A Circuit Topology Approach to Categorizing Changes in Biomolecular Structure

The biological world is composed of folded linear molecules of bewildering topological complexity and diversity. The topology of folded biomolecules such as proteins and ribonucleic acids is often subject to change during biological processes. Despite intense research, we lack a solid mathematical f...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physics Vol. 8
Main Authors Schullian, Otto, Woodard, Jaie, Tirandaz, Arash, Mashaghi, Alireza
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 30.01.2020
Subjects
Online AccessGet full text
ISSN2296-424X
2296-424X
DOI10.3389/fphy.2020.00005

Cover

Loading…
Abstract The biological world is composed of folded linear molecules of bewildering topological complexity and diversity. The topology of folded biomolecules such as proteins and ribonucleic acids is often subject to change during biological processes. Despite intense research, we lack a solid mathematical framework that summarizes these operations in a principled manner. Circuit topology, which formalizes the arrangements of intramolecular contacts, serves as a general mathematical framework to analyze the topological characteristics of folded linear molecules. In this work, we translate familiar molecular operations in biology, such as duplication, permutation, and elimination of contacts, into the language of circuit topology. We show that for such operations there are corresponding matrix representations as well as basic rules that serve as a foundation for understanding these operations within the context of a coherent algebraic framework. We present several biological examples and provide a simple computational framework for creating and analyzing the circuit diagrams of proteins and nucleic acids. We expect our study and future developments in this direction to facilitate a deeper understanding of natural molecular processes and to provide guidance to engineers for generating complex polymeric materials.
AbstractList The biological world is composed of folded linear molecules of bewildering topological complexity and diversity. The topology of folded biomolecules such as proteins and ribonucleic acids is often subject to change during biological processes. Despite intense research, we lack a solid mathematical framework that summarizes these operations in a principled manner. Circuit topology, which formalizes the arrangements of intramolecular contacts, serves as a general mathematical framework to analyze the topological characteristics of folded linear molecules. In this work, we translate familiar molecular operations in biology, such as duplication, permutation, and elimination of contacts, into the language of circuit topology. We show that for such operations there are corresponding matrix representations as well as basic rules that serve as a foundation for understanding these operations within the context of a coherent algebraic framework. We present several biological examples and provide a simple computational framework for creating and analyzing the circuit diagrams of proteins and nucleic acids. We expect our study and future developments in this direction to facilitate a deeper understanding of natural molecular processes and to provide guidance to engineers for generating complex polymeric materials.
Author Mashaghi, Alireza
Woodard, Jaie
Schullian, Otto
Tirandaz, Arash
Author_xml – sequence: 1
  givenname: Otto
  surname: Schullian
  fullname: Schullian, Otto
– sequence: 2
  givenname: Jaie
  surname: Woodard
  fullname: Woodard, Jaie
– sequence: 3
  givenname: Arash
  surname: Tirandaz
  fullname: Tirandaz, Arash
– sequence: 4
  givenname: Alireza
  surname: Mashaghi
  fullname: Mashaghi, Alireza
BookMark eNp1kE9LAzEQxYNUsNaeveYLbJtNstvkWBf_FBQPVvAWZrPJNmW7WbLpoX56t62CCM5lhmHee8PvGo1a3xqEblMyY0zIue02hxkllMzIUNkFGlMq84RT_jH6NV-had9vh4uUZlJQPkYvS1y4oPcu4rXvfOPrA152XfCgNzh6XEA0tQ_u07U1LjbQ1qbHrsV3zu98Y_S-gYDfYtjruA_mBl1aaHoz_e4T9P5wvy6ekufXx1WxfE404yImAhhQXtmcSyALWVJBpeS04hVN89IIzaDSnAphZVny0kLOKzAsJUKnwChjE7Q6-1YetqoLbgfhoDw4dVr4UCsI0enGKKY1IxlovsiHOFOKIcTYEoZ0sJDB4JWdvXTwfR-MVdpFiM63MYBrVErUEbE6IlZHxOqEeNDN_-h-_vhP8QXn2YJU
CitedBy_id crossref_primary_10_1016_j_isci_2022_103866
crossref_primary_10_1021_acs_jcim_3c00391
crossref_primary_10_1016_j_isci_2020_101492
crossref_primary_10_1038_s41598_023_35771_8
crossref_primary_10_1016_j_trechm_2020_04_009
crossref_primary_10_1016_j_trechm_2021_02_002
crossref_primary_10_1021_acscentsci_0c00308
crossref_primary_10_1007_s12274_022_4355_x
crossref_primary_10_1016_j_mex_2022_101861
crossref_primary_10_1002_prot_26342
Cites_doi 10.1093/bioinformatics/btu823
10.1371/journal.pcbi.1005929
10.1038/nchem.1193
10.1093/nar/25.1.236
10.1074/jbc.M116.735977
10.1039/C5RA08106H
10.1371/journal.pcbi.1002445
10.1074/jbc.M115.673871
10.3389/fams.2016.00006
10.1126/science.1099216
10.1038/nsmb.2474
10.1039/C5SM01482D
10.1110/ps.062673207
10.1126/science.1082510
10.1016/0959-440x(95)80100-6
10.1006/jsbi.2001.4335
10.1126/science.1181085
10.1039/C7NR04220E
10.1017/CBO9780511626272
10.1039/C7CP02145C
10.1093/protein/6.3.279
10.1007/s00239-010-9379-2
10.1371/journal.pcbi.1005690
10.1039/C5NR08828C
10.1007/s00726-009-0457-y
10.1023/A:1015872125545
10.1039/C4CP03402C
10.1039/C1CS15262A
10.1016/j.str.2014.06.015
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fphy.2020.00005
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2296-424X
ExternalDocumentID oai_doaj_org_article_3cc305ac476649eb84d2efbadf6afa5a
10_3389_fphy_2020_00005
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c348t-8a3a24df649a079b2829942d4d216be8c3adc4288f9bb4bfa64dae3108c1a3233
IEDL.DBID DOA
ISSN 2296-424X
IngestDate Wed Aug 27 01:29:16 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
Tue Jul 01 03:39:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-8a3a24df649a079b2829942d4d216be8c3adc4288f9bb4bfa64dae3108c1a3233
OpenAccessLink https://doaj.org/article/3cc305ac476649eb84d2efbadf6afa5a
ParticipantIDs doaj_primary_oai_doaj_org_article_3cc305ac476649eb84d2efbadf6afa5a
crossref_citationtrail_10_3389_fphy_2020_00005
crossref_primary_10_3389_fphy_2020_00005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-30
PublicationDateYYYYMMDD 2020-01-30
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-30
  day: 30
PublicationDecade 2020
PublicationTitle Frontiers in physics
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Cang (B11) 2017; 13
Prlić (B22) 2014; 31
Blankenship (B5) 2007; 16
Mashaghi (B20) 2015; 11
Hubbard (B25) 1997; 25
Kappé (B28) 2010; 71
Brown (B2) 2002; 13
Mugler (B14) 2014; 16
Flapan (B3) 2000
Cavalli (B10) 2013; 20
Ayme (B4) 2011; 11
Coskun (B6) 2012; 41
Bailor (B9) 2010; 327
Grishin (B26) 2001; 134
Mashaghi (B19) 2015; 5
Wang (B23) 2010; 39
Mizuguchi (B1) 1995; 5
Serebryany (B30) 2016; 291
Bachar (B21) 1993; 6
Verovšek (B15) 2016; 2
Satarifard (B18) 2017; 9
Cang (B12) 2017; 14
Branden (B24) 1999
Heidari (B17) 2017; 19
Nikoofard (B16) 2016; 8
Mashaghi (B13) 2014; 22
Siegel (B8) 2004; 304
Bliven (B27) 2012; 8
Kamien (B7) 2003; 299
Garcia-Manyes (B29) 2016; 291
References_xml – volume: 31
  start-page: 1316
  year: 2014
  ident: B22
  article-title: Detection of circular permutations within protein structures using CE-CP
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu823
– volume: 14
  start-page: e1005929
  year: 2017
  ident: B12
  article-title: Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005929
– year: 1999
  ident: B24
  article-title: Introduction to Protein Structure
– volume: 11
  start-page: 15
  year: 2011
  ident: B4
  article-title: A synthetic molecular pentafoil knot
  publication-title: Nat Chem
  doi: 10.1038/nchem.1193
– volume: 25
  start-page: 236
  year: 1997
  ident: B25
  article-title: SCOP: a structural classification of proteins database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.1.236
– volume: 291
  start-page: 19172
  year: 2016
  ident: B30
  article-title: An internal disulfide locks a misfolded aggregation-prone intermediate in cataract-linked mutants of human YD-crystallin
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M116.735977
– volume: 5
  start-page: 51682
  year: 2015
  ident: B19
  article-title: Circuit topology of linear polymers: a statistical mechanical treatment
  publication-title: RSC Adv.
  doi: 10.1039/C5RA08106H
– volume: 8
  start-page: e1002445
  year: 2012
  ident: B27
  article-title: Circular permutation in proteins
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002445
– volume: 291
  start-page: 4226
  year: 2016
  ident: B29
  article-title: Single-molecule force spectroscopy predicts a misfolded, domain-swapped conformation in human YD-crystallin protein
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M115.673871
– volume: 2
  start-page: 6
  year: 2016
  ident: B15
  article-title: Extended topological persistence and contact arrangements in folded linear molecules
  publication-title: Front Appl Math Stat
  doi: 10.3389/fams.2016.00006
– volume: 304
  start-page: 1256
  year: 2004
  ident: B8
  article-title: Chemical topology and interlocking molecules
  publication-title: Science.
  doi: 10.1126/science.1099216
– volume: 20
  start-page: 290
  year: 2013
  ident: B10
  article-title: Functional implications of genome topology
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2474
– volume: 11
  start-page: 6576
  year: 2015
  ident: B20
  article-title: Distance measures and evolution of polymer chains in their topological space
  publication-title: Soft Matter.
  doi: 10.1039/C5SM01482D
– volume: 16
  start-page: 1249
  year: 2007
  ident: B5
  article-title: Threading a peptide through a peptide: protein loops, rotaxanes, and knots
  publication-title: Protein Sci
  doi: 10.1110/ps.062673207
– volume: 299
  start-page: 1671
  year: 2003
  ident: B7
  article-title: Topology from the bottom up
  publication-title: Science.
  doi: 10.1126/science.1082510
– volume: 5
  start-page: 377
  year: 1995
  ident: B1
  article-title: Seeking significance in three-dimensional protein structure comparisons
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/0959-440x(95)80100-6
– volume: 134
  start-page: 167
  year: 2001
  ident: B26
  article-title: Fold change in evolution of protein structures
  publication-title: J Struct Biol
  doi: 10.1006/jsbi.2001.4335
– volume: 327
  start-page: 202
  year: 2010
  ident: B9
  article-title: Topology links RNA secondary structure with global conformation, dynamics, and adaptation
  publication-title: Science
  doi: 10.1126/science.1181085
– volume: 9
  start-page: 12170
  year: 2017
  ident: B18
  article-title: Topology of polymer chains under nanoscale confinement
  publication-title: Nanoscale.
  doi: 10.1039/C7NR04220E
– year: 2000
  ident: B3
  article-title: When Topology Meets Chemistry: A Topological Look at Molecular Chirality
  doi: 10.1017/CBO9780511626272
– volume: 19
  start-page: 18389
  year: 2017
  ident: B17
  article-title: Topology of internally constrained polymer chains
  publication-title: Phys Chem Chem Phys.
  doi: 10.1039/C7CP02145C
– volume: 6
  start-page: 279
  year: 1993
  ident: B21
  article-title: A computer vision based technique for 3-D sequence-independent structural comparison of proteins
  publication-title: Protein Eng Design Select
  doi: 10.1093/protein/6.3.279
– volume: 71
  start-page: 219
  year: 2010
  ident: B28
  article-title: Explosive expansion of betagamma-crystallin genes in the ancestral vertebrate
  publication-title: J Mol Evol
  doi: 10.1007/s00239-010-9379-2
– volume: 13
  start-page: e1005690
  year: 2017
  ident: B11
  article-title: TopologyNet: topology based deep convolutional and multi-task neural networks for biomolecular property predictions
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005690
– volume: 8
  start-page: 4643
  year: 2016
  ident: B16
  article-title: Topology sorting and characterization of folded polymers using nano-pores
  publication-title: Nanoscale.
  doi: 10.1039/C5NR08828C
– volume: 39
  start-page: 417
  year: 2010
  ident: B23
  article-title: SANA: an algorithm for sequential and non-sequential protein structure alignment
  publication-title: Amino Acids.
  doi: 10.1007/s00726-009-0457-y
– volume: 13
  start-page: 339
  year: 2002
  ident: B2
  article-title: Topology and chemistry
  publication-title: Struct Chem.
  doi: 10.1023/A:1015872125545
– volume: 16
  start-page: 22537
  year: 2014
  ident: B14
  article-title: Circuit topology of self-interacting chains: implications for folding and unfolding dynamics
  publication-title: Phys Chem Chem Phys.
  doi: 10.1039/C4CP03402C
– volume: 41
  start-page: 19
  year: 2012
  ident: B6
  article-title: Great expectations: can artificial molecular machines deliver on their promise?
  publication-title: Chem Soc Rev.
  doi: 10.1039/C1CS15262A
– volume: 22
  start-page: 1227
  year: 2014
  ident: B13
  article-title: Circuit topology of proteins and nucleic acids
  publication-title: Structure.
  doi: 10.1016/j.str.2014.06.015
SSID ssj0001259824
Score 2.189195
Snippet The biological world is composed of folded linear molecules of bewildering topological complexity and diversity. The topology of folded biomolecules such as...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms duplication
matrix representation
permutation
protein engineering
protein folding
topology
Title A Circuit Topology Approach to Categorizing Changes in Biomolecular Structure
URI https://doaj.org/article/3cc305ac476649eb84d2efbadf6afa5a
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09a8MwEBUlUOhS-knTLzR06OLGkWRZHpPQEArp0gSyGX2CobVLmgztr-9JckI6lC5djWzO7wT37iy_h9Adk8QQYWgieWYT5lKRSKJ5wk1qHJRfmWs_Gpg-88mcPS2yxY7Vlz8TFuWBI3A9qjVsSalZzjkrrBLMEOuUNI5LJ7NAjaDm7TRTcbrihelY1PKBLqzoOYga2kGSBsXC7EcZ2lHrD2VlfIQOWz6IBzGOY7Rn6xO0H85l6o9TNB3gUbXU62qFZ9HO4BMPWhlwvGrwyAs9NMvqCyoQjn8KfOCqxsOqedsY3-KXoBG7XtozNB8_zkaTpHVASDRlYpUISSVh8KqskGleKP_Zs2DEAAZ9rqzQVBoNDYRwhVJMOcmZkRYYm9B9SQml56hTN7W9QDg3hWDWZQb4GRPAS5x3rZKZ5amlQvMuetgAUupWHty7VLyW0CZ4BEuPYOkRLAOCXXS_veE9KmP8vnToEd4u85LW4QIkumwTXf6V6Mv_eMgVOvBh-RkKTa9RB_C3N8AqVuo2bKBvwrfMyw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Circuit+Topology+Approach+to+Categorizing+Changes+in+Biomolecular+Structure&rft.jtitle=Frontiers+in+physics&rft.au=Otto+Schullian&rft.au=Jaie+Woodard&rft.au=Arash+Tirandaz&rft.au=Arash+Tirandaz&rft.date=2020-01-30&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-424X&rft.volume=8&rft_id=info:doi/10.3389%2Ffphy.2020.00005&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3cc305ac476649eb84d2efbadf6afa5a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon