Predicting metabolite–disease associations based on auto-encoder and non-negative matrix factorization

Abstract Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a normal range. However, specific diseases can lead to abnormalities in the levels of certain metabolites, causing them to either incr...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 24; no. 5
Main Authors Gao, Hongyan, Sun, Jianqiang, Wang, Yukun, Lu, Yuer, Liu, Liyu, Zhao, Qi, Shuai, Jianwei
Format Journal Article
LanguageEnglish
Published England Oxford University Press 20.09.2023
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a normal range. However, specific diseases can lead to abnormalities in the levels of certain metabolites, causing them to either increase or decrease. Detecting these deviations in metabolite levels can aid in diagnosing a disease. Traditional biological experiments often rely on a lot of manpower to do repeated experiments, which is time consuming and labor intensive. To address this issue, we develop a deep learning model based on the auto-encoder and non-negative matrix factorization named as MDA-AENMF to predict the potential associations between metabolites and diseases. We integrate a variety of similarity networks and then acquire the characteristics of both metabolites and diseases through three specific modules. First, we get the disease characteristics from the five-layer auto-encoder module. Later, in the non-negative matrix factorization module, we extract both the metabolite and disease characteristics. Furthermore, the graph attention auto-encoder module helps us obtain metabolite characteristics. After obtaining the features from three modules, these characteristics are merged into a single, comprehensive feature vector for each metabolite–disease pair. Finally, we send the corresponding feature vector and label to the multi-layer perceptron for training. The experiment demonstrates our area under the receiver operating characteristic curve of 0.975 and area under the precision–recall curve of 0.973 in 5-fold cross-validation, which are superior to those of existing state-of-the-art predictive methods. Through case studies, most of the new associations obtained by MDA-AENMF have been verified, further highlighting the reliability of MDA-AENMF in predicting the potential relationships between metabolites and diseases.
AbstractList Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a normal range. However, specific diseases can lead to abnormalities in the levels of certain metabolites, causing them to either increase or decrease. Detecting these deviations in metabolite levels can aid in diagnosing a disease. Traditional biological experiments often rely on a lot of manpower to do repeated experiments, which is time consuming and labor intensive. To address this issue, we develop a deep learning model based on the auto-encoder and non-negative matrix factorization named as MDA-AENMF to predict the potential associations between metabolites and diseases. We integrate a variety of similarity networks and then acquire the characteristics of both metabolites and diseases through three specific modules. First, we get the disease characteristics from the five-layer auto-encoder module. Later, in the non-negative matrix factorization module, we extract both the metabolite and disease characteristics. Furthermore, the graph attention auto-encoder module helps us obtain metabolite characteristics. After obtaining the features from three modules, these characteristics are merged into a single, comprehensive feature vector for each metabolite-disease pair. Finally, we send the corresponding feature vector and label to the multi-layer perceptron for training. The experiment demonstrates our area under the receiver operating characteristic curve of 0.975 and area under the precision-recall curve of 0.973 in 5-fold cross-validation, which are superior to those of existing state-of-the-art predictive methods. Through case studies, most of the new associations obtained by MDA-AENMF have been verified, further highlighting the reliability of MDA-AENMF in predicting the potential relationships between metabolites and diseases.Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a normal range. However, specific diseases can lead to abnormalities in the levels of certain metabolites, causing them to either increase or decrease. Detecting these deviations in metabolite levels can aid in diagnosing a disease. Traditional biological experiments often rely on a lot of manpower to do repeated experiments, which is time consuming and labor intensive. To address this issue, we develop a deep learning model based on the auto-encoder and non-negative matrix factorization named as MDA-AENMF to predict the potential associations between metabolites and diseases. We integrate a variety of similarity networks and then acquire the characteristics of both metabolites and diseases through three specific modules. First, we get the disease characteristics from the five-layer auto-encoder module. Later, in the non-negative matrix factorization module, we extract both the metabolite and disease characteristics. Furthermore, the graph attention auto-encoder module helps us obtain metabolite characteristics. After obtaining the features from three modules, these characteristics are merged into a single, comprehensive feature vector for each metabolite-disease pair. Finally, we send the corresponding feature vector and label to the multi-layer perceptron for training. The experiment demonstrates our area under the receiver operating characteristic curve of 0.975 and area under the precision-recall curve of 0.973 in 5-fold cross-validation, which are superior to those of existing state-of-the-art predictive methods. Through case studies, most of the new associations obtained by MDA-AENMF have been verified, further highlighting the reliability of MDA-AENMF in predicting the potential relationships between metabolites and diseases.
Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a normal range. However, specific diseases can lead to abnormalities in the levels of certain metabolites, causing them to either increase or decrease. Detecting these deviations in metabolite levels can aid in diagnosing a disease. Traditional biological experiments often rely on a lot of manpower to do repeated experiments, which is time consuming and labor intensive. To address this issue, we develop a deep learning model based on the auto-encoder and non-negative matrix factorization named as MDA-AENMF to predict the potential associations between metabolites and diseases. We integrate a variety of similarity networks and then acquire the characteristics of both metabolites and diseases through three specific modules. First, we get the disease characteristics from the five-layer auto-encoder module. Later, in the non-negative matrix factorization module, we extract both the metabolite and disease characteristics. Furthermore, the graph attention auto-encoder module helps us obtain metabolite characteristics. After obtaining the features from three modules, these characteristics are merged into a single, comprehensive feature vector for each metabolite–disease pair. Finally, we send the corresponding feature vector and label to the multi-layer perceptron for training. The experiment demonstrates our area under the receiver operating characteristic curve of 0.975 and area under the precision–recall curve of 0.973 in 5-fold cross-validation, which are superior to those of existing state-of-the-art predictive methods. Through case studies, most of the new associations obtained by MDA-AENMF have been verified, further highlighting the reliability of MDA-AENMF in predicting the potential relationships between metabolites and diseases.
Abstract Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a normal range. However, specific diseases can lead to abnormalities in the levels of certain metabolites, causing them to either increase or decrease. Detecting these deviations in metabolite levels can aid in diagnosing a disease. Traditional biological experiments often rely on a lot of manpower to do repeated experiments, which is time consuming and labor intensive. To address this issue, we develop a deep learning model based on the auto-encoder and non-negative matrix factorization named as MDA-AENMF to predict the potential associations between metabolites and diseases. We integrate a variety of similarity networks and then acquire the characteristics of both metabolites and diseases through three specific modules. First, we get the disease characteristics from the five-layer auto-encoder module. Later, in the non-negative matrix factorization module, we extract both the metabolite and disease characteristics. Furthermore, the graph attention auto-encoder module helps us obtain metabolite characteristics. After obtaining the features from three modules, these characteristics are merged into a single, comprehensive feature vector for each metabolite–disease pair. Finally, we send the corresponding feature vector and label to the multi-layer perceptron for training. The experiment demonstrates our area under the receiver operating characteristic curve of 0.975 and area under the precision–recall curve of 0.973 in 5-fold cross-validation, which are superior to those of existing state-of-the-art predictive methods. Through case studies, most of the new associations obtained by MDA-AENMF have been verified, further highlighting the reliability of MDA-AENMF in predicting the potential relationships between metabolites and diseases.
Author Zhao, Qi
Lu, Yuer
Liu, Liyu
Wang, Yukun
Gao, Hongyan
Shuai, Jianwei
Sun, Jianqiang
Author_xml – sequence: 1
  givenname: Hongyan
  surname: Gao
  fullname: Gao, Hongyan
  email: a3140039278@163.com
– sequence: 2
  givenname: Jianqiang
  surname: Sun
  fullname: Sun, Jianqiang
  email: sjqyjs@sina.com
– sequence: 3
  givenname: Yukun
  surname: Wang
  fullname: Wang, Yukun
  email: wyk410@163.com
– sequence: 4
  givenname: Yuer
  surname: Lu
  fullname: Lu, Yuer
  email: yuerlu@stu.xmu.edu.cn
– sequence: 5
  givenname: Liyu
  surname: Liu
  fullname: Liu, Liyu
  email: lyliu@cqu.edu.cn
– sequence: 6
  givenname: Qi
  orcidid: 0000-0001-9713-1864
  surname: Zhao
  fullname: Zhao, Qi
  email: zhaoqi@lnu.edu.cn
– sequence: 7
  givenname: Jianwei
  orcidid: 0000-0002-8712-0544
  surname: Shuai
  fullname: Shuai, Jianwei
  email: jianweishuai@xmu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37466194$$D View this record in MEDLINE/PubMed
BookMark eNp90ctqFjEUB_AgLfaiK_cSEEQoY3MmmUuWUtQWCu1C1yGXMzVlJvlMMqKufAff0Ccx7fd1U8RVQvI7h5P8j8heiAEJeQHsLTDJT403p8Zo13byCTkEMQyNYJ3Yu9v3Q9OJnh-Qo5xvGWvZMMJTcsAH0fcgxSH5cp3QeVt8uKELFm3i7Av--fXb-Yw6I9U5R-t18TFkauqJozFQvZbYYLDRYaI6OFpnagLeVPcN6aJL8t_ppG2Jyf-8L35G9ic9Z3y-W4_J5w_vP52dN5dXHy_O3l02louxNOMosLO8l9Ihb0cNIC1jdgLXT07ITo99b2DqkRkYQLbAOAdukTvW1nvLj8mbbd9Nil9XzEUtPlucZx0wrlm1I5eDaEFApa8e0du4plCnU5wJCcCGjlf1cqdWs6BTm-QXnX6ohz-sALbApphzwklZX-7fXJL2swKm7nJSNSe1y6nWnDyqeWj7b_16q-O6-S_8C-BCo4I
CitedBy_id crossref_primary_10_1021_acs_jcim_4c01991
crossref_primary_10_34133_research_0361
crossref_primary_10_3389_fmicb_2023_1284723
crossref_primary_10_1111_jcmm_18590
crossref_primary_10_1111_jcmm_18591
crossref_primary_10_1021_acs_jcim_4c00586
crossref_primary_10_1111_jcmm_18398
crossref_primary_10_1093_bib_bbae481
crossref_primary_10_1111_jcmm_18553
crossref_primary_10_1038_s41598_024_56694_y
crossref_primary_10_1007_s12539_023_00602_x
crossref_primary_10_1007_s12539_024_00616_z
crossref_primary_10_3389_fmicb_2023_1325001
crossref_primary_10_1002_cem_3553
crossref_primary_10_1016_j_jare_2024_06_002
crossref_primary_10_1016_j_compbiolchem_2024_108219
crossref_primary_10_1038_s41598_024_61849_y
crossref_primary_10_1038_s41598_024_58646_y
crossref_primary_10_1016_j_engappai_2025_110303
crossref_primary_10_3389_fmicb_2023_1308149
crossref_primary_10_1016_j_compbiomed_2024_108393
crossref_primary_10_1089_cmb_2023_0449
crossref_primary_10_1111_jcmm_18180
crossref_primary_10_1038_s41598_024_64308_w
crossref_primary_10_1007_s11306_025_02227_1
crossref_primary_10_3934_mbe_2024131
crossref_primary_10_1080_07391102_2024_2313712
crossref_primary_10_1186_s12967_024_05958_2
crossref_primary_10_1142_S2737416523410053
crossref_primary_10_3389_fmicb_2023_1277121
crossref_primary_10_1111_jcmm_18345
crossref_primary_10_1038_s41598_024_55187_2
crossref_primary_10_1111_jcmm_70315
crossref_primary_10_1016_j_compbiolchem_2023_107992
crossref_primary_10_1016_j_aquatox_2025_107244
crossref_primary_10_1186_s12864_024_10038_2
crossref_primary_10_1142_S273741652350062X
crossref_primary_10_1038_s41598_024_63446_5
crossref_primary_10_1038_s41598_023_51126_9
crossref_primary_10_1039_D4ME00056K
crossref_primary_10_1007_s13755_023_00268_1
crossref_primary_10_1016_j_inffus_2024_102894
crossref_primary_10_1371_journal_pone_0299898
crossref_primary_10_1016_j_apnum_2024_10_015
crossref_primary_10_1111_jcmm_18372
crossref_primary_10_1016_j_intimp_2024_112464
crossref_primary_10_1038_s41598_024_63582_y
crossref_primary_10_1038_s41598_024_55812_0
crossref_primary_10_1111_jcmm_18298
crossref_primary_10_3389_fmicb_2024_1353278
crossref_primary_10_1038_s41598_024_53442_0
crossref_primary_10_1038_s41598_024_55160_z
crossref_primary_10_1186_s12864_023_09829_w
crossref_primary_10_3934_mbe_2024015
crossref_primary_10_3389_fmicb_2023_1290746
crossref_primary_10_1142_S0219720024500185
crossref_primary_10_1016_j_ymeth_2023_11_014
crossref_primary_10_1109_TCBB_2024_3402248
crossref_primary_10_1186_s12859_023_05571_y
crossref_primary_10_1038_s41598_024_56583_4
crossref_primary_10_1080_01480545_2024_2364905
crossref_primary_10_1038_s41598_023_46480_7
crossref_primary_10_1016_j_ab_2023_115431
crossref_primary_10_1016_j_heliyon_2024_e35160
crossref_primary_10_1186_s12967_024_05741_3
crossref_primary_10_1038_s41598_024_62796_4
crossref_primary_10_1021_acsomega_3c07923
crossref_primary_10_1371_journal_pone_0296676
crossref_primary_10_1016_j_eswa_2025_126637
crossref_primary_10_1016_j_heliyon_2023_e20184
crossref_primary_10_1038_s41598_023_45626_x
crossref_primary_10_1038_s41598_024_54837_9
crossref_primary_10_1093_bioinformatics_btae025
crossref_primary_10_1016_j_ymeth_2023_10_007
crossref_primary_10_1142_S0129183124501936
crossref_primary_10_1016_j_jocs_2024_102477
crossref_primary_10_1089_cmb_2023_0266
crossref_primary_10_1007_s12539_024_00645_8
crossref_primary_10_1097_MD_0000000000040072
crossref_primary_10_1111_jcmm_18127
crossref_primary_10_1038_s41598_023_44677_4
crossref_primary_10_1016_j_compbiolchem_2024_108320
crossref_primary_10_1038_s41598_023_50092_6
crossref_primary_10_3934_mbe_2023894
crossref_primary_10_1002_prp2_70034
crossref_primary_10_1038_s41598_023_46669_w
crossref_primary_10_1016_j_compeleceng_2025_110242
crossref_primary_10_1097_MD_0000000000036456
crossref_primary_10_3389_fmicb_2024_1363455
crossref_primary_10_1016_j_compbiomed_2023_107793
crossref_primary_10_1016_j_swevo_2024_101567
crossref_primary_10_1038_s41598_024_52653_9
crossref_primary_10_1016_j_knosys_2024_112597
crossref_primary_10_1038_s41598_024_61762_4
crossref_primary_10_1186_s12864_023_09879_0
Cites_doi 10.1007/s12539-021-00458-z
10.1016/j.pop.2017.10.004
10.1093/bib/bbac463
10.1093/bib/bbab286
10.1207/S15327914NC402_16
10.1093/bib/bbac266
10.1016/j.ygeno.2019.08.001
10.1186/s12859-022-04694-y
10.1093/bib/bbac104
10.1016/S0140-6736(05)66378-7
10.1186/s12859-018-2098-1
10.1093/bib/bbx130
10.1046/j.1467-789X.2001.00040.x
10.1093/bib/bbaa212
10.1007/s00726-012-1363-2
10.1109/JBHI.2021.3088342
10.1186/s13029-015-0046-2
10.1556/650.2015.30300
10.3389/fgene.2021.660275
10.26599/BDMA.2019.9020010
10.1038/44565
10.3892/etm.2015.2853
10.1016/j.bpsgos.2021.07.010
10.1136/bmj.1.5851.476
10.1016/j.stem.2018.04.015
10.1016/S0140-6736(20)32511-3
10.3389/fbioe.2020.00040
10.26599/TST.2021.9010003
10.1186/s12918-019-0696-9
10.1016/j.knosys.2019.105261
10.1093/bib/bbac358
10.1080/10428194.2016.1225206
10.1016/j.compbiomed.2022.106464
10.1172/JCI109169
10.1007/s13238-020-00814-7
10.1186/s13040-019-0206-z
10.1109/TNB.2019.2922214
10.1080/07315724.1989.10720308
10.1007/s00108-011-2980-7
10.1093/bib/bbac407
10.1046/j.1440-1746.2000.02065.x
10.1188/15.ONF.E91-E101
10.1016/j.actbio.2020.04.021
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023
The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023
– notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbad259
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Genetics Abstracts

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 37466194
10_1093_bib_bbad259
10.1093/bib/bbad259
Genre Journal Article
GrantInformation_xml – fundername: Foundation of Education Department of Liaoning Province
  grantid: LJKZ0320
– fundername: Natural Science Foundation of Liaoning Province
  grantid: 11805091
– fundername: National Natural Science Foundation of China
  grantid: 2023-MS-288
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
AHGBF
CITATION
ADRIX
AFXEN
BCRHZ
NPM
ROX
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c348t-884e5c3699de328a119c00cf1d6fd495a866b1f6e0b17192103313ce3d02d49c3
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 07:28:48 EDT 2025
Mon Jun 30 08:48:53 EDT 2025
Wed Feb 19 02:23:17 EST 2025
Tue Jul 01 03:39:48 EDT 2025
Thu Apr 24 22:58:24 EDT 2025
Wed Apr 02 07:05:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords auto-encoder
diseases
feature splicing
multi-layer perceptron
metabolites
non-negative matrix factorization
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model ( https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-884e5c3699de328a119c00cf1d6fd495a866b1f6e0b17192103313ce3d02d49c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8712-0544
0000-0001-9713-1864
PMID 37466194
PQID 3049110753
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2839742141
proquest_journals_3049110753
pubmed_primary_37466194
crossref_citationtrail_10_1093_bib_bbad259
crossref_primary_10_1093_bib_bbad259
oup_primary_10_1093_bib_bbad259
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-20
PublicationDateYYYYMMDD 2023-09-20
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-20
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2023
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Ge (2023092216480901000_ref18) 2020; 112
Lord (2023092216480901000_ref8) 2022; 2
Zhao (2023092216480901000_ref22) 2021; 22
Zhang (2023092216480901000_ref23) 2021; 12
Garber (2023092216480901000_ref42) 1978; 62
Wang (2023092216480901000_ref9) 2023; 153
Haller (2023092216480901000_ref40) 2012; 53
Azam (2023092216480901000_ref7) 2022; 10
Liu (2023092216480901000_ref10) 2020; 191
Ding (2023092216480901000_ref28) 2022; 26
Turner (2023092216480901000_ref46) 1973; 1
Sun (2023092216480901000_ref25) 2022; 23
Li (2023092216480901000_ref27) 2019; 13
Wu (2023092216480901000_ref5) 2021; 12
Di Marzio (2023092216480901000_ref39) 2001; 40
Huang (2023092216480901000_ref14) 2022; 23
Zhang (2023092216480901000_ref11) 2021; 13
Fang (2023092216480901000_ref26) 2019; 2
Peng (2023092216480901000_ref34) 2020; 8
Meherubin (2023092216480901000_ref44) 2021; 30
Fehér (2023092216480901000_ref49) 2015; 156
Leak Bryant (2023092216480901000_ref36) 2015; 42
Hu (2023092216480901000_ref19) 2018; 19
Leonard (2023092216480901000_ref4) 2018; 45
Deng (2023092216480901000_ref30) 2022; 23
Lei (2023092216480901000_ref20) 2019; 12
Dzierzak (2023092216480901000_ref35) 2018; 22
Freudenberg (2023092216480901000_ref45) 2013; 44
Wang (2023092216480901000_ref16) 2021; 22
Wang (2023092216480901000_ref12) 2022; 23
2023092216480901000_ref32
Huang (2023092216480901000_ref13) 2022; 23
Eckel (2023092216480901000_ref1) 2005; 365
Zhao (2023092216480901000_ref17) 2019; 18
Medina (2023092216480901000_ref38) 2017; 58
Kolotkin (2023092216480901000_ref2) 2001; 2
Rudman (2023092216480901000_ref41) 1989; 8
Gibson (2023092216480901000_ref48) 2000; 15
Rojas-Sánchez (2023092216480901000_ref47) 2020; 110
Liu (2023092216480901000_ref29) 2022; 23
Tie (2023092216480901000_ref24) 2022; 27
Lee (2023092216480901000_ref31) 1999; 401
Lei (2023092216480901000_ref21) 2020; 2020
Chen (2023092216480901000_ref15) 2019; 20
Taylor (2023092216480901000_ref6) 2022; 9
Yates (2023092216480901000_ref33) 2015; 10
Ishiguro (2023092216480901000_ref37) 1985; 45
Powell (2023092216480901000_ref3) 2021; 397
Xu (2023092216480901000_ref43) 2016; 11
References_xml – volume: 13
  start-page: 535
  year: 2021
  ident: 2023092216480901000_ref11
  article-title: Using network distance analysis to predict lncRNA–miRNA interactions
  publication-title: Interdiscip Sci Comput Life Sci
  doi: 10.1007/s12539-021-00458-z
– volume: 45
  start-page: 131
  year: 2018
  ident: 2023092216480901000_ref4
  article-title: Cardiovascular disease in women
  publication-title: Prim Care
  doi: 10.1016/j.pop.2017.10.004
– volume: 23
  start-page: bbac463
  year: 2022
  ident: 2023092216480901000_ref12
  article-title: Predicting the potential human lncRNA-miRNA interactions based on graph convolution network with conditional random field
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac463
– volume: 22
  start-page: bbab286
  year: 2021
  ident: 2023092216480901000_ref16
  article-title: Circular RNAs and complex diseases: from experimental results to computational models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab286
– volume: 40
  start-page: 185
  year: 2001
  ident: 2023092216480901000_ref39
  article-title: Apoptotic effects of selected strains of lactic acid bacteria on a human T leukemia cell line are associated with bacterial arginine deiminase and/or sphingomyelinase activities
  publication-title: Nutr Cancer
  doi: 10.1207/S15327914NC402_16
– volume: 23
  start-page: bbac266
  year: 2022
  ident: 2023092216480901000_ref25
  article-title: A deep learning method for predicting metabolite-disease associations via graph neural network
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac266
– volume: 112
  start-page: 1335
  year: 2020
  ident: 2023092216480901000_ref18
  article-title: Predicting human disease-associated circRNAs based on locality-constrained linear coding
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.08.001
– volume: 23
  start-page: 160
  year: 2022
  ident: 2023092216480901000_ref30
  article-title: Predicting circRNA-drug sensitivity associations via graph attention auto-encoder
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-022-04694-y
– volume: 23
  start-page: bbac104
  year: 2022
  ident: 2023092216480901000_ref29
  article-title: Identification of miRNA-disease associations via deep forest ensemble learning based on autoencoder
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac104
– volume: 365
  start-page: 1415
  year: 2005
  ident: 2023092216480901000_ref1
  article-title: The metabolic syndrome
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)66378-7
– volume: 19
  start-page: 116
  year: 2018
  ident: 2023092216480901000_ref19
  article-title: Identifying diseases-related metabolites using random walk
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-018-2098-1
– volume: 20
  start-page: 515
  year: 2019
  ident: 2023092216480901000_ref15
  article-title: MicroRNAs and complex diseases: from experimental results to computational models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx130
– volume: 2
  start-page: 219
  year: 2001
  ident: 2023092216480901000_ref2
  article-title: Quality of life and obesity
  publication-title: Obes Rev
  doi: 10.1046/j.1467-789X.2001.00040.x
– volume: 22
  start-page: bbaa212
  year: 2021
  ident: 2023092216480901000_ref22
  article-title: Deep-DRM: a computational method for identifying disease-related metabolites based on graph deep learning approaches
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa212
– volume: 44
  start-page: 519
  year: 2013
  ident: 2023092216480901000_ref45
  article-title: Dietary L-leucine and L-alanine supplementation have similar acute effects in the prevention of high-fat diet-induced obesity
  publication-title: Amino Acids
  doi: 10.1007/s00726-012-1363-2
– volume: 26
  start-page: 446
  year: 2022
  ident: 2023092216480901000_ref28
  article-title: Predicting miRNA-disease associations based on multi-view variational graph auto-encoder with matrix factorization
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2021.3088342
– volume: 10
  start-page: 16
  year: 2015
  ident: 2023092216480901000_ref33
  article-title: PageRank as a method to rank biomedical literature by importance
  publication-title: Source Code Biol Med
  doi: 10.1186/s13029-015-0046-2
– volume: 156
  start-page: 1892
  year: 2015
  ident: 2023092216480901000_ref49
  article-title: Changes in neuropeptide Y and substance P immunoreactive nerve fibres and immunocompetent cells in hepatitis
  publication-title: Orv Hetil
  doi: 10.1556/650.2015.30300
– volume: 12
  start-page: 660275
  year: 2021
  ident: 2023092216480901000_ref23
  article-title: Predicting metabolite-disease associations based on LightGBM model
  publication-title: Front Genet
  doi: 10.3389/fgene.2021.660275
– volume: 2
  start-page: 261
  year: 2019
  ident: 2023092216480901000_ref26
  article-title: Prediction of miRNA-circRNA associations based on k-NN multi-label with random walk restart on a heterogeneous network
  publication-title: Big Data Min Anal
  doi: 10.26599/BDMA.2019.9020010
– volume: 401
  start-page: 788
  year: 1999
  ident: 2023092216480901000_ref31
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 10
  start-page: 154
  year: 2022
  ident: 2023092216480901000_ref7
  article-title: Piperine and its metabolite’s pharmacology in neurodegenerative and neurological diseases
  publication-title: Biomedicine
– volume: 11
  start-page: 15
  year: 2016
  ident: 2023092216480901000_ref43
  article-title: Pediatric obesity: causes, symptoms, prevention and treatment
  publication-title: Exp Ther Med
  doi: 10.3892/etm.2015.2853
– volume: 2
  start-page: 167
  year: 2022
  ident: 2023092216480901000_ref8
  article-title: Disentangling independent and mediated causal relationships between blood metabolites, cognitive factors, and Alzheimer’s disease
  publication-title: Biol Psychiatry Glob Open Sci
  doi: 10.1016/j.bpsgos.2021.07.010
– volume: 1
  start-page: 476
  year: 1973
  ident: 2023092216480901000_ref46
  article-title: Hepatitis
  publication-title: Br Med J
  doi: 10.1136/bmj.1.5851.476
– volume: 22
  start-page: 639
  year: 2018
  ident: 2023092216480901000_ref35
  article-title: Blood development: hematopoietic stem cell dependence and independence
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.04.015
– volume: 397
  start-page: 2212
  year: 2021
  ident: 2023092216480901000_ref3
  article-title: Non-alcoholic fatty liver disease
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)32511-3
– volume: 30
  start-page: 991
  year: 2021
  ident: 2023092216480901000_ref44
  article-title: Level of serum creatinine and creatinine clearance rate in obese female
  publication-title: Mymensingh Med J
– volume: 8
  start-page: 40
  year: 2020
  ident: 2023092216480901000_ref34
  article-title: A computational study of potential miRNA-disease association inference based on ensemble learning and kernel ridge regression
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2020.00040
– volume: 27
  start-page: 58
  year: 2022
  ident: 2023092216480901000_ref24
  article-title: Metabolite-disease association prediction algorithm combining DeepWalk and random forest
  publication-title: Tsinghua Sci Technol
  doi: 10.26599/TST.2021.9010003
– volume: 13
  start-page: 26
  year: 2019
  ident: 2023092216480901000_ref27
  article-title: FCMDAP: using miRNA family and cluster information to improve the prediction accuracy of disease related miRNAs
  publication-title: BMC Syst Biol
  doi: 10.1186/s12918-019-0696-9
– volume: 45
  start-page: 91
  year: 1985
  ident: 2023092216480901000_ref37
  article-title: Enhancement of the differentiation-inducing properties of 6-thioguanine by hypoxanthine and its nucleosides in HL-60 promyelocytic leukemia cells
  publication-title: Cancer Res
– volume: 191
  start-page: 105261
  year: 2020
  ident: 2023092216480901000_ref10
  article-title: Predicting lncRNA–miRNA interactions based on logistic matrix factorization with neighborhood regularized
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.105261
– volume: 23
  start-page: bbac358
  year: 2022
  ident: 2023092216480901000_ref13
  article-title: Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac358
– volume: 58
  start-page: 1227
  year: 2017
  ident: 2023092216480901000_ref38
  article-title: Choline-magnesium trisalicylate modulates acute myelogenous leukemia gene expression during induction chemotherapy
  publication-title: Leuk Lymphoma
  doi: 10.1080/10428194.2016.1225206
– volume: 2020
  start-page: 1
  year: 2020
  ident: 2023092216480901000_ref21
  article-title: Predicting metabolite-disease associations based on linear neighborhood similarity with improved bipartite network projection algorithm
  publication-title: Complexity
– volume: 153
  start-page: 106464
  year: 2023
  ident: 2023092216480901000_ref9
  article-title: Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106464
– volume-title: Machine Learning Lab Special Lecture
  ident: 2023092216480901000_ref32
– volume: 62
  start-page: 623
  year: 1978
  ident: 2023092216480901000_ref42
  article-title: Skeletal muscle protein and amino acid metabolism in experimental chronic uremia in the rat: accelerated alanine and glutamine formation and release
  publication-title: J Clin Invest
  doi: 10.1172/JCI109169
– volume: 12
  start-page: 360
  year: 2021
  ident: 2023092216480901000_ref5
  article-title: The role of the gut microbiome and its metabolites in metabolic diseases
  publication-title: Protein Cell
  doi: 10.1007/s13238-020-00814-7
– volume: 12
  start-page: 19
  year: 2019
  ident: 2023092216480901000_ref20
  article-title: Predicting metabolite-disease associations based on KATZ model
  publication-title: BioData Min
  doi: 10.1186/s13040-019-0206-z
– volume: 18
  start-page: 578
  year: 2019
  ident: 2023092216480901000_ref17
  article-title: Integrating bipartite network projection and KATZ measure to identify novel circRNA-disease associations
  publication-title: IEEE Trans Nanobioscience
  doi: 10.1109/TNB.2019.2922214
– volume: 8
  start-page: 324
  year: 1989
  ident: 2023092216480901000_ref41
  article-title: Fractures in the men of a veterans administration nursing home: relation to 1,25-dihydroxyvitamin D
  publication-title: J Am Coll Nutr
  doi: 10.1080/07315724.1989.10720308
– volume: 53
  start-page: 789
  year: 2012
  ident: 2023092216480901000_ref40
  article-title: Renal failure
  publication-title: Internist (Berl)
  doi: 10.1007/s00108-011-2980-7
– volume: 23
  start-page: bbac407
  year: 2022
  ident: 2023092216480901000_ref14
  article-title: Updated review of advances in microRNAs and complex diseases: towards systematic evaluation of computational models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac407
– volume: 15
  start-page: 192
  year: 2000
  ident: 2023092216480901000_ref48
  article-title: Effect of hepatobiliary disease, chronic hepatitis C and hepatitis B virus infections and interferon-alpha on porphyrin profiles in plasma, urine and faeces
  publication-title: J Gastroenterol Hepatol
  doi: 10.1046/j.1440-1746.2000.02065.x
– volume: 42
  start-page: E91
  year: 2015
  ident: 2023092216480901000_ref36
  article-title: Patient-reported symptoms and quality of life in adults with acute leukemia: a systematic review
  publication-title: Oncol Nurs Forum
  doi: 10.1188/15.ONF.E91-E101
– volume: 110
  start-page: 254
  year: 2020
  ident: 2023092216480901000_ref47
  article-title: Genetic immunization against hepatitis B virus with calcium phosphate nanoparticles in vitro and in vivo
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2020.04.021
– volume: 9
  start-page: 237
  year: 2022
  ident: 2023092216480901000_ref6
  article-title: The relationship of maternal gestational mass spectrometry-derived metabolites with offspring congenital heart disease: results from multivariable and Mendelian randomization analyses
  publication-title: J Cardiovasc Dev Dis
SSID ssj0020781
Score 2.638665
Snippet Abstract Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains...
Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Abnormalities
Chemical reactions
Coders
Deep learning
Disease
Factorization
Manpower
Metabolism
Metabolites
Modules
Multilayer perceptrons
Multilayers
Title Predicting metabolite–disease associations based on auto-encoder and non-negative matrix factorization
URI https://www.ncbi.nlm.nih.gov/pubmed/37466194
https://www.proquest.com/docview/3049110753
https://www.proquest.com/docview/2839742141
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6kIHgR30arrtCTsDSbTTbJUcRSBB-HFnoLm92tCppKk4Le_A_-Q3-JM822Ui163g0DM5nXzsw3hLRiqUOwvSGTqRYMQuqcpdhMFcWG6zj1jZ4CaV_fyG4_vBpEA9cgWy4p4aeinT_m7TxXBgJ1MLXgfhEiv3c7mOdViFdTDxHFDNHd3Rjej28XHM_CMNuvmHLqWzobZN0FhfS8luImWbHFFlmt10S-bZOHuzGWU7BBmT7bCsSGg8Of7x-uukLVN49Lin7J0FFB1aQaMcSpNHZMVWEoZPqssPdTqG_6jNj8r7Tet-OGMXdIv3PZu-gytyGBaREmFUuS0EZayDQ1VgSJ4jzVvq-H3MihgdRHJVLmfCitn_MYkc98IbjQVhg_gHMtdkkDaNt9Qk2qYi0jsH2BCEFESoFCaisNAqRFkfTI2Yx9mXbw4bjF4imry9giA15njtceac0vv9SoGcuvnYAc_r7RnMkoc8pVZlgZxLQ1Eh45nR-DWmCtQxV2NCkziJogUwp4yD2yV8t2TkfEocTHm4N_yR-SNVwvj_0hgd8kjWo8sUcQhFT58fQX_AIAedr7
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+metabolite%E2%80%93disease+associations+based+on+auto-encoder+and+non-negative+matrix+factorization&rft.jtitle=Briefings+in+bioinformatics&rft.au=Gao%2C+Hongyan&rft.au=Sun%2C+Jianqiang&rft.au=Wang%2C+Yukun&rft.au=Lu%2C+Yuer&rft.date=2023-09-20&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=24&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbad259&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon