Hybrid image recommendation algorithm combining content and collaborative filtering approaches
The paper relates to the subject field of image recommender systems. The proposed approach of automatic image recommendation addresses the following shortcomings of existing solutions: manual input of metadata by users, the lack of user rating history consideration, significant computational resourc...
Saved in:
Published in | Procedia computer science Vol. 193; pp. 200 - 209 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1877-0509 1877-0509 |
DOI | 10.1016/j.procs.2021.10.020 |
Cover
Abstract | The paper relates to the subject field of image recommender systems. The proposed approach of automatic image recommendation addresses the following shortcomings of existing solutions: manual input of metadata by users, the lack of user rating history consideration, significant computational resources. The main idea of the proposed approach is to recognize object classes from images using a convolutional neural network to make recommendations. In the proposed solution users and images are located in the semantic space represented by a graph. Software implementation of the proposed approach and obtained results are considered. |
---|---|
AbstractList | The paper relates to the subject field of image recommender systems. The proposed approach of automatic image recommendation addresses the following shortcomings of existing solutions: manual input of metadata by users, the lack of user rating history consideration, significant computational resources. The main idea of the proposed approach is to recognize object classes from images using a convolutional neural network to make recommendations. In the proposed solution users and images are located in the semantic space represented by a graph. Software implementation of the proposed approach and obtained results are considered. |
Author | Kobyshev, Kirill Nikiforov, Igor Voinov, Nikita |
Author_xml | – sequence: 1 givenname: Kirill surname: Kobyshev fullname: Kobyshev, Kirill organization: Peter the Great St.Petersburg Polytechnic University, Polytechnicheskaya, 29, St.Petersburg, 195251, Russia – sequence: 2 givenname: Nikita surname: Voinov fullname: Voinov, Nikita email: voinov@ics2.ecd.spbstu.ru organization: Peter the Great St.Petersburg Polytechnic University, Polytechnicheskaya, 29, St.Petersburg, 195251, Russia – sequence: 3 givenname: Igor surname: Nikiforov fullname: Nikiforov, Igor organization: Peter the Great St.Petersburg Polytechnic University, Polytechnicheskaya, 29, St.Petersburg, 195251, Russia |
BookMark | eNqFkMFOwzAQRC1UJErpF3DJDyTYcRLHBw6oAopUiQtcsRx707pK7Mq2kPr3OC0HxAH24tFo38oz12hmnQWEbgkuCCbN3b44eKdCUeKSJKfAJb5Ac9IyluMa89kPfYWWIexxGtq2nLA5-lgfO290Zka5hcyDcuMIVstonM3ksHXexN2YJbsz1thtUjaCjZm0OulhkJ3zafsTst4MEfy0Iw_pR1LtINygy14OAZbf7wK9Pz2-rdb55vX5ZfWwyRWt2pizHmjVECIrSTWVJaeMsxrrkteUdrXqNGV1hSnvASTt-7ZhHdOENB1tKqlrukD0fFd5F4KHXhx8iuSPgmAxtST24tSSmFqazNRSovgvSpl4ih69NMM_7P2ZhRTr04AXQRmwCrRJLUahnfmT_wIpAIiX |
CitedBy_id | crossref_primary_10_1007_s42979_024_02978_z |
Cites_doi | 10.18653/v1/W17-2404 10.1016/j.eij.2015.06.005 10.1145/3219819.3219890 10.3115/v1/D14-1162 10.1109/CVPR.2015.7298594 10.1155/2018/5497070 10.1109/UBMK.2017.8093527 10.15514/ISPRAS-2012-22-21 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2021.10.020 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 209 |
ExternalDocumentID | 10_1016_j_procs_2021_10_020 S1877050921020615 |
GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c348t-7fe34611a4a3d3a29379750d29533b5cbd3754039feea3ff867b7d116b364ad53 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Thu Apr 24 23:02:06 EDT 2025 Tue Jul 01 01:53:08 EDT 2025 Wed May 17 00:10:39 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | collaborative filtering image recommender system graph database word2vec convolutional neural network content filtering |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-7fe34611a4a3d3a29379750d29533b5cbd3754039feea3ff867b7d116b364ad53 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050921020615 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2021_10_020 crossref_citationtrail_10_1016_j_procs_2021_10_020 elsevier_sciencedirect_doi_10_1016_j_procs_2021_10_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationTitle | Procedia computer science |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Igor Nikiforov, Nikita Voinov, Pavel Drobintsev. (2018). “A System Prototype for Real Time Automatic Fraud Detection in Text Data.“ Proc. of XXI International Conference of Soft Computing and Measurement, 724-727. Thomas A. Trost, and Dietrich Klakow. (2020). “Parameter Free Hierarchical Graph-Based Clustering for Analyzing Continuous Word Embeddings.“ Proceedings of TextGraphs@ACL 2017: The 11th Workshop on Graph-Based Methods for Natural Language Processing, 30-38. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. (2015). “Going Deeper with Convolutions.“ Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June-2015: 1-9. Deng, Ren, Qin, Huang, Qin (bib0003) 2018 Giannoulakis, Tsapatsoulis, Ntalianis (bib0008) 2018 Zuhal Kurt, and Kemal Ozkan. (2017). “Image-based recommender system based on feature extraction techniques.“ 2nd International Conference on Computer Science and Engineering, 769-774. Tuinhof, Pirker, Haltmeier (bib0006) 2019; 11331 Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. (2013). “Distributed Representations of Words and Phrases and their Compositionality. Jeffrey Pennington, Richard Socher, and Christopher D. Manning. (2014). “GloVe: Global Vectors for Word Representation.“ Proc. of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532-1543. Makbule Gulcin Ozsoy. (2016). “From Word Embeddings to Item Recommendation. Olubusola Isinkaye, Folajimi, Adefowoke Ojokoh (bib0001) 2015; 16 Houtao Deng. (2019). “Recommender Systems in Practice. Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. (2018). “Graph Convolutional Neural Networks for Web-Scale Recommender Systems.“ Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 974-983. Andrey G. Gomzin, and Anton V. Korshunov. (2012). “Recommender Systems: modern methods review.“ Proceedings of the Institute for System Programming of the RAS, 22: 401-417. Barkan, Koenigstein (bib00012) 2016 Ramzi Karam. (2017). “Using Word2vec for Music Recommendations. 10.1016/j.procs.2021.10.020_bib00010 10.1016/j.procs.2021.10.020_bib00011 Giannoulakis (10.1016/j.procs.2021.10.020_bib0008) 2018 10.1016/j.procs.2021.10.020_bib00013 10.1016/j.procs.2021.10.020_bib00014 10.1016/j.procs.2021.10.020_bib0002 Barkan (10.1016/j.procs.2021.10.020_bib00012) 2016 10.1016/j.procs.2021.10.020_bib00015 10.1016/j.procs.2021.10.020_bib00016 10.1016/j.procs.2021.10.020_bib0004 Olubusola Isinkaye (10.1016/j.procs.2021.10.020_bib0001) 2015; 16 Deng (10.1016/j.procs.2021.10.020_bib0003) 2018 10.1016/j.procs.2021.10.020_bib0009 Tuinhof (10.1016/j.procs.2021.10.020_bib0006) 2019; 11331 10.1016/j.procs.2021.10.020_bib0005 10.1016/j.procs.2021.10.020_bib0007 |
References_xml | – reference: Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. (2015). “Going Deeper with Convolutions.“ Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June-2015: 1-9. – reference: Ramzi Karam. (2017). “Using Word2vec for Music Recommendations.“: – year: 2016 ident: bib00012 article-title: “Item2Vec: Neural Item Embedding for Collaborative Filtering.“ publication-title: IEEE International Workshop on Machine Learning for Signal Processing – volume: 11331 start-page: 472 year: 2019 end-page: 481 ident: bib0006 article-title: “Image Based Fashion Product Recommendation with Deep Learning.“ publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – start-page: 89 year: 2018 end-page: 94 ident: bib0008 article-title: “Identifying Image Tags from Instagram Hashtags Using the HITS Algorithm.“ publication-title: DASC-PICom-DataCom-CyberSciTec 2017 – reference: Igor Nikiforov, Nikita Voinov, Pavel Drobintsev. (2018). “A System Prototype for Real Time Automatic Fraud Detection in Text Data.“ Proc. of XXI International Conference of Soft Computing and Measurement, 724-727. – reference: Thomas A. Trost, and Dietrich Klakow. (2020). “Parameter Free Hierarchical Graph-Based Clustering for Analyzing Continuous Word Embeddings.“ Proceedings of TextGraphs@ACL 2017: The 11th Workshop on Graph-Based Methods for Natural Language Processing, 30-38. – reference: Zuhal Kurt, and Kemal Ozkan. (2017). “Image-based recommender system based on feature extraction techniques.“ 2nd International Conference on Computer Science and Engineering, 769-774. – reference: Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. (2018). “Graph Convolutional Neural Networks for Web-Scale Recommender Systems.“ Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 974-983. – reference: Jeffrey Pennington, Richard Socher, and Christopher D. Manning. (2014). “GloVe: Global Vectors for Word Representation.“ Proc. of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532-1543. – year: 2018 ident: bib0003 article-title: “Leveraging Image Visual Features in Content-Based Recommender System.“ publication-title: Scientific Programming – reference: Houtao Deng. (2019). “Recommender Systems in Practice.“: – volume: 16 start-page: 261 year: 2015 end-page: 273 ident: bib0001 article-title: “Recommendation systems: Principles, methods and evaluation.“ publication-title: Egyptian Informatics Journal – reference: Makbule Gulcin Ozsoy. (2016). “From Word Embeddings to Item Recommendation.“: – reference: Andrey G. Gomzin, and Anton V. Korshunov. (2012). “Recommender Systems: modern methods review.“ Proceedings of the Institute for System Programming of the RAS, 22: 401-417. – reference: Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. (2013). “Distributed Representations of Words and Phrases and their Compositionality.“: – ident: 10.1016/j.procs.2021.10.020_bib00015 doi: 10.18653/v1/W17-2404 – volume: 16 start-page: 261 issue: 3 year: 2015 ident: 10.1016/j.procs.2021.10.020_bib0001 article-title: “Recommendation systems: Principles, methods and evaluation.“ publication-title: Egyptian Informatics Journal doi: 10.1016/j.eij.2015.06.005 – ident: 10.1016/j.procs.2021.10.020_bib0009 – ident: 10.1016/j.procs.2021.10.020_bib0007 doi: 10.1145/3219819.3219890 – ident: 10.1016/j.procs.2021.10.020_bib0002 – start-page: 89 year: 2018 ident: 10.1016/j.procs.2021.10.020_bib0008 article-title: “Identifying Image Tags from Instagram Hashtags Using the HITS Algorithm.“ publication-title: DASC-PICom-DataCom-CyberSciTec 2017 – ident: 10.1016/j.procs.2021.10.020_bib00011 doi: 10.3115/v1/D14-1162 – ident: 10.1016/j.procs.2021.10.020_bib00016 doi: 10.1109/CVPR.2015.7298594 – volume: 11331 start-page: 472 year: 2019 ident: 10.1016/j.procs.2021.10.020_bib0006 article-title: “Image Based Fashion Product Recommendation with Deep Learning.“ publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – year: 2018 ident: 10.1016/j.procs.2021.10.020_bib0003 article-title: “Leveraging Image Visual Features in Content-Based Recommender System.“ publication-title: Scientific Programming doi: 10.1155/2018/5497070 – ident: 10.1016/j.procs.2021.10.020_bib0005 doi: 10.1109/UBMK.2017.8093527 – ident: 10.1016/j.procs.2021.10.020_bib0004 doi: 10.15514/ISPRAS-2012-22-21 – ident: 10.1016/j.procs.2021.10.020_bib00014 – year: 2016 ident: 10.1016/j.procs.2021.10.020_bib00012 article-title: “Item2Vec: Neural Item Embedding for Collaborative Filtering.“ publication-title: IEEE International Workshop on Machine Learning for Signal Processing – ident: 10.1016/j.procs.2021.10.020_bib00010 – ident: 10.1016/j.procs.2021.10.020_bib00013 |
SSID | ssj0000388917 |
Score | 2.2151837 |
Snippet | The paper relates to the subject field of image recommender systems. The proposed approach of automatic image recommendation addresses the following... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 200 |
SubjectTerms | collaborative filtering content filtering convolutional neural network graph database image recommender system word2vec |
Title | Hybrid image recommendation algorithm combining content and collaborative filtering approaches |
URI | https://dx.doi.org/10.1016/j.procs.2021.10.020 |
Volume | 193 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqsrDwjSgflQdGQpvEsZOxVFQVFQxARSciO7YhVZNWJSDx7_ElTlUk1IExlk-KLpd75-TuPYQuI6kN6nS1Cd4gcoipWZ0IuAhNaS84pzpR5YTc_QMdjsndJJg0UL-ehYG2Spv7q5xeZmu70rHe7CzStPPkhowBewkcWgCYTR6GqVIY4pvcrL6zANtJVArvwn4HDGryobLNC3ACaLs99xq6vED3-y-AWgOdwR7asdUi7lU3tI8aKj9Au7USA7Yv5iF6HX7D5BVOM5MeMBxys0xZuSTMZ2_zZVq8Z9gsi1IQAkOHuoEbzHOJ10LhS2Gdwv9z2FPTjauPIzQe3D73h45VTnAS44LCYVr5hLouJ9yXPjeQziJTGkgPmklFkAgJyrddP9JKcV_rkDLBpOtS4VPCZeAfo2Y-z9UJwkwKosJEGKSnhGoeeiKSTGkd8FAkgrSQV7srTiytOKhbzOK6f2walz6OwcewaHzcQlcro0XFqrF5O62fQ_wrOGKT9zcZnv7X8Axtw1X1reUcNYvlp7ow1Uch2mirN3p8GbXLMPsBT7_baQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD4yENoljJyNUVC20XWilTkR2bENQk1YlIPHv8eVRFQl1YHV8UnQ533d2zt-H0HUgtUGdljbB6wUWMTWrFQAXoSntBedURyq_ITcY0u6YPE68SQ21q7sw0FZZ5v4ip-fZuhxplt5szuO4-Wz7jAF7CWxaAJg30KapBigQ6Pcm98uDFqA7CXLlXTCwwKJiH8r7vAAogLfbsW-hzQuEv_9CqBXU6eyhnbJcxHfFG-2jmkoP0G4lxYDLlXmIXrrfcPUKx4nJDxh2uUmiSr0kzKevs0WcvSXYDItcEQJDi7rBG8xTiVdi4UthHcMPdJhT8Y2rjyM07jyM2l2rlE6wIpf4mcW0cgm1bU64K11uMJ0FpjaQDnSTCi8SEqRvW26gleKu1j5lgknbpsKlhEvPPUb1dJaqE4SZFET5kTBQTwnV3HdEIJnS2uO-iARpIKdyVxiVvOIgbzENqway9zD3cQg-hkHj4wa6WRrNC1qN9dNp9R3CX9ERmsS_zvD0v4ZXaKs7GvTDfm_4dIa24Ulx8HKO6tniU12YUiQTl3mo_QCCSdzq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+image+recommendation+algorithm+combining+content+and+collaborative+filtering+approaches&rft.jtitle=Procedia+computer+science&rft.au=Kobyshev%2C+Kirill&rft.au=Voinov%2C+Nikita&rft.au=Nikiforov%2C+Igor&rft.date=2021&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=193&rft.spage=200&rft.epage=209&rft_id=info:doi/10.1016%2Fj.procs.2021.10.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2021_10_020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |