Categorizing+Changes+in+Biomolecular+Structure&rft.jtitle=Frontiers+in+physics&rft.au=Otto+Schullian&rft.au=Jaie+Woodard&rft.au=Arash+Tirandaz&rft.au=Arash+Tirandaz&rft.date=2020-01-30&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-424X&rft.volume=8&rft_id=info:doi/10.3389%2Ffphy.2020.00005&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3cc305ac476649eb84d2efbadf6afa5a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon |