Self-compacting concrete beams reinforced with steel fiber under flexural loads: A ductility index evaluation

Although the ductility index of the reinforced concrete element has been the subject of many research objectives and critical analysis recently, scare consideration is carried out to measure the ductility of reinforced self-compacting concrete (SCC) enhanced with steel fiber. Hence, the current stud...

Full description

Saved in:
Bibliographic Details
Published inMaterials today : proceedings Vol. 42; pp. 2259 - 2267
Main Authors Odaa, Sief aldeen, Hason, Mahir M., Sharba, Amjad Ali K.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2021
Subjects
Online AccessGet full text
ISSN2214-7853
2214-7853
DOI10.1016/j.matpr.2020.12.313

Cover

Abstract Although the ductility index of the reinforced concrete element has been the subject of many research objectives and critical analysis recently, scare consideration is carried out to measure the ductility of reinforced self-compacting concrete (SCC) enhanced with steel fiber. Hence, the current study aims to evaluate the ductility, in terms of energy absorption, of reinforced steel fibrous self-compacting concrete beams subjected to experimental flexural force. Twelve reinforced SCC beams experimented under flexural loads including pair groups of six beams (with and without steel fibers). Minimum and maximum steel ratio (ρmin and ρmax) and three grades of concrete (G20, G50, and G60) are used in this study. Load-displacement curves (P-Δ) are used as a tool to measure the ductility Energy index (μE) of the tested SCC beams using Spadea et al (1997) technique. The result shows that the flexural stiffness of the fibrous SCC beam specimens is improved to overcome beam deformation and consequently constrained cracking. The results reveal also that the increase of fibrous material to SCC is extremely efficient. In terms of increasing energy dissipation, flexural capacity, and ductility index (μE). Besides, the flexural strength grows with increasing steel fiber percentage, steel reinforcement ratio, and concrete compressive strength.
AbstractList Although the ductility index of the reinforced concrete element has been the subject of many research objectives and critical analysis recently, scare consideration is carried out to measure the ductility of reinforced self-compacting concrete (SCC) enhanced with steel fiber. Hence, the current study aims to evaluate the ductility, in terms of energy absorption, of reinforced steel fibrous self-compacting concrete beams subjected to experimental flexural force. Twelve reinforced SCC beams experimented under flexural loads including pair groups of six beams (with and without steel fibers). Minimum and maximum steel ratio (ρmin and ρmax) and three grades of concrete (G20, G50, and G60) are used in this study. Load-displacement curves (P-Δ) are used as a tool to measure the ductility Energy index (μE) of the tested SCC beams using Spadea et al (1997) technique. The result shows that the flexural stiffness of the fibrous SCC beam specimens is improved to overcome beam deformation and consequently constrained cracking. The results reveal also that the increase of fibrous material to SCC is extremely efficient. In terms of increasing energy dissipation, flexural capacity, and ductility index (μE). Besides, the flexural strength grows with increasing steel fiber percentage, steel reinforcement ratio, and concrete compressive strength.
Author Sharba, Amjad Ali K.
Odaa, Sief aldeen
Hason, Mahir M.
Author_xml – sequence: 1
  givenname: Sief aldeen
  surname: Odaa
  fullname: Odaa, Sief aldeen
  organization: Department of Planning, General Directorate of Anbar Education, Anbar, Iraq
– sequence: 2
  givenname: Mahir M.
  surname: Hason
  fullname: Hason, Mahir M.
  organization: Disaster Management Centre, Ministry of Science and Technology, Iraq
– sequence: 3
  givenname: Amjad Ali K.
  surname: Sharba
  fullname: Sharba, Amjad Ali K.
  organization: Department of Civil Engineering, University of Mustansiriya, Baghdad, Iraq
BookMark eNqFkM1KAzEQgINUsNY-gZe8wNb8bLOp4KEU_0DwoJ5DNjvRlOxuSdLavr1p60E86GVmGOYbZr5zNOj6DhC6pGRCCRVXy0mr0ypMGGG5wyac8hM0ZIyWRSWnfPCjPkPjGJeEEDoVRFIxRO0LeFuYvl1pk1z3jk3fmQAJcA26jTiA62wfDDT406UPHBOAx9bVEPC6a3K0HrbroD32vW7iNZ7jZp1XeZd22OWJLYaN9mudXN9doFOrfYTxdx6ht7vb18VD8fR8_7iYPxWGlzIVlSXSmNrKZmYYh5kEEGAZL6HRVSVmklS2lNZayF8AFaRuJHDGuKjFtBKCj9DsuNeEPsYAVhmXDhekoJ1XlKi9OrVUB3Vqr05RprK6zPJf7Cq4VofdP9TNkYL81sZBUNE46LI3F8Ak1fTuT_4LTT6OGg
CitedBy_id crossref_primary_10_1007_s41024_024_00493_5
crossref_primary_10_1016_j_matpr_2023_05_629
crossref_primary_10_1186_s43251_023_00103_3
crossref_primary_10_1007_s40996_024_01440_7
crossref_primary_10_1016_j_matpr_2023_05_557
crossref_primary_10_3390_jcs7060256
crossref_primary_10_1016_j_conbuildmat_2022_129992
crossref_primary_10_47836_pjst_29_4_44
crossref_primary_10_1007_s12205_024_2114_0
crossref_primary_10_3390_app12042245
crossref_primary_10_1016_j_heliyon_2024_e28149
crossref_primary_10_1155_2022_7874066
crossref_primary_10_1016_j_conbuildmat_2024_137039
crossref_primary_10_1155_2022_7025059
crossref_primary_10_1016_j_cscm_2023_e02468
crossref_primary_10_1016_j_jclepro_2022_133103
crossref_primary_10_1061__ASCE_MT_1943_5533_0004214
Cites_doi 10.1007/s12205-014-0335-3
10.1016/j.jobe.2018.01.006
10.1016/j.engstruct.2014.05.010
10.1007/s40069-013-0059-7
10.23918/eajse.v3i1sip83
10.1016/j.hbrcj.2013.05.012
10.1016/j.engstruct.2015.08.008
10.1016/S0008-8846(01)00555-5
10.1061/(ASCE)1090-0268(1998)2:4(186)
10.1016/j.conbuildmat.2015.04.035
10.1007/s40069-015-0109-4
10.1590/1679-782512629
10.1016/j.conbuildmat.2015.03.079
10.1007/s12205-016-0721-0
10.1016/j.measurement.2015.06.013
10.1016/j.conbuildmat.2015.01.061
10.1061/(ASCE)CC.1943-5614.0000654
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.matpr.2020.12.313
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2214-7853
EndPage 2267
ExternalDocumentID 10_1016_j_matpr_2020_12_313
S221478532040029X
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
6I.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
HZ~
KOM
M41
NCXOZ
O9-
OAUVE
P-8
P-9
PC.
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c348t-7f08ccbf8d9c23e98ee6ef234eda7769807f48fffe608e160bd8e32236b657663
IEDL.DBID AIKHN
ISSN 2214-7853
IngestDate Thu Apr 24 23:12:36 EDT 2025
Tue Jul 01 01:53:30 EDT 2025
Fri Feb 23 02:41:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Self-compacting concrete
Flexural load
Ductility energy index (μE)
Fibrous steel
Energy absorption
Language English
License This is an open access article under the CC BY-NC-ND license.
https://www.elsevier.com/tdm/userlicense/1.0
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-7f08ccbf8d9c23e98ee6ef234eda7769807f48fffe608e160bd8e32236b657663
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S221478532040029X
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_matpr_2020_12_313
crossref_primary_10_1016_j_matpr_2020_12_313
elsevier_sciencedirect_doi_10_1016_j_matpr_2020_12_313
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021
2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle Materials today : proceedings
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jabbar, Hejazi, Mahmod (b0085) 2016; 13
Danraka (b0100) 2017; 7
Oliveira, Ribeiro, Branco (b0040) 2015; 93
Mahmod, Aznieta, Gatea (b0080) 2017; 21
Woo, Kim, Han (b0075) 2014; 18
Tichko (b0010) 2015; 101
Okamura (b0025) 1997
Frazão (b0140) 2015; 80
Grace (b0120) 1998; 2
Jaejer, Mufti, Tadros (b0115) 1997
Sardar, Mahmod, Shakir (b0090) 2017; 3
Shi (b0020) 2015; 84
Ghavidel, Madandoust, Ranjbar (b0070) 2015; 73
Kamal (b0045) 2017
ASTM-C-494, Standard Specification for Chemical Admixtures for Concrete, 2007.
G. Spadea, F. Bencardino, R. Swamy, Strengthening and upgrading structures with bonded CFRP sheets design aspects for structural integrity, in: Proc., 3rd Int. Symp. on Non-Metallic (FRP) Reinforcement for Concrete Structures, 1997.
Tadepalli (b0065) 2015; 9
Abbood (b0095) 2018; 9
Grace (b0125) 1999; 96
A. Naaman, S. Jeong, 45 structural ductility of concrete beams prestressed with FRP tendons, in: Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Second International RILEM Symposium, CRC Press, 1995.
Adjrad (b0015) 2016
Mahmod, Hanoon, Abed (b0105) 2018; 16
Pang (b0135) 2016; 20
Kamal (b0035) 2014; 10
Islam, Alam (b0060) 2013; 7
K. Ozawa, High-performance concrete based on the durability design of concrete structures, in: Proc. of the Second East Asia-Pacific Conference on Structural Engineering and Construction, 1989.
Grünewald, Walraven (b0050) 2001; 31
Goel, Singh (b0055) 2014; 74
Grace (10.1016/j.matpr.2020.12.313_b0120) 1998; 2
Kamal (10.1016/j.matpr.2020.12.313_b0045) 2017
10.1016/j.matpr.2020.12.313_b0130
10.1016/j.matpr.2020.12.313_b0030
Okamura (10.1016/j.matpr.2020.12.313_b0025) 1997
Islam (10.1016/j.matpr.2020.12.313_b0060) 2013; 7
Jabbar (10.1016/j.matpr.2020.12.313_b0085) 2016; 13
Tichko (10.1016/j.matpr.2020.12.313_b0010) 2015; 101
Oliveira (10.1016/j.matpr.2020.12.313_b0040) 2015; 93
Danraka (10.1016/j.matpr.2020.12.313_b0100) 2017; 7
Grace (10.1016/j.matpr.2020.12.313_b0125) 1999; 96
Shi (10.1016/j.matpr.2020.12.313_b0020) 2015; 84
10.1016/j.matpr.2020.12.313_b0110
Woo (10.1016/j.matpr.2020.12.313_b0075) 2014; 18
Abbood (10.1016/j.matpr.2020.12.313_b0095) 2018; 9
Kamal (10.1016/j.matpr.2020.12.313_b0035) 2014; 10
Mahmod (10.1016/j.matpr.2020.12.313_b0080) 2017; 21
Pang (10.1016/j.matpr.2020.12.313_b0135) 2016; 20
Sardar (10.1016/j.matpr.2020.12.313_b0090) 2017; 3
Adjrad (10.1016/j.matpr.2020.12.313_b0015) 2016
Mahmod (10.1016/j.matpr.2020.12.313_b0105) 2018; 16
Tadepalli (10.1016/j.matpr.2020.12.313_b0065) 2015; 9
Goel (10.1016/j.matpr.2020.12.313_b0055) 2014; 74
Frazão (10.1016/j.matpr.2020.12.313_b0140) 2015; 80
Jaejer (10.1016/j.matpr.2020.12.313_b0115) 1997
10.1016/j.matpr.2020.12.313_b0005
Grünewald (10.1016/j.matpr.2020.12.313_b0050) 2001; 31
Ghavidel (10.1016/j.matpr.2020.12.313_b0070) 2015; 73
References_xml – volume: 9
  start-page: 208
  year: 2018
  end-page: 219
  ident: b0095
  article-title: Seismic response analysis of linked twin tall buildings with structural coupling
  publication-title: Int. J. Civ. Eng. Tech. (IJCIET)
– volume: 2
  start-page: 186
  year: 1998
  end-page: 194
  ident: b0120
  article-title: Behavior and ductility of simple and continuous FRP reinforced beams
  publication-title: J. Compos. Constr.
– volume: 74
  start-page: 65
  year: 2014
  end-page: 73
  ident: b0055
  article-title: Fatigue performance of plain and steel fibre reinforced self compacting concrete using S-N relationship
  publication-title: Eng. Struct.
– volume: 3
  start-page: 83
  year: 2017
  end-page: 98
  ident: b0090
  article-title: Nonlinear pushover analysis for steel beam-column connection
  publication-title: Eurasian J. Sci. Eng.
– reference: A. Naaman, S. Jeong, 45 structural ductility of concrete beams prestressed with FRP tendons, in: Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Second International RILEM Symposium, CRC Press, 1995.
– volume: 84
  start-page: 387
  year: 2015
  end-page: 398
  ident: b0020
  article-title: A review on mixture design methods for self-compacting concrete
  publication-title: Constr. Build. Mater.
– reference: G. Spadea, F. Bencardino, R. Swamy, Strengthening and upgrading structures with bonded CFRP sheets design aspects for structural integrity, in: Proc., 3rd Int. Symp. on Non-Metallic (FRP) Reinforcement for Concrete Structures, 1997.
– volume: 31
  start-page: 1793
  year: 2001
  end-page: 1798
  ident: b0050
  article-title: Parameter-study on the influence of steel fibers and coarse aggregate content on the fresh properties of self-compacting concrete
  publication-title: Cem. Concr. Res.
– volume: 101
  start-page: 698
  year: 2015
  end-page: 714
  ident: b0010
  article-title: Influence of the viscosity of self-compacting concrete and the presence of rebars on the formwork pressure while filling bottom-up
  publication-title: Eng. Struct.
– volume: 93
  start-page: 1206
  year: 2015
  end-page: 1215
  ident: b0040
  article-title: Curing effect in the shrinkage of a lower strength self-compacting concrete
  publication-title: Constr. Build. Mater.
– volume: 10
  start-page: 25
  year: 2014
  end-page: 34
  ident: b0035
  article-title: Mechanical properties of self-compacted fiber concrete mixes
  publication-title: HBRC J.
– volume: 9
  start-page: 267
  year: 2015
  end-page: 281
  ident: b0065
  article-title: Shear strength of prestressed steel fiber concrete I-beams
  publication-title: Int. J. Concr. Struct. Mater.
– reference: ASTM-C-494, Standard Specification for Chemical Admixtures for Concrete, 2007.
– volume: 96
  start-page: 865
  year: 1999
  end-page: 874
  ident: b0125
  article-title: Strengthening reinforced concrete beams using fiber reinforced polymer (FRP) laminates
  publication-title: ACI Struct. J.-Am. Concr. Inst.
– start-page: 50
  year: 1997
  end-page: 54
  ident: b0025
  article-title: Self-compacting high-performance concrete
  publication-title: Concr. Int.
– start-page: 1
  year: 2016
  end-page: 9
  ident: b0015
  article-title: Prediction of the rupture of circular sections of reinforced concrete and fiber reinforced concrete
  publication-title: Int. J. Concr. Struct. Mater.
– volume: 21
  start-page: 1347
  year: 2017
  end-page: 1358
  ident: b0080
  article-title: Evaluation of rubberized fibre mortar exposed to elevated temperature using destructive and non-destructive testing
  publication-title: KSCE J. Civ. Eng.
– volume: 73
  start-page: 628
  year: 2015
  end-page: 639
  ident: b0070
  article-title: Reliability of pull-off test for steel fiber reinforced self-compacting concrete
  publication-title: Measurement
– volume: 7
  start-page: 13199
  year: 2017
  ident: b0100
  article-title: Strengthening of reinforced concrete beams using FRP technique: a review
  publication-title: Int. J. Eng. Sci.
– volume: 7
  start-page: 303
  year: 2013
  end-page: 317
  ident: b0060
  article-title: Principal component and multiple regression analysis for steel fiber reinforced concrete (SFRC) beams
  publication-title: Int. J. Concr. Struct. Mater.
– reference: K. Ozawa, High-performance concrete based on the durability design of concrete structures, in: Proc. of the Second East Asia-Pacific Conference on Structural Engineering and Construction, 1989.
– year: 1997
  ident: b0115
  article-title: The concept of the overall performance factor in rectangular-section reinforced concrete beams
  publication-title: Proceedings of the 3rd international symposium on non-metallic (FRP) reinforcement for concrete structures
– volume: 20
  start-page: 04015086
  year: 2016
  ident: b0135
  article-title: Design propositions for hybrid FRP-steel reinforced concrete beams
  publication-title: J. Compos. Constr.
– year: 2017
  ident: b0045
  article-title: Experimental investigation on the behavior of normal strength and high strength self-curing self-compacting concrete
  publication-title: J. Build. Eng.
– volume: 18
  start-page: 1446
  year: 2014
  end-page: 1454
  ident: b0075
  article-title: Tensile cracking constitutive model of steel fiber reinforced concrete (SFRC)
  publication-title: KSCE J. Civ. Eng.
– volume: 13
  start-page: 1576
  year: 2016
  end-page: 1595
  ident: b0085
  article-title: Effect of an opening on reinforced concrete hollow beam web under torsional, flexural, and cyclic loadings
  publication-title: Latin Am. J. Solids Struct.
– volume: 80
  start-page: 155
  year: 2015
  end-page: 166
  ident: b0140
  article-title: Durability of steel fiber reinforced self-compacting concrete
  publication-title: Constr. Build. Mater.
– volume: 16
  start-page: 228
  year: 2018
  end-page: 237
  ident: b0105
  article-title: Flexural behavior of self-compacting concrete beams strengthened with steel fiber reinforcement
  publication-title: J. Build. Eng.
– volume: 18
  start-page: 1446
  issue: 5
  year: 2014
  ident: 10.1016/j.matpr.2020.12.313_b0075
  article-title: Tensile cracking constitutive model of steel fiber reinforced concrete (SFRC)
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-014-0335-3
– volume: 16
  start-page: 228
  year: 2018
  ident: 10.1016/j.matpr.2020.12.313_b0105
  article-title: Flexural behavior of self-compacting concrete beams strengthened with steel fiber reinforcement
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2018.01.006
– ident: 10.1016/j.matpr.2020.12.313_b0130
– volume: 74
  start-page: 65
  year: 2014
  ident: 10.1016/j.matpr.2020.12.313_b0055
  article-title: Fatigue performance of plain and steel fibre reinforced self compacting concrete using S-N relationship
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2014.05.010
– volume: 7
  start-page: 303
  issue: 4
  year: 2013
  ident: 10.1016/j.matpr.2020.12.313_b0060
  article-title: Principal component and multiple regression analysis for steel fiber reinforced concrete (SFRC) beams
  publication-title: Int. J. Concr. Struct. Mater.
  doi: 10.1007/s40069-013-0059-7
– volume: 96
  start-page: 865
  issue: 5
  year: 1999
  ident: 10.1016/j.matpr.2020.12.313_b0125
  article-title: Strengthening reinforced concrete beams using fiber reinforced polymer (FRP) laminates
  publication-title: ACI Struct. J.-Am. Concr. Inst.
– volume: 3
  start-page: 83
  issue: 1
  year: 2017
  ident: 10.1016/j.matpr.2020.12.313_b0090
  article-title: Nonlinear pushover analysis for steel beam-column connection
  publication-title: Eurasian J. Sci. Eng.
  doi: 10.23918/eajse.v3i1sip83
– year: 1997
  ident: 10.1016/j.matpr.2020.12.313_b0115
  article-title: The concept of the overall performance factor in rectangular-section reinforced concrete beams
– start-page: 50
  year: 1997
  ident: 10.1016/j.matpr.2020.12.313_b0025
  article-title: Self-compacting high-performance concrete
  publication-title: Concr. Int.
– volume: 7
  start-page: 13199
  issue: 6
  year: 2017
  ident: 10.1016/j.matpr.2020.12.313_b0100
  article-title: Strengthening of reinforced concrete beams using FRP technique: a review
  publication-title: Int. J. Eng. Sci.
– volume: 10
  start-page: 25
  issue: 1
  year: 2014
  ident: 10.1016/j.matpr.2020.12.313_b0035
  article-title: Mechanical properties of self-compacted fiber concrete mixes
  publication-title: HBRC J.
  doi: 10.1016/j.hbrcj.2013.05.012
– volume: 101
  start-page: 698
  year: 2015
  ident: 10.1016/j.matpr.2020.12.313_b0010
  article-title: Influence of the viscosity of self-compacting concrete and the presence of rebars on the formwork pressure while filling bottom-up
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.08.008
– ident: 10.1016/j.matpr.2020.12.313_b0005
– volume: 31
  start-page: 1793
  issue: 12
  year: 2001
  ident: 10.1016/j.matpr.2020.12.313_b0050
  article-title: Parameter-study on the influence of steel fibers and coarse aggregate content on the fresh properties of self-compacting concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(01)00555-5
– volume: 2
  start-page: 186
  issue: 4
  year: 1998
  ident: 10.1016/j.matpr.2020.12.313_b0120
  article-title: Behavior and ductility of simple and continuous FRP reinforced beams
  publication-title: J. Compos. Constr.
  doi: 10.1061/(ASCE)1090-0268(1998)2:4(186)
– volume: 93
  start-page: 1206
  year: 2015
  ident: 10.1016/j.matpr.2020.12.313_b0040
  article-title: Curing effect in the shrinkage of a lower strength self-compacting concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.04.035
– volume: 9
  start-page: 267
  issue: 3
  year: 2015
  ident: 10.1016/j.matpr.2020.12.313_b0065
  article-title: Shear strength of prestressed steel fiber concrete I-beams
  publication-title: Int. J. Concr. Struct. Mater.
  doi: 10.1007/s40069-015-0109-4
– volume: 13
  start-page: 1576
  issue: 8
  year: 2016
  ident: 10.1016/j.matpr.2020.12.313_b0085
  article-title: Effect of an opening on reinforced concrete hollow beam web under torsional, flexural, and cyclic loadings
  publication-title: Latin Am. J. Solids Struct.
  doi: 10.1590/1679-782512629
– volume: 84
  start-page: 387
  year: 2015
  ident: 10.1016/j.matpr.2020.12.313_b0020
  article-title: A review on mixture design methods for self-compacting concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.03.079
– volume: 9
  start-page: 208
  issue: 11
  year: 2018
  ident: 10.1016/j.matpr.2020.12.313_b0095
  article-title: Seismic response analysis of linked twin tall buildings with structural coupling
  publication-title: Int. J. Civ. Eng. Tech. (IJCIET)
– volume: 21
  start-page: 1347
  issue: 4
  year: 2017
  ident: 10.1016/j.matpr.2020.12.313_b0080
  article-title: Evaluation of rubberized fibre mortar exposed to elevated temperature using destructive and non-destructive testing
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-016-0721-0
– volume: 73
  start-page: 628
  year: 2015
  ident: 10.1016/j.matpr.2020.12.313_b0070
  article-title: Reliability of pull-off test for steel fiber reinforced self-compacting concrete
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.06.013
– volume: 80
  start-page: 155
  year: 2015
  ident: 10.1016/j.matpr.2020.12.313_b0140
  article-title: Durability of steel fiber reinforced self-compacting concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.01.061
– volume: 20
  start-page: 04015086
  issue: 4
  year: 2016
  ident: 10.1016/j.matpr.2020.12.313_b0135
  article-title: Design propositions for hybrid FRP-steel reinforced concrete beams
  publication-title: J. Compos. Constr.
  doi: 10.1061/(ASCE)CC.1943-5614.0000654
– start-page: 1
  year: 2016
  ident: 10.1016/j.matpr.2020.12.313_b0015
  article-title: Prediction of the rupture of circular sections of reinforced concrete and fiber reinforced concrete
  publication-title: Int. J. Concr. Struct. Mater.
– ident: 10.1016/j.matpr.2020.12.313_b0110
– year: 2017
  ident: 10.1016/j.matpr.2020.12.313_b0045
  article-title: Experimental investigation on the behavior of normal strength and high strength self-curing self-compacting concrete
  publication-title: J. Build. Eng.
– ident: 10.1016/j.matpr.2020.12.313_b0030
SSID ssj0001560816
Score 2.234489
Snippet Although the ductility index of the reinforced concrete element has been the subject of many research objectives and critical analysis recently, scare...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 2259
SubjectTerms Ductility energy index ([formula omitted])
Energy absorption
Fibrous steel
Flexural load
Self-compacting concrete
Title Self-compacting concrete beams reinforced with steel fiber under flexural loads: A ductility index evaluation
URI https://dx.doi.org/10.1016/j.matpr.2020.12.313
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKWVgQCBDPygMjoa2dOA5bVYEKCBao1C2K7bMECqVqiwQLv507N6EgoQ6sUS5Kzud75fN3jJ0aKb1WKo7A4naLnfcRmnI3sllqEzCJL0LD7e5eDYbxzSgZNVi_PgtDsMrK9y98evDW1ZV2pc325Omp_SBoxI6mwQYx_VsarbF1ITOVNNl67_p2cL9stWBU12EIKolEJFPzDwWkF6aGE6IGFcS1gEWs_DtG_Yg7V1tss0oYeW_xTtusAeMd9vIApY8CftwSbpljVYvp3xy4geJlxqcQCFHx6zg1WjkuJZTcEzqE06mxKfclvBPjBi9fCze74D1OxK8ElP3ggUGRL3nAd9nw6vKxP4iqwQmRlbGeR6nvaGuN1y6zQkKmARR4IWNwRZqqTHdSH2vvPaBioKs6xmnAnS2VUVh_KLnHmuPXMewzrkB4Y0UinXCxdfjcInVYeTp0BdIkyQETtapyW7GK03CLMq_hY8950G9O-s27Ikf9HrCzb6HJglRj9e2qXoP8l23k6PZXCR7-V_CIbQjCroRWyzFrzqdvcILJx9y02Nr5Z7dVmdgXo7fbjw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLAgECDeeGAktLUdx2VDCFSeCyB1s2L7LIFCqUqRYOG3c-cmPCTEwBrlouR8vlc-f8fYnpMyGq1VBh63mwoxZmjKncx3C5-Dy2OZGm5X17p3p877eX-KHTdnYQhWWfv-iU9P3rq-0qq12Rre37duBI3YMTTYQNG_pf40m1W5LAjXd_De-Wq0YEw3aQQqCWQk0bAPJZwXJoZDIgYVxLSAJaz8PUJ9izqni2yhThf50eSNltgUDJbZ4w1UMUvocU-oZY41LSZ_Y-AOysdnPoJEh4rfxqnNynEhoeKRsCGczoyNeKzglfg2ePVUhudDfsSJ9pVgsm888SfyLxbwFXZ3enJ73MvqsQmZl8qMsyK2jfcumtD1QkLXAGiIQioIZVHormkXUZkYI6BioKPbLhjAfS2101h9aLnKZgZPA1hjXIOIzotcBhGUD_jcsghYdwZ0BNLl-ToTjaqsrznFabRFZRvw2INN-rWkX9sRFvW7zvY_hYYTSo2_b9fNGtgflmHR6f8luPFfwV0217u9urSXZ9cXm2xeEIolNV222Mx49ALbmIaM3U4ysw9_vdxa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-compacting+concrete+beams+reinforced+with+steel+fiber+under+flexural+loads%3A+A+ductility+index+evaluation&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Odaa%2C+Sief+aldeen&rft.au=Hason%2C+Mahir+M.&rft.au=Sharba%2C+Amjad+Ali+K.&rft.date=2021&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=42&rft.spage=2259&rft.epage=2267&rft_id=info:doi/10.1016%2Fj.matpr.2020.12.313&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matpr_2020_12_313
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon