A hydrochemistry and multi-isotopic study of groundwater origin and hydrochemical evolution in the middle reaches of the Kuye River basin
The Kuye River basin lays in an economically and ecologically important area, therefore, the groundwater quality issues are of growing concern in this semi-arid region. In the present study, the combination of techniques (i.e. piper diagram, ionic ratios, Gibbs diagrams, multiple isotopic analyses e...
Saved in:
Published in | Applied geochemistry Vol. 98; pp. 82 - 93 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Kuye River basin lays in an economically and ecologically important area, therefore, the groundwater quality issues are of growing concern in this semi-arid region. In the present study, the combination of techniques (i.e. piper diagram, ionic ratios, Gibbs diagrams, multiple isotopic analyses etc.) provided an efficient way for analyzing the groundwater origin and hydrochemical processes that affected water chemistry. The groundwater type was CaHCO3 in low TDS values and NaCl/SO4 in high TDS values in both shallow unconfined and deep Cretaceous-Jurassic semi-confined aquifer. And, furthermore, Na+, Cl−, SO42− and F− were the dominated parameters deteriorating the groundwater quality. In general, groundwater was of meteoric origin and the more depleted δ18O and δD features of CJY groundwater samples indicated that the groundwater was formed during the wetter and colder climate. The rock weathering in conjunction with the cation exchange absolutely predominated in geochemical evolution and deuterium excess method quantified that mineral dissolution contributed most of the salinity (67–92%) of the groundwater. The SO42− of the groundwater was primary from the dissolution of sulfate minerals, next was the atmospheric precipitation. In addition, bacterial sulfate reduction was an important reaction affecting the SO42− concentration in the groundwater from CJY aquifer. The hydrochemical type of high fluoride groundwater in the study area was NaHCO3 or NaCl/SO4 and it was mainly from the dissolution of fluoride bearing minerals. NaHCO3 water was favorable for F− enrichment due to CaF2 solubility and NaCl/SO4 type water may favor the F− enrichment by lower its activity in groundwater. The results of this study will facilitate understanding of groundwater origin and quality status to enable effective management and utilization of groundwater.
•The integrated methods of hydrochemistry and multiple isotopes are used to identify hydrochemical processes.•Salinity (controlled by Na+, Cl− and SO42−) and Fluoride (F−) are the dominated parameters deteriorating groundwater quality.•The rock weathering in conjunction with the cation exchange absolutely predominate the geochemical evolution.•SO42− is mainly from the dissolution of sulfate minerals and bacterial sulfate reduction is occurred in CJY aquifer.•The fluoride of the groundwater is mainly controlled by CaF2 solubility. |
---|---|
AbstractList | The Kuye River basin lays in an economically and ecologically important area, therefore, the groundwater quality issues are of growing concern in this semi-arid region. In the present study, the combination of techniques (i.e. piper diagram, ionic ratios, Gibbs diagrams, multiple isotopic analyses etc.) provided an efficient way for analyzing the groundwater origin and hydrochemical processes that affected water chemistry. The groundwater type was CaHCO3 in low TDS values and NaCl/SO4 in high TDS values in both shallow unconfined and deep Cretaceous-Jurassic semi-confined aquifer. And, furthermore, Na+, Cl−, SO42− and F− were the dominated parameters deteriorating the groundwater quality. In general, groundwater was of meteoric origin and the more depleted δ18O and δD features of CJY groundwater samples indicated that the groundwater was formed during the wetter and colder climate. The rock weathering in conjunction with the cation exchange absolutely predominated in geochemical evolution and deuterium excess method quantified that mineral dissolution contributed most of the salinity (67–92%) of the groundwater. The SO42− of the groundwater was primary from the dissolution of sulfate minerals, next was the atmospheric precipitation. In addition, bacterial sulfate reduction was an important reaction affecting the SO42− concentration in the groundwater from CJY aquifer. The hydrochemical type of high fluoride groundwater in the study area was NaHCO3 or NaCl/SO4 and it was mainly from the dissolution of fluoride bearing minerals. NaHCO3 water was favorable for F− enrichment due to CaF2 solubility and NaCl/SO4 type water may favor the F− enrichment by lower its activity in groundwater. The results of this study will facilitate understanding of groundwater origin and quality status to enable effective management and utilization of groundwater. The Kuye River basin lays in an economically and ecologically important area, therefore, the groundwater quality issues are of growing concern in this semi-arid region. In the present study, the combination of techniques (i.e. piper diagram, ionic ratios, Gibbs diagrams, multiple isotopic analyses etc.) provided an efficient way for analyzing the groundwater origin and hydrochemical processes that affected water chemistry. The groundwater type was CaHCO3 in low TDS values and NaCl/SO4 in high TDS values in both shallow unconfined and deep Cretaceous-Jurassic semi-confined aquifer. And, furthermore, Na+, Cl−, SO42− and F− were the dominated parameters deteriorating the groundwater quality. In general, groundwater was of meteoric origin and the more depleted δ18O and δD features of CJY groundwater samples indicated that the groundwater was formed during the wetter and colder climate. The rock weathering in conjunction with the cation exchange absolutely predominated in geochemical evolution and deuterium excess method quantified that mineral dissolution contributed most of the salinity (67–92%) of the groundwater. The SO42− of the groundwater was primary from the dissolution of sulfate minerals, next was the atmospheric precipitation. In addition, bacterial sulfate reduction was an important reaction affecting the SO42− concentration in the groundwater from CJY aquifer. The hydrochemical type of high fluoride groundwater in the study area was NaHCO3 or NaCl/SO4 and it was mainly from the dissolution of fluoride bearing minerals. NaHCO3 water was favorable for F− enrichment due to CaF2 solubility and NaCl/SO4 type water may favor the F− enrichment by lower its activity in groundwater. The results of this study will facilitate understanding of groundwater origin and quality status to enable effective management and utilization of groundwater. •The integrated methods of hydrochemistry and multiple isotopes are used to identify hydrochemical processes.•Salinity (controlled by Na+, Cl− and SO42−) and Fluoride (F−) are the dominated parameters deteriorating groundwater quality.•The rock weathering in conjunction with the cation exchange absolutely predominate the geochemical evolution.•SO42− is mainly from the dissolution of sulfate minerals and bacterial sulfate reduction is occurred in CJY aquifer.•The fluoride of the groundwater is mainly controlled by CaF2 solubility. |
Author | Fu, Changchang Li, Xiangquan Gao, Ming Ma, Jianfei Liu, Lingxia Bai, Zhanxue |
Author_xml | – sequence: 1 givenname: Changchang surname: Fu fullname: Fu, Changchang email: fu0936@163.com – sequence: 2 givenname: Xiangquan surname: Li fullname: Li, Xiangquan email: lxqlm2003@aliyun.com.cn – sequence: 3 givenname: Jianfei surname: Ma fullname: Ma, Jianfei – sequence: 4 givenname: Lingxia surname: Liu fullname: Liu, Lingxia – sequence: 5 givenname: Ming surname: Gao fullname: Gao, Ming – sequence: 6 givenname: Zhanxue surname: Bai fullname: Bai, Zhanxue |
BookMark | eNqNkc1q3DAUhUVJIZOfZ4iW3XhyZTm2vOhiCGkbGiiUdC1k6XpGg0eaSPIEP0LeunKmNJBNCxcuXJ3zwdE5IyfOOyTkisGSAauvt0u1X6PXG9wtS2BiCXk4fCALJpqyaBmvTsgChOBF2ZbNKTmLcQsANw2UC_KyopvJhFe7jSlMVDlDd-OQbGGjT35vNY1pNBP1PV0HPzrzrBIG6oNdW_cqfyNoNVA8-GFM1juan9MG6c4aMyANqLImzpz5-n2ckP60h4zqVLTugnzs1RDx8s8-J7--3D3efisefny9v109FJpXIhWiUVxwMFAxQN4bLlrgdQeiA46t6BAFqLbSwKsac97aVEz0bY-dwFnMz8mnI3cf_NOIMckcXOMwKId-jLJkTc0rLirI0s9HqQ4-xoC91DapOVoKyg6SgZwrkFv5twI5VyAhD5_9zTv_PtidCtN_OFdHJ-afOFgMMmqLTqOxAXWSxtt_Mn4D9iCrKg |
CitedBy_id | crossref_primary_10_1007_s12583_022_1629_x crossref_primary_10_1007_s11356_023_28401_3 crossref_primary_10_1016_j_apgeochem_2019_104492 crossref_primary_10_1016_j_chemer_2023_125985 crossref_primary_10_1016_j_gsd_2024_101199 crossref_primary_10_1016_j_gsd_2023_101071 crossref_primary_10_3799_dqkx_2022_430 crossref_primary_10_3390_ijerph16142512 crossref_primary_10_1016_j_apgeochem_2022_105485 crossref_primary_10_1016_j_jhydrol_2023_130163 crossref_primary_10_3390_w12040950 crossref_primary_10_3390_w15112126 crossref_primary_10_1007_s10661_024_12533_1 crossref_primary_10_1038_s41598_025_93318_5 crossref_primary_10_3390_w12123310 crossref_primary_10_1007_s10230_020_00716_4 crossref_primary_10_1007_s11783_021_1393_7 crossref_primary_10_1039_D0EM00415D crossref_primary_10_1016_j_apgeochem_2023_105833 crossref_primary_10_1051_e3sconf_20199801046 crossref_primary_10_1016_j_gsd_2024_101356 crossref_primary_10_1029_2024WR038856 crossref_primary_10_1016_j_gsd_2025_101411 crossref_primary_10_1007_s11356_024_31958_2 crossref_primary_10_1007_s10653_024_02155_4 crossref_primary_10_1016_j_apgeochem_2020_104524 crossref_primary_10_1016_j_apgeochem_2023_105593 crossref_primary_10_1007_s12665_023_11156_y crossref_primary_10_1016_j_jhydrol_2025_132807 crossref_primary_10_1007_s10230_023_00963_1 crossref_primary_10_1016_j_apradiso_2024_111188 crossref_primary_10_1016_j_jconhyd_2023_104256 crossref_primary_10_1016_j_scitotenv_2019_06_356 crossref_primary_10_3390_w16202884 crossref_primary_10_1016_j_jclepro_2024_142640 crossref_primary_10_1007_s12517_021_07215_y crossref_primary_10_3390_w14193173 crossref_primary_10_1016_j_apgeochem_2022_105221 crossref_primary_10_1038_s41598_024_67735_x crossref_primary_10_1007_s11356_020_09784_z crossref_primary_10_1007_s12665_024_11438_z crossref_primary_10_1016_j_jclepro_2020_120664 crossref_primary_10_1007_s12665_024_11458_9 crossref_primary_10_1016_j_geothermics_2024_103222 crossref_primary_10_3390_ijerph192315438 crossref_primary_10_1016_j_jconhyd_2024_104446 crossref_primary_10_3390_su152115447 crossref_primary_10_1007_s12665_023_10994_0 crossref_primary_10_1016_j_jhydrol_2023_130496 crossref_primary_10_1016_j_jhydrol_2019_124116 crossref_primary_10_1016_j_pce_2021_103045 crossref_primary_10_3390_w15224000 crossref_primary_10_1007_s12517_020_06391_7 crossref_primary_10_1016_j_apgeochem_2023_105656 crossref_primary_10_3390_app10227980 crossref_primary_10_3389_fenvs_2024_1493390 crossref_primary_10_1007_s11356_023_29914_7 crossref_primary_10_1007_s11356_022_23516_5 crossref_primary_10_1177_01445987221088621 crossref_primary_10_3390_w15040726 crossref_primary_10_1016_j_jhydrol_2020_125604 |
Cites_doi | 10.1016/j.scitotenv.2015.08.057 10.1016/j.jhydrol.2005.08.006 10.1016/j.jhydrol.2016.02.016 10.1016/j.chemgeo.2009.05.009 10.1016/j.envpol.2016.08.017 10.1016/j.apgeochem.2014.11.011 10.1016/j.chemosphere.2010.01.010 10.1007/s00254-008-1289-x 10.1007/s10040-004-0421-6 10.1016/j.apgeochem.2012.08.015 10.1016/j.gexplo.2012.11.010 10.1016/j.jhydrol.2010.11.025 10.1002/hyp.11255 10.1007/s12665-011-1259-6 10.1126/science.170.3962.1088 10.1126/science.133.3465.1702 10.1016/S0169-7722(01)00170-X 10.1016/j.scitotenv.2017.05.196 10.1016/j.scitotenv.2007.06.038 10.1016/j.apgeochem.2008.03.012 10.1007/s10750-014-2018-y 10.1007/s12665-009-0383-z 10.1016/j.jhydrol.2011.01.034 10.1016/S0883-2927(02)00189-0 10.1016/j.apgeochem.2007.11.009 10.3402/tellusa.v16i4.8993 10.1021/es800380w 10.1016/j.jhazmat.2009.06.018 10.1016/j.apgeochem.2008.12.015 10.1002/aqc.1073 10.1007/s10040-006-0022-7 10.1007/s00254-007-0692-z 10.5194/hess-20-1983-2016 10.1016/j.apgeochem.2012.10.014 10.1016/j.apgeochem.2016.05.018 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apgeochem.2018.08.030 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-9134 |
EndPage | 93 |
ExternalDocumentID | 10_1016_j_apgeochem_2018_08_030 S0883292718302506 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABEFU ABFNM ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 VH1 WUQ XPP ZCA ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c348t-87a3830d0410e3fd389036b08b03e98bee80a94c0346e9276d418f9feb8ed3893 |
IEDL.DBID | .~1 |
ISSN | 0883-2927 |
IngestDate | Sun Aug 24 03:24:07 EDT 2025 Thu Apr 24 23:08:16 EDT 2025 Tue Jul 01 01:59:37 EDT 2025 Fri Feb 23 02:30:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Kuye river basin Hydrochemical evolution Groundwater quality Fluoride sources Sulfate sources |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-87a3830d0410e3fd389036b08b03e98bee80a94c0346e9276d418f9feb8ed3893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2176343840 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2176343840 crossref_citationtrail_10_1016_j_apgeochem_2018_08_030 crossref_primary_10_1016_j_apgeochem_2018_08_030 elsevier_sciencedirect_doi_10_1016_j_apgeochem_2018_08_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2018 2018-11-00 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationTitle | Applied geochemistry |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Song, Yang, Han, Zhang, Ma, Bu (bib32) 2015; 538 Clark, Fritz (bib9) 1997 Gao, Wang, Li, Guo (bib16) 2007; 53 Dansgaard (bib12) 1964; 16 Spence, Bottrell, Thornton, Lerner (bib39) 2001; 53 Zhang, Li, Zhao, Liu (bib47) 2015; 52 Zhou, Zhang, Zhou, Liu, Cai, Liu (bib48) 2016; 71 Miao, Wang, Bai (bib33) 2010; 27 Appelo, Postma (bib1) 2004 González-Ramón, López‐Chicano, Gázquez (bib18) 2017; 31 Gibbs (bib17) 1970; 170 Chen, Wang, He (bib7) 2006; 13 Yang, Li, Ma, Wang, Martin (bib44) 2016; 218 Rafique, Naseem, Usmani, Bashir, Khan, Bhanger (bib37) 2009; 171 Krouse, Mayer (bib29) 2000 Gunn, Bottrell, Lowe, Worthington (bib20) 2006; 14 Han, Song, Currell (bib22) 2016; 20 Jia, Guo, Xi, Jiang, Zhang, Yuan, Yi, Xue (bib28) 2017; 601–602 Gastmans, Hutcheon, Menegário (bib50) 2016; 535 Schoeller (bib38) 1967 Puig, Folch, Menció, Soler, Mas-Pla (bib36) 2013; 32 Van Stempvoort, Krouse (bib41) 1994 Yin, Hou, Dou, Tao, Li (bib45) 2011; 64 Craig (bib11) 1961; 133 Chen, Liu, Wang, Rao, Tan, Dong, Sun, Wang, Su (bib8) 2012; 66 Di Lorenzo, Cifoni, Lombardo, Fiasca, Galassi (bib13) 2015; 743 Chae, Yun, Mayer, Kim, Kim, Kwon, Kim, Koh (bib6) 2007; 385 Wang, Shvartsev, Su (bib42) 2009; 24 Zhang, Huang, Li (bib46) 2013; 24 Tuttle, Breit, Cozzarelli (bib40) 2009; 265 Li, Zhou, Gan, Yu, Wang, Liu (bib30) 2011; 400 Boulton (bib4) 2009; 19 Xie, Zhang, Qiao (bib43) 2012; 24 Edmunds, Guendouz, Mamou, Moulla, Shand, Zouari (bib14) 2003; 18 Gu (bib19) 2015; 40 He, Ma, Wang, Shan, Deng (bib24) 2013; 135 Liu, Lang, Satake, Wu, Li (bib31) 2008; 42 Otero, Soler, Canals (bib35) 2008; 23 Naseem, Rafique, Bashir, Bhanger, Laghari, Usmani (bib34) 2010; 78 Fan, Ma, Ji (bib15) 2015; 40 Bottrell, Tellam, Bartlett, Hughes (bib3) 2008; 23 Liu, Guo, Liu (bib51) 2013; 27 Hancock, Boulton, Humphreys (bib23) 2005; 13 Hou, Zhao, Wang (bib26) 2006 Huang, Pang (bib27) 2012; 27 Bian, Lei, In, Chang, Zhang, Zhou, He (bib2) 2009; 57 Chae, Yun, Kim, Mayer (bib5) 2006; 321 Hosono, Wang, Umezawa, Nakano, Onodera, Nagata, Yoshimizu, Tayasu, Taniguchi (bib25) 2011; 397 Guo, Xiong, Jiang (bib21) 2016; 30 Edmunds (10.1016/j.apgeochem.2018.08.030_bib14) 2003; 18 Dansgaard (10.1016/j.apgeochem.2018.08.030_bib12) 1964; 16 Gao (10.1016/j.apgeochem.2018.08.030_bib16) 2007; 53 Bian (10.1016/j.apgeochem.2018.08.030_bib2) 2009; 57 Gu (10.1016/j.apgeochem.2018.08.030_bib19) 2015; 40 Tuttle (10.1016/j.apgeochem.2018.08.030_bib40) 2009; 265 Clark (10.1016/j.apgeochem.2018.08.030_bib9) 1997 Gunn (10.1016/j.apgeochem.2018.08.030_bib20) 2006; 14 Liu (10.1016/j.apgeochem.2018.08.030_bib31) 2008; 42 Fan (10.1016/j.apgeochem.2018.08.030_bib15) 2015; 40 Yang (10.1016/j.apgeochem.2018.08.030_bib44) 2016; 218 Van Stempvoort (10.1016/j.apgeochem.2018.08.030_bib41) 1994 Craig (10.1016/j.apgeochem.2018.08.030_bib11) 1961; 133 Spence (10.1016/j.apgeochem.2018.08.030_bib39) 2001; 53 Chae (10.1016/j.apgeochem.2018.08.030_bib6) 2007; 385 Naseem (10.1016/j.apgeochem.2018.08.030_bib34) 2010; 78 Hosono (10.1016/j.apgeochem.2018.08.030_bib25) 2011; 397 Hou (10.1016/j.apgeochem.2018.08.030_bib26) 2006 Liu (10.1016/j.apgeochem.2018.08.030_bib32) 2015; 538 Di Lorenzo (10.1016/j.apgeochem.2018.08.030_bib13) 2015; 743 Chae (10.1016/j.apgeochem.2018.08.030_bib5) 2006; 321 Miao (10.1016/j.apgeochem.2018.08.030_bib33) 2010; 27 Chen (10.1016/j.apgeochem.2018.08.030_bib8) 2012; 66 Zhang (10.1016/j.apgeochem.2018.08.030_bib47) 2015; 52 Wang (10.1016/j.apgeochem.2018.08.030_bib42) 2009; 24 Liu (10.1016/j.apgeochem.2018.08.030_bib51) 2013; 27 Krouse (10.1016/j.apgeochem.2018.08.030_bib29) 2000 Gibbs (10.1016/j.apgeochem.2018.08.030_bib17) 1970; 170 Gastmans (10.1016/j.apgeochem.2018.08.030_bib50) 2016; 535 Xie (10.1016/j.apgeochem.2018.08.030_bib43) 2012; 24 Yin (10.1016/j.apgeochem.2018.08.030_bib45) 2011; 64 Guo (10.1016/j.apgeochem.2018.08.030_bib21) 2016; 30 Zhang (10.1016/j.apgeochem.2018.08.030_bib46) 2013; 24 Jia (10.1016/j.apgeochem.2018.08.030_bib28) 2017; 601–602 Zhou (10.1016/j.apgeochem.2018.08.030_bib48) 2016; 71 Boulton (10.1016/j.apgeochem.2018.08.030_bib4) 2009; 19 González-Ramón (10.1016/j.apgeochem.2018.08.030_bib18) 2017; 31 Puig (10.1016/j.apgeochem.2018.08.030_bib36) 2013; 32 Hancock (10.1016/j.apgeochem.2018.08.030_bib23) 2005; 13 Chen (10.1016/j.apgeochem.2018.08.030_bib7) 2006; 13 Han (10.1016/j.apgeochem.2018.08.030_bib22) 2016; 20 Li (10.1016/j.apgeochem.2018.08.030_bib30) 2011; 400 Rafique (10.1016/j.apgeochem.2018.08.030_bib37) 2009; 171 Appelo (10.1016/j.apgeochem.2018.08.030_bib1) 2004 Bottrell (10.1016/j.apgeochem.2018.08.030_bib3) 2008; 23 Huang (10.1016/j.apgeochem.2018.08.030_bib27) 2012; 27 He (10.1016/j.apgeochem.2018.08.030_bib24) 2013; 135 Schoeller (10.1016/j.apgeochem.2018.08.030_bib38) 1967 Otero (10.1016/j.apgeochem.2018.08.030_bib35) 2008; 23 |
References_xml | – volume: 538 start-page: 327 year: 2015 end-page: 340 ident: bib32 article-title: The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China publication-title: Sci. Total Environ. – volume: 13 start-page: 58 year: 2006 end-page: 73 ident: bib7 article-title: Geochemistry of water quality of the Yellow River basin publication-title: Earth Sci. Front. – volume: 53 start-page: 795 year: 2007 end-page: 803 ident: bib16 article-title: Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China publication-title: Environ. Geol. – volume: 71 start-page: 63 year: 2016 end-page: 72 ident: bib48 article-title: Application of hydrochemistry and stable isotopes (δ publication-title: Appl. Geochem. – year: 2004 ident: bib1 article-title: Geochemistry, Groundwater and Pollution – volume: 52 start-page: 43 year: 2015 end-page: 56 ident: bib47 article-title: Using dual isotopic data to track the sources and behaviors of dissolved sulfate in the western North China Plain publication-title: Appl. Geochem. – volume: 265 start-page: 455 year: 2009 end-page: 467 ident: bib40 article-title: Processes affecting δ publication-title: Chem. Geol. – start-page: 195 year: 2000 end-page: 231 ident: bib29 article-title: Environmental Tracers in Subsurface Hydrology – volume: 171 start-page: 424 year: 2009 end-page: 430 ident: bib37 article-title: Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan publication-title: J. Hazard Mater. – volume: 57 start-page: 131 year: 2009 end-page: 142 ident: bib2 article-title: Integrated method of RS and GPR for monitoring the changes in the soil moisture and groundwater environment due to underground coal mining publication-title: Environ. Geol. – volume: 397 start-page: 23 year: 2011 end-page: 36 ident: bib25 article-title: Multiple isotope (H, O, N, S and Sr) approach elucidates complex pollution causes in the shallow groundwaters of the Taipei urban area publication-title: J. Hydrol. – volume: 27 start-page: 2382 year: 2012 end-page: 2388 ident: bib27 article-title: The role of deuterium excess in determining the water salinisation mechanism: a case study of the arid Tarim River Basin, NW China publication-title: Appl. Geochem. – volume: 400 start-page: 312 year: 2011 end-page: 322 ident: bib30 article-title: Controls on the δ publication-title: J. Hydrol. – volume: 18 start-page: 805 year: 2003 end-page: 822 ident: bib14 article-title: Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators publication-title: Appl. Geochem. – year: 1997 ident: bib9 article-title: Environmental Isotopes in Hydrogeology – volume: 14 start-page: 868 year: 2006 end-page: 881 ident: bib20 article-title: Deep groundwater flow and geochemical processes in limestone aquifers: evidence from thermal waters in Derbyshire, England, UK publication-title: Hydrogeol. J. – volume: 53 start-page: 285 year: 2001 end-page: 304 ident: bib39 article-title: Isotopic modelling of the significance of bacterial sulphate reduction for phenol attenuation in a contaminated aquifer publication-title: J. Contam. Hydrol. – volume: 40 start-page: 1711 year: 2015 end-page: 1717 ident: bib15 article-title: Progress in engineering practice of water-preserved coal mining in western eco-environment frangible area publication-title: J. China Coal Soc. – start-page: 446 year: 1994 end-page: 480 ident: bib41 article-title: Controls of δ – volume: 27 start-page: 157 year: 2013 end-page: 162 ident: bib51 article-title: The variations of stable isotopes ( publication-title: J. Arid Land Resour. Environ. – volume: 64 start-page: 1575 year: 2011 end-page: 1584 ident: bib45 article-title: Hydrogeochemical and isotopic study of groundwater in the habor lake basin of the Ordos plateau, NW China publication-title: Environ. Earth Sci. – volume: 19 start-page: 731 year: 2009 end-page: 735 ident: bib4 article-title: Recent progress in the conservation of groundwaters and their dependent ecosystems publication-title: Aquat. Conserv. Mar. Freshw. Ecosyst. – volume: 24 start-page: 641 year: 2009 end-page: 649 ident: bib42 article-title: Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China publication-title: Appl. Geochem. – year: 2006 ident: bib26 article-title: Groundwater Investigation in the Ordos Basin – volume: 30 start-page: 237 year: 2016 end-page: 242 ident: bib21 article-title: Analysis of isotopic and hydrochemical characteristics of different waters in Kuye Riber Basin publication-title: J. Soil Water Conserv. – volume: 16 start-page: 436 year: 1964 end-page: 468 ident: bib12 article-title: Stable isotopes in precipitation publication-title: Tellus – volume: 385 start-page: 272 year: 2007 end-page: 283 ident: bib6 article-title: Fluorine geochemistry in bedrock groundwater of South Korea publication-title: Sci. Total Environ. – volume: 42 start-page: 5421 year: 2008 end-page: 5427 ident: bib31 article-title: Identification of anthropogenic and natural inputs of sulfate and chloride into the karstic ground water of Guiyang, SW China: combined δ publication-title: Environ. Sci. Technol. – volume: 24 start-page: 11 year: 2012 end-page: 14 ident: bib43 article-title: A genetic discussion on coal sulfur and ash in Jurassic north Shaanxi and Huanglong coalfields publication-title: Coal Geol. China – volume: 23 start-page: 2382 year: 2008 end-page: 2394 ident: bib3 article-title: Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmingham, UK publication-title: Appl. Geochem. – volume: 170 start-page: 1088 year: 1970 end-page: 1090 ident: bib17 article-title: Mechanisms controlling world water chemistry publication-title: Science – volume: 743 start-page: 139 year: 2015 end-page: 150 ident: bib13 article-title: Ammonium threshold values for groundwater quality in the EU may not protect groundwater fauna: evidence from an alluvial aquifer in Italy publication-title: Hydrobiologia – volume: 78 start-page: 1313 year: 2010 end-page: 1321 ident: bib34 article-title: Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan publication-title: Chemosphere – volume: 133 start-page: 1702 year: 1961 end-page: 1703 ident: bib11 article-title: Isotopic variation in meteoric waters publication-title: Science – volume: 218 start-page: 879 year: 2016 end-page: 888 ident: bib44 article-title: Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China publication-title: Environ. Pollut. – volume: 24 start-page: 418 year: 2013 end-page: 426 ident: bib46 article-title: Sources of riverine sulfate in Yellow River and its tributaries determined by sulfur and oxygen isotopes publication-title: Adv. Water Sci. – volume: 66 start-page: 505 year: 2012 end-page: 517 ident: bib8 article-title: Isotopic constraints on the origin of groundwater in the Ordos Basin of northern China publication-title: Environ. Earth Sci. – year: 1967 ident: bib38 article-title: Geochemistry of Groundwater—an International Guide for Research and Practice – volume: 31 start-page: 3242 year: 2017 end-page: 3254 ident: bib18 article-title: Isotopic and hydrochemistry spatial variation of sulfate for groundwater characterization in karstic aquifers publication-title: Hydrol. Process. – volume: 321 start-page: 326 year: 2006 end-page: 343 ident: bib5 article-title: Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water–rock interaction and hydrologic mixing publication-title: J. Hydrol. – volume: 20 start-page: 1983 year: 2016 end-page: 1999 ident: bib22 article-title: Identification of anthropogenic and natural inputs of sulfate into a karstic coastal groundwater system in northeast China: evidence from major ions, δ publication-title: Hydrol. Earth Syst. Sci. – volume: 601–602 start-page: 691 year: 2017 end-page: 702 ident: bib28 article-title: Sources of groundwater salinity and potential impact on arsenic mobility in the western Hetao Basin, Inner Mongolia publication-title: Sci. Total Environ. – volume: 27 start-page: 285 year: 2010 end-page: 291 ident: bib33 article-title: Hydrogeologic characteristics of mine water hazards in Shendong mining area publication-title: J. Mining Safety Eng. – volume: 535 start-page: 598 year: 2016 end-page: 611 ident: bib50 article-title: Geochemical evolution of groundwater in a basaltic aquifer based on chemical and stable isotopic data: case study from the Northeastern portion of Serra Geral Aquifer, São Paulo state (Brazil) publication-title: J. Hydrol. – volume: 40 start-page: 239 year: 2015 end-page: 246 ident: bib19 article-title: Theory framework and technological system of coal mine underground reservoir publication-title: J. China Coal Soc. – volume: 32 start-page: 129 year: 2013 end-page: 141 ident: bib36 article-title: Multi-isotopic study ( publication-title: Appl. Geochem. – volume: 13 start-page: 98 year: 2005 end-page: 111 ident: bib23 article-title: Aquifers and hyporheic zones: towards an ecological understanding of groundwater publication-title: Hydrogeol. J. – volume: 135 start-page: 63 year: 2013 end-page: 70 ident: bib24 article-title: Hydrogeochemistry of high fluoride groundwater in shallow aquifers, Hangjinhouqi, Hetao Plain publication-title: J. Geochem. Explor. – volume: 23 start-page: 1166 year: 2008 end-page: 1185 ident: bib35 article-title: Controls of δ publication-title: Appl. Geochem. – volume: 538 start-page: 327 year: 2015 ident: 10.1016/j.apgeochem.2018.08.030_bib32 article-title: The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.08.057 – volume: 24 start-page: 418 issue: 3 year: 2013 ident: 10.1016/j.apgeochem.2018.08.030_bib46 article-title: Sources of riverine sulfate in Yellow River and its tributaries determined by sulfur and oxygen isotopes publication-title: Adv. Water Sci. – volume: 40 start-page: 239 issue: 2 year: 2015 ident: 10.1016/j.apgeochem.2018.08.030_bib19 article-title: Theory framework and technological system of coal mine underground reservoir publication-title: J. China Coal Soc. – volume: 321 start-page: 326 issue: 1 year: 2006 ident: 10.1016/j.apgeochem.2018.08.030_bib5 article-title: Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water–rock interaction and hydrologic mixing publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2005.08.006 – volume: 24 start-page: 11 issue: 6 year: 2012 ident: 10.1016/j.apgeochem.2018.08.030_bib43 article-title: A genetic discussion on coal sulfur and ash in Jurassic north Shaanxi and Huanglong coalfields publication-title: Coal Geol. China – volume: 535 start-page: 598 year: 2016 ident: 10.1016/j.apgeochem.2018.08.030_bib50 article-title: Geochemical evolution of groundwater in a basaltic aquifer based on chemical and stable isotopic data: case study from the Northeastern portion of Serra Geral Aquifer, São Paulo state (Brazil) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.02.016 – year: 1967 ident: 10.1016/j.apgeochem.2018.08.030_bib38 – volume: 265 start-page: 455 issue: 3–4 year: 2009 ident: 10.1016/j.apgeochem.2018.08.030_bib40 article-title: Processes affecting δ34S and δ18O values of dissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2009.05.009 – volume: 218 start-page: 879 year: 2016 ident: 10.1016/j.apgeochem.2018.08.030_bib44 article-title: Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.08.017 – volume: 52 start-page: 43 year: 2015 ident: 10.1016/j.apgeochem.2018.08.030_bib47 article-title: Using dual isotopic data to track the sources and behaviors of dissolved sulfate in the western North China Plain publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2014.11.011 – volume: 78 start-page: 1313 issue: 11 year: 2010 ident: 10.1016/j.apgeochem.2018.08.030_bib34 article-title: Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.01.010 – year: 2004 ident: 10.1016/j.apgeochem.2018.08.030_bib1 – volume: 57 start-page: 131 issue: 1 year: 2009 ident: 10.1016/j.apgeochem.2018.08.030_bib2 article-title: Integrated method of RS and GPR for monitoring the changes in the soil moisture and groundwater environment due to underground coal mining publication-title: Environ. Geol. doi: 10.1007/s00254-008-1289-x – volume: 13 start-page: 98 issue: 1 year: 2005 ident: 10.1016/j.apgeochem.2018.08.030_bib23 article-title: Aquifers and hyporheic zones: towards an ecological understanding of groundwater publication-title: Hydrogeol. J. doi: 10.1007/s10040-004-0421-6 – volume: 27 start-page: 2382 issue: 12 year: 2012 ident: 10.1016/j.apgeochem.2018.08.030_bib27 article-title: The role of deuterium excess in determining the water salinisation mechanism: a case study of the arid Tarim River Basin, NW China publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2012.08.015 – volume: 135 start-page: 63 year: 2013 ident: 10.1016/j.apgeochem.2018.08.030_bib24 article-title: Hydrogeochemistry of high fluoride groundwater in shallow aquifers, Hangjinhouqi, Hetao Plain publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2012.11.010 – volume: 397 start-page: 23 issue: 1 year: 2011 ident: 10.1016/j.apgeochem.2018.08.030_bib25 article-title: Multiple isotope (H, O, N, S and Sr) approach elucidates complex pollution causes in the shallow groundwaters of the Taipei urban area publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.11.025 – volume: 31 start-page: 3242 year: 2017 ident: 10.1016/j.apgeochem.2018.08.030_bib18 article-title: Isotopic and hydrochemistry spatial variation of sulfate for groundwater characterization in karstic aquifers publication-title: Hydrol. Process. doi: 10.1002/hyp.11255 – volume: 40 start-page: 1711 issue: 8 year: 2015 ident: 10.1016/j.apgeochem.2018.08.030_bib15 article-title: Progress in engineering practice of water-preserved coal mining in western eco-environment frangible area publication-title: J. China Coal Soc. – volume: 13 start-page: 58 issue: 1 year: 2006 ident: 10.1016/j.apgeochem.2018.08.030_bib7 article-title: Geochemistry of water quality of the Yellow River basin publication-title: Earth Sci. Front. – volume: 27 start-page: 285 issue: 3 year: 2010 ident: 10.1016/j.apgeochem.2018.08.030_bib33 article-title: Hydrogeologic characteristics of mine water hazards in Shendong mining area publication-title: J. Mining Safety Eng. – volume: 66 start-page: 505 issue: 2 year: 2012 ident: 10.1016/j.apgeochem.2018.08.030_bib8 article-title: Isotopic constraints on the origin of groundwater in the Ordos Basin of northern China publication-title: Environ. Earth Sci. doi: 10.1007/s12665-011-1259-6 – volume: 170 start-page: 1088 issue: 3962 year: 1970 ident: 10.1016/j.apgeochem.2018.08.030_bib17 article-title: Mechanisms controlling world water chemistry publication-title: Science doi: 10.1126/science.170.3962.1088 – year: 1997 ident: 10.1016/j.apgeochem.2018.08.030_bib9 – volume: 133 start-page: 1702 year: 1961 ident: 10.1016/j.apgeochem.2018.08.030_bib11 article-title: Isotopic variation in meteoric waters publication-title: Science doi: 10.1126/science.133.3465.1702 – volume: 53 start-page: 285 issue: 3–4 year: 2001 ident: 10.1016/j.apgeochem.2018.08.030_bib39 article-title: Isotopic modelling of the significance of bacterial sulphate reduction for phenol attenuation in a contaminated aquifer publication-title: J. Contam. Hydrol. doi: 10.1016/S0169-7722(01)00170-X – volume: 601–602 start-page: 691 year: 2017 ident: 10.1016/j.apgeochem.2018.08.030_bib28 article-title: Sources of groundwater salinity and potential impact on arsenic mobility in the western Hetao Basin, Inner Mongolia publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.196 – volume: 385 start-page: 272 issue: 1–3 year: 2007 ident: 10.1016/j.apgeochem.2018.08.030_bib6 article-title: Fluorine geochemistry in bedrock groundwater of South Korea publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2007.06.038 – volume: 23 start-page: 2382 issue: 8 year: 2008 ident: 10.1016/j.apgeochem.2018.08.030_bib3 article-title: Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmingham, UK publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2008.03.012 – volume: 743 start-page: 139 issue: 1 year: 2015 ident: 10.1016/j.apgeochem.2018.08.030_bib13 article-title: Ammonium threshold values for groundwater quality in the EU may not protect groundwater fauna: evidence from an alluvial aquifer in Italy publication-title: Hydrobiologia doi: 10.1007/s10750-014-2018-y – volume: 64 start-page: 1575 issue: 6 year: 2011 ident: 10.1016/j.apgeochem.2018.08.030_bib45 article-title: Hydrogeochemical and isotopic study of groundwater in the habor lake basin of the Ordos plateau, NW China publication-title: Environ. Earth Sci. doi: 10.1007/s12665-009-0383-z – start-page: 195 year: 2000 ident: 10.1016/j.apgeochem.2018.08.030_bib29 – volume: 400 start-page: 312 issue: 3–4 year: 2011 ident: 10.1016/j.apgeochem.2018.08.030_bib30 article-title: Controls on the δ34S and δ18O of dissolved sulfate in the quaternary aquifers of the north China plain publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.01.034 – year: 2006 ident: 10.1016/j.apgeochem.2018.08.030_bib26 – volume: 18 start-page: 805 issue: 6 year: 2003 ident: 10.1016/j.apgeochem.2018.08.030_bib14 article-title: Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators publication-title: Appl. Geochem. doi: 10.1016/S0883-2927(02)00189-0 – volume: 23 start-page: 1166 issue: 5 year: 2008 ident: 10.1016/j.apgeochem.2018.08.030_bib35 article-title: Controls of δ34S and δ18O in dissolved sulphate: learning from a detailed survey in the Llobregat River (Spain) publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2007.11.009 – volume: 16 start-page: 436 issue: 4 year: 1964 ident: 10.1016/j.apgeochem.2018.08.030_bib12 article-title: Stable isotopes in precipitation publication-title: Tellus doi: 10.3402/tellusa.v16i4.8993 – volume: 42 start-page: 5421 issue: 15 year: 2008 ident: 10.1016/j.apgeochem.2018.08.030_bib31 article-title: Identification of anthropogenic and natural inputs of sulfate and chloride into the karstic ground water of Guiyang, SW China: combined δ37Cl and δ34S approach publication-title: Environ. Sci. Technol. doi: 10.1021/es800380w – volume: 171 start-page: 424 issue: 1–3 year: 2009 ident: 10.1016/j.apgeochem.2018.08.030_bib37 article-title: Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2009.06.018 – volume: 24 start-page: 641 issue: 4 year: 2009 ident: 10.1016/j.apgeochem.2018.08.030_bib42 article-title: Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2008.12.015 – volume: 19 start-page: 731 issue: 7 year: 2009 ident: 10.1016/j.apgeochem.2018.08.030_bib4 article-title: Recent progress in the conservation of groundwaters and their dependent ecosystems publication-title: Aquat. Conserv. Mar. Freshw. Ecosyst. doi: 10.1002/aqc.1073 – volume: 14 start-page: 868 issue: 6 year: 2006 ident: 10.1016/j.apgeochem.2018.08.030_bib20 article-title: Deep groundwater flow and geochemical processes in limestone aquifers: evidence from thermal waters in Derbyshire, England, UK publication-title: Hydrogeol. J. doi: 10.1007/s10040-006-0022-7 – volume: 53 start-page: 795 issue: 4 year: 2007 ident: 10.1016/j.apgeochem.2018.08.030_bib16 article-title: Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China publication-title: Environ. Geol. doi: 10.1007/s00254-007-0692-z – volume: 30 start-page: 237 issue: 2 year: 2016 ident: 10.1016/j.apgeochem.2018.08.030_bib21 article-title: Analysis of isotopic and hydrochemical characteristics of different waters in Kuye Riber Basin publication-title: J. Soil Water Conserv. – volume: 20 start-page: 1983 issue: 5 year: 2016 ident: 10.1016/j.apgeochem.2018.08.030_bib22 article-title: Identification of anthropogenic and natural inputs of sulfate into a karstic coastal groundwater system in northeast China: evidence from major ions, δ13CDIC and δ34SSO4 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-1983-2016 – volume: 27 start-page: 157 issue: 5 year: 2013 ident: 10.1016/j.apgeochem.2018.08.030_bib51 article-title: The variations of stable isotopes (δD and δ18O) in the precipitation in Baotou area publication-title: J. Arid Land Resour. Environ. – start-page: 446 year: 1994 ident: 10.1016/j.apgeochem.2018.08.030_bib41 – volume: 32 start-page: 129 year: 2013 ident: 10.1016/j.apgeochem.2018.08.030_bib36 article-title: Multi-isotopic study (15N, 34S, 18O, 13C) to identify processes affecting nitrate and sulfate in response to local and regional groundwater mixing in a large-scale flow system publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2012.10.014 – volume: 71 start-page: 63 year: 2016 ident: 10.1016/j.apgeochem.2018.08.030_bib48 article-title: Application of hydrochemistry and stable isotopes (δ34S, δ18O and δ37Cl) to trace natural and anthropogenic influences on the quality of groundwater in the piedmont region, Shijiazhuang, China publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2016.05.018 |
SSID | ssj0005702 |
Score | 2.4976165 |
Snippet | The Kuye River basin lays in an economically and ecologically important area, therefore, the groundwater quality issues are of growing concern in this... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 82 |
SubjectTerms | atmospheric precipitation cation exchange chlorides deuterium Fluoride sources fluorides geochemistry groundwater Groundwater quality Hydrochemical evolution hydrochemistry Kuye river basin oxygen salinity semi-confined aquifer semiarid zones sodium sodium bicarbonate solubility stable isotopes sulfate minerals Sulfate sources sulfates water quality watersheds weathering |
Title | A hydrochemistry and multi-isotopic study of groundwater origin and hydrochemical evolution in the middle reaches of the Kuye River basin |
URI | https://dx.doi.org/10.1016/j.apgeochem.2018.08.030 https://www.proquest.com/docview/2176343840 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LIngRn_gmgte6qcl2U2-LuK6Ke_ABewtpk2pF22Ufyl68-6-dSdv1gbAHL4Wmk7Rk0vkm7TczhBxa8Am4jn1PIq0G8DbyABSMp3XDB_c41MZiNPJ1N-jci8teo1cjp1UsDNIqS9tf2HRnrcuWejmb9X6a1m_h_eDH4TEYV45Ajmm3hWjiKj96_0bzaDreIQp7KP2D46X7DxYLU2FIui9dLk-kQ_-NUL9stQOg9jJZKj1H2ioeboXUbLZKFs5dZd7JGvlo0ceJcQWwigpuVGeGOr6glw7zUd5PY-qSydI8oRjMkZk3cDQHtKiN5cS_RgDVUftarksKl8FRpC_uawYduCzQQxwHW6_GE0tvkN9BARPTbJ3ct8_uTjteWWfBi7mQIzCIGvapzDDhM8sTAz4M4FrEZMS4DWVkrWQ6FDHjIrAwhYERvkzCxEbSojDfIHNZntlNQqWRYQDisGuJRYS53phImo0YQI_DMdgiQTW3Ki6TkGMtjGdVsc2e1FQpCpWisEomZ1uETTv2izwcs7ucVMpTP5aUArSY3fmgUrcCreFfFJ3ZfDxUsIcLuOCwMd7-zw12yCKeFWGNu2RuNBjbPfBvRtG-W8D7ZL51cdXpfgI6w_yZ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BIkQviKfYlrZG4hqtg73B6W2Fuixd2AMPiZvlxA4EtclqH632J_CvmXGSRVSVOPSSg1-JPM58M8k3MwDHDm0CYdIwUESrQbxNAgQFGxjTDdE8jo11FI18NYoGd_LHffd-Bc6aWBiiVda6v9LpXlvXLZ16NzvjPO_c4PshTuITVK6CgDxahTXKTtVtwVrvYjgYvTI9Tj31kMYHNOENzcuMHxzVpqKo9FD5dJ7EiP43SP2lrj0G9bdgszYeWa96vm1YccUOrJ_74ryLXXjusceF9TWwqiJuzBSWecpgkE_LWTnOU-bzybIyYxTPUdg_aGtOWFUeyw9_XQGlx9zv-mgy7EZbkf3yHzTYxCeCntI61DqcLxy7JooHQ1jMiz2463-_PRsEdamFIBVSzVAnGnRVueUy5E5kFs0YhLaEq4QLF6vEOcVNLFMuZORwCyMrQ5XFmUuUo8FiH1pFWbgDYMqqOMLh6LikMqF0b1xmp90UcU_gNWpD1OytTus85FQO46duCGdPeikUTULRVChT8Dbw5cRxlYrj_SnfGuHpN6dKI2C8P_moEbdGqdGPFFO4cj7V6MZFQgr0jT_-zw2-wsbg9upSX16Mhp_gA_VUUY6H0JpN5u4zmjuz5Et9nF8A2QP_Sg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hydrochemistry+and+multi-isotopic+study+of+groundwater+origin+and+hydrochemical+evolution+in+the+middle+reaches+of+the+Kuye+River+basin&rft.jtitle=Applied+geochemistry&rft.au=Fu%2C+Changchang&rft.au=Li%2C+Xiangquan&rft.au=Ma%2C+Jianfei&rft.au=Liu%2C+Lingxia&rft.date=2018-11-01&rft.issn=0883-2927&rft.volume=98&rft.spage=82&rft.epage=93&rft_id=info:doi/10.1016%2Fj.apgeochem.2018.08.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apgeochem_2018_08_030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon |