Partition Strategies for the Maker–Breaker Domination Game

The Maker–Breaker domination game is a positional game played on a graph by two players called Dominator and Staller. The players alternately select a vertex of the graph that has not yet been chosen. Dominator wins if at some point the vertices she has chosen form a dominating set of the graph. Sta...

Full description

Saved in:
Bibliographic Details
Published inAlgorithmica Vol. 87; no. 2; pp. 191 - 222
Main Authors Bagan, Guillaume, Duchêne, Eric, Gledel, Valentin, Lehtilä, Tuomo, Parreau, Aline
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2025
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Maker–Breaker domination game is a positional game played on a graph by two players called Dominator and Staller. The players alternately select a vertex of the graph that has not yet been chosen. Dominator wins if at some point the vertices she has chosen form a dominating set of the graph. Staller wins if Dominator cannot form a dominating set. Deciding if Dominator has a winning strategy has been shown to be a PSPACE-complete problem even when restricted to chordal or bipartite graphs. In this paper, we consider strategies for Dominator based on partitions of the graph into basic subgraphs where Dominator wins as the second player. Using partitions into cycles and edges (also called perfect [1,2]-factors), we show that Dominator always wins in regular graphs and that deciding whether Dominator has a winning strategy as a second player can be computed in polynomial time for outerplanar and block graphs. We then study partitions into subgraphs with two universal vertices, which is equivalent to considering the existence of pairing dominating sets with adjacent pairs. We show that in interval graphs, Dominator wins if and only if such a partition exists. In particular, this implies that deciding whether Dominator has a winning strategy playing second is in NP for interval graphs. We finally provide an algorithm in n k + 3 for interval graphs with at most k nested intervals.
AbstractList The Maker-Breaker domination game is a positional game played on a graph by two players called Dominator and Staller. The players alternately select a vertex of the graph that has not yet been chosen. Dominator wins if at some point the vertices she has chosen form a dominating set of the graph. Staller wins if Dominator cannot form a dominating set. Deciding if Dominator has a winning strategy has been shown to be a PSPACE-complete problem even when restricted to chordal or bipartite graphs. In this paper, we consider strategies for Dominator based on partitions of the graph into basic subgraphs where Dominator wins as the second player. Using partitions into cycles and edges (also called perfect [1,2]factors), we show that Dominator always wins in regular graphs and that deciding whether Dominator has a winning strategy as a second player can be computed in polynomial time for outerplanar and block graphs. We then study partitions into subgraphs with two universal vertices, which is equivalent to considering the existence of pairing dominating sets with adjacent pairs. We show that in interval graphs, Dominator wins if and only if such a partition exists. In particular, this implies that deciding whether Dominator has a winning strategy playing second is in NP for interval graphs. We finally provide an algorithm in n k+3 for interval graphs with at most k nested intervals.
The Maker–Breaker domination game is a positional game played on a graph by two players called Dominator and Staller. The players alternately select a vertex of the graph that has not yet been chosen. Dominator wins if at some point the vertices she has chosen form a dominating set of the graph. Staller wins if Dominator cannot form a dominating set. Deciding if Dominator has a winning strategy has been shown to be a PSPACE-complete problem even when restricted to chordal or bipartite graphs. In this paper, we consider strategies for Dominator based on partitions of the graph into basic subgraphs where Dominator wins as the second player. Using partitions into cycles and edges (also called perfect [1,2]-factors), we show that Dominator always wins in regular graphs and that deciding whether Dominator has a winning strategy as a second player can be computed in polynomial time for outerplanar and block graphs. We then study partitions into subgraphs with two universal vertices, which is equivalent to considering the existence of pairing dominating sets with adjacent pairs. We show that in interval graphs, Dominator wins if and only if such a partition exists. In particular, this implies that deciding whether Dominator has a winning strategy playing second is in NP for interval graphs. We finally provide an algorithm in nk+3 for interval graphs with at most k nested intervals.
The Maker–Breaker domination game is a positional game played on a graph by two players called Dominator and Staller. The players alternately select a vertex of the graph that has not yet been chosen. Dominator wins if at some point the vertices she has chosen form a dominating set of the graph. Staller wins if Dominator cannot form a dominating set. Deciding if Dominator has a winning strategy has been shown to be a PSPACE-complete problem even when restricted to chordal or bipartite graphs. In this paper, we consider strategies for Dominator based on partitions of the graph into basic subgraphs where Dominator wins as the second player. Using partitions into cycles and edges (also called perfect [1,2]-factors), we show that Dominator always wins in regular graphs and that deciding whether Dominator has a winning strategy as a second player can be computed in polynomial time for outerplanar and block graphs. We then study partitions into subgraphs with two universal vertices, which is equivalent to considering the existence of pairing dominating sets with adjacent pairs. We show that in interval graphs, Dominator wins if and only if such a partition exists. In particular, this implies that deciding whether Dominator has a winning strategy playing second is in NP for interval graphs. We finally provide an algorithm in n k + 3 for interval graphs with at most k nested intervals.
Author Bagan, Guillaume
Lehtilä, Tuomo
Duchêne, Eric
Parreau, Aline
Gledel, Valentin
Author_xml – sequence: 1
  givenname: Guillaume
  surname: Bagan
  fullname: Bagan, Guillaume
  organization: CNRS, INSA Lyon, UCBL, Centrale Lyon, Univ Lyon 2, LIRIS, UMR5205, Univ Lyon
– sequence: 2
  givenname: Eric
  surname: Duchêne
  fullname: Duchêne, Eric
  organization: CNRS, INSA Lyon, UCBL, Centrale Lyon, Univ Lyon 2, LIRIS, UMR5205, Univ Lyon
– sequence: 3
  givenname: Valentin
  surname: Gledel
  fullname: Gledel, Valentin
  email: valentin.gledel@univ-smb.fr
  organization: CNRS UMR5127, LAMA, Université Savoie Mont Blanc
– sequence: 4
  givenname: Tuomo
  surname: Lehtilä
  fullname: Lehtilä, Tuomo
  organization: Department of Mathematics and Statistic, University of Turku
– sequence: 5
  givenname: Aline
  surname: Parreau
  fullname: Parreau, Aline
  organization: CNRS, INSA Lyon, UCBL, Centrale Lyon, Univ Lyon 2, LIRIS, UMR5205, Univ Lyon
BackLink https://hal.science/hal-04789236$$DView record in HAL
BookMark eNp9kM1KAzEURoNUsK2-gKsBVy5Gb_4n4KZWbYWKgroO6TTTTm0nNZlK3fkOvqFPYtoR3cld5BLOd7h8HdSqXGUROsZwhgHkeQBgnKZAWAqYZJBu9lAbM0pS4Ay3UBuwzFImsDxAnRDmECmpRBtdPBhfl3XpquSx9qa209KGpHA-qWc2uTMv1n99fF56u92SK7csK7OjB2ZpD9F-YRbBHv28XfR8c_3UH6aj-8FtvzdKc8qyOs04weM4E2IV4RNBiQQAzscFV4RSI4hSSrJCsXySG1lIyLFilgtR5Go85rSLThvvzCz0ypdL49-1M6Ue9kZ6-wdMZlEl3nBkTxp25d3r2oZaz93aV_E8TbEQWFEBECnSULl3IXhb_Gox6G2jumlUx0b1rlG9iSHahEKEq6n1f-p_Ut_hhHlz
Cites_doi 10.46298/dmtcs.8529
10.1016/j.disc.2020.111955
10.1137/0607024
10.2307/1969503
10.1109/FOCS.2015.63
10.1112/jlms/s1-10.37.26
10.1007/978-3-0348-0825-5
10.1007/s00453-018-0481-y
10.4153/CJM-1956-045-5
10.1016/0890-5401(90)90043-H
10.1016/0012-365X(84)90150-X
10.1016/0097-3165(73)90005-8
10.1016/j.dam.2019.11.004
10.1007/978-3-642-21919-1
10.1016/0012-365X(85)90042-1
10.1090/S0002-9947-1963-0143712-1
10.1017/CBO9780511735202
10.1090/S0002-9939-1953-0063009-7
10.1155/2023/9920700
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1007/s00453-024-01280-x
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
EISSN 1432-0541
EndPage 222
ExternalDocumentID oai_HAL_hal_04789236v1
10_1007_s00453_024_01280_x
GrantInformation_xml – fundername: Finnish Cultural Foundation and the Academy of Finland
  grantid: Grant 338797
– fundername: Projet ANR P-GASE
  grantid: (ANR-21-CE48-0001-01); (ANR-21-CE48-0001-01); (ANR-21-CE48-0001-01); (ANR-21-CE48-0001-01); (ANR-21-CE48-0001-01)
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
1XC
VOOES
ID FETCH-LOGICAL-c348t-8521b1b1d2e925d632700055bf59233a6299974f94cdca7f70c194e566fc9bb53
IEDL.DBID U2A
ISSN 0178-4617
IngestDate Sat Jul 26 06:30:47 EDT 2025
Fri Jul 25 22:05:54 EDT 2025
Tue Jul 01 01:06:22 EDT 2025
Fri Feb 21 02:47:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Interval graph
maker-breaker games
Dominating set
Positional games
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-8521b1b1d2e925d632700055bf59233a6299974f94cdca7f70c194e566fc9bb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://hal.science/hal-04789236
PQID 3166193600
PQPubID 2043795
PageCount 32
ParticipantIDs hal_primary_oai_HAL_hal_04789236v1
proquest_journals_3166193600
crossref_primary_10_1007_s00453_024_01280_x
springer_journals_10_1007_s00453_024_01280_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References PC Fishburn (1280_CR10) 1985; 55
B Courcelle (1280_CR5) 1990; 85
RP Dilworth (1280_CR7) 1950; 51
1280_CR13
P Erdős (1280_CR9) 1973
1280_CR22
1280_CR21
P Hell (1280_CR19) 1986; 7
J Beck (1280_CR3) 2008
AW Hales (1280_CR15) 1963; 106
E Badr (1280_CR2) 2023
E Duchêne (1280_CR8) 2020
P Hell (1280_CR18) 1984; 49
V Gledel (1280_CR14) 2020; 282
J Forcan (1280_CR11) 2022
D Hefetz (1280_CR17) 2014
P Hall (1280_CR16) 1935; s1–10
P Klavík (1280_CR20) 2019; 81
J Akiyama (1280_CR1) 2011
G Chartrand (1280_CR4) 1967; 4
B Courcelle (1280_CR6) 2012
LR Ford (1280_CR12) 1956; 8
References_xml – year: 2022
  ident: 1280_CR11
  publication-title: Discrete Math. Theor. Comput. Sci.
  doi: 10.46298/dmtcs.8529
– volume: 4
  start-page: 433
  year: 1967
  ident: 1280_CR4
  publication-title: Annales de l’institut Henri Poincaré. Section B. Calcul des probabilités et statistiques
– year: 2020
  ident: 1280_CR8
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2020.111955
– volume: 7
  start-page: 199
  issue: 2
  year: 1986
  ident: 1280_CR19
  publication-title: SIAM J. Algebr. Discrete Methods
  doi: 10.1137/0607024
– volume: 51
  start-page: 161
  issue: 1
  year: 1950
  ident: 1280_CR7
  publication-title: Ann. Math.
  doi: 10.2307/1969503
– ident: 1280_CR13
  doi: 10.1109/FOCS.2015.63
– volume: s1–10
  start-page: 26
  issue: 1
  year: 1935
  ident: 1280_CR16
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s1-10.37.26
– ident: 1280_CR21
– volume-title: Positional Games, Oberwolfach Seminars
  year: 2014
  ident: 1280_CR17
  doi: 10.1007/978-3-0348-0825-5
– volume: 81
  start-page: 1490
  year: 2019
  ident: 1280_CR20
  publication-title: Algorithmica
  doi: 10.1007/s00453-018-0481-y
– volume: 8
  start-page: 399
  year: 1956
  ident: 1280_CR12
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1956-045-5
– volume: 85
  start-page: 12
  issue: 1
  year: 1990
  ident: 1280_CR5
  publication-title: Inf. Comput.
  doi: 10.1016/0890-5401(90)90043-H
– volume: 49
  start-page: 45
  issue: 1
  year: 1984
  ident: 1280_CR18
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(84)90150-X
– year: 1973
  ident: 1280_CR9
  publication-title: J. Combin. Theory
  doi: 10.1016/0097-3165(73)90005-8
– volume: 282
  start-page: 96
  year: 2020
  ident: 1280_CR14
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2019.11.004
– volume-title: Factors and Factorizations of Graphs: Proof Techniques in Factor Theory. Lecture Notes in Mathematics
  year: 2011
  ident: 1280_CR1
  doi: 10.1007/978-3-642-21919-1
– volume: 55
  start-page: 135
  issue: 2
  year: 1985
  ident: 1280_CR10
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(85)90042-1
– volume: 106
  start-page: 222
  year: 1963
  ident: 1280_CR15
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1963-0143712-1
– volume-title: Combinatorial Games: Tic–Tac–Toe Theory. Encyclopedia of Mathematics and its Applications
  year: 2008
  ident: 1280_CR3
  doi: 10.1017/CBO9780511735202
– start-page: 578
  volume-title: Monadic Second-Order Logic. Encyclopedia of Mathematics and its Applications
  year: 2012
  ident: 1280_CR6
– ident: 1280_CR22
  doi: 10.1090/S0002-9939-1953-0063009-7
– year: 2023
  ident: 1280_CR2
  publication-title: J. Math.
  doi: 10.1155/2023/9920700
SSID ssj0012796
Score 2.3969197
Snippet The Maker–Breaker domination game is a positional game played on a graph by two players called Dominator and Staller. The players alternately select a vertex...
The Maker-Breaker domination game is a positional game played on a graph by two players called Dominator and Staller. The players alternately select a vertex...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 191
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Apexes
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Games
Graph theory
Graphs
Mathematics
Mathematics of Computing
Partitions (mathematics)
Players
Polynomials
Strategy
Theory of Computation
Title Partition Strategies for the Maker–Breaker Domination Game
URI https://link.springer.com/article/10.1007/s00453-024-01280-x
https://www.proquest.com/docview/3166193600
https://hal.science/hal-04789236
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN5oe_Hi24jWZmO8KQnsA9jEC9U-orbxYJN6IiwsMTG2pq3Go__Bf-gvcYYCPqIHwwECw0I-dplvMi9CjpQJGJcxtwXPwEABIRv7QNq-qwPDpfA1x-Tk_sDrDcXFSI6KpLBZGe1euiTzP3WV7IbsA32OGDXBAscG5liXaLvDLB6ysPIdMD_vyoV9520BCrpIlfl9jG_qaPkOgyG_MM0fztFc53TWyWpBFmm4-LobZMmMN8la2YiBFutyi5xe4wRAiGlZbdbMKNBRCvSO9uN7M31_fWsBP4Qjej7B8Jdcuhs_mG0y7LRvznp20RbBTrgI5oAlczVsKTOKydTj6Dt2pNSZBLbGYw80DFgJmRJJmsR-5juJq4QB3pYlSmvJd0htPBmbXUJ1ECtHa7ACUy6khBuzTOrUM8Io4QeORY5LdKLHRfWLqKpznGMZAZZRjmX0YpFDALASxMLVvfAqwnNYAwheznt2LdIo8Y2K5TKLuAs0QXEgXxY5KTH_vPz3I_f-J75PVhj2782jrhukNp8-mQMgFXPdJPWw02oNcN-9vWw38zn1AQxkxB8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HvTiW6xWXcSbBpJ9JFnwUp9R2-Khhd6WbLJBEFtpq3j0P_gP_SXOpkl8oAfJJSSTB192M98y38wAHEgTUiZi5nCW4QIFjRzbB9IJPB0aJnigmU1Obnf8qMev-6JfJIWNS7V7GZLM_9RVsptlHzbmaFUTNHQdZI5zSAZCK-Tq0WYVO6BB3pXL9p13ODroIlXm93t8c0ezd1YM-YVp_giO5j7nYhkWC7JImtOvuwIzZrAKS2UjBlLMyzU4vrUDwEJMymqzZkyQjhKkd6Qd35vR--vbCfJD3CNnQyt_ya0v4wezDr2L8-5p5BRtEZyE8XCCWFJP45ZSI6lIfWZjx64QOhPI1ljso4fBVUImeZImcZAFbuJJbpC3ZYnUWrANqA2GA7MJRIexdLXGVWDKuBB4YZYJnfqGG8mD0K3DYYmOepxWv1BVneMcS4VYqhxL9VKHfQSwMrSFq6NmS9ljtgYQvpz_7NWhUeKriukyVsxDmiAZkq86HJWYf57--5Fb_zPfg_mo226p1lXnZhsWqO3lmyuwG1CbjJ7MDhKMid7Nx9MHJPzEAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gnjxLUarBvGmock-8gAv1VqrtqUHC70t2WSDIKaljeLR_-A_9Jc4kya1ih4kl5BMHnyZzXzDvAg5CbRPmQiZxVkCDgoIWTgH0vIc5WsmuKcYFid3um6rz28HYjBXxZ9nu5chyWlNA3ZpSrPaKE5qs8I3ZCIYf8QMCurbFrDIJfgdO6jXfVqfxRGol0_owhn0FgdjXZTN_H6Pb6Zp8QETI-dY549AaW5_mutktSCOZn36pTfIgk43yVo5lMEs1ugWOe-hMiDcZtl5Vk9MoKYmUD2zEz7q8cfb-wVwRdgzG0NMhcmlr8MnvU36zav7y5ZVjEiwIsb9DHCljoItpjqgInYZxpFtIVQigLmx0AVrAx5DEvAojkIv8ezICbgGDpdEgVKC7ZBKOkz1LjGVHwa2UuARxowLARcmiVCxq7kOuOfbBjkt0ZGjaScMOet5nGMpAUuZYylfDXIMAM4EsYl1q96WeAz7AcHLuS-OQaolvrJYOhPJHKAMAQMiZpCzEvOv038_cu9_4kdkuddoyvZN926frFAc65snY1dJJRs_6wPgGpk6zNXpE9kSyD4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partition+Strategies+for+the+Maker%E2%80%93Breaker+Domination+Game&rft.jtitle=Algorithmica&rft.au=Bagan%2C+Guillaume&rft.au=Duch%C3%AAne%2C+Eric&rft.au=Gledel%2C+Valentin&rft.au=Lehtil%C3%A4%2C+Tuomo&rft.date=2025-02-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007%2Fs00453-024-01280-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_024_01280_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon