Fe(III) greatly promotes peroxymonosulfate activation by WS2 for efficient carbamazepine degradation and Escherichia coli disinfection
The biggest problem with Fe/PMS (peroxymonosulfate) system is the slow generation rate of SO4− due to inefficient Fe3+/Fe2+ cycle and the low decomposition efficiency of PMS. Here, we report the Fe3+-enhanced decomposition of PMS by a two-dimensional transition metal dichalcogenide WS2 for pollutant...
Saved in:
Published in | The Science of the total environment Vol. 787; p. 147724 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The biggest problem with Fe/PMS (peroxymonosulfate) system is the slow generation rate of SO4− due to inefficient Fe3+/Fe2+ cycle and the low decomposition efficiency of PMS. Here, we report the Fe3+-enhanced decomposition of PMS by a two-dimensional transition metal dichalcogenide WS2 for pollutant degradation and E. coli disinfection. Experimental results showed that the removal rates of six representative pollutants were all above 90% under various pH conditions. Over a wide range of pH values (2–9), the removal rate of carbamazepine (CBZ) in PMS/WS2/Fe3+ system almost reached 100% within 10 min, and E. coli could be inactivated by 97.3% within 1 min. WS2 in the system accelerated the Fe3+/Fe2+ cycle and participated in the activation of PMS. Electron paramagnetic resonance (EPR) measurements and scavenging experiments demonstrated that the SO4− and HO radicals were the main active oxidative species. The degradation pathway of CBZ was revealed based on its intermediates as determined by liquid chromatograph-mass spectrometer (LC-MS). The presence of common anions such as Cl− and HCO3− in PMS/WS2/Fe3+ system noticeably affected the CBZ degradation. The characterization results verified the structural stability and the reusability of WS2. These research findings suggest that the combination of Fe3+ and WS2 is a promising method for PMS activation to remove organic pollutants and inactivate pathogenic bacteria during the process of wastewater treatment.
[Display omitted]
•PMS/WS2/Fe3+ system can efficiently degrade pollutants and inactivate E. coli.•The effective working pH of PMS/WS2/Fe3+ system was across a wide range of 2–9.•Reaction mechanisms and degradation pathway of carbamazepine were proposed.•Excellent oxidation stability of PMS/WS2/Fe3+ system was achieved. |
---|---|
AbstractList | The biggest problem with Fe/PMS (peroxymonosulfate) system is the slow generation rate of SO₄⁻ due to inefficient Fe³⁺/Fe²⁺ cycle and the low decomposition efficiency of PMS. Here, we report the Fe³⁺-enhanced decomposition of PMS by a two-dimensional transition metal dichalcogenide WS₂ for pollutant degradation and E. coli disinfection. Experimental results showed that the removal rates of six representative pollutants were all above 90% under various pH conditions. Over a wide range of pH values (2–9), the removal rate of carbamazepine (CBZ) in PMS/WS₂/Fe³⁺ system almost reached 100% within 10 min, and E. coli could be inactivated by 97.3% within 1 min. WS₂ in the system accelerated the Fe³⁺/Fe²⁺ cycle and participated in the activation of PMS. Electron paramagnetic resonance (EPR) measurements and scavenging experiments demonstrated that the SO₄⁻ and HO radicals were the main active oxidative species. The degradation pathway of CBZ was revealed based on its intermediates as determined by liquid chromatograph-mass spectrometer (LC-MS). The presence of common anions such as Cl⁻ and HCO₃⁻ in PMS/WS₂/Fe³⁺ system noticeably affected the CBZ degradation. The characterization results verified the structural stability and the reusability of WS₂. These research findings suggest that the combination of Fe³⁺ and WS₂ is a promising method for PMS activation to remove organic pollutants and inactivate pathogenic bacteria during the process of wastewater treatment. The biggest problem with Fe/PMS (peroxymonosulfate) system is the slow generation rate of SO4− due to inefficient Fe3+/Fe2+ cycle and the low decomposition efficiency of PMS. Here, we report the Fe3+-enhanced decomposition of PMS by a two-dimensional transition metal dichalcogenide WS2 for pollutant degradation and E. coli disinfection. Experimental results showed that the removal rates of six representative pollutants were all above 90% under various pH conditions. Over a wide range of pH values (2–9), the removal rate of carbamazepine (CBZ) in PMS/WS2/Fe3+ system almost reached 100% within 10 min, and E. coli could be inactivated by 97.3% within 1 min. WS2 in the system accelerated the Fe3+/Fe2+ cycle and participated in the activation of PMS. Electron paramagnetic resonance (EPR) measurements and scavenging experiments demonstrated that the SO4− and HO radicals were the main active oxidative species. The degradation pathway of CBZ was revealed based on its intermediates as determined by liquid chromatograph-mass spectrometer (LC-MS). The presence of common anions such as Cl− and HCO3− in PMS/WS2/Fe3+ system noticeably affected the CBZ degradation. The characterization results verified the structural stability and the reusability of WS2. These research findings suggest that the combination of Fe3+ and WS2 is a promising method for PMS activation to remove organic pollutants and inactivate pathogenic bacteria during the process of wastewater treatment. [Display omitted] •PMS/WS2/Fe3+ system can efficiently degrade pollutants and inactivate E. coli.•The effective working pH of PMS/WS2/Fe3+ system was across a wide range of 2–9.•Reaction mechanisms and degradation pathway of carbamazepine were proposed.•Excellent oxidation stability of PMS/WS2/Fe3+ system was achieved. |
ArticleNumber | 147724 |
Author | Pan, Xiangliang Cheng, Ying He, Dongqin Luo, Hongwei Liu, Chenyang Zeng, Yifeng |
Author_xml | – sequence: 1 givenname: Hongwei surname: Luo fullname: Luo, Hongwei – sequence: 2 givenname: Chenyang surname: Liu fullname: Liu, Chenyang – sequence: 3 givenname: Ying surname: Cheng fullname: Cheng, Ying – sequence: 4 givenname: Yifeng surname: Zeng fullname: Zeng, Yifeng – sequence: 5 givenname: Dongqin surname: He fullname: He, Dongqin – sequence: 6 givenname: Xiangliang surname: Pan fullname: Pan, Xiangliang email: panxl@zjut.edu.cn |
BookMark | eNqNkL1u2zAUhTmkQH6foRzTwS4piaY0dAiCpDUQoEMbZCSuqMvkGhLpkrRR9wH63KWjokOX9i53-c4BznfOTnzwyNhbKZZSyNX7zTJZyiGj3y8rUcmlbLSumhN2JkTTLrpVp0_ZeUobUU638oz9vMfr9Xr9jj9HhDwe-DaGqRQkvsUYvh-m4EPajQ4ycrCZ9pApeN4f-NOXirsQOTpHltBnbiH2MMEP3JJHPuBzhGHGwQ_8LtkXjGRfCLgNI_GBEnmH9khcsjcOxoRXv_8Fe7y_-3r7afHw-eP69uZhYeumzQvtFOKql1p1CmunV4BWKdUoKPuU04Oselkrpa0TINsBQNdaCew67B2oqr5g13NvmflthymbiZLFcQSPYZdM1bVKa9U0bUH1jNoYUorozDbSBPFgpDBH22Zj_tg2R9tmtl2SH_5KFuxVRI5A43_kb-Y8FhN7wnjk0FscKBZdZgj0z45fJ36pFg |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_215765 crossref_primary_10_1016_j_chemosphere_2023_138471 crossref_primary_10_1016_j_seppur_2022_121135 crossref_primary_10_1016_j_jece_2023_111165 crossref_primary_10_3390_catal12101138 crossref_primary_10_1039_D4EN00155A crossref_primary_10_1016_j_cej_2023_141642 crossref_primary_10_1016_j_cej_2024_150038 crossref_primary_10_1016_j_jece_2025_115760 crossref_primary_10_1016_j_cej_2022_139245 crossref_primary_10_1016_j_cej_2023_145508 crossref_primary_10_1016_j_cej_2023_146916 crossref_primary_10_1016_j_scitotenv_2023_168833 crossref_primary_10_1016_j_jece_2022_108150 crossref_primary_10_1016_j_cej_2022_137067 crossref_primary_10_1016_j_seppur_2023_125392 crossref_primary_10_1016_j_seppur_2023_125130 crossref_primary_10_1016_j_cej_2022_139728 crossref_primary_10_1016_j_cej_2024_152046 crossref_primary_10_1021_acsami_4c13995 crossref_primary_10_1016_j_seppur_2022_120729 crossref_primary_10_1016_j_seppur_2022_120828 crossref_primary_10_1016_j_scitotenv_2023_162151 crossref_primary_10_1016_j_seppur_2023_125311 crossref_primary_10_1016_j_jece_2025_116074 crossref_primary_10_1016_j_scitotenv_2022_157987 crossref_primary_10_1016_j_jece_2022_107966 crossref_primary_10_1016_j_cej_2023_145141 crossref_primary_10_1016_j_cej_2022_140096 crossref_primary_10_1016_j_scitotenv_2024_170982 crossref_primary_10_1016_j_cej_2024_150503 crossref_primary_10_1016_j_jwpe_2024_105591 crossref_primary_10_1016_j_watres_2024_121441 crossref_primary_10_1016_j_jece_2023_111153 crossref_primary_10_1016_j_scitotenv_2021_149763 crossref_primary_10_1016_j_seppur_2025_132463 crossref_primary_10_1016_j_jclepro_2024_143242 crossref_primary_10_1016_j_emcon_2024_100350 crossref_primary_10_1016_j_cej_2022_137177 crossref_primary_10_1016_j_scitotenv_2021_149506 crossref_primary_10_1016_j_jwpe_2023_104714 crossref_primary_10_1016_j_seppur_2024_127886 crossref_primary_10_1016_j_ica_2023_121817 crossref_primary_10_1016_j_jhazmat_2024_133869 |
Cites_doi | 10.1016/j.molliq.2019.02.136 10.1016/j.watres.2013.09.033 10.1016/j.chemosphere.2019.125325 10.1021/acs.est.5b03316 10.1016/j.apcatb.2017.03.011 10.1021/acs.est.7b05563 10.1016/j.cej.2019.01.113 10.1016/j.ssi.2020.115438 10.1016/j.coesh.2019.11.005 10.1016/j.cej.2016.10.064 10.1016/j.watres.2018.08.039 10.1016/j.seppur.2020.117936 10.1021/ie202401z 10.1016/j.seppur.2019.115732 10.1016/j.seppur.2020.117023 10.1016/j.cej.2019.122718 10.1021/acssuschemeng.5b00267 10.1016/j.apcatb.2019.118471 10.1016/j.chempr.2018.03.002 10.1016/j.scitotenv.2019.135023 10.1016/j.cej.2018.09.024 10.1016/S1473-3099(03)00490-0 10.1016/j.cej.2017.09.021 10.1016/j.ecoenv.2013.01.016 10.1016/j.scitotenv.2020.139335 10.1016/j.jece.2020.104244 10.1016/j.chemosphere.2019.03.162 10.1016/j.apcatb.2020.119585 10.1016/j.jhazmat.2020.124175 10.1016/j.seppur.2014.12.031 10.1016/j.cej.2019.123604 10.1016/j.scitotenv.2019.07.224 10.1016/j.apcatb.2015.12.004 10.1021/acssuschemeng.7b04840 10.1021/acs.est.0c00793 10.1111/j.1462-2920.2006.01054.x 10.1016/j.cej.2017.07.149 10.1016/j.apcatb.2020.119559 10.1016/j.apcatb.2016.12.046 10.1021/acs.est.8b02403 10.1016/j.cej.2016.08.046 10.1016/j.cej.2017.11.059 10.1021/acs.est.5b05974 10.1016/j.cej.2020.125899 10.1016/j.chemosphere.2019.05.070 10.1016/j.cej.2020.127242 10.1016/j.scitotenv.2020.136572 10.1016/j.chemosphere.2019.125678 10.1016/j.apcatb.2008.09.017 10.1016/j.watres.2019.115016 10.1016/j.jhazmat.2013.06.060 10.1016/j.cej.2019.123003 10.1016/j.chemosphere.2019.125326 10.1016/j.cej.2020.127083 10.1016/j.ultsonch.2018.06.003 10.1021/acs.inorgchem.7b00981 10.1016/j.materresbull.2018.10.027 10.1016/j.chemosphere.2019.124979 10.1016/j.jenvman.2019.109472 10.1016/j.psep.2020.10.028 10.1016/j.cej.2020.127191 10.1016/j.cej.2019.123685 10.1016/j.jhazmat.2021.125342 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2021.147724 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
ExternalDocumentID | 10_1016_j_scitotenv_2021_147724 S0048969721027959 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSH SSJ SSZ T5K ~02 ~G- ~KM 53G AAQXK AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW WUQ XPP ZXP ZY4 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c348t-7f5ee6b17595e3f76aec55545a0045f7d12b13557cf0a18daa73750e99ebfa523 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 |
IngestDate | Mon Jul 21 10:40:28 EDT 2025 Tue Jul 01 04:25:00 EDT 2025 Thu Apr 24 23:00:04 EDT 2025 Sun Apr 06 06:53:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Peroxymonosulfate Bacterial inactivation Tungsten disulfide Degradation pathway AOPs |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-7f5ee6b17595e3f76aec55545a0045f7d12b13557cf0a18daa73750e99ebfa523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2985775448 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2985775448 crossref_primary_10_1016_j_scitotenv_2021_147724 crossref_citationtrail_10_1016_j_scitotenv_2021_147724 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_147724 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-15 |
PublicationDateYYYYMMDD | 2021-09-15 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | The Science of the total environment |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Luo, Cheng, Zeng, Luo, He, Pan (bb0175) 2020; 248 He, Cheng, Zeng, Luo, Luo, Li, Pan, Barceló, Crittenden (bb0115) 2020; 240 Noorisepehr, Ghadirinejad, Kakavandi, Ramazanpour Esfahani, Asadi (bb0220) 2019; 232 Ghanbari, Ahmadi, Gohari (bb0100) 2019; 228 Chen, He, Zhu, Wei (bb0060) 2020; 245 Ike, Orbell, Duke (bb0130) 2018; 6 Bilal, Mehmood, Rasheed, Iqbal (bb0035) 2020; 13 Zhou, Zou, Mao, Wu (bb0320) 2016; 185 Giannakis, Lin, Ghanbari (bb0110) 2021; 406 Wang, Cui, Cao, Wei, Chen, Li, Xu, Sheng (bb0275) 2021; 282 Rezaei, Kakavandi, Noorisepehr, Isari, Zabih, Bashardoust (bb0235) 2021; 258 Xu, Song, Sheng, Luo, Li, Yao, Yu (bb0300) 2015; 142 Luo, Zeng, Zhao, Xiang, Li, Pan (bb0195) 2021; 413 Luo, Huang, Xi, Cao, Li, Kajiyoshi (bb0185) 2020; 356 Martínez-Huitle, Brillas (bb0200) 2009; 87 Dong, Ji, Shen, Xing, Zhang (bb0075) 2018; 52 Wen, Chen, Wan, Zhao, Xu, Wang, Li, Huang (bb0280) 2020; 382 Gao, Zhang, Li, Tian, Gao (bb0090) 2020; 243 Son, Lim, Khim, Ashokkumar (bb0245) 2012; 51 Li, Chen, Zhang, Li, Bai, Zhou, Wang, Zhou, Xia, Xu, Rahim, Zhou (bb0155) 2020; 268 Rezaei, Dehghanifard, Noorisepehr, Ghadirinejad, Kakavandi, Esfahani (bb0230) 2019; 250 Liu, Xu, Zhao, Shi, Huang (bb0165) 2019; 226 Huang, Wang, Liu, Fang, Gao, Wang, Zhou (bb0125) 2020; 404 Cabello (bb0045) 2006; 8 Wang, Wang (bb0265) 2018; 334 Luo, Cheng, Zeng, Luo, Pan (bb0180) 2020; 732 Luo, Zeng, He, Pan (bb0190) 2021; 407 Liu, Dong, Deng, Ji, Bao, Chen, Shen, Zhang, Xing (bb0160) 2018; 145 Khataee, Eghbali, Irani-Nezhad, Hassani (bb0140) 2018; 48 Bellér, Lente, Fábián (bb0025) 2017; 56 Bilal, Ashraf, Barceló, Iqbal (bb0030) 2019; 691 Babaei, Golshan, Kakavandi (bb0020) 2021; 149 Xu, Song, Sheng, Luo, Li, Yao, Yu (bb0295) 2015; 3 Yao, Yu, Qu, Chen, Huo, Zhu, Wang (bb0310) 2020; 54 Tan, Gao, Deng, Zhang, Sui, Deng, Zhou (bb0260) 2013; 260 Ahmadi, Ghanbari (bb0005) 2019; 111 Hong, Zhou, Xiong, Liu, Yao, Lai (bb0120) 2020; 391 Morsi, Bilal, Iqbal, Ashraf (bb0210) 2020; 714 Zhang, Niu, Xu (bb0315) 2020; 381 Feng, Wu, Deng, Zhang, Shih (bb0085) 2016; 50 Isari, Hayati, Kakavandi, Rostami, Motevassel, Dehghanifard (bb0135) 2020; 392 Ghanbari, Khatebasreh, Mahdavianpour, Lin (bb0105) 2020; 244 Meng, Chen, Yan, Li, Xu, Sheng (bb0205) 2019; 165 Xing, Xu, Dong, Bai, Zeng, Zhou, Zhang, Yin (bb0290) 2018; 4 Ali, Shahzad, Wang, Ifthikar, Lei, Aregay, Chen, Chen (bb0015) 2021; 408 Deng, Cheng, Lu, Crittenden, Zhou, Gao, Li (bb0070) 2017; 330 Li, Shan, Pan (bb0150) 2018; 52 Nikravesh, Shomalnasab, Nayyer, Aghababaei, Zarebi, Ghanbari (bb0215) 2020; 8 Sun, Xu, Yang, Qian, Jiang (bb0250) 2020; 400 Parra-Saldivar, Castillo-Zacarías, Bilal, Iqbal, Barceló (bb0225) 2021 Cao, Lai, Lai, Yao, Chen, Song (bb0050) 2019; 364 Ahmed, Chiron (bb0010) 2014; 48 Ghanbari, Moradi (bb0095) 2017; 310 Wang, Zhuan (bb0270) 2020; 701 Chen, Ma, Yang, Wang, Lv, Ren (bb0055) 2017; 307 Lai, Ji, Zhang, Liu, Zhou, Liu, Ao, Li, Liu, Yao, Lai (bb0145) 2021; 282 Singer, Finch, Wegener, Bywater, Walters, Lipsitch (bb0240) 2003; 3 Takdastan, Kakavandi, Azizi, Golshan (bb0255) 2018; 331 Luo, Zhao, He, Ji, Cheng, Zhang, Pan (bb0170) 2019; 282 Yang, Yuan, Cui, Wang, Fu (bb0305) 2017; 205 Dong, Chen, Feng, Zhang, Guan, Strathmann (bb0080) 2019; 357 Wu, Bianco, Brigante, Dong, de Sainte-Claire, Hanna, Mailhot (bb0285) 2015; 49 Bouki, Venieri, Diamadopoulos (bb0040) 2013; 91 Clarizia, Russo, Di Somma, Marotta, Andreozzi (bb0065) 2017; 209 Li (10.1016/j.scitotenv.2021.147724_bb0150) 2018; 52 Dong (10.1016/j.scitotenv.2021.147724_bb0075) 2018; 52 Luo (10.1016/j.scitotenv.2021.147724_bb0175) 2020; 248 Luo (10.1016/j.scitotenv.2021.147724_bb0195) 2021; 413 Bouki (10.1016/j.scitotenv.2021.147724_bb0040) 2013; 91 Sun (10.1016/j.scitotenv.2021.147724_bb0250) 2020; 400 Ali (10.1016/j.scitotenv.2021.147724_bb0015) 2021; 408 Bilal (10.1016/j.scitotenv.2021.147724_bb0035) 2020; 13 Nikravesh (10.1016/j.scitotenv.2021.147724_bb0215) 2020; 8 Yang (10.1016/j.scitotenv.2021.147724_bb0305) 2017; 205 Xu (10.1016/j.scitotenv.2021.147724_bb0295) 2015; 3 Morsi (10.1016/j.scitotenv.2021.147724_bb0210) 2020; 714 Ghanbari (10.1016/j.scitotenv.2021.147724_bb0105) 2020; 244 Liu (10.1016/j.scitotenv.2021.147724_bb0165) 2019; 226 Giannakis (10.1016/j.scitotenv.2021.147724_bb0110) 2021; 406 Hong (10.1016/j.scitotenv.2021.147724_bb0120) 2020; 391 Luo (10.1016/j.scitotenv.2021.147724_bb0190) 2021; 407 Son (10.1016/j.scitotenv.2021.147724_bb0245) 2012; 51 Cao (10.1016/j.scitotenv.2021.147724_bb0050) 2019; 364 Khataee (10.1016/j.scitotenv.2021.147724_bb0140) 2018; 48 Isari (10.1016/j.scitotenv.2021.147724_bb0135) 2020; 392 Wang (10.1016/j.scitotenv.2021.147724_bb0265) 2018; 334 Babaei (10.1016/j.scitotenv.2021.147724_bb0020) 2021; 149 Yao (10.1016/j.scitotenv.2021.147724_bb0310) 2020; 54 Feng (10.1016/j.scitotenv.2021.147724_bb0085) 2016; 50 Wu (10.1016/j.scitotenv.2021.147724_bb0285) 2015; 49 Dong (10.1016/j.scitotenv.2021.147724_bb0080) 2019; 357 Tan (10.1016/j.scitotenv.2021.147724_bb0260) 2013; 260 Takdastan (10.1016/j.scitotenv.2021.147724_bb0255) 2018; 331 Ahmadi (10.1016/j.scitotenv.2021.147724_bb0005) 2019; 111 Singer (10.1016/j.scitotenv.2021.147724_bb0240) 2003; 3 Zhang (10.1016/j.scitotenv.2021.147724_bb0315) 2020; 381 Chen (10.1016/j.scitotenv.2021.147724_bb0060) 2020; 245 Gao (10.1016/j.scitotenv.2021.147724_bb0090) 2020; 243 Clarizia (10.1016/j.scitotenv.2021.147724_bb0065) 2017; 209 Xu (10.1016/j.scitotenv.2021.147724_bb0300) 2015; 142 Cabello (10.1016/j.scitotenv.2021.147724_bb0045) 2006; 8 Lai (10.1016/j.scitotenv.2021.147724_bb0145) 2021; 282 Wang (10.1016/j.scitotenv.2021.147724_bb0270) 2020; 701 Bilal (10.1016/j.scitotenv.2021.147724_bb0030) 2019; 691 Li (10.1016/j.scitotenv.2021.147724_bb0155) 2020; 268 Ghanbari (10.1016/j.scitotenv.2021.147724_bb0095) 2017; 310 Huang (10.1016/j.scitotenv.2021.147724_bb0125) 2020; 404 Luo (10.1016/j.scitotenv.2021.147724_bb0180) 2020; 732 Ghanbari (10.1016/j.scitotenv.2021.147724_bb0100) 2019; 228 Rezaei (10.1016/j.scitotenv.2021.147724_bb0230) 2019; 250 Bellér (10.1016/j.scitotenv.2021.147724_bb0025) 2017; 56 Martínez-Huitle (10.1016/j.scitotenv.2021.147724_bb0200) 2009; 87 Xing (10.1016/j.scitotenv.2021.147724_bb0290) 2018; 4 Noorisepehr (10.1016/j.scitotenv.2021.147724_bb0220) 2019; 232 He (10.1016/j.scitotenv.2021.147724_bb0115) 2020; 240 Parra-Saldivar (10.1016/j.scitotenv.2021.147724_bb0225) 2021 Luo (10.1016/j.scitotenv.2021.147724_bb0185) 2020; 356 Liu (10.1016/j.scitotenv.2021.147724_bb0160) 2018; 145 Meng (10.1016/j.scitotenv.2021.147724_bb0205) 2019; 165 Wen (10.1016/j.scitotenv.2021.147724_bb0280) 2020; 382 Rezaei (10.1016/j.scitotenv.2021.147724_bb0235) 2021; 258 Chen (10.1016/j.scitotenv.2021.147724_bb0055) 2017; 307 Zhou (10.1016/j.scitotenv.2021.147724_bb0320) 2016; 185 Wang (10.1016/j.scitotenv.2021.147724_bb0275) 2021; 282 Deng (10.1016/j.scitotenv.2021.147724_bb0070) 2017; 330 Ahmed (10.1016/j.scitotenv.2021.147724_bb0010) 2014; 48 Ike (10.1016/j.scitotenv.2021.147724_bb0130) 2018; 6 Luo (10.1016/j.scitotenv.2021.147724_bb0170) 2019; 282 |
References_xml | – volume: 364 start-page: 45 year: 2019 end-page: 56 ident: bb0050 article-title: Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: performance, intermediates, toxicity and mechanism publication-title: Chem. Eng. J. – volume: 226 start-page: 726 year: 2019 end-page: 735 ident: bb0165 article-title: Hydrophobic sorption behaviors of 17β-Estradiol on environmental microplastics publication-title: Chemosphere – volume: 87 start-page: 105 year: 2009 end-page: 145 ident: bb0200 article-title: Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review publication-title: Appl. Catal. B – volume: 407 start-page: 127191 year: 2021 ident: bb0190 article-title: Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: a review publication-title: Chem. Eng. J. – volume: 56 start-page: 8270 year: 2017 end-page: 8277 ident: bb0025 article-title: Kinetics and mechanism of the autocatalytic oxidation of Bis(terpyridine)iron(II) by Peroxomonosulfate ion (Oxone) in acidic medium publication-title: Inorg. Chem. – volume: 51 start-page: 232 year: 2012 end-page: 239 ident: bb0245 article-title: Attenuation of UV light in large-scale sonophotocatalytic reactors: the effects of ultrasound irradiation and TiO publication-title: Ind. Eng. Chem. Res. – volume: 185 start-page: 31 year: 2016 end-page: 41 ident: bb0320 article-title: Decomposition of sulfadiazine in a sonochemical Fe publication-title: Appl. Catal. B Environ. – volume: 400 start-page: 125899 year: 2020 ident: bb0250 article-title: Layered oxides supported Co-Fe bimetal catalyst for carbamazepine degradation via the catalytic activation of peroxymonosulfate publication-title: Chem. Eng. J. – volume: 111 start-page: 43 year: 2019 end-page: 52 ident: bb0005 article-title: Organic dye degradation through peroxymonosulfate catalyzed by reusable graphite felt/ferriferrous oxide: mechanism and identification of intermediates publication-title: Mater. Res. Bull. – volume: 356 start-page: 115438 year: 2020 ident: bb0185 article-title: A general synthesis of transition metal sulfide and nitrogen/sulfur co-doped three-dimensional graphene composite for high performance sodium storage publication-title: Solid State Ionics – volume: 330 start-page: 505 year: 2017 end-page: 517 ident: bb0070 article-title: Mesoporous manganese Cobaltite nanocages as effective and reusable heterogeneous peroxymonosulfate activators for Carbamazepine degradation publication-title: Chem. Eng. J. – volume: 209 start-page: 358 year: 2017 end-page: 371 ident: bb0065 article-title: Homogeneous photo-Fenton processes at near neutral pH: a review publication-title: Appl. Catal. B – volume: 260 start-page: 1008 year: 2013 end-page: 1016 ident: bb0260 article-title: Degradation of antipyrine by UV, UV/H publication-title: J. Hazard. Mater. – volume: 165 start-page: 115016 year: 2019 ident: bb0205 article-title: Co-doping polymethyl methacrylate and copper tailings to improve the performances of sludge-derived particle electrode publication-title: Water Res. – volume: 142 start-page: 18 year: 2015 end-page: 24 ident: bb0300 article-title: Sunlight-mediated degradation of methyl orange sensitized by riboflavin: roles of reactive oxygen species publication-title: Sep. Purif. Technol. – volume: 240 start-page: 124979 year: 2020 ident: bb0115 article-title: Synergistic activation of peroxymonosulfate and persulfate by ferrous ion and molybdenum disulfide for pollutant degradation: theoretical and experimental studies publication-title: Chemosphere – volume: 691 start-page: 1190 year: 2019 end-page: 1211 ident: bb0030 article-title: Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and antibiotics in the aquatic environment publication-title: Sci. Total Environ. – volume: 331 start-page: 729 year: 2018 end-page: 743 ident: bb0255 article-title: Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: a new approach into catalytic degradation of bisphenol A publication-title: Chem. Eng. J. – volume: 714 start-page: 136572 year: 2020 ident: bb0210 article-title: Laccases and peroxidases: the smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants publication-title: Sci. Total Environ. – volume: 392 start-page: 123685 year: 2020 ident: bb0135 article-title: N, Cu co-doped TiO publication-title: Chem. Eng. J. – volume: 50 start-page: 3119 year: 2016 end-page: 3127 ident: bb0085 article-title: Sulfate radical-mediated degradation of sulfadiazine by CuFeO publication-title: Environ. Sci. Technol. – volume: 357 start-page: 328 year: 2019 end-page: 336 ident: bb0080 article-title: Degradation of organic contaminants through activating bisulfite by cerium(IV): a sulfate radical-predominant oxidation process publication-title: Chem. Eng. J. – volume: 408 start-page: 127242 year: 2021 ident: bb0015 article-title: Modulating the redox cycles of homogenous Fe publication-title: Chem. Eng. J. – volume: 228 start-page: 115732 year: 2019 ident: bb0100 article-title: Heterogeneous activation of peroxymonosulfate via nanocomposite CeO publication-title: Sep. Purif. Technol. – volume: 245 start-page: 125678 year: 2020 ident: bb0060 article-title: The effect of peroxymonosulfate in WS publication-title: Chemosphere – start-page: 33 year: 2021 end-page: 47 ident: bb0225 publication-title: Interaction and Fate of Pharmaceuticals in Soil-Crop Systems: The Impact of Reclaimed Wastewater – volume: 4 start-page: 1359 year: 2018 end-page: 1372 ident: bb0290 article-title: Metal sulfides as excellent co-catalysts for H publication-title: Chem – volume: 413 start-page: 125342 year: 2021 ident: bb0195 article-title: Effects of advanced oxidation processes on leachates and properties of microplastics publication-title: J. Hazard. Mater. – volume: 382 start-page: 123003 year: 2020 ident: bb0280 article-title: Activation of PMS by pipe corrosion products for fungi disinfection in water: performance and mechanisms publication-title: Chem. Eng. J. – volume: 48 start-page: 229 year: 2014 end-page: 236 ident: bb0010 article-title: Solar photo-Fenton like using persulphate for carbamazepine removal from domestic wastewater publication-title: Water Res. – volume: 149 start-page: 35 year: 2021 end-page: 47 ident: bb0020 article-title: A heterogeneous photocatalytic sulfate radical-based oxidation process for efficient degradation of 4-chlorophenol using TiO publication-title: Process Saf. Environ. Prot. – volume: 404 start-page: 124175 year: 2020 ident: bb0125 article-title: Mechanism of metal sulfides accelerating Fe(II)/Fe(III) redox cycling to enhance pollutant degradation by persulfate: metallic active sites vs. reducing sulfur species publication-title: J. Hazard. Mater. – volume: 310 start-page: 41 year: 2017 end-page: 62 ident: bb0095 article-title: Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review publication-title: Chem. Eng. J. – volume: 91 start-page: 1 year: 2013 end-page: 9 ident: bb0040 article-title: Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: a review publication-title: Ecotoxicol. Environ. Saf. – volume: 8 start-page: 1137 year: 2006 end-page: 1144 ident: bb0045 article-title: Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment publication-title: Environ. Microbiol. – volume: 701 start-page: 135023 year: 2020 ident: bb0270 article-title: Degradation of antibiotics by advanced oxidation processes: an overview publication-title: Sci. Total Environ. – volume: 282 start-page: 119559 year: 2021 ident: bb0145 article-title: Activation of peroxydisulfate by V-Fe concentrate ore for enhanced degradation of carbamazepine: surface ≡V(III) and ≡V(IV) as electron donors promoted the regeneration of ≡Fe(II) publication-title: Appl. Catal. B – volume: 205 start-page: 327 year: 2017 end-page: 339 ident: bb0305 article-title: Modulating oxone-MnOx/silica catalytic systems towards ibuprofen degradation: insights into system effects, reaction kinetics and mechanisms publication-title: Appl. Catal. B Environ. – volume: 250 start-page: 109472 year: 2019 ident: bb0230 article-title: Efficient clean-up of waters contaminated with diazinon pesticide using photo-decomposition of peroxymonosulfate by ZnO decorated on a magnetic core/shell structure publication-title: J. Environ. Manag. – volume: 8 start-page: 104244 year: 2020 ident: bb0215 article-title: UV/chlorine process for dye degradation in aqueous solution: mechanism, affecting factors and toxicity evaluation for textile wastewater publication-title: J. Environ. Chem. Eng. – volume: 244 start-page: 125326 year: 2020 ident: bb0105 article-title: Oxidative removal of benzotriazole using peroxymonosulfate/ozone/ultrasound: synergy, optimization, degradation intermediates and utilizing for real wastewater publication-title: Chemosphere – volume: 145 start-page: 312 year: 2018 end-page: 320 ident: bb0160 article-title: Molybdenum sulfide co-catalytic Fenton reaction for rapid and efficient inactivation of publication-title: Water Res. – volume: 13 start-page: 68 year: 2020 end-page: 74 ident: bb0035 article-title: Antibiotics traces in the aquatic environment: persistence and adverse environmental impact publication-title: Curr. Opin. Environ. Sci. Health – volume: 391 start-page: 123604 year: 2020 ident: bb0120 article-title: Heterogeneous activation of peroxymonosulfate by CoMgFe-LDO for degradation of carbamazepine: efficiency, mechanism and degradation pathways publication-title: Chem. Eng. J. – volume: 268 start-page: 118471 year: 2020 ident: bb0155 article-title: Tungsten sulfide co-catalytic radical chain-reaction for efficient organics degradation and electricity generation publication-title: Appl. Catal. B – volume: 232 start-page: 140 year: 2019 end-page: 151 ident: bb0220 article-title: Photo-assisted catalytic degradation of acetaminophen using peroxymonosulfate decomposed by magnetic carbon heterojunction catalyst publication-title: Chemosphere – volume: 282 start-page: 119585 year: 2021 ident: bb0275 article-title: Activating peroxydisulfate with Co publication-title: Appl. Catal. B – volume: 732 start-page: 139335 year: 2020 ident: bb0180 article-title: Enhanced decomposition of H publication-title: Sci. Total Environ. – volume: 282 start-page: 13 year: 2019 end-page: 22 ident: bb0170 article-title: Hydroxylamine-facilitated degradation of rhodamine B (RhB) and p-nitrophenol (PNP) as catalyzed by Fe@Fe publication-title: J. Mol. Liq. – volume: 334 start-page: 1502 year: 2018 end-page: 1517 ident: bb0265 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chem. Eng. J. – volume: 52 start-page: 11297 year: 2018 end-page: 11308 ident: bb0075 article-title: Enhancement of H publication-title: Environ. Sci. Technol. – volume: 49 start-page: 14343 year: 2015 end-page: 14349 ident: bb0285 article-title: Sulfate radical photogeneration using Fe-EDDS: influence of critical parameters and naturally occurring scavengers publication-title: Environ. Sci. Technol. – volume: 3 start-page: 1756 year: 2015 end-page: 1763 ident: bb0295 article-title: Vitamin B publication-title: ACS Sustain. Chem. Eng. – volume: 406 start-page: 127083 year: 2021 ident: bb0110 article-title: A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) publication-title: Chem. Eng. J. – volume: 54 start-page: 9052 year: 2020 end-page: 9061 ident: bb0310 article-title: Fe-activated peroxymonosulfate enhances the degradation of dibutyl phthalate on ground quartz sand publication-title: Environ. Sci. Technol. – volume: 248 start-page: 117023 year: 2020 ident: bb0175 article-title: Rapid removal of organic micropollutants by heterogeneous peroxymonosulfate catalysis over a wide pH range: performance, mechanism and economic analysis publication-title: Sep. Purif. Technol. – volume: 6 start-page: 4345 year: 2018 end-page: 4353 ident: bb0130 article-title: Activation of persulfate at waste heat temperatures for humic acid degradation publication-title: ACS Sustain. Chem. Eng. – volume: 52 start-page: 2197 year: 2018 end-page: 2205 ident: bb0150 article-title: Fe(III)-doped g-C publication-title: Environ. Sci. Technol. – volume: 307 start-page: 15 year: 2017 end-page: 23 ident: bb0055 article-title: Aqueous tetracycline degradation by H publication-title: Chem. Eng. J. – volume: 243 start-page: 125325 year: 2020 ident: bb0090 article-title: Comparative evaluation of metoprolol degradation by UV/chlorine and UV/H publication-title: Chemosphere – volume: 3 start-page: 47 year: 2003 end-page: 51 ident: bb0240 article-title: Antibiotic resistance—the interplay between antibiotic use in animals and human beings publication-title: Lancet Infect. Dis. – volume: 258 start-page: 117936 year: 2021 ident: bb0235 article-title: Photocatalytic oxidation of tetracycline by magnetic carbon-supported TiO publication-title: Sep. Purif. Technol. – volume: 48 start-page: 329 year: 2018 end-page: 339 ident: bb0140 article-title: Sonochemical synthesis of WS publication-title: Ultrason. Sonochem. – volume: 381 start-page: 122718 year: 2020 ident: bb0315 article-title: Fe(II)-promoted activation of peroxymonosulfate by molybdenum disulfide for effective degradation of acetaminophen publication-title: Chem. Eng. J. – volume: 282 start-page: 13 year: 2019 ident: 10.1016/j.scitotenv.2021.147724_bb0170 article-title: Hydroxylamine-facilitated degradation of rhodamine B (RhB) and p-nitrophenol (PNP) as catalyzed by Fe@Fe2O3 core-shell nanowires publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.02.136 – volume: 48 start-page: 229 year: 2014 ident: 10.1016/j.scitotenv.2021.147724_bb0010 article-title: Solar photo-Fenton like using persulphate for carbamazepine removal from domestic wastewater publication-title: Water Res. doi: 10.1016/j.watres.2013.09.033 – volume: 243 start-page: 125325 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0090 article-title: Comparative evaluation of metoprolol degradation by UV/chlorine and UV/H2O2 processes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125325 – volume: 49 start-page: 14343 issue: 24 year: 2015 ident: 10.1016/j.scitotenv.2021.147724_bb0285 article-title: Sulfate radical photogeneration using Fe-EDDS: influence of critical parameters and naturally occurring scavengers publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03316 – volume: 209 start-page: 358 year: 2017 ident: 10.1016/j.scitotenv.2021.147724_bb0065 article-title: Homogeneous photo-Fenton processes at near neutral pH: a review publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.03.011 – volume: 52 start-page: 2197 issue: 4 year: 2018 ident: 10.1016/j.scitotenv.2021.147724_bb0150 article-title: Fe(III)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05563 – volume: 364 start-page: 45 year: 2019 ident: 10.1016/j.scitotenv.2021.147724_bb0050 article-title: Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: performance, intermediates, toxicity and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.113 – volume: 356 start-page: 115438 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0185 article-title: A general synthesis of transition metal sulfide and nitrogen/sulfur co-doped three-dimensional graphene composite for high performance sodium storage publication-title: Solid State Ionics doi: 10.1016/j.ssi.2020.115438 – volume: 13 start-page: 68 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0035 article-title: Antibiotics traces in the aquatic environment: persistence and adverse environmental impact publication-title: Curr. Opin. Environ. Sci. Health doi: 10.1016/j.coesh.2019.11.005 – volume: 310 start-page: 41 year: 2017 ident: 10.1016/j.scitotenv.2021.147724_bb0095 article-title: Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.10.064 – volume: 145 start-page: 312 year: 2018 ident: 10.1016/j.scitotenv.2021.147724_bb0160 article-title: Molybdenum sulfide co-catalytic Fenton reaction for rapid and efficient inactivation of Escherichia coli publication-title: Water Res. doi: 10.1016/j.watres.2018.08.039 – volume: 258 start-page: 117936 year: 2021 ident: 10.1016/j.scitotenv.2021.147724_bb0235 article-title: Photocatalytic oxidation of tetracycline by magnetic carbon-supported TiO2 nanoparticles catalyzed peroxydisulfate: performance, synergy and reaction mechanism studies publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117936 – volume: 51 start-page: 232 issue: 1 year: 2012 ident: 10.1016/j.scitotenv.2021.147724_bb0245 article-title: Attenuation of UV light in large-scale sonophotocatalytic reactors: the effects of ultrasound irradiation and TiO2 concentration publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie202401z – volume: 228 start-page: 115732 year: 2019 ident: 10.1016/j.scitotenv.2021.147724_bb0100 article-title: Heterogeneous activation of peroxymonosulfate via nanocomposite CeO2-Fe3O4 for organic pollutants removal: the effect of UV and US irradiation and application for real wastewater publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115732 – volume: 248 start-page: 117023 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0175 article-title: Rapid removal of organic micropollutants by heterogeneous peroxymonosulfate catalysis over a wide pH range: performance, mechanism and economic analysis publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117023 – volume: 381 start-page: 122718 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0315 article-title: Fe(II)-promoted activation of peroxymonosulfate by molybdenum disulfide for effective degradation of acetaminophen publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122718 – volume: 3 start-page: 1756 issue: 8 year: 2015 ident: 10.1016/j.scitotenv.2021.147724_bb0295 article-title: Vitamin B2-initiated hydroxyl radical generation under visible light in the presence of dissolved Iron publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00267 – volume: 268 start-page: 118471 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0155 article-title: Tungsten sulfide co-catalytic radical chain-reaction for efficient organics degradation and electricity generation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118471 – volume: 4 start-page: 1359 issue: 6 year: 2018 ident: 10.1016/j.scitotenv.2021.147724_bb0290 article-title: Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes publication-title: Chem doi: 10.1016/j.chempr.2018.03.002 – volume: 701 start-page: 135023 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0270 article-title: Degradation of antibiotics by advanced oxidation processes: an overview publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135023 – volume: 357 start-page: 328 year: 2019 ident: 10.1016/j.scitotenv.2021.147724_bb0080 article-title: Degradation of organic contaminants through activating bisulfite by cerium(IV): a sulfate radical-predominant oxidation process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.024 – volume: 3 start-page: 47 issue: 1 year: 2003 ident: 10.1016/j.scitotenv.2021.147724_bb0240 article-title: Antibiotic resistance—the interplay between antibiotic use in animals and human beings publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(03)00490-0 – volume: 331 start-page: 729 year: 2018 ident: 10.1016/j.scitotenv.2021.147724_bb0255 article-title: Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: a new approach into catalytic degradation of bisphenol A publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.021 – volume: 91 start-page: 1 year: 2013 ident: 10.1016/j.scitotenv.2021.147724_bb0040 article-title: Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: a review publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2013.01.016 – volume: 732 start-page: 139335 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0180 article-title: Enhanced decomposition of H2O2 by molybdenum disulfide in a Fenton-like process for abatement of organic micropollutants publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139335 – volume: 8 start-page: 104244 issue: 5 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0215 article-title: UV/chlorine process for dye degradation in aqueous solution: mechanism, affecting factors and toxicity evaluation for textile wastewater publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.104244 – volume: 226 start-page: 726 year: 2019 ident: 10.1016/j.scitotenv.2021.147724_bb0165 article-title: Hydrophobic sorption behaviors of 17β-Estradiol on environmental microplastics publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.03.162 – volume: 282 start-page: 119585 year: 2021 ident: 10.1016/j.scitotenv.2021.147724_bb0275 article-title: Activating peroxydisulfate with Co3O4/NiCo2O4 double-shelled nanocages to selectively degrade bisphenol A – a nonradical oxidation process publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.119585 – volume: 404 start-page: 124175 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0125 article-title: Mechanism of metal sulfides accelerating Fe(II)/Fe(III) redox cycling to enhance pollutant degradation by persulfate: metallic active sites vs. reducing sulfur species publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124175 – volume: 142 start-page: 18 year: 2015 ident: 10.1016/j.scitotenv.2021.147724_bb0300 article-title: Sunlight-mediated degradation of methyl orange sensitized by riboflavin: roles of reactive oxygen species publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2014.12.031 – volume: 391 start-page: 123604 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0120 article-title: Heterogeneous activation of peroxymonosulfate by CoMgFe-LDO for degradation of carbamazepine: efficiency, mechanism and degradation pathways publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123604 – volume: 691 start-page: 1190 year: 2019 ident: 10.1016/j.scitotenv.2021.147724_bb0030 article-title: Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and antibiotics in the aquatic environment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.224 – volume: 185 start-page: 31 year: 2016 ident: 10.1016/j.scitotenv.2021.147724_bb0320 article-title: Decomposition of sulfadiazine in a sonochemical Fe0-catalyzed persulfate system: parameters optimizing and interferences of wastewater matrix publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.12.004 – volume: 6 start-page: 4345 issue: 3 year: 2018 ident: 10.1016/j.scitotenv.2021.147724_bb0130 article-title: Activation of persulfate at waste heat temperatures for humic acid degradation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b04840 – start-page: 33 year: 2021 ident: 10.1016/j.scitotenv.2021.147724_bb0225 – volume: 54 start-page: 9052 issue: 14 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0310 article-title: Fe-activated peroxymonosulfate enhances the degradation of dibutyl phthalate on ground quartz sand publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c00793 – volume: 8 start-page: 1137 issue: 7 year: 2006 ident: 10.1016/j.scitotenv.2021.147724_bb0045 article-title: Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2006.01054.x – volume: 330 start-page: 505 year: 2017 ident: 10.1016/j.scitotenv.2021.147724_bb0070 article-title: Mesoporous manganese Cobaltite nanocages as effective and reusable heterogeneous peroxymonosulfate activators for Carbamazepine degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.149 – volume: 282 start-page: 119559 year: 2021 ident: 10.1016/j.scitotenv.2021.147724_bb0145 article-title: Activation of peroxydisulfate by V-Fe concentrate ore for enhanced degradation of carbamazepine: surface ≡V(III) and ≡V(IV) as electron donors promoted the regeneration of ≡Fe(II) publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.119559 – volume: 205 start-page: 327 year: 2017 ident: 10.1016/j.scitotenv.2021.147724_bb0305 article-title: Modulating oxone-MnOx/silica catalytic systems towards ibuprofen degradation: insights into system effects, reaction kinetics and mechanisms publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.12.046 – volume: 52 start-page: 11297 issue: 19 year: 2018 ident: 10.1016/j.scitotenv.2021.147724_bb0075 article-title: Enhancement of H2O2 decomposition by the co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr(VI) and remediation of phenol publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02403 – volume: 307 start-page: 15 year: 2017 ident: 10.1016/j.scitotenv.2021.147724_bb0055 article-title: Aqueous tetracycline degradation by H2O2 alone: removal and transformation pathway publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.046 – volume: 334 start-page: 1502 year: 2018 ident: 10.1016/j.scitotenv.2021.147724_bb0265 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.059 – volume: 50 start-page: 3119 issue: 6 year: 2016 ident: 10.1016/j.scitotenv.2021.147724_bb0085 article-title: Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: synergistic effects and mechanisms publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05974 – volume: 400 start-page: 125899 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0250 article-title: Layered oxides supported Co-Fe bimetal catalyst for carbamazepine degradation via the catalytic activation of peroxymonosulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125899 – volume: 232 start-page: 140 year: 2019 ident: 10.1016/j.scitotenv.2021.147724_bb0220 article-title: Photo-assisted catalytic degradation of acetaminophen using peroxymonosulfate decomposed by magnetic carbon heterojunction catalyst publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.05.070 – volume: 408 start-page: 127242 year: 2021 ident: 10.1016/j.scitotenv.2021.147724_bb0015 article-title: Modulating the redox cycles of homogenous Fe(III)/PMS system through constructing electron rich thiomolybdate centres in confined layered double hydroxides publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127242 – volume: 714 start-page: 136572 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0210 article-title: Laccases and peroxidases: the smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136572 – volume: 245 start-page: 125678 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0060 article-title: The effect of peroxymonosulfate in WS2 nanosheets for the removal of diclofenac: information exposure and degradation pathway publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125678 – volume: 87 start-page: 105 issue: 3 year: 2009 ident: 10.1016/j.scitotenv.2021.147724_bb0200 article-title: Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2008.09.017 – volume: 165 start-page: 115016 year: 2019 ident: 10.1016/j.scitotenv.2021.147724_bb0205 article-title: Co-doping polymethyl methacrylate and copper tailings to improve the performances of sludge-derived particle electrode publication-title: Water Res. doi: 10.1016/j.watres.2019.115016 – volume: 260 start-page: 1008 year: 2013 ident: 10.1016/j.scitotenv.2021.147724_bb0260 article-title: Degradation of antipyrine by UV, UV/H2O2 and UV/PS publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.06.060 – volume: 382 start-page: 123003 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0280 article-title: Activation of PMS by pipe corrosion products for fungi disinfection in water: performance and mechanisms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123003 – volume: 244 start-page: 125326 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0105 article-title: Oxidative removal of benzotriazole using peroxymonosulfate/ozone/ultrasound: synergy, optimization, degradation intermediates and utilizing for real wastewater publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125326 – volume: 406 start-page: 127083 year: 2021 ident: 10.1016/j.scitotenv.2021.147724_bb0110 article-title: A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127083 – volume: 48 start-page: 329 year: 2018 ident: 10.1016/j.scitotenv.2021.147724_bb0140 article-title: Sonochemical synthesis of WS2 nanosheets and its application in sonocatalytic removal of organic dyes from water solution publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.06.003 – volume: 56 start-page: 8270 issue: 14 year: 2017 ident: 10.1016/j.scitotenv.2021.147724_bb0025 article-title: Kinetics and mechanism of the autocatalytic oxidation of Bis(terpyridine)iron(II) by Peroxomonosulfate ion (Oxone) in acidic medium publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b00981 – volume: 111 start-page: 43 year: 2019 ident: 10.1016/j.scitotenv.2021.147724_bb0005 article-title: Organic dye degradation through peroxymonosulfate catalyzed by reusable graphite felt/ferriferrous oxide: mechanism and identification of intermediates publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2018.10.027 – volume: 240 start-page: 124979 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0115 article-title: Synergistic activation of peroxymonosulfate and persulfate by ferrous ion and molybdenum disulfide for pollutant degradation: theoretical and experimental studies publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124979 – volume: 250 start-page: 109472 year: 2019 ident: 10.1016/j.scitotenv.2021.147724_bb0230 article-title: Efficient clean-up of waters contaminated with diazinon pesticide using photo-decomposition of peroxymonosulfate by ZnO decorated on a magnetic core/shell structure publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.109472 – volume: 149 start-page: 35 year: 2021 ident: 10.1016/j.scitotenv.2021.147724_bb0020 article-title: A heterogeneous photocatalytic sulfate radical-based oxidation process for efficient degradation of 4-chlorophenol using TiO2 anchored on Fe oxides@carbon publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2020.10.028 – volume: 407 start-page: 127191 year: 2021 ident: 10.1016/j.scitotenv.2021.147724_bb0190 article-title: Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127191 – volume: 392 start-page: 123685 year: 2020 ident: 10.1016/j.scitotenv.2021.147724_bb0135 article-title: N, Cu co-doped TiO2@functionalized SWCNT photocatalyst coupled with ultrasound and visible-light: an effective sono-photocatalysis process for pharmaceutical wastewaters treatment publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123685 – volume: 413 start-page: 125342 year: 2021 ident: 10.1016/j.scitotenv.2021.147724_bb0195 article-title: Effects of advanced oxidation processes on leachates and properties of microplastics publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125342 |
SSID | ssj0000781 |
Score | 2.5397353 |
Snippet | The biggest problem with Fe/PMS (peroxymonosulfate) system is the slow generation rate of SO4− due to inefficient Fe3+/Fe2+ cycle and the low decomposition... The biggest problem with Fe/PMS (peroxymonosulfate) system is the slow generation rate of SO₄⁻ due to inefficient Fe³⁺/Fe²⁺ cycle and the low decomposition... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 147724 |
SubjectTerms | AOPs Bacterial inactivation Degradation pathway disinfection electron paramagnetic resonance spectroscopy environment Escherichia coli liquids Peroxymonosulfate pollutants spectrometers Tungsten disulfide wastewater treatment |
Title | Fe(III) greatly promotes peroxymonosulfate activation by WS2 for efficient carbamazepine degradation and Escherichia coli disinfection |
URI | https://dx.doi.org/10.1016/j.scitotenv.2021.147724 https://www.proquest.com/docview/2985775448 |
Volume | 787 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ba9swFBalpTAYo8tW1m0tr9DDdvBaO5Jl91ZKQtJAD9tKexOSJQ2X1Al1MpYdduzv7nuW3dLB6GEnYyNZxu_p6ZP0vU-MHQifC0TRMrJOJBHXhpMGZBxZyUXsjckS07B8z9PRBT-7Eldr7LTLhSFaZRv7Q0xvonX75LD9m4fzsqQcX57lKanP4NQKW6QMdi7Jy7_8eaR5kJhN2GXGjo2ln3C88L2LGWLTnzhRTGKMGog1-b9GqL9idTMADbfYqxY5wkn4uNdszVU9thnOklz12PbgMWUNi7V9tu6xl2FlDkLC0Rt2N3SfxuPxZ_hBeHG6gnnDyHM1kGb4rxX65axeTj2CUKCsh7BmC2YFl98SQIwLrpGdwHagoN2KG_3bzRGsgiXhiXBGE-jKwqAmjyiJTQ3obyXYsu7IX9VbdjEcfD8dRe1pDFHR59kikl44lxqEG7lwfS9T7QqBYERogoVe2jgxMaIXWfgjHWdWa9lHOOLy3Bmvcb67zdarWeXeMfAIQ3KT8pwXCMf6aWYtPsLJn8aAE0u5w9LOAqpopcrpxIyp6jhp1-rBdIpMp4LpdtjRQ8V5UOt4vspxZ2L1xPEUjinPV97vnEJht6S9Fl252bJWSZ6JRlwwe_8_DXxgL-iOCCqx-MjWF7dLt4soaGH2GjffYxsn48nonK6Tr5eTe39SC-U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED6NTggkNEFh2oCBkXiAh2hLascJb9PUqmGjL2xib5Yd2yioSyvSIsoP4HdzFyebhoT2wGuSi6Pc-fydffcdwFvhc4EoWkbWiSTi2nDigIwjK7mIvTFZYtos31k6veAfL8XlFpz0tTCUVtn5_uDTW2_dXTns_ubhsqqoxpdneUrsMxha4Yj3YJvYqcQAto-L0-nsxiHLLDTO4zi3UeBWmhe-erVAePoDY8UkRseBcJP_a5H6y123a9DkMex04JEdh-97AluuHsL90E5yM4Td8U3VGj7WTdtmCI_C5hwLNUdP4ffEvSuK4j37SpBxvmHLNinPNYxow39u0DQXzXruEYcyKnwI27bMbNiXzwlDmMtcyzyB47CSDiyu9C-3RLzKLHFPhDZNTNeWjRsyiooSqhmaXMVs1fT5X_UzuJiMz0-mUdeQISpHPFtF0gvnUoOIIxdu5GWqXSkQjwhNyNBLGycmRgAjS3-k48xqLUeISFyeO-M1hry7MKgXtdsD5hGJ5CblOS8RkY3SzFq8hPGfRp8TS7kPaa8BVXZs5dQ0Y676tLRv6lp1ilSngur24ehacBkIO-4W-dCrWN2yPYXLyt3Cb3qjUDgz6bhF126xblSSZ6LlF8ye_88Ar-HB9PzTmTorZqcv4CHdoXyVWLyEwer72h0gKFqZV53R_wE0fwzz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fe%28III%29+greatly+promotes+peroxymonosulfate+activation+by+WS2+for+efficient+carbamazepine+degradation+and+Escherichia+coli+disinfection&rft.jtitle=The+Science+of+the+total+environment&rft.au=Luo%2C+Hongwei&rft.au=Liu%2C+Chenyang&rft.au=Fan%2C+Zhushan&rft.au=Zeng%2C+Yifeng&rft.date=2021-09-15&rft.issn=0048-9697&rft.volume=787+p.147724-&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.147724&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |