Predicting metabolite–disease associations based on auto-encoder and non-negative matrix factorization
Abstract Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a normal range. However, specific diseases can lead to abnormalities in the levels of certain metabolites, causing them to either incr...
Saved in:
Published in | Briefings in bioinformatics Vol. 24; no. 5 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
20.09.2023
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a normal range. However, specific diseases can lead to abnormalities in the levels of certain metabolites, causing them to either increase or decrease. Detecting these deviations in metabolite levels can aid in diagnosing a disease. Traditional biological experiments often rely on a lot of manpower to do repeated experiments, which is time consuming and labor intensive. To address this issue, we develop a deep learning model based on the auto-encoder and non-negative matrix factorization named as MDA-AENMF to predict the potential associations between metabolites and diseases. We integrate a variety of similarity networks and then acquire the characteristics of both metabolites and diseases through three specific modules. First, we get the disease characteristics from the five-layer auto-encoder module. Later, in the non-negative matrix factorization module, we extract both the metabolite and disease characteristics. Furthermore, the graph attention auto-encoder module helps us obtain metabolite characteristics. After obtaining the features from three modules, these characteristics are merged into a single, comprehensive feature vector for each metabolite–disease pair. Finally, we send the corresponding feature vector and label to the multi-layer perceptron for training. The experiment demonstrates our area under the receiver operating characteristic curve of 0.975 and area under the precision–recall curve of 0.973 in 5-fold cross-validation, which are superior to those of existing state-of-the-art predictive methods. Through case studies, most of the new associations obtained by MDA-AENMF have been verified, further highlighting the reliability of MDA-AENMF in predicting the potential relationships between metabolites and diseases. |
---|---|
AbstractList | Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a normal range. However, specific diseases can lead to abnormalities in the levels of certain metabolites, causing them to either increase or decrease. Detecting these deviations in metabolite levels can aid in diagnosing a disease. Traditional biological experiments often rely on a lot of manpower to do repeated experiments, which is time consuming and labor intensive. To address this issue, we develop a deep learning model based on the auto-encoder and non-negative matrix factorization named as MDA-AENMF to predict the potential associations between metabolites and diseases. We integrate a variety of similarity networks and then acquire the characteristics of both metabolites and diseases through three specific modules. First, we get the disease characteristics from the five-layer auto-encoder module. Later, in the non-negative matrix factorization module, we extract both the metabolite and disease characteristics. Furthermore, the graph attention auto-encoder module helps us obtain metabolite characteristics. After obtaining the features from three modules, these characteristics are merged into a single, comprehensive feature vector for each metabolite-disease pair. Finally, we send the corresponding feature vector and label to the multi-layer perceptron for training. The experiment demonstrates our area under the receiver operating characteristic curve of 0.975 and area under the precision-recall curve of 0.973 in 5-fold cross-validation, which are superior to those of existing state-of-the-art predictive methods. Through case studies, most of the new associations obtained by MDA-AENMF have been verified, further highlighting the reliability of MDA-AENMF in predicting the potential relationships between metabolites and diseases.Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a normal range. However, specific diseases can lead to abnormalities in the levels of certain metabolites, causing them to either increase or decrease. Detecting these deviations in metabolite levels can aid in diagnosing a disease. Traditional biological experiments often rely on a lot of manpower to do repeated experiments, which is time consuming and labor intensive. To address this issue, we develop a deep learning model based on the auto-encoder and non-negative matrix factorization named as MDA-AENMF to predict the potential associations between metabolites and diseases. We integrate a variety of similarity networks and then acquire the characteristics of both metabolites and diseases through three specific modules. First, we get the disease characteristics from the five-layer auto-encoder module. Later, in the non-negative matrix factorization module, we extract both the metabolite and disease characteristics. Furthermore, the graph attention auto-encoder module helps us obtain metabolite characteristics. After obtaining the features from three modules, these characteristics are merged into a single, comprehensive feature vector for each metabolite-disease pair. Finally, we send the corresponding feature vector and label to the multi-layer perceptron for training. The experiment demonstrates our area under the receiver operating characteristic curve of 0.975 and area under the precision-recall curve of 0.973 in 5-fold cross-validation, which are superior to those of existing state-of-the-art predictive methods. Through case studies, most of the new associations obtained by MDA-AENMF have been verified, further highlighting the reliability of MDA-AENMF in predicting the potential relationships between metabolites and diseases. Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a normal range. However, specific diseases can lead to abnormalities in the levels of certain metabolites, causing them to either increase or decrease. Detecting these deviations in metabolite levels can aid in diagnosing a disease. Traditional biological experiments often rely on a lot of manpower to do repeated experiments, which is time consuming and labor intensive. To address this issue, we develop a deep learning model based on the auto-encoder and non-negative matrix factorization named as MDA-AENMF to predict the potential associations between metabolites and diseases. We integrate a variety of similarity networks and then acquire the characteristics of both metabolites and diseases through three specific modules. First, we get the disease characteristics from the five-layer auto-encoder module. Later, in the non-negative matrix factorization module, we extract both the metabolite and disease characteristics. Furthermore, the graph attention auto-encoder module helps us obtain metabolite characteristics. After obtaining the features from three modules, these characteristics are merged into a single, comprehensive feature vector for each metabolite–disease pair. Finally, we send the corresponding feature vector and label to the multi-layer perceptron for training. The experiment demonstrates our area under the receiver operating characteristic curve of 0.975 and area under the precision–recall curve of 0.973 in 5-fold cross-validation, which are superior to those of existing state-of-the-art predictive methods. Through case studies, most of the new associations obtained by MDA-AENMF have been verified, further highlighting the reliability of MDA-AENMF in predicting the potential relationships between metabolites and diseases. Abstract Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a normal range. However, specific diseases can lead to abnormalities in the levels of certain metabolites, causing them to either increase or decrease. Detecting these deviations in metabolite levels can aid in diagnosing a disease. Traditional biological experiments often rely on a lot of manpower to do repeated experiments, which is time consuming and labor intensive. To address this issue, we develop a deep learning model based on the auto-encoder and non-negative matrix factorization named as MDA-AENMF to predict the potential associations between metabolites and diseases. We integrate a variety of similarity networks and then acquire the characteristics of both metabolites and diseases through three specific modules. First, we get the disease characteristics from the five-layer auto-encoder module. Later, in the non-negative matrix factorization module, we extract both the metabolite and disease characteristics. Furthermore, the graph attention auto-encoder module helps us obtain metabolite characteristics. After obtaining the features from three modules, these characteristics are merged into a single, comprehensive feature vector for each metabolite–disease pair. Finally, we send the corresponding feature vector and label to the multi-layer perceptron for training. The experiment demonstrates our area under the receiver operating characteristic curve of 0.975 and area under the precision–recall curve of 0.973 in 5-fold cross-validation, which are superior to those of existing state-of-the-art predictive methods. Through case studies, most of the new associations obtained by MDA-AENMF have been verified, further highlighting the reliability of MDA-AENMF in predicting the potential relationships between metabolites and diseases. |
Author | Zhao, Qi Lu, Yuer Liu, Liyu Wang, Yukun Gao, Hongyan Shuai, Jianwei Sun, Jianqiang |
Author_xml | – sequence: 1 givenname: Hongyan surname: Gao fullname: Gao, Hongyan email: a3140039278@163.com – sequence: 2 givenname: Jianqiang surname: Sun fullname: Sun, Jianqiang email: sjqyjs@sina.com – sequence: 3 givenname: Yukun surname: Wang fullname: Wang, Yukun email: wyk410@163.com – sequence: 4 givenname: Yuer surname: Lu fullname: Lu, Yuer email: yuerlu@stu.xmu.edu.cn – sequence: 5 givenname: Liyu surname: Liu fullname: Liu, Liyu email: lyliu@cqu.edu.cn – sequence: 6 givenname: Qi orcidid: 0000-0001-9713-1864 surname: Zhao fullname: Zhao, Qi email: zhaoqi@lnu.edu.cn – sequence: 7 givenname: Jianwei orcidid: 0000-0002-8712-0544 surname: Shuai fullname: Shuai, Jianwei email: jianweishuai@xmu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37466194$$D View this record in MEDLINE/PubMed |
BookMark | eNp90ctqFjEUB_AgLfaiK_cSEEQoY3MmmUuWUtQWCu1C1yGXMzVlJvlMMqKufAff0Ccx7fd1U8RVQvI7h5P8j8heiAEJeQHsLTDJT403p8Zo13byCTkEMQyNYJ3Yu9v3Q9OJnh-Qo5xvGWvZMMJTcsAH0fcgxSH5cp3QeVt8uKELFm3i7Av--fXb-Yw6I9U5R-t18TFkauqJozFQvZbYYLDRYaI6OFpnagLeVPcN6aJL8t_ppG2Jyf-8L35G9ic9Z3y-W4_J5w_vP52dN5dXHy_O3l02louxNOMosLO8l9Ihb0cNIC1jdgLXT07ITo99b2DqkRkYQLbAOAdukTvW1nvLj8mbbd9Nil9XzEUtPlucZx0wrlm1I5eDaEFApa8e0du4plCnU5wJCcCGjlf1cqdWs6BTm-QXnX6ohz-sALbApphzwklZX-7fXJL2swKm7nJSNSe1y6nWnDyqeWj7b_16q-O6-S_8C-BCo4I |
CitedBy_id | crossref_primary_10_1021_acs_jcim_4c01991 crossref_primary_10_34133_research_0361 crossref_primary_10_3389_fmicb_2023_1284723 crossref_primary_10_1111_jcmm_18590 crossref_primary_10_1111_jcmm_18591 crossref_primary_10_1021_acs_jcim_4c00586 crossref_primary_10_1111_jcmm_18398 crossref_primary_10_1093_bib_bbae481 crossref_primary_10_1111_jcmm_18553 crossref_primary_10_1038_s41598_024_56694_y crossref_primary_10_1007_s12539_023_00602_x crossref_primary_10_1007_s12539_024_00616_z crossref_primary_10_3389_fmicb_2023_1325001 crossref_primary_10_1002_cem_3553 crossref_primary_10_1016_j_jare_2024_06_002 crossref_primary_10_1016_j_compbiolchem_2024_108219 crossref_primary_10_1038_s41598_024_61849_y crossref_primary_10_1038_s41598_024_58646_y crossref_primary_10_1016_j_engappai_2025_110303 crossref_primary_10_3389_fmicb_2023_1308149 crossref_primary_10_1016_j_compbiomed_2024_108393 crossref_primary_10_1089_cmb_2023_0449 crossref_primary_10_1111_jcmm_18180 crossref_primary_10_1038_s41598_024_64308_w crossref_primary_10_1007_s11306_025_02227_1 crossref_primary_10_3934_mbe_2024131 crossref_primary_10_1080_07391102_2024_2313712 crossref_primary_10_1186_s12967_024_05958_2 crossref_primary_10_1142_S2737416523410053 crossref_primary_10_3389_fmicb_2023_1277121 crossref_primary_10_1111_jcmm_18345 crossref_primary_10_1038_s41598_024_55187_2 crossref_primary_10_1111_jcmm_70315 crossref_primary_10_1016_j_compbiolchem_2023_107992 crossref_primary_10_1016_j_aquatox_2025_107244 crossref_primary_10_1186_s12864_024_10038_2 crossref_primary_10_1142_S273741652350062X crossref_primary_10_1038_s41598_024_63446_5 crossref_primary_10_1038_s41598_023_51126_9 crossref_primary_10_1039_D4ME00056K crossref_primary_10_1007_s13755_023_00268_1 crossref_primary_10_1016_j_inffus_2024_102894 crossref_primary_10_1371_journal_pone_0299898 crossref_primary_10_1016_j_apnum_2024_10_015 crossref_primary_10_1111_jcmm_18372 crossref_primary_10_1016_j_intimp_2024_112464 crossref_primary_10_1038_s41598_024_63582_y crossref_primary_10_1038_s41598_024_55812_0 crossref_primary_10_1111_jcmm_18298 crossref_primary_10_3389_fmicb_2024_1353278 crossref_primary_10_1038_s41598_024_53442_0 crossref_primary_10_1038_s41598_024_55160_z crossref_primary_10_1186_s12864_023_09829_w crossref_primary_10_3934_mbe_2024015 crossref_primary_10_3389_fmicb_2023_1290746 crossref_primary_10_1142_S0219720024500185 crossref_primary_10_1016_j_ymeth_2023_11_014 crossref_primary_10_1109_TCBB_2024_3402248 crossref_primary_10_1186_s12859_023_05571_y crossref_primary_10_1038_s41598_024_56583_4 crossref_primary_10_1080_01480545_2024_2364905 crossref_primary_10_1038_s41598_023_46480_7 crossref_primary_10_1016_j_ab_2023_115431 crossref_primary_10_1016_j_heliyon_2024_e35160 crossref_primary_10_1186_s12967_024_05741_3 crossref_primary_10_1038_s41598_024_62796_4 crossref_primary_10_1021_acsomega_3c07923 crossref_primary_10_1371_journal_pone_0296676 crossref_primary_10_1016_j_eswa_2025_126637 crossref_primary_10_1016_j_heliyon_2023_e20184 crossref_primary_10_1038_s41598_023_45626_x crossref_primary_10_1038_s41598_024_54837_9 crossref_primary_10_1093_bioinformatics_btae025 crossref_primary_10_1016_j_ymeth_2023_10_007 crossref_primary_10_1142_S0129183124501936 crossref_primary_10_1016_j_jocs_2024_102477 crossref_primary_10_1089_cmb_2023_0266 crossref_primary_10_1007_s12539_024_00645_8 crossref_primary_10_1097_MD_0000000000040072 crossref_primary_10_1111_jcmm_18127 crossref_primary_10_1038_s41598_023_44677_4 crossref_primary_10_1016_j_compbiolchem_2024_108320 crossref_primary_10_1038_s41598_023_50092_6 crossref_primary_10_3934_mbe_2023894 crossref_primary_10_1002_prp2_70034 crossref_primary_10_1038_s41598_023_46669_w crossref_primary_10_1016_j_compeleceng_2025_110242 crossref_primary_10_1097_MD_0000000000036456 crossref_primary_10_3389_fmicb_2024_1363455 crossref_primary_10_1016_j_compbiomed_2023_107793 crossref_primary_10_1016_j_swevo_2024_101567 crossref_primary_10_1038_s41598_024_52653_9 crossref_primary_10_1016_j_knosys_2024_112597 crossref_primary_10_1038_s41598_024_61762_4 crossref_primary_10_1186_s12864_023_09879_0 |
Cites_doi | 10.1007/s12539-021-00458-z 10.1016/j.pop.2017.10.004 10.1093/bib/bbac463 10.1093/bib/bbab286 10.1207/S15327914NC402_16 10.1093/bib/bbac266 10.1016/j.ygeno.2019.08.001 10.1186/s12859-022-04694-y 10.1093/bib/bbac104 10.1016/S0140-6736(05)66378-7 10.1186/s12859-018-2098-1 10.1093/bib/bbx130 10.1046/j.1467-789X.2001.00040.x 10.1093/bib/bbaa212 10.1007/s00726-012-1363-2 10.1109/JBHI.2021.3088342 10.1186/s13029-015-0046-2 10.1556/650.2015.30300 10.3389/fgene.2021.660275 10.26599/BDMA.2019.9020010 10.1038/44565 10.3892/etm.2015.2853 10.1016/j.bpsgos.2021.07.010 10.1136/bmj.1.5851.476 10.1016/j.stem.2018.04.015 10.1016/S0140-6736(20)32511-3 10.3389/fbioe.2020.00040 10.26599/TST.2021.9010003 10.1186/s12918-019-0696-9 10.1016/j.knosys.2019.105261 10.1093/bib/bbac358 10.1080/10428194.2016.1225206 10.1016/j.compbiomed.2022.106464 10.1172/JCI109169 10.1007/s13238-020-00814-7 10.1186/s13040-019-0206-z 10.1109/TNB.2019.2922214 10.1080/07315724.1989.10720308 10.1007/s00108-011-2980-7 10.1093/bib/bbac407 10.1046/j.1440-1746.2000.02065.x 10.1188/15.ONF.E91-E101 10.1016/j.actbio.2020.04.021 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023 The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023 – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbad259 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Genetics Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 37466194 10_1093_bib_bbad259 10.1093/bib/bbad259 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Foundation of Education Department of Liaoning Province grantid: LJKZ0320 – fundername: Natural Science Foundation of Liaoning Province grantid: 11805091 – fundername: National Natural Science Foundation of China grantid: 2023-MS-288 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX AHGBF CITATION ADRIX AFXEN BCRHZ NPM ROX 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c348t-884e5c3699de328a119c00cf1d6fd495a866b1f6e0b17192103313ce3d02d49c3 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Jul 11 07:28:48 EDT 2025 Mon Jun 30 08:48:53 EDT 2025 Wed Feb 19 02:23:17 EST 2025 Tue Jul 01 03:39:48 EDT 2025 Thu Apr 24 22:58:24 EDT 2025 Wed Apr 02 07:05:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | auto-encoder diseases feature splicing multi-layer perceptron metabolites non-negative matrix factorization |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model ( https://academic.oup.com/pages/standard-publication-reuse-rights) https://academic.oup.com/pages/standard-publication-reuse-rights The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-884e5c3699de328a119c00cf1d6fd495a866b1f6e0b17192103313ce3d02d49c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8712-0544 0000-0001-9713-1864 |
PMID | 37466194 |
PQID | 3049110753 |
PQPubID | 26846 |
ParticipantIDs | proquest_miscellaneous_2839742141 proquest_journals_3049110753 pubmed_primary_37466194 crossref_citationtrail_10_1093_bib_bbad259 crossref_primary_10_1093_bib_bbad259 oup_primary_10_1093_bib_bbad259 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-20 |
PublicationDateYYYYMMDD | 2023-09-20 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2023 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Ge (2023092216480901000_ref18) 2020; 112 Lord (2023092216480901000_ref8) 2022; 2 Zhao (2023092216480901000_ref22) 2021; 22 Zhang (2023092216480901000_ref23) 2021; 12 Garber (2023092216480901000_ref42) 1978; 62 Wang (2023092216480901000_ref9) 2023; 153 Haller (2023092216480901000_ref40) 2012; 53 Azam (2023092216480901000_ref7) 2022; 10 Liu (2023092216480901000_ref10) 2020; 191 Ding (2023092216480901000_ref28) 2022; 26 Turner (2023092216480901000_ref46) 1973; 1 Sun (2023092216480901000_ref25) 2022; 23 Li (2023092216480901000_ref27) 2019; 13 Wu (2023092216480901000_ref5) 2021; 12 Di Marzio (2023092216480901000_ref39) 2001; 40 Huang (2023092216480901000_ref14) 2022; 23 Zhang (2023092216480901000_ref11) 2021; 13 Fang (2023092216480901000_ref26) 2019; 2 Peng (2023092216480901000_ref34) 2020; 8 Meherubin (2023092216480901000_ref44) 2021; 30 Fehér (2023092216480901000_ref49) 2015; 156 Leak Bryant (2023092216480901000_ref36) 2015; 42 Hu (2023092216480901000_ref19) 2018; 19 Leonard (2023092216480901000_ref4) 2018; 45 Deng (2023092216480901000_ref30) 2022; 23 Lei (2023092216480901000_ref20) 2019; 12 Dzierzak (2023092216480901000_ref35) 2018; 22 Freudenberg (2023092216480901000_ref45) 2013; 44 Wang (2023092216480901000_ref16) 2021; 22 Wang (2023092216480901000_ref12) 2022; 23 2023092216480901000_ref32 Huang (2023092216480901000_ref13) 2022; 23 Eckel (2023092216480901000_ref1) 2005; 365 Zhao (2023092216480901000_ref17) 2019; 18 Medina (2023092216480901000_ref38) 2017; 58 Kolotkin (2023092216480901000_ref2) 2001; 2 Rudman (2023092216480901000_ref41) 1989; 8 Gibson (2023092216480901000_ref48) 2000; 15 Rojas-Sánchez (2023092216480901000_ref47) 2020; 110 Liu (2023092216480901000_ref29) 2022; 23 Tie (2023092216480901000_ref24) 2022; 27 Lee (2023092216480901000_ref31) 1999; 401 Lei (2023092216480901000_ref21) 2020; 2020 Chen (2023092216480901000_ref15) 2019; 20 Taylor (2023092216480901000_ref6) 2022; 9 Yates (2023092216480901000_ref33) 2015; 10 Ishiguro (2023092216480901000_ref37) 1985; 45 Powell (2023092216480901000_ref3) 2021; 397 Xu (2023092216480901000_ref43) 2016; 11 |
References_xml | – volume: 13 start-page: 535 year: 2021 ident: 2023092216480901000_ref11 article-title: Using network distance analysis to predict lncRNA–miRNA interactions publication-title: Interdiscip Sci Comput Life Sci doi: 10.1007/s12539-021-00458-z – volume: 45 start-page: 131 year: 2018 ident: 2023092216480901000_ref4 article-title: Cardiovascular disease in women publication-title: Prim Care doi: 10.1016/j.pop.2017.10.004 – volume: 23 start-page: bbac463 year: 2022 ident: 2023092216480901000_ref12 article-title: Predicting the potential human lncRNA-miRNA interactions based on graph convolution network with conditional random field publication-title: Brief Bioinform doi: 10.1093/bib/bbac463 – volume: 22 start-page: bbab286 year: 2021 ident: 2023092216480901000_ref16 article-title: Circular RNAs and complex diseases: from experimental results to computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbab286 – volume: 40 start-page: 185 year: 2001 ident: 2023092216480901000_ref39 article-title: Apoptotic effects of selected strains of lactic acid bacteria on a human T leukemia cell line are associated with bacterial arginine deiminase and/or sphingomyelinase activities publication-title: Nutr Cancer doi: 10.1207/S15327914NC402_16 – volume: 23 start-page: bbac266 year: 2022 ident: 2023092216480901000_ref25 article-title: A deep learning method for predicting metabolite-disease associations via graph neural network publication-title: Brief Bioinform doi: 10.1093/bib/bbac266 – volume: 112 start-page: 1335 year: 2020 ident: 2023092216480901000_ref18 article-title: Predicting human disease-associated circRNAs based on locality-constrained linear coding publication-title: Genomics doi: 10.1016/j.ygeno.2019.08.001 – volume: 23 start-page: 160 year: 2022 ident: 2023092216480901000_ref30 article-title: Predicting circRNA-drug sensitivity associations via graph attention auto-encoder publication-title: BMC Bioinform doi: 10.1186/s12859-022-04694-y – volume: 23 start-page: bbac104 year: 2022 ident: 2023092216480901000_ref29 article-title: Identification of miRNA-disease associations via deep forest ensemble learning based on autoencoder publication-title: Brief Bioinform doi: 10.1093/bib/bbac104 – volume: 365 start-page: 1415 year: 2005 ident: 2023092216480901000_ref1 article-title: The metabolic syndrome publication-title: Lancet doi: 10.1016/S0140-6736(05)66378-7 – volume: 19 start-page: 116 year: 2018 ident: 2023092216480901000_ref19 article-title: Identifying diseases-related metabolites using random walk publication-title: BMC Bioinform doi: 10.1186/s12859-018-2098-1 – volume: 20 start-page: 515 year: 2019 ident: 2023092216480901000_ref15 article-title: MicroRNAs and complex diseases: from experimental results to computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbx130 – volume: 2 start-page: 219 year: 2001 ident: 2023092216480901000_ref2 article-title: Quality of life and obesity publication-title: Obes Rev doi: 10.1046/j.1467-789X.2001.00040.x – volume: 22 start-page: bbaa212 year: 2021 ident: 2023092216480901000_ref22 article-title: Deep-DRM: a computational method for identifying disease-related metabolites based on graph deep learning approaches publication-title: Brief Bioinform doi: 10.1093/bib/bbaa212 – volume: 44 start-page: 519 year: 2013 ident: 2023092216480901000_ref45 article-title: Dietary L-leucine and L-alanine supplementation have similar acute effects in the prevention of high-fat diet-induced obesity publication-title: Amino Acids doi: 10.1007/s00726-012-1363-2 – volume: 26 start-page: 446 year: 2022 ident: 2023092216480901000_ref28 article-title: Predicting miRNA-disease associations based on multi-view variational graph auto-encoder with matrix factorization publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2021.3088342 – volume: 10 start-page: 16 year: 2015 ident: 2023092216480901000_ref33 article-title: PageRank as a method to rank biomedical literature by importance publication-title: Source Code Biol Med doi: 10.1186/s13029-015-0046-2 – volume: 156 start-page: 1892 year: 2015 ident: 2023092216480901000_ref49 article-title: Changes in neuropeptide Y and substance P immunoreactive nerve fibres and immunocompetent cells in hepatitis publication-title: Orv Hetil doi: 10.1556/650.2015.30300 – volume: 12 start-page: 660275 year: 2021 ident: 2023092216480901000_ref23 article-title: Predicting metabolite-disease associations based on LightGBM model publication-title: Front Genet doi: 10.3389/fgene.2021.660275 – volume: 2 start-page: 261 year: 2019 ident: 2023092216480901000_ref26 article-title: Prediction of miRNA-circRNA associations based on k-NN multi-label with random walk restart on a heterogeneous network publication-title: Big Data Min Anal doi: 10.26599/BDMA.2019.9020010 – volume: 401 start-page: 788 year: 1999 ident: 2023092216480901000_ref31 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 10 start-page: 154 year: 2022 ident: 2023092216480901000_ref7 article-title: Piperine and its metabolite’s pharmacology in neurodegenerative and neurological diseases publication-title: Biomedicine – volume: 11 start-page: 15 year: 2016 ident: 2023092216480901000_ref43 article-title: Pediatric obesity: causes, symptoms, prevention and treatment publication-title: Exp Ther Med doi: 10.3892/etm.2015.2853 – volume: 2 start-page: 167 year: 2022 ident: 2023092216480901000_ref8 article-title: Disentangling independent and mediated causal relationships between blood metabolites, cognitive factors, and Alzheimer’s disease publication-title: Biol Psychiatry Glob Open Sci doi: 10.1016/j.bpsgos.2021.07.010 – volume: 1 start-page: 476 year: 1973 ident: 2023092216480901000_ref46 article-title: Hepatitis publication-title: Br Med J doi: 10.1136/bmj.1.5851.476 – volume: 22 start-page: 639 year: 2018 ident: 2023092216480901000_ref35 article-title: Blood development: hematopoietic stem cell dependence and independence publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.04.015 – volume: 397 start-page: 2212 year: 2021 ident: 2023092216480901000_ref3 article-title: Non-alcoholic fatty liver disease publication-title: Lancet doi: 10.1016/S0140-6736(20)32511-3 – volume: 30 start-page: 991 year: 2021 ident: 2023092216480901000_ref44 article-title: Level of serum creatinine and creatinine clearance rate in obese female publication-title: Mymensingh Med J – volume: 8 start-page: 40 year: 2020 ident: 2023092216480901000_ref34 article-title: A computational study of potential miRNA-disease association inference based on ensemble learning and kernel ridge regression publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2020.00040 – volume: 27 start-page: 58 year: 2022 ident: 2023092216480901000_ref24 article-title: Metabolite-disease association prediction algorithm combining DeepWalk and random forest publication-title: Tsinghua Sci Technol doi: 10.26599/TST.2021.9010003 – volume: 13 start-page: 26 year: 2019 ident: 2023092216480901000_ref27 article-title: FCMDAP: using miRNA family and cluster information to improve the prediction accuracy of disease related miRNAs publication-title: BMC Syst Biol doi: 10.1186/s12918-019-0696-9 – volume: 45 start-page: 91 year: 1985 ident: 2023092216480901000_ref37 article-title: Enhancement of the differentiation-inducing properties of 6-thioguanine by hypoxanthine and its nucleosides in HL-60 promyelocytic leukemia cells publication-title: Cancer Res – volume: 191 start-page: 105261 year: 2020 ident: 2023092216480901000_ref10 article-title: Predicting lncRNA–miRNA interactions based on logistic matrix factorization with neighborhood regularized publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2019.105261 – volume: 23 start-page: bbac358 year: 2022 ident: 2023092216480901000_ref13 article-title: Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbac358 – volume: 58 start-page: 1227 year: 2017 ident: 2023092216480901000_ref38 article-title: Choline-magnesium trisalicylate modulates acute myelogenous leukemia gene expression during induction chemotherapy publication-title: Leuk Lymphoma doi: 10.1080/10428194.2016.1225206 – volume: 2020 start-page: 1 year: 2020 ident: 2023092216480901000_ref21 article-title: Predicting metabolite-disease associations based on linear neighborhood similarity with improved bipartite network projection algorithm publication-title: Complexity – volume: 153 start-page: 106464 year: 2023 ident: 2023092216480901000_ref9 article-title: Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.106464 – volume-title: Machine Learning Lab Special Lecture ident: 2023092216480901000_ref32 – volume: 62 start-page: 623 year: 1978 ident: 2023092216480901000_ref42 article-title: Skeletal muscle protein and amino acid metabolism in experimental chronic uremia in the rat: accelerated alanine and glutamine formation and release publication-title: J Clin Invest doi: 10.1172/JCI109169 – volume: 12 start-page: 360 year: 2021 ident: 2023092216480901000_ref5 article-title: The role of the gut microbiome and its metabolites in metabolic diseases publication-title: Protein Cell doi: 10.1007/s13238-020-00814-7 – volume: 12 start-page: 19 year: 2019 ident: 2023092216480901000_ref20 article-title: Predicting metabolite-disease associations based on KATZ model publication-title: BioData Min doi: 10.1186/s13040-019-0206-z – volume: 18 start-page: 578 year: 2019 ident: 2023092216480901000_ref17 article-title: Integrating bipartite network projection and KATZ measure to identify novel circRNA-disease associations publication-title: IEEE Trans Nanobioscience doi: 10.1109/TNB.2019.2922214 – volume: 8 start-page: 324 year: 1989 ident: 2023092216480901000_ref41 article-title: Fractures in the men of a veterans administration nursing home: relation to 1,25-dihydroxyvitamin D publication-title: J Am Coll Nutr doi: 10.1080/07315724.1989.10720308 – volume: 53 start-page: 789 year: 2012 ident: 2023092216480901000_ref40 article-title: Renal failure publication-title: Internist (Berl) doi: 10.1007/s00108-011-2980-7 – volume: 23 start-page: bbac407 year: 2022 ident: 2023092216480901000_ref14 article-title: Updated review of advances in microRNAs and complex diseases: towards systematic evaluation of computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbac407 – volume: 15 start-page: 192 year: 2000 ident: 2023092216480901000_ref48 article-title: Effect of hepatobiliary disease, chronic hepatitis C and hepatitis B virus infections and interferon-alpha on porphyrin profiles in plasma, urine and faeces publication-title: J Gastroenterol Hepatol doi: 10.1046/j.1440-1746.2000.02065.x – volume: 42 start-page: E91 year: 2015 ident: 2023092216480901000_ref36 article-title: Patient-reported symptoms and quality of life in adults with acute leukemia: a systematic review publication-title: Oncol Nurs Forum doi: 10.1188/15.ONF.E91-E101 – volume: 110 start-page: 254 year: 2020 ident: 2023092216480901000_ref47 article-title: Genetic immunization against hepatitis B virus with calcium phosphate nanoparticles in vitro and in vivo publication-title: Acta Biomater doi: 10.1016/j.actbio.2020.04.021 – volume: 9 start-page: 237 year: 2022 ident: 2023092216480901000_ref6 article-title: The relationship of maternal gestational mass spectrometry-derived metabolites with offspring congenital heart disease: results from multivariable and Mendelian randomization analyses publication-title: J Cardiovasc Dev Dis |
SSID | ssj0020781 |
Score | 2.638665 |
Snippet | Abstract
Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains... Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Abnormalities Chemical reactions Coders Deep learning Disease Factorization Manpower Metabolism Metabolites Modules Multilayer perceptrons Multilayers |
Title | Predicting metabolite–disease associations based on auto-encoder and non-negative matrix factorization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37466194 https://www.proquest.com/docview/3049110753 https://www.proquest.com/docview/2839742141 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6kIHgR30arrtCTsDSbTTbJUcRSBB-HFnoLm92tCppKk4Le_A_-Q3-JM822Ui163g0DM5nXzsw3hLRiqUOwvSGTqRYMQuqcpdhMFcWG6zj1jZ4CaV_fyG4_vBpEA9cgWy4p4aeinT_m7TxXBgJ1MLXgfhEiv3c7mOdViFdTDxHFDNHd3Rjej28XHM_CMNuvmHLqWzobZN0FhfS8luImWbHFFlmt10S-bZOHuzGWU7BBmT7bCsSGg8Of7x-uukLVN49Lin7J0FFB1aQaMcSpNHZMVWEoZPqssPdTqG_6jNj8r7Tet-OGMXdIv3PZu-gytyGBaREmFUuS0EZayDQ1VgSJ4jzVvq-H3MihgdRHJVLmfCitn_MYkc98IbjQVhg_gHMtdkkDaNt9Qk2qYi0jsH2BCEFESoFCaisNAqRFkfTI2Yx9mXbw4bjF4imry9giA15njtceac0vv9SoGcuvnYAc_r7RnMkoc8pVZlgZxLQ1Eh45nR-DWmCtQxV2NCkziJogUwp4yD2yV8t2TkfEocTHm4N_yR-SNVwvj_0hgd8kjWo8sUcQhFT58fQX_AIAedr7 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+metabolite%E2%80%93disease+associations+based+on+auto-encoder+and+non-negative+matrix+factorization&rft.jtitle=Briefings+in+bioinformatics&rft.au=Gao%2C+Hongyan&rft.au=Sun%2C+Jianqiang&rft.au=Wang%2C+Yukun&rft.au=Lu%2C+Yuer&rft.date=2023-09-20&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=24&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbad259&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |