A hydrochemistry and multi-isotopic study of groundwater origin and hydrochemical evolution in the middle reaches of the Kuye River basin

The Kuye River basin lays in an economically and ecologically important area, therefore, the groundwater quality issues are of growing concern in this semi-arid region. In the present study, the combination of techniques (i.e. piper diagram, ionic ratios, Gibbs diagrams, multiple isotopic analyses e...

Full description

Saved in:
Bibliographic Details
Published inApplied geochemistry Vol. 98; pp. 82 - 93
Main Authors Fu, Changchang, Li, Xiangquan, Ma, Jianfei, Liu, Lingxia, Gao, Ming, Bai, Zhanxue
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Kuye River basin lays in an economically and ecologically important area, therefore, the groundwater quality issues are of growing concern in this semi-arid region. In the present study, the combination of techniques (i.e. piper diagram, ionic ratios, Gibbs diagrams, multiple isotopic analyses etc.) provided an efficient way for analyzing the groundwater origin and hydrochemical processes that affected water chemistry. The groundwater type was CaHCO3 in low TDS values and NaCl/SO4 in high TDS values in both shallow unconfined and deep Cretaceous-Jurassic semi-confined aquifer. And, furthermore, Na+, Cl−, SO42− and F− were the dominated parameters deteriorating the groundwater quality. In general, groundwater was of meteoric origin and the more depleted δ18O and δD features of CJY groundwater samples indicated that the groundwater was formed during the wetter and colder climate. The rock weathering in conjunction with the cation exchange absolutely predominated in geochemical evolution and deuterium excess method quantified that mineral dissolution contributed most of the salinity (67–92%) of the groundwater. The SO42− of the groundwater was primary from the dissolution of sulfate minerals, next was the atmospheric precipitation. In addition, bacterial sulfate reduction was an important reaction affecting the SO42− concentration in the groundwater from CJY aquifer. The hydrochemical type of high fluoride groundwater in the study area was NaHCO3 or NaCl/SO4 and it was mainly from the dissolution of fluoride bearing minerals. NaHCO3 water was favorable for F− enrichment due to CaF2 solubility and NaCl/SO4 type water may favor the F− enrichment by lower its activity in groundwater. The results of this study will facilitate understanding of groundwater origin and quality status to enable effective management and utilization of groundwater. •The integrated methods of hydrochemistry and multiple isotopes are used to identify hydrochemical processes.•Salinity (controlled by Na+, Cl− and SO42−) and Fluoride (F−) are the dominated parameters deteriorating groundwater quality.•The rock weathering in conjunction with the cation exchange absolutely predominate the geochemical evolution.•SO42− is mainly from the dissolution of sulfate minerals and bacterial sulfate reduction is occurred in CJY aquifer.•The fluoride of the groundwater is mainly controlled by CaF2 solubility.
AbstractList The Kuye River basin lays in an economically and ecologically important area, therefore, the groundwater quality issues are of growing concern in this semi-arid region. In the present study, the combination of techniques (i.e. piper diagram, ionic ratios, Gibbs diagrams, multiple isotopic analyses etc.) provided an efficient way for analyzing the groundwater origin and hydrochemical processes that affected water chemistry. The groundwater type was CaHCO3 in low TDS values and NaCl/SO4 in high TDS values in both shallow unconfined and deep Cretaceous-Jurassic semi-confined aquifer. And, furthermore, Na+, Cl−, SO42− and F− were the dominated parameters deteriorating the groundwater quality. In general, groundwater was of meteoric origin and the more depleted δ18O and δD features of CJY groundwater samples indicated that the groundwater was formed during the wetter and colder climate. The rock weathering in conjunction with the cation exchange absolutely predominated in geochemical evolution and deuterium excess method quantified that mineral dissolution contributed most of the salinity (67–92%) of the groundwater. The SO42− of the groundwater was primary from the dissolution of sulfate minerals, next was the atmospheric precipitation. In addition, bacterial sulfate reduction was an important reaction affecting the SO42− concentration in the groundwater from CJY aquifer. The hydrochemical type of high fluoride groundwater in the study area was NaHCO3 or NaCl/SO4 and it was mainly from the dissolution of fluoride bearing minerals. NaHCO3 water was favorable for F− enrichment due to CaF2 solubility and NaCl/SO4 type water may favor the F− enrichment by lower its activity in groundwater. The results of this study will facilitate understanding of groundwater origin and quality status to enable effective management and utilization of groundwater.
The Kuye River basin lays in an economically and ecologically important area, therefore, the groundwater quality issues are of growing concern in this semi-arid region. In the present study, the combination of techniques (i.e. piper diagram, ionic ratios, Gibbs diagrams, multiple isotopic analyses etc.) provided an efficient way for analyzing the groundwater origin and hydrochemical processes that affected water chemistry. The groundwater type was CaHCO3 in low TDS values and NaCl/SO4 in high TDS values in both shallow unconfined and deep Cretaceous-Jurassic semi-confined aquifer. And, furthermore, Na+, Cl−, SO42− and F− were the dominated parameters deteriorating the groundwater quality. In general, groundwater was of meteoric origin and the more depleted δ18O and δD features of CJY groundwater samples indicated that the groundwater was formed during the wetter and colder climate. The rock weathering in conjunction with the cation exchange absolutely predominated in geochemical evolution and deuterium excess method quantified that mineral dissolution contributed most of the salinity (67–92%) of the groundwater. The SO42− of the groundwater was primary from the dissolution of sulfate minerals, next was the atmospheric precipitation. In addition, bacterial sulfate reduction was an important reaction affecting the SO42− concentration in the groundwater from CJY aquifer. The hydrochemical type of high fluoride groundwater in the study area was NaHCO3 or NaCl/SO4 and it was mainly from the dissolution of fluoride bearing minerals. NaHCO3 water was favorable for F− enrichment due to CaF2 solubility and NaCl/SO4 type water may favor the F− enrichment by lower its activity in groundwater. The results of this study will facilitate understanding of groundwater origin and quality status to enable effective management and utilization of groundwater. •The integrated methods of hydrochemistry and multiple isotopes are used to identify hydrochemical processes.•Salinity (controlled by Na+, Cl− and SO42−) and Fluoride (F−) are the dominated parameters deteriorating groundwater quality.•The rock weathering in conjunction with the cation exchange absolutely predominate the geochemical evolution.•SO42− is mainly from the dissolution of sulfate minerals and bacterial sulfate reduction is occurred in CJY aquifer.•The fluoride of the groundwater is mainly controlled by CaF2 solubility.
Author Fu, Changchang
Li, Xiangquan
Gao, Ming
Ma, Jianfei
Liu, Lingxia
Bai, Zhanxue
Author_xml – sequence: 1
  givenname: Changchang
  surname: Fu
  fullname: Fu, Changchang
  email: fu0936@163.com
– sequence: 2
  givenname: Xiangquan
  surname: Li
  fullname: Li, Xiangquan
  email: lxqlm2003@aliyun.com.cn
– sequence: 3
  givenname: Jianfei
  surname: Ma
  fullname: Ma, Jianfei
– sequence: 4
  givenname: Lingxia
  surname: Liu
  fullname: Liu, Lingxia
– sequence: 5
  givenname: Ming
  surname: Gao
  fullname: Gao, Ming
– sequence: 6
  givenname: Zhanxue
  surname: Bai
  fullname: Bai, Zhanxue
BookMark eNqNkc1q3DAUhUVJIZOfZ4iW3XhyZTm2vOhiCGkbGiiUdC1k6XpGg0eaSPIEP0LeunKmNJBNCxcuXJ3zwdE5IyfOOyTkisGSAauvt0u1X6PXG9wtS2BiCXk4fCALJpqyaBmvTsgChOBF2ZbNKTmLcQsANw2UC_KyopvJhFe7jSlMVDlDd-OQbGGjT35vNY1pNBP1PV0HPzrzrBIG6oNdW_cqfyNoNVA8-GFM1juan9MG6c4aMyANqLImzpz5-n2ckP60h4zqVLTugnzs1RDx8s8-J7--3D3efisefny9v109FJpXIhWiUVxwMFAxQN4bLlrgdQeiA46t6BAFqLbSwKsac97aVEz0bY-dwFnMz8mnI3cf_NOIMckcXOMwKId-jLJkTc0rLirI0s9HqQ4-xoC91DapOVoKyg6SgZwrkFv5twI5VyAhD5_9zTv_PtidCtN_OFdHJ-afOFgMMmqLTqOxAXWSxtt_Mn4D9iCrKg
CitedBy_id crossref_primary_10_1007_s12583_022_1629_x
crossref_primary_10_1007_s11356_023_28401_3
crossref_primary_10_1016_j_apgeochem_2019_104492
crossref_primary_10_1016_j_chemer_2023_125985
crossref_primary_10_1016_j_gsd_2024_101199
crossref_primary_10_1016_j_gsd_2023_101071
crossref_primary_10_3799_dqkx_2022_430
crossref_primary_10_3390_ijerph16142512
crossref_primary_10_1016_j_apgeochem_2022_105485
crossref_primary_10_1016_j_jhydrol_2023_130163
crossref_primary_10_3390_w12040950
crossref_primary_10_3390_w15112126
crossref_primary_10_1007_s10661_024_12533_1
crossref_primary_10_1038_s41598_025_93318_5
crossref_primary_10_3390_w12123310
crossref_primary_10_1007_s10230_020_00716_4
crossref_primary_10_1007_s11783_021_1393_7
crossref_primary_10_1039_D0EM00415D
crossref_primary_10_1016_j_apgeochem_2023_105833
crossref_primary_10_1051_e3sconf_20199801046
crossref_primary_10_1016_j_gsd_2024_101356
crossref_primary_10_1029_2024WR038856
crossref_primary_10_1016_j_gsd_2025_101411
crossref_primary_10_1007_s11356_024_31958_2
crossref_primary_10_1007_s10653_024_02155_4
crossref_primary_10_1016_j_apgeochem_2020_104524
crossref_primary_10_1016_j_apgeochem_2023_105593
crossref_primary_10_1007_s12665_023_11156_y
crossref_primary_10_1016_j_jhydrol_2025_132807
crossref_primary_10_1007_s10230_023_00963_1
crossref_primary_10_1016_j_apradiso_2024_111188
crossref_primary_10_1016_j_jconhyd_2023_104256
crossref_primary_10_1016_j_scitotenv_2019_06_356
crossref_primary_10_3390_w16202884
crossref_primary_10_1016_j_jclepro_2024_142640
crossref_primary_10_1007_s12517_021_07215_y
crossref_primary_10_3390_w14193173
crossref_primary_10_1016_j_apgeochem_2022_105221
crossref_primary_10_1038_s41598_024_67735_x
crossref_primary_10_1007_s11356_020_09784_z
crossref_primary_10_1007_s12665_024_11438_z
crossref_primary_10_1016_j_jclepro_2020_120664
crossref_primary_10_1007_s12665_024_11458_9
crossref_primary_10_1016_j_geothermics_2024_103222
crossref_primary_10_3390_ijerph192315438
crossref_primary_10_1016_j_jconhyd_2024_104446
crossref_primary_10_3390_su152115447
crossref_primary_10_1007_s12665_023_10994_0
crossref_primary_10_1016_j_jhydrol_2023_130496
crossref_primary_10_1016_j_jhydrol_2019_124116
crossref_primary_10_1016_j_pce_2021_103045
crossref_primary_10_3390_w15224000
crossref_primary_10_1007_s12517_020_06391_7
crossref_primary_10_1016_j_apgeochem_2023_105656
crossref_primary_10_3390_app10227980
crossref_primary_10_3389_fenvs_2024_1493390
crossref_primary_10_1007_s11356_023_29914_7
crossref_primary_10_1007_s11356_022_23516_5
crossref_primary_10_1177_01445987221088621
crossref_primary_10_3390_w15040726
crossref_primary_10_1016_j_jhydrol_2020_125604
Cites_doi 10.1016/j.scitotenv.2015.08.057
10.1016/j.jhydrol.2005.08.006
10.1016/j.jhydrol.2016.02.016
10.1016/j.chemgeo.2009.05.009
10.1016/j.envpol.2016.08.017
10.1016/j.apgeochem.2014.11.011
10.1016/j.chemosphere.2010.01.010
10.1007/s00254-008-1289-x
10.1007/s10040-004-0421-6
10.1016/j.apgeochem.2012.08.015
10.1016/j.gexplo.2012.11.010
10.1016/j.jhydrol.2010.11.025
10.1002/hyp.11255
10.1007/s12665-011-1259-6
10.1126/science.170.3962.1088
10.1126/science.133.3465.1702
10.1016/S0169-7722(01)00170-X
10.1016/j.scitotenv.2017.05.196
10.1016/j.scitotenv.2007.06.038
10.1016/j.apgeochem.2008.03.012
10.1007/s10750-014-2018-y
10.1007/s12665-009-0383-z
10.1016/j.jhydrol.2011.01.034
10.1016/S0883-2927(02)00189-0
10.1016/j.apgeochem.2007.11.009
10.3402/tellusa.v16i4.8993
10.1021/es800380w
10.1016/j.jhazmat.2009.06.018
10.1016/j.apgeochem.2008.12.015
10.1002/aqc.1073
10.1007/s10040-006-0022-7
10.1007/s00254-007-0692-z
10.5194/hess-20-1983-2016
10.1016/j.apgeochem.2012.10.014
10.1016/j.apgeochem.2016.05.018
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apgeochem.2018.08.030
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-9134
EndPage 93
ExternalDocumentID 10_1016_j_apgeochem_2018_08_030
S0883292718302506
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
VH1
WUQ
XPP
ZCA
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c348t-87a3830d0410e3fd389036b08b03e98bee80a94c0346e9276d418f9feb8ed3893
IEDL.DBID .~1
ISSN 0883-2927
IngestDate Sun Aug 24 03:24:07 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
Tue Jul 01 01:59:37 EDT 2025
Fri Feb 23 02:30:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Kuye river basin
Hydrochemical evolution
Groundwater quality
Fluoride sources
Sulfate sources
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-87a3830d0410e3fd389036b08b03e98bee80a94c0346e9276d418f9feb8ed3893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2176343840
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2176343840
crossref_citationtrail_10_1016_j_apgeochem_2018_08_030
crossref_primary_10_1016_j_apgeochem_2018_08_030
elsevier_sciencedirect_doi_10_1016_j_apgeochem_2018_08_030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationTitle Applied geochemistry
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Song, Yang, Han, Zhang, Ma, Bu (bib32) 2015; 538
Clark, Fritz (bib9) 1997
Gao, Wang, Li, Guo (bib16) 2007; 53
Dansgaard (bib12) 1964; 16
Spence, Bottrell, Thornton, Lerner (bib39) 2001; 53
Zhang, Li, Zhao, Liu (bib47) 2015; 52
Zhou, Zhang, Zhou, Liu, Cai, Liu (bib48) 2016; 71
Miao, Wang, Bai (bib33) 2010; 27
Appelo, Postma (bib1) 2004
González-Ramón, López‐Chicano, Gázquez (bib18) 2017; 31
Gibbs (bib17) 1970; 170
Chen, Wang, He (bib7) 2006; 13
Yang, Li, Ma, Wang, Martin (bib44) 2016; 218
Rafique, Naseem, Usmani, Bashir, Khan, Bhanger (bib37) 2009; 171
Krouse, Mayer (bib29) 2000
Gunn, Bottrell, Lowe, Worthington (bib20) 2006; 14
Han, Song, Currell (bib22) 2016; 20
Jia, Guo, Xi, Jiang, Zhang, Yuan, Yi, Xue (bib28) 2017; 601–602
Gastmans, Hutcheon, Menegário (bib50) 2016; 535
Schoeller (bib38) 1967
Puig, Folch, Menció, Soler, Mas-Pla (bib36) 2013; 32
Van Stempvoort, Krouse (bib41) 1994
Yin, Hou, Dou, Tao, Li (bib45) 2011; 64
Craig (bib11) 1961; 133
Chen, Liu, Wang, Rao, Tan, Dong, Sun, Wang, Su (bib8) 2012; 66
Di Lorenzo, Cifoni, Lombardo, Fiasca, Galassi (bib13) 2015; 743
Chae, Yun, Mayer, Kim, Kim, Kwon, Kim, Koh (bib6) 2007; 385
Wang, Shvartsev, Su (bib42) 2009; 24
Zhang, Huang, Li (bib46) 2013; 24
Tuttle, Breit, Cozzarelli (bib40) 2009; 265
Li, Zhou, Gan, Yu, Wang, Liu (bib30) 2011; 400
Boulton (bib4) 2009; 19
Xie, Zhang, Qiao (bib43) 2012; 24
Edmunds, Guendouz, Mamou, Moulla, Shand, Zouari (bib14) 2003; 18
Gu (bib19) 2015; 40
He, Ma, Wang, Shan, Deng (bib24) 2013; 135
Liu, Lang, Satake, Wu, Li (bib31) 2008; 42
Otero, Soler, Canals (bib35) 2008; 23
Naseem, Rafique, Bashir, Bhanger, Laghari, Usmani (bib34) 2010; 78
Fan, Ma, Ji (bib15) 2015; 40
Bottrell, Tellam, Bartlett, Hughes (bib3) 2008; 23
Liu, Guo, Liu (bib51) 2013; 27
Hancock, Boulton, Humphreys (bib23) 2005; 13
Hou, Zhao, Wang (bib26) 2006
Huang, Pang (bib27) 2012; 27
Bian, Lei, In, Chang, Zhang, Zhou, He (bib2) 2009; 57
Chae, Yun, Kim, Mayer (bib5) 2006; 321
Hosono, Wang, Umezawa, Nakano, Onodera, Nagata, Yoshimizu, Tayasu, Taniguchi (bib25) 2011; 397
Guo, Xiong, Jiang (bib21) 2016; 30
Edmunds (10.1016/j.apgeochem.2018.08.030_bib14) 2003; 18
Dansgaard (10.1016/j.apgeochem.2018.08.030_bib12) 1964; 16
Gao (10.1016/j.apgeochem.2018.08.030_bib16) 2007; 53
Bian (10.1016/j.apgeochem.2018.08.030_bib2) 2009; 57
Gu (10.1016/j.apgeochem.2018.08.030_bib19) 2015; 40
Tuttle (10.1016/j.apgeochem.2018.08.030_bib40) 2009; 265
Clark (10.1016/j.apgeochem.2018.08.030_bib9) 1997
Gunn (10.1016/j.apgeochem.2018.08.030_bib20) 2006; 14
Liu (10.1016/j.apgeochem.2018.08.030_bib31) 2008; 42
Fan (10.1016/j.apgeochem.2018.08.030_bib15) 2015; 40
Yang (10.1016/j.apgeochem.2018.08.030_bib44) 2016; 218
Van Stempvoort (10.1016/j.apgeochem.2018.08.030_bib41) 1994
Craig (10.1016/j.apgeochem.2018.08.030_bib11) 1961; 133
Spence (10.1016/j.apgeochem.2018.08.030_bib39) 2001; 53
Chae (10.1016/j.apgeochem.2018.08.030_bib6) 2007; 385
Naseem (10.1016/j.apgeochem.2018.08.030_bib34) 2010; 78
Hosono (10.1016/j.apgeochem.2018.08.030_bib25) 2011; 397
Hou (10.1016/j.apgeochem.2018.08.030_bib26) 2006
Liu (10.1016/j.apgeochem.2018.08.030_bib32) 2015; 538
Di Lorenzo (10.1016/j.apgeochem.2018.08.030_bib13) 2015; 743
Chae (10.1016/j.apgeochem.2018.08.030_bib5) 2006; 321
Miao (10.1016/j.apgeochem.2018.08.030_bib33) 2010; 27
Chen (10.1016/j.apgeochem.2018.08.030_bib8) 2012; 66
Zhang (10.1016/j.apgeochem.2018.08.030_bib47) 2015; 52
Wang (10.1016/j.apgeochem.2018.08.030_bib42) 2009; 24
Liu (10.1016/j.apgeochem.2018.08.030_bib51) 2013; 27
Krouse (10.1016/j.apgeochem.2018.08.030_bib29) 2000
Gibbs (10.1016/j.apgeochem.2018.08.030_bib17) 1970; 170
Gastmans (10.1016/j.apgeochem.2018.08.030_bib50) 2016; 535
Xie (10.1016/j.apgeochem.2018.08.030_bib43) 2012; 24
Yin (10.1016/j.apgeochem.2018.08.030_bib45) 2011; 64
Guo (10.1016/j.apgeochem.2018.08.030_bib21) 2016; 30
Zhang (10.1016/j.apgeochem.2018.08.030_bib46) 2013; 24
Jia (10.1016/j.apgeochem.2018.08.030_bib28) 2017; 601–602
Zhou (10.1016/j.apgeochem.2018.08.030_bib48) 2016; 71
Boulton (10.1016/j.apgeochem.2018.08.030_bib4) 2009; 19
González-Ramón (10.1016/j.apgeochem.2018.08.030_bib18) 2017; 31
Puig (10.1016/j.apgeochem.2018.08.030_bib36) 2013; 32
Hancock (10.1016/j.apgeochem.2018.08.030_bib23) 2005; 13
Chen (10.1016/j.apgeochem.2018.08.030_bib7) 2006; 13
Han (10.1016/j.apgeochem.2018.08.030_bib22) 2016; 20
Li (10.1016/j.apgeochem.2018.08.030_bib30) 2011; 400
Rafique (10.1016/j.apgeochem.2018.08.030_bib37) 2009; 171
Appelo (10.1016/j.apgeochem.2018.08.030_bib1) 2004
Bottrell (10.1016/j.apgeochem.2018.08.030_bib3) 2008; 23
Huang (10.1016/j.apgeochem.2018.08.030_bib27) 2012; 27
He (10.1016/j.apgeochem.2018.08.030_bib24) 2013; 135
Schoeller (10.1016/j.apgeochem.2018.08.030_bib38) 1967
Otero (10.1016/j.apgeochem.2018.08.030_bib35) 2008; 23
References_xml – volume: 538
  start-page: 327
  year: 2015
  end-page: 340
  ident: bib32
  article-title: The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China
  publication-title: Sci. Total Environ.
– volume: 13
  start-page: 58
  year: 2006
  end-page: 73
  ident: bib7
  article-title: Geochemistry of water quality of the Yellow River basin
  publication-title: Earth Sci. Front.
– volume: 53
  start-page: 795
  year: 2007
  end-page: 803
  ident: bib16
  article-title: Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China
  publication-title: Environ. Geol.
– volume: 71
  start-page: 63
  year: 2016
  end-page: 72
  ident: bib48
  article-title: Application of hydrochemistry and stable isotopes (δ
  publication-title: Appl. Geochem.
– year: 2004
  ident: bib1
  article-title: Geochemistry, Groundwater and Pollution
– volume: 52
  start-page: 43
  year: 2015
  end-page: 56
  ident: bib47
  article-title: Using dual isotopic data to track the sources and behaviors of dissolved sulfate in the western North China Plain
  publication-title: Appl. Geochem.
– volume: 265
  start-page: 455
  year: 2009
  end-page: 467
  ident: bib40
  article-title: Processes affecting δ
  publication-title: Chem. Geol.
– start-page: 195
  year: 2000
  end-page: 231
  ident: bib29
  article-title: Environmental Tracers in Subsurface Hydrology
– volume: 171
  start-page: 424
  year: 2009
  end-page: 430
  ident: bib37
  article-title: Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan
  publication-title: J. Hazard Mater.
– volume: 57
  start-page: 131
  year: 2009
  end-page: 142
  ident: bib2
  article-title: Integrated method of RS and GPR for monitoring the changes in the soil moisture and groundwater environment due to underground coal mining
  publication-title: Environ. Geol.
– volume: 397
  start-page: 23
  year: 2011
  end-page: 36
  ident: bib25
  article-title: Multiple isotope (H, O, N, S and Sr) approach elucidates complex pollution causes in the shallow groundwaters of the Taipei urban area
  publication-title: J. Hydrol.
– volume: 27
  start-page: 2382
  year: 2012
  end-page: 2388
  ident: bib27
  article-title: The role of deuterium excess in determining the water salinisation mechanism: a case study of the arid Tarim River Basin, NW China
  publication-title: Appl. Geochem.
– volume: 400
  start-page: 312
  year: 2011
  end-page: 322
  ident: bib30
  article-title: Controls on the δ
  publication-title: J. Hydrol.
– volume: 18
  start-page: 805
  year: 2003
  end-page: 822
  ident: bib14
  article-title: Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators
  publication-title: Appl. Geochem.
– year: 1997
  ident: bib9
  article-title: Environmental Isotopes in Hydrogeology
– volume: 14
  start-page: 868
  year: 2006
  end-page: 881
  ident: bib20
  article-title: Deep groundwater flow and geochemical processes in limestone aquifers: evidence from thermal waters in Derbyshire, England, UK
  publication-title: Hydrogeol. J.
– volume: 53
  start-page: 285
  year: 2001
  end-page: 304
  ident: bib39
  article-title: Isotopic modelling of the significance of bacterial sulphate reduction for phenol attenuation in a contaminated aquifer
  publication-title: J. Contam. Hydrol.
– volume: 40
  start-page: 1711
  year: 2015
  end-page: 1717
  ident: bib15
  article-title: Progress in engineering practice of water-preserved coal mining in western eco-environment frangible area
  publication-title: J. China Coal Soc.
– start-page: 446
  year: 1994
  end-page: 480
  ident: bib41
  article-title: Controls of δ
– volume: 27
  start-page: 157
  year: 2013
  end-page: 162
  ident: bib51
  article-title: The variations of stable isotopes (
  publication-title: J. Arid Land Resour. Environ.
– volume: 64
  start-page: 1575
  year: 2011
  end-page: 1584
  ident: bib45
  article-title: Hydrogeochemical and isotopic study of groundwater in the habor lake basin of the Ordos plateau, NW China
  publication-title: Environ. Earth Sci.
– volume: 19
  start-page: 731
  year: 2009
  end-page: 735
  ident: bib4
  article-title: Recent progress in the conservation of groundwaters and their dependent ecosystems
  publication-title: Aquat. Conserv. Mar. Freshw. Ecosyst.
– volume: 24
  start-page: 641
  year: 2009
  end-page: 649
  ident: bib42
  article-title: Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China
  publication-title: Appl. Geochem.
– year: 2006
  ident: bib26
  article-title: Groundwater Investigation in the Ordos Basin
– volume: 30
  start-page: 237
  year: 2016
  end-page: 242
  ident: bib21
  article-title: Analysis of isotopic and hydrochemical characteristics of different waters in Kuye Riber Basin
  publication-title: J. Soil Water Conserv.
– volume: 16
  start-page: 436
  year: 1964
  end-page: 468
  ident: bib12
  article-title: Stable isotopes in precipitation
  publication-title: Tellus
– volume: 385
  start-page: 272
  year: 2007
  end-page: 283
  ident: bib6
  article-title: Fluorine geochemistry in bedrock groundwater of South Korea
  publication-title: Sci. Total Environ.
– volume: 42
  start-page: 5421
  year: 2008
  end-page: 5427
  ident: bib31
  article-title: Identification of anthropogenic and natural inputs of sulfate and chloride into the karstic ground water of Guiyang, SW China: combined δ
  publication-title: Environ. Sci. Technol.
– volume: 24
  start-page: 11
  year: 2012
  end-page: 14
  ident: bib43
  article-title: A genetic discussion on coal sulfur and ash in Jurassic north Shaanxi and Huanglong coalfields
  publication-title: Coal Geol. China
– volume: 23
  start-page: 2382
  year: 2008
  end-page: 2394
  ident: bib3
  article-title: Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmingham, UK
  publication-title: Appl. Geochem.
– volume: 170
  start-page: 1088
  year: 1970
  end-page: 1090
  ident: bib17
  article-title: Mechanisms controlling world water chemistry
  publication-title: Science
– volume: 743
  start-page: 139
  year: 2015
  end-page: 150
  ident: bib13
  article-title: Ammonium threshold values for groundwater quality in the EU may not protect groundwater fauna: evidence from an alluvial aquifer in Italy
  publication-title: Hydrobiologia
– volume: 78
  start-page: 1313
  year: 2010
  end-page: 1321
  ident: bib34
  article-title: Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan
  publication-title: Chemosphere
– volume: 133
  start-page: 1702
  year: 1961
  end-page: 1703
  ident: bib11
  article-title: Isotopic variation in meteoric waters
  publication-title: Science
– volume: 218
  start-page: 879
  year: 2016
  end-page: 888
  ident: bib44
  article-title: Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China
  publication-title: Environ. Pollut.
– volume: 24
  start-page: 418
  year: 2013
  end-page: 426
  ident: bib46
  article-title: Sources of riverine sulfate in Yellow River and its tributaries determined by sulfur and oxygen isotopes
  publication-title: Adv. Water Sci.
– volume: 66
  start-page: 505
  year: 2012
  end-page: 517
  ident: bib8
  article-title: Isotopic constraints on the origin of groundwater in the Ordos Basin of northern China
  publication-title: Environ. Earth Sci.
– year: 1967
  ident: bib38
  article-title: Geochemistry of Groundwater—an International Guide for Research and Practice
– volume: 31
  start-page: 3242
  year: 2017
  end-page: 3254
  ident: bib18
  article-title: Isotopic and hydrochemistry spatial variation of sulfate for groundwater characterization in karstic aquifers
  publication-title: Hydrol. Process.
– volume: 321
  start-page: 326
  year: 2006
  end-page: 343
  ident: bib5
  article-title: Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water–rock interaction and hydrologic mixing
  publication-title: J. Hydrol.
– volume: 20
  start-page: 1983
  year: 2016
  end-page: 1999
  ident: bib22
  article-title: Identification of anthropogenic and natural inputs of sulfate into a karstic coastal groundwater system in northeast China: evidence from major ions, δ
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 601–602
  start-page: 691
  year: 2017
  end-page: 702
  ident: bib28
  article-title: Sources of groundwater salinity and potential impact on arsenic mobility in the western Hetao Basin, Inner Mongolia
  publication-title: Sci. Total Environ.
– volume: 27
  start-page: 285
  year: 2010
  end-page: 291
  ident: bib33
  article-title: Hydrogeologic characteristics of mine water hazards in Shendong mining area
  publication-title: J. Mining Safety Eng.
– volume: 535
  start-page: 598
  year: 2016
  end-page: 611
  ident: bib50
  article-title: Geochemical evolution of groundwater in a basaltic aquifer based on chemical and stable isotopic data: case study from the Northeastern portion of Serra Geral Aquifer, São Paulo state (Brazil)
  publication-title: J. Hydrol.
– volume: 40
  start-page: 239
  year: 2015
  end-page: 246
  ident: bib19
  article-title: Theory framework and technological system of coal mine underground reservoir
  publication-title: J. China Coal Soc.
– volume: 32
  start-page: 129
  year: 2013
  end-page: 141
  ident: bib36
  article-title: Multi-isotopic study (
  publication-title: Appl. Geochem.
– volume: 13
  start-page: 98
  year: 2005
  end-page: 111
  ident: bib23
  article-title: Aquifers and hyporheic zones: towards an ecological understanding of groundwater
  publication-title: Hydrogeol. J.
– volume: 135
  start-page: 63
  year: 2013
  end-page: 70
  ident: bib24
  article-title: Hydrogeochemistry of high fluoride groundwater in shallow aquifers, Hangjinhouqi, Hetao Plain
  publication-title: J. Geochem. Explor.
– volume: 23
  start-page: 1166
  year: 2008
  end-page: 1185
  ident: bib35
  article-title: Controls of δ
  publication-title: Appl. Geochem.
– volume: 538
  start-page: 327
  year: 2015
  ident: 10.1016/j.apgeochem.2018.08.030_bib32
  article-title: The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.08.057
– volume: 24
  start-page: 418
  issue: 3
  year: 2013
  ident: 10.1016/j.apgeochem.2018.08.030_bib46
  article-title: Sources of riverine sulfate in Yellow River and its tributaries determined by sulfur and oxygen isotopes
  publication-title: Adv. Water Sci.
– volume: 40
  start-page: 239
  issue: 2
  year: 2015
  ident: 10.1016/j.apgeochem.2018.08.030_bib19
  article-title: Theory framework and technological system of coal mine underground reservoir
  publication-title: J. China Coal Soc.
– volume: 321
  start-page: 326
  issue: 1
  year: 2006
  ident: 10.1016/j.apgeochem.2018.08.030_bib5
  article-title: Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water–rock interaction and hydrologic mixing
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2005.08.006
– volume: 24
  start-page: 11
  issue: 6
  year: 2012
  ident: 10.1016/j.apgeochem.2018.08.030_bib43
  article-title: A genetic discussion on coal sulfur and ash in Jurassic north Shaanxi and Huanglong coalfields
  publication-title: Coal Geol. China
– volume: 535
  start-page: 598
  year: 2016
  ident: 10.1016/j.apgeochem.2018.08.030_bib50
  article-title: Geochemical evolution of groundwater in a basaltic aquifer based on chemical and stable isotopic data: case study from the Northeastern portion of Serra Geral Aquifer, São Paulo state (Brazil)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.02.016
– year: 1967
  ident: 10.1016/j.apgeochem.2018.08.030_bib38
– volume: 265
  start-page: 455
  issue: 3–4
  year: 2009
  ident: 10.1016/j.apgeochem.2018.08.030_bib40
  article-title: Processes affecting δ34S and δ18O values of dissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2009.05.009
– volume: 218
  start-page: 879
  year: 2016
  ident: 10.1016/j.apgeochem.2018.08.030_bib44
  article-title: Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.08.017
– volume: 52
  start-page: 43
  year: 2015
  ident: 10.1016/j.apgeochem.2018.08.030_bib47
  article-title: Using dual isotopic data to track the sources and behaviors of dissolved sulfate in the western North China Plain
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2014.11.011
– volume: 78
  start-page: 1313
  issue: 11
  year: 2010
  ident: 10.1016/j.apgeochem.2018.08.030_bib34
  article-title: Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.01.010
– year: 2004
  ident: 10.1016/j.apgeochem.2018.08.030_bib1
– volume: 57
  start-page: 131
  issue: 1
  year: 2009
  ident: 10.1016/j.apgeochem.2018.08.030_bib2
  article-title: Integrated method of RS and GPR for monitoring the changes in the soil moisture and groundwater environment due to underground coal mining
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-008-1289-x
– volume: 13
  start-page: 98
  issue: 1
  year: 2005
  ident: 10.1016/j.apgeochem.2018.08.030_bib23
  article-title: Aquifers and hyporheic zones: towards an ecological understanding of groundwater
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-004-0421-6
– volume: 27
  start-page: 2382
  issue: 12
  year: 2012
  ident: 10.1016/j.apgeochem.2018.08.030_bib27
  article-title: The role of deuterium excess in determining the water salinisation mechanism: a case study of the arid Tarim River Basin, NW China
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2012.08.015
– volume: 135
  start-page: 63
  year: 2013
  ident: 10.1016/j.apgeochem.2018.08.030_bib24
  article-title: Hydrogeochemistry of high fluoride groundwater in shallow aquifers, Hangjinhouqi, Hetao Plain
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2012.11.010
– volume: 397
  start-page: 23
  issue: 1
  year: 2011
  ident: 10.1016/j.apgeochem.2018.08.030_bib25
  article-title: Multiple isotope (H, O, N, S and Sr) approach elucidates complex pollution causes in the shallow groundwaters of the Taipei urban area
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.11.025
– volume: 31
  start-page: 3242
  year: 2017
  ident: 10.1016/j.apgeochem.2018.08.030_bib18
  article-title: Isotopic and hydrochemistry spatial variation of sulfate for groundwater characterization in karstic aquifers
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.11255
– volume: 40
  start-page: 1711
  issue: 8
  year: 2015
  ident: 10.1016/j.apgeochem.2018.08.030_bib15
  article-title: Progress in engineering practice of water-preserved coal mining in western eco-environment frangible area
  publication-title: J. China Coal Soc.
– volume: 13
  start-page: 58
  issue: 1
  year: 2006
  ident: 10.1016/j.apgeochem.2018.08.030_bib7
  article-title: Geochemistry of water quality of the Yellow River basin
  publication-title: Earth Sci. Front.
– volume: 27
  start-page: 285
  issue: 3
  year: 2010
  ident: 10.1016/j.apgeochem.2018.08.030_bib33
  article-title: Hydrogeologic characteristics of mine water hazards in Shendong mining area
  publication-title: J. Mining Safety Eng.
– volume: 66
  start-page: 505
  issue: 2
  year: 2012
  ident: 10.1016/j.apgeochem.2018.08.030_bib8
  article-title: Isotopic constraints on the origin of groundwater in the Ordos Basin of northern China
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-1259-6
– volume: 170
  start-page: 1088
  issue: 3962
  year: 1970
  ident: 10.1016/j.apgeochem.2018.08.030_bib17
  article-title: Mechanisms controlling world water chemistry
  publication-title: Science
  doi: 10.1126/science.170.3962.1088
– year: 1997
  ident: 10.1016/j.apgeochem.2018.08.030_bib9
– volume: 133
  start-page: 1702
  year: 1961
  ident: 10.1016/j.apgeochem.2018.08.030_bib11
  article-title: Isotopic variation in meteoric waters
  publication-title: Science
  doi: 10.1126/science.133.3465.1702
– volume: 53
  start-page: 285
  issue: 3–4
  year: 2001
  ident: 10.1016/j.apgeochem.2018.08.030_bib39
  article-title: Isotopic modelling of the significance of bacterial sulphate reduction for phenol attenuation in a contaminated aquifer
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(01)00170-X
– volume: 601–602
  start-page: 691
  year: 2017
  ident: 10.1016/j.apgeochem.2018.08.030_bib28
  article-title: Sources of groundwater salinity and potential impact on arsenic mobility in the western Hetao Basin, Inner Mongolia
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.05.196
– volume: 385
  start-page: 272
  issue: 1–3
  year: 2007
  ident: 10.1016/j.apgeochem.2018.08.030_bib6
  article-title: Fluorine geochemistry in bedrock groundwater of South Korea
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2007.06.038
– volume: 23
  start-page: 2382
  issue: 8
  year: 2008
  ident: 10.1016/j.apgeochem.2018.08.030_bib3
  article-title: Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmingham, UK
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.03.012
– volume: 743
  start-page: 139
  issue: 1
  year: 2015
  ident: 10.1016/j.apgeochem.2018.08.030_bib13
  article-title: Ammonium threshold values for groundwater quality in the EU may not protect groundwater fauna: evidence from an alluvial aquifer in Italy
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-014-2018-y
– volume: 64
  start-page: 1575
  issue: 6
  year: 2011
  ident: 10.1016/j.apgeochem.2018.08.030_bib45
  article-title: Hydrogeochemical and isotopic study of groundwater in the habor lake basin of the Ordos plateau, NW China
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-009-0383-z
– start-page: 195
  year: 2000
  ident: 10.1016/j.apgeochem.2018.08.030_bib29
– volume: 400
  start-page: 312
  issue: 3–4
  year: 2011
  ident: 10.1016/j.apgeochem.2018.08.030_bib30
  article-title: Controls on the δ34S and δ18O of dissolved sulfate in the quaternary aquifers of the north China plain
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.01.034
– year: 2006
  ident: 10.1016/j.apgeochem.2018.08.030_bib26
– volume: 18
  start-page: 805
  issue: 6
  year: 2003
  ident: 10.1016/j.apgeochem.2018.08.030_bib14
  article-title: Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators
  publication-title: Appl. Geochem.
  doi: 10.1016/S0883-2927(02)00189-0
– volume: 23
  start-page: 1166
  issue: 5
  year: 2008
  ident: 10.1016/j.apgeochem.2018.08.030_bib35
  article-title: Controls of δ34S and δ18O in dissolved sulphate: learning from a detailed survey in the Llobregat River (Spain)
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2007.11.009
– volume: 16
  start-page: 436
  issue: 4
  year: 1964
  ident: 10.1016/j.apgeochem.2018.08.030_bib12
  article-title: Stable isotopes in precipitation
  publication-title: Tellus
  doi: 10.3402/tellusa.v16i4.8993
– volume: 42
  start-page: 5421
  issue: 15
  year: 2008
  ident: 10.1016/j.apgeochem.2018.08.030_bib31
  article-title: Identification of anthropogenic and natural inputs of sulfate and chloride into the karstic ground water of Guiyang, SW China: combined δ37Cl and δ34S approach
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800380w
– volume: 171
  start-page: 424
  issue: 1–3
  year: 2009
  ident: 10.1016/j.apgeochem.2018.08.030_bib37
  article-title: Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2009.06.018
– volume: 24
  start-page: 641
  issue: 4
  year: 2009
  ident: 10.1016/j.apgeochem.2018.08.030_bib42
  article-title: Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.12.015
– volume: 19
  start-page: 731
  issue: 7
  year: 2009
  ident: 10.1016/j.apgeochem.2018.08.030_bib4
  article-title: Recent progress in the conservation of groundwaters and their dependent ecosystems
  publication-title: Aquat. Conserv. Mar. Freshw. Ecosyst.
  doi: 10.1002/aqc.1073
– volume: 14
  start-page: 868
  issue: 6
  year: 2006
  ident: 10.1016/j.apgeochem.2018.08.030_bib20
  article-title: Deep groundwater flow and geochemical processes in limestone aquifers: evidence from thermal waters in Derbyshire, England, UK
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-006-0022-7
– volume: 53
  start-page: 795
  issue: 4
  year: 2007
  ident: 10.1016/j.apgeochem.2018.08.030_bib16
  article-title: Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-007-0692-z
– volume: 30
  start-page: 237
  issue: 2
  year: 2016
  ident: 10.1016/j.apgeochem.2018.08.030_bib21
  article-title: Analysis of isotopic and hydrochemical characteristics of different waters in Kuye Riber Basin
  publication-title: J. Soil Water Conserv.
– volume: 20
  start-page: 1983
  issue: 5
  year: 2016
  ident: 10.1016/j.apgeochem.2018.08.030_bib22
  article-title: Identification of anthropogenic and natural inputs of sulfate into a karstic coastal groundwater system in northeast China: evidence from major ions, δ13CDIC and δ34SSO4
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-1983-2016
– volume: 27
  start-page: 157
  issue: 5
  year: 2013
  ident: 10.1016/j.apgeochem.2018.08.030_bib51
  article-title: The variations of stable isotopes (δD and δ18O) in the precipitation in Baotou area
  publication-title: J. Arid Land Resour. Environ.
– start-page: 446
  year: 1994
  ident: 10.1016/j.apgeochem.2018.08.030_bib41
– volume: 32
  start-page: 129
  year: 2013
  ident: 10.1016/j.apgeochem.2018.08.030_bib36
  article-title: Multi-isotopic study (15N, 34S, 18O, 13C) to identify processes affecting nitrate and sulfate in response to local and regional groundwater mixing in a large-scale flow system
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2012.10.014
– volume: 71
  start-page: 63
  year: 2016
  ident: 10.1016/j.apgeochem.2018.08.030_bib48
  article-title: Application of hydrochemistry and stable isotopes (δ34S, δ18O and δ37Cl) to trace natural and anthropogenic influences on the quality of groundwater in the piedmont region, Shijiazhuang, China
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2016.05.018
SSID ssj0005702
Score 2.4976165
Snippet The Kuye River basin lays in an economically and ecologically important area, therefore, the groundwater quality issues are of growing concern in this...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 82
SubjectTerms atmospheric precipitation
cation exchange
chlorides
deuterium
Fluoride sources
fluorides
geochemistry
groundwater
Groundwater quality
Hydrochemical evolution
hydrochemistry
Kuye river basin
oxygen
salinity
semi-confined aquifer
semiarid zones
sodium
sodium bicarbonate
solubility
stable isotopes
sulfate minerals
Sulfate sources
sulfates
water quality
watersheds
weathering
Title A hydrochemistry and multi-isotopic study of groundwater origin and hydrochemical evolution in the middle reaches of the Kuye River basin
URI https://dx.doi.org/10.1016/j.apgeochem.2018.08.030
https://www.proquest.com/docview/2176343840
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LIngRn_gmgte6qcl2U2-LuK6Ke_ABewtpk2pF22Ufyl68-6-dSdv1gbAHL4Wmk7Rk0vkm7TczhBxa8Am4jn1PIq0G8DbyABSMp3XDB_c41MZiNPJ1N-jci8teo1cjp1UsDNIqS9tf2HRnrcuWejmb9X6a1m_h_eDH4TEYV45Ajmm3hWjiKj96_0bzaDreIQp7KP2D46X7DxYLU2FIui9dLk-kQ_-NUL9stQOg9jJZKj1H2ioeboXUbLZKFs5dZd7JGvlo0ceJcQWwigpuVGeGOr6glw7zUd5PY-qSydI8oRjMkZk3cDQHtKiN5cS_RgDVUftarksKl8FRpC_uawYduCzQQxwHW6_GE0tvkN9BARPTbJ3ct8_uTjteWWfBi7mQIzCIGvapzDDhM8sTAz4M4FrEZMS4DWVkrWQ6FDHjIrAwhYERvkzCxEbSojDfIHNZntlNQqWRYQDisGuJRYS53phImo0YQI_DMdgiQTW3Ki6TkGMtjGdVsc2e1FQpCpWisEomZ1uETTv2izwcs7ucVMpTP5aUArSY3fmgUrcCreFfFJ3ZfDxUsIcLuOCwMd7-zw12yCKeFWGNu2RuNBjbPfBvRtG-W8D7ZL51cdXpfgI6w_yZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BIkQviKfYlrZG4hqtg73B6W2Fuixd2AMPiZvlxA4EtclqH632J_CvmXGSRVSVOPSSg1-JPM58M8k3MwDHDm0CYdIwUESrQbxNAgQFGxjTDdE8jo11FI18NYoGd_LHffd-Bc6aWBiiVda6v9LpXlvXLZ16NzvjPO_c4PshTuITVK6CgDxahTXKTtVtwVrvYjgYvTI9Tj31kMYHNOENzcuMHxzVpqKo9FD5dJ7EiP43SP2lrj0G9bdgszYeWa96vm1YccUOrJ_74ryLXXjusceF9TWwqiJuzBSWecpgkE_LWTnOU-bzybIyYxTPUdg_aGtOWFUeyw9_XQGlx9zv-mgy7EZbkf3yHzTYxCeCntI61DqcLxy7JooHQ1jMiz2463-_PRsEdamFIBVSzVAnGnRVueUy5E5kFs0YhLaEq4QLF6vEOcVNLFMuZORwCyMrQ5XFmUuUo8FiH1pFWbgDYMqqOMLh6LikMqF0b1xmp90UcU_gNWpD1OytTus85FQO46duCGdPeikUTULRVChT8Dbw5cRxlYrj_SnfGuHpN6dKI2C8P_moEbdGqdGPFFO4cj7V6MZFQgr0jT_-zw2-wsbg9upSX16Mhp_gA_VUUY6H0JpN5u4zmjuz5Et9nF8A2QP_Sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hydrochemistry+and+multi-isotopic+study+of+groundwater+origin+and+hydrochemical+evolution+in+the+middle+reaches+of+the+Kuye+River+basin&rft.jtitle=Applied+geochemistry&rft.au=Fu%2C+Changchang&rft.au=Li%2C+Xiangquan&rft.au=Ma%2C+Jianfei&rft.au=Liu%2C+Lingxia&rft.date=2018-11-01&rft.issn=0883-2927&rft.volume=98&rft.spage=82&rft.epage=93&rft_id=info:doi/10.1016%2Fj.apgeochem.2018.08.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apgeochem_2018_08_030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon