Hybrid image recommendation algorithm combining content and collaborative filtering approaches

The paper relates to the subject field of image recommender systems. The proposed approach of automatic image recommendation addresses the following shortcomings of existing solutions: manual input of metadata by users, the lack of user rating history consideration, significant computational resourc...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 193; pp. 200 - 209
Main Authors Kobyshev, Kirill, Voinov, Nikita, Nikiforov, Igor
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2021
Subjects
Online AccessGet full text
ISSN1877-0509
1877-0509
DOI10.1016/j.procs.2021.10.020

Cover

Abstract The paper relates to the subject field of image recommender systems. The proposed approach of automatic image recommendation addresses the following shortcomings of existing solutions: manual input of metadata by users, the lack of user rating history consideration, significant computational resources. The main idea of the proposed approach is to recognize object classes from images using a convolutional neural network to make recommendations. In the proposed solution users and images are located in the semantic space represented by a graph. Software implementation of the proposed approach and obtained results are considered.
AbstractList The paper relates to the subject field of image recommender systems. The proposed approach of automatic image recommendation addresses the following shortcomings of existing solutions: manual input of metadata by users, the lack of user rating history consideration, significant computational resources. The main idea of the proposed approach is to recognize object classes from images using a convolutional neural network to make recommendations. In the proposed solution users and images are located in the semantic space represented by a graph. Software implementation of the proposed approach and obtained results are considered.
Author Kobyshev, Kirill
Nikiforov, Igor
Voinov, Nikita
Author_xml – sequence: 1
  givenname: Kirill
  surname: Kobyshev
  fullname: Kobyshev, Kirill
  organization: Peter the Great St.Petersburg Polytechnic University, Polytechnicheskaya, 29, St.Petersburg, 195251, Russia
– sequence: 2
  givenname: Nikita
  surname: Voinov
  fullname: Voinov, Nikita
  email: voinov@ics2.ecd.spbstu.ru
  organization: Peter the Great St.Petersburg Polytechnic University, Polytechnicheskaya, 29, St.Petersburg, 195251, Russia
– sequence: 3
  givenname: Igor
  surname: Nikiforov
  fullname: Nikiforov, Igor
  organization: Peter the Great St.Petersburg Polytechnic University, Polytechnicheskaya, 29, St.Petersburg, 195251, Russia
BookMark eNqFkMFOwzAQRC1UJErpF3DJDyTYcRLHBw6oAopUiQtcsRx707pK7Mq2kPr3OC0HxAH24tFo38oz12hmnQWEbgkuCCbN3b44eKdCUeKSJKfAJb5Ac9IyluMa89kPfYWWIexxGtq2nLA5-lgfO290Zka5hcyDcuMIVstonM3ksHXexN2YJbsz1thtUjaCjZm0OulhkJ3zafsTst4MEfy0Iw_pR1LtINygy14OAZbf7wK9Pz2-rdb55vX5ZfWwyRWt2pizHmjVECIrSTWVJaeMsxrrkteUdrXqNGV1hSnvASTt-7ZhHdOENB1tKqlrukD0fFd5F4KHXhx8iuSPgmAxtST24tSSmFqazNRSovgvSpl4ih69NMM_7P2ZhRTr04AXQRmwCrRJLUahnfmT_wIpAIiX
CitedBy_id crossref_primary_10_1007_s42979_024_02978_z
Cites_doi 10.18653/v1/W17-2404
10.1016/j.eij.2015.06.005
10.1145/3219819.3219890
10.3115/v1/D14-1162
10.1109/CVPR.2015.7298594
10.1155/2018/5497070
10.1109/UBMK.2017.8093527
10.15514/ISPRAS-2012-22-21
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2021.10.020
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 209
ExternalDocumentID 10_1016_j_procs_2021_10_020
S1877050921020615
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c348t-7fe34611a4a3d3a29379750d29533b5cbd3754039feea3ff867b7d116b364ad53
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Thu Apr 24 23:02:06 EDT 2025
Tue Jul 01 01:53:08 EDT 2025
Wed May 17 00:10:39 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords collaborative filtering
image recommender system
graph database
word2vec
convolutional neural network
content filtering
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-7fe34611a4a3d3a29379750d29533b5cbd3754039feea3ff867b7d116b364ad53
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050921020615
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_procs_2021_10_020
crossref_citationtrail_10_1016_j_procs_2021_10_020
elsevier_sciencedirect_doi_10_1016_j_procs_2021_10_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021
2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Igor Nikiforov, Nikita Voinov, Pavel Drobintsev. (2018). “A System Prototype for Real Time Automatic Fraud Detection in Text Data.“ Proc. of XXI International Conference of Soft Computing and Measurement, 724-727.
Thomas A. Trost, and Dietrich Klakow. (2020). “Parameter Free Hierarchical Graph-Based Clustering for Analyzing Continuous Word Embeddings.“ Proceedings of TextGraphs@ACL 2017: The 11th Workshop on Graph-Based Methods for Natural Language Processing, 30-38.
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. (2015). “Going Deeper with Convolutions.“ Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June-2015: 1-9.
Deng, Ren, Qin, Huang, Qin (bib0003) 2018
Giannoulakis, Tsapatsoulis, Ntalianis (bib0008) 2018
Zuhal Kurt, and Kemal Ozkan. (2017). “Image-based recommender system based on feature extraction techniques.“ 2nd International Conference on Computer Science and Engineering, 769-774.
Tuinhof, Pirker, Haltmeier (bib0006) 2019; 11331
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. (2013). “Distributed Representations of Words and Phrases and their Compositionality.
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. (2014). “GloVe: Global Vectors for Word Representation.“ Proc. of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532-1543.
Makbule Gulcin Ozsoy. (2016). “From Word Embeddings to Item Recommendation.
Olubusola Isinkaye, Folajimi, Adefowoke Ojokoh (bib0001) 2015; 16
Houtao Deng. (2019). “Recommender Systems in Practice.
Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. (2018). “Graph Convolutional Neural Networks for Web-Scale Recommender Systems.“ Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 974-983.
Andrey G. Gomzin, and Anton V. Korshunov. (2012). “Recommender Systems: modern methods review.“ Proceedings of the Institute for System Programming of the RAS, 22: 401-417.
Barkan, Koenigstein (bib00012) 2016
Ramzi Karam. (2017). “Using Word2vec for Music Recommendations.
10.1016/j.procs.2021.10.020_bib00010
10.1016/j.procs.2021.10.020_bib00011
Giannoulakis (10.1016/j.procs.2021.10.020_bib0008) 2018
10.1016/j.procs.2021.10.020_bib00013
10.1016/j.procs.2021.10.020_bib00014
10.1016/j.procs.2021.10.020_bib0002
Barkan (10.1016/j.procs.2021.10.020_bib00012) 2016
10.1016/j.procs.2021.10.020_bib00015
10.1016/j.procs.2021.10.020_bib00016
10.1016/j.procs.2021.10.020_bib0004
Olubusola Isinkaye (10.1016/j.procs.2021.10.020_bib0001) 2015; 16
Deng (10.1016/j.procs.2021.10.020_bib0003) 2018
10.1016/j.procs.2021.10.020_bib0009
Tuinhof (10.1016/j.procs.2021.10.020_bib0006) 2019; 11331
10.1016/j.procs.2021.10.020_bib0005
10.1016/j.procs.2021.10.020_bib0007
References_xml – reference: Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. (2015). “Going Deeper with Convolutions.“ Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June-2015: 1-9.
– reference: Ramzi Karam. (2017). “Using Word2vec for Music Recommendations.“:
– year: 2016
  ident: bib00012
  article-title: “Item2Vec: Neural Item Embedding for Collaborative Filtering.“
  publication-title: IEEE International Workshop on Machine Learning for Signal Processing
– volume: 11331
  start-page: 472
  year: 2019
  end-page: 481
  ident: bib0006
  article-title: “Image Based Fashion Product Recommendation with Deep Learning.“
  publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– start-page: 89
  year: 2018
  end-page: 94
  ident: bib0008
  article-title: “Identifying Image Tags from Instagram Hashtags Using the HITS Algorithm.“
  publication-title: DASC-PICom-DataCom-CyberSciTec 2017
– reference: Igor Nikiforov, Nikita Voinov, Pavel Drobintsev. (2018). “A System Prototype for Real Time Automatic Fraud Detection in Text Data.“ Proc. of XXI International Conference of Soft Computing and Measurement, 724-727.
– reference: Thomas A. Trost, and Dietrich Klakow. (2020). “Parameter Free Hierarchical Graph-Based Clustering for Analyzing Continuous Word Embeddings.“ Proceedings of TextGraphs@ACL 2017: The 11th Workshop on Graph-Based Methods for Natural Language Processing, 30-38.
– reference: Zuhal Kurt, and Kemal Ozkan. (2017). “Image-based recommender system based on feature extraction techniques.“ 2nd International Conference on Computer Science and Engineering, 769-774.
– reference: Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. (2018). “Graph Convolutional Neural Networks for Web-Scale Recommender Systems.“ Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 974-983.
– reference: Jeffrey Pennington, Richard Socher, and Christopher D. Manning. (2014). “GloVe: Global Vectors for Word Representation.“ Proc. of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532-1543.
– year: 2018
  ident: bib0003
  article-title: “Leveraging Image Visual Features in Content-Based Recommender System.“
  publication-title: Scientific Programming
– reference: Houtao Deng. (2019). “Recommender Systems in Practice.“:
– volume: 16
  start-page: 261
  year: 2015
  end-page: 273
  ident: bib0001
  article-title: “Recommendation systems: Principles, methods and evaluation.“
  publication-title: Egyptian Informatics Journal
– reference: Makbule Gulcin Ozsoy. (2016). “From Word Embeddings to Item Recommendation.“:
– reference: Andrey G. Gomzin, and Anton V. Korshunov. (2012). “Recommender Systems: modern methods review.“ Proceedings of the Institute for System Programming of the RAS, 22: 401-417.
– reference: Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. (2013). “Distributed Representations of Words and Phrases and their Compositionality.“:
– ident: 10.1016/j.procs.2021.10.020_bib00015
  doi: 10.18653/v1/W17-2404
– volume: 16
  start-page: 261
  issue: 3
  year: 2015
  ident: 10.1016/j.procs.2021.10.020_bib0001
  article-title: “Recommendation systems: Principles, methods and evaluation.“
  publication-title: Egyptian Informatics Journal
  doi: 10.1016/j.eij.2015.06.005
– ident: 10.1016/j.procs.2021.10.020_bib0009
– ident: 10.1016/j.procs.2021.10.020_bib0007
  doi: 10.1145/3219819.3219890
– ident: 10.1016/j.procs.2021.10.020_bib0002
– start-page: 89
  year: 2018
  ident: 10.1016/j.procs.2021.10.020_bib0008
  article-title: “Identifying Image Tags from Instagram Hashtags Using the HITS Algorithm.“
  publication-title: DASC-PICom-DataCom-CyberSciTec 2017
– ident: 10.1016/j.procs.2021.10.020_bib00011
  doi: 10.3115/v1/D14-1162
– ident: 10.1016/j.procs.2021.10.020_bib00016
  doi: 10.1109/CVPR.2015.7298594
– volume: 11331
  start-page: 472
  year: 2019
  ident: 10.1016/j.procs.2021.10.020_bib0006
  article-title: “Image Based Fashion Product Recommendation with Deep Learning.“
  publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– year: 2018
  ident: 10.1016/j.procs.2021.10.020_bib0003
  article-title: “Leveraging Image Visual Features in Content-Based Recommender System.“
  publication-title: Scientific Programming
  doi: 10.1155/2018/5497070
– ident: 10.1016/j.procs.2021.10.020_bib0005
  doi: 10.1109/UBMK.2017.8093527
– ident: 10.1016/j.procs.2021.10.020_bib0004
  doi: 10.15514/ISPRAS-2012-22-21
– ident: 10.1016/j.procs.2021.10.020_bib00014
– year: 2016
  ident: 10.1016/j.procs.2021.10.020_bib00012
  article-title: “Item2Vec: Neural Item Embedding for Collaborative Filtering.“
  publication-title: IEEE International Workshop on Machine Learning for Signal Processing
– ident: 10.1016/j.procs.2021.10.020_bib00010
– ident: 10.1016/j.procs.2021.10.020_bib00013
SSID ssj0000388917
Score 2.2151837
Snippet The paper relates to the subject field of image recommender systems. The proposed approach of automatic image recommendation addresses the following...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 200
SubjectTerms collaborative filtering
content filtering
convolutional neural network
graph database
image recommender system
word2vec
Title Hybrid image recommendation algorithm combining content and collaborative filtering approaches
URI https://dx.doi.org/10.1016/j.procs.2021.10.020
Volume 193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqsrDwjSgflQdGQpvEsZOxVFQVFQxARSciO7YhVZNWJSDx7_ElTlUk1IExlk-KLpd75-TuPYQuI6kN6nS1Cd4gcoipWZ0IuAhNaS84pzpR5YTc_QMdjsndJJg0UL-ehYG2Spv7q5xeZmu70rHe7CzStPPkhowBewkcWgCYTR6GqVIY4pvcrL6zANtJVArvwn4HDGryobLNC3ACaLs99xq6vED3-y-AWgOdwR7asdUi7lU3tI8aKj9Au7USA7Yv5iF6HX7D5BVOM5MeMBxys0xZuSTMZ2_zZVq8Z9gsi1IQAkOHuoEbzHOJ10LhS2Gdwv9z2FPTjauPIzQe3D73h45VTnAS44LCYVr5hLouJ9yXPjeQziJTGkgPmklFkAgJyrddP9JKcV_rkDLBpOtS4VPCZeAfo2Y-z9UJwkwKosJEGKSnhGoeeiKSTGkd8FAkgrSQV7srTiytOKhbzOK6f2walz6OwcewaHzcQlcro0XFqrF5O62fQ_wrOGKT9zcZnv7X8Axtw1X1reUcNYvlp7ow1Uch2mirN3p8GbXLMPsBT7_baQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD4yENoljJyNUVC20XWilTkR2bENQk1YlIPHv8eVRFQl1YHV8UnQ533d2zt-H0HUgtUGdljbB6wUWMTWrFQAXoSntBedURyq_ITcY0u6YPE68SQ21q7sw0FZZ5v4ip-fZuhxplt5szuO4-Wz7jAF7CWxaAJg30KapBigQ6Pcm98uDFqA7CXLlXTCwwKJiH8r7vAAogLfbsW-hzQuEv_9CqBXU6eyhnbJcxHfFG-2jmkoP0G4lxYDLlXmIXrrfcPUKx4nJDxh2uUmiSr0kzKevs0WcvSXYDItcEQJDi7rBG8xTiVdi4UthHcMPdJhT8Y2rjyM07jyM2l2rlE6wIpf4mcW0cgm1bU64K11uMJ0FpjaQDnSTCi8SEqRvW26gleKu1j5lgknbpsKlhEvPPUb1dJaqE4SZFET5kTBQTwnV3HdEIJnS2uO-iARpIKdyVxiVvOIgbzENqway9zD3cQg-hkHj4wa6WRrNC1qN9dNp9R3CX9ERmsS_zvD0v4ZXaKs7GvTDfm_4dIa24Ulx8HKO6tniU12YUiQTl3mo_QCCSdzq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+image+recommendation+algorithm+combining+content+and+collaborative+filtering+approaches&rft.jtitle=Procedia+computer+science&rft.au=Kobyshev%2C+Kirill&rft.au=Voinov%2C+Nikita&rft.au=Nikiforov%2C+Igor&rft.date=2021&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=193&rft.spage=200&rft.epage=209&rft_id=info:doi/10.1016%2Fj.procs.2021.10.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2021_10_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon