Determinants of pedestrian mediolateral foot placement in walking on laterally-oscillating structures and their consequences for structural stability
An active control of foot placement in the frontal plane is required to maintain balance during walking. It has been previously shown that, for walking on stationary structures, the foot is placed at a mediolateral distance from the body centre of mass (CoM) determined by the CoM mediolateral veloci...
Saved in:
Published in | Mechanical systems and signal processing Vol. 222; p. 111793 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An active control of foot placement in the frontal plane is required to maintain balance during walking. It has been previously shown that, for walking on stationary structures, the foot is placed at a mediolateral distance from the body centre of mass (CoM) determined by the CoM mediolateral velocity at the instance of heel strike plus some constant offset. However, it is currently unknown whether the same relationship applies in walking on laterally-oscillating structures and to what extent the structural motion and visual conditions govern the pedestrian stepping behaviour in this case. To this end, six healthy subjects walked on a custom-built wide-belt self-paced treadmill with and without sinusoidal mediolateral treadmill motion. The visual environment was either that of a laboratory, or one of two scenes set in an immersive virtual reality (VR) delivered via a head mounted display. The VR scenes differed with respect to the type and amount of visual reference cues enabling the estimation of self-motion. Multilevel statistical modelling is performed on kinematic data on the behaviour of the walkers. It is shown that the foot placement control law based on the mediolateral velocity of the centre of mass applies, and that the lateral structural motion or lack thereof and visual conditions modulate the step width in different ways. Based on these findings, simulations of the inverted pendulum pedestrian model are conducted revealing the influence of parameters defining the foot placement control law on pedestrian-generated lateral forces governing the amplitudes of lateral structural response.
•Pedestrians walking under various ground motion and visual conditions are tested.•Statistical multilevel models are used to analyse the foot placement control law.•That law is then adopted in simulations of the inverted pendulum pedestrian model.•Self-excited forces are quantified in terms of equivalent added damping and mass.•They are found independent of visual conditions, unlike other force components. |
---|---|
AbstractList | An active control of foot placement in the frontal plane is required to maintain balance during walking. It has been previously shown that, for walking on stationary structures, the foot is placed at a mediolateral distance from the body centre of mass (CoM) determined by the CoM mediolateral velocity at the instance of heel strike plus some constant offset. However, it is currently unknown whether the same relationship applies in walking on laterally-oscillating structures and to what extent the structural motion and visual conditions govern the pedestrian stepping behaviour in this case. To this end, six healthy subjects walked on a custom-built wide-belt self-paced treadmill with and without sinusoidal mediolateral treadmill motion. The visual environment was either that of a laboratory, or one of two scenes set in an immersive virtual reality (VR) delivered via a head mounted display. The VR scenes differed with respect to the type and amount of visual reference cues enabling the estimation of self-motion. Multilevel statistical modelling is performed on kinematic data on the behaviour of the walkers. It is shown that the foot placement control law based on the mediolateral velocity of the centre of mass applies, and that the lateral structural motion or lack thereof and visual conditions modulate the step width in different ways. Based on these findings, simulations of the inverted pendulum pedestrian model are conducted revealing the influence of parameters defining the foot placement control law on pedestrian-generated lateral forces governing the amplitudes of lateral structural response.
•Pedestrians walking under various ground motion and visual conditions are tested.•Statistical multilevel models are used to analyse the foot placement control law.•That law is then adopted in simulations of the inverted pendulum pedestrian model.•Self-excited forces are quantified in terms of equivalent added damping and mass.•They are found independent of visual conditions, unlike other force components. |
ArticleNumber | 111793 |
Author | Bocian, Mateusz Burn, Jeremy F. Wdowicka, Hanna Macdonald, John H.G. |
Author_xml | – sequence: 1 givenname: Mateusz orcidid: 0000-0002-3539-5474 surname: Bocian fullname: Bocian, Mateusz email: mateusz.bocian@pwr.edu.pl organization: Faculty of Civil Engineering, Wrocław University of Science and Technology, Poland – sequence: 2 givenname: Hanna surname: Wdowicka fullname: Wdowicka, Hanna organization: Department of Statistics, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875, Poland – sequence: 3 givenname: Jeremy F. surname: Burn fullname: Burn, Jeremy F. organization: Department of Mechanical Engineering, University of Bristol, Queen’s Building, University Walk, BS8 1TR, UK – sequence: 4 givenname: John H.G. surname: Macdonald fullname: Macdonald, John H.G. organization: Department of Civil Engineering, University of Bristol, Queen’s Building, University Walk, BS8 1TR, UK |
BookMark | eNqFkMtOAyEUhlloolWfwA0vMBWGGTqzcGHqNWniRteEyxmlMlCBavogvq_UGhcudEXgP985h2-C9nzwgNApJVNKKD9bTjdjSqtpTepmSimd9WwPHZKu6ypWz8gBmqS0JIT0DeGH6OMSMsTReulzwmHAKzCQcrTS4xGMDU6WXDo8hJDxykkNI_iMrcfv0r1Y_4SDx99FblOFpK0r121Q2qx1XkdIWHqD8zPYiHXwCV7X4HV5HkL8qSozUpbKOps3x2h_kC7Byfd5hB6vrx7mt9Xi_uZufrGoNGu6XM14V_PWMF03uh1Ur3jbMWOUkS2lXKtBG8kbpYlUrFFE9b2pW214y2lTawbsCPW7vjqGlCIMQttclg8-R2mdoERsnYql-HIqtk7Fzmlh2S92Fe0o4-Yf6nxHQfnWm4UoirCtDGMj6CxMsH_yn-tLnOA |
CitedBy_id | crossref_primary_10_3390_su17052077 |
Cites_doi | 10.1016/j.gaitpost.2009.01.010 10.1016/j.gaitpost.2005.05.005 10.1098/rsos.200622 10.1038/438043a 10.1016/j.jsv.2010.09.034 10.1016/j.gaitpost.2013.12.005 10.1016/j.jsv.2016.12.022 10.1016/j.jbiomech.2011.12.027 10.1016/j.jbiomech.2010.02.003 10.1016/S0966-6362(96)01109-5 10.1016/j.compstruc.2014.02.003 10.1016/j.ymssp.2017.12.020 10.1016/j.jsv.2012.03.023 10.1016/0966-6362(96)82849-9 10.1152/jn.00138.2014 10.1016/j.jsv.2012.12.027 10.1016/j.jsv.2017.06.036 10.1016/j.engstruct.2015.09.043 10.1016/j.jbiomech.2014.02.033 10.1242/jeb.042572 10.1016/j.gaitpost.2015.09.026 10.1016/0021-9290(85)90042-9 10.1186/s11556-017-0188-0 10.1016/j.jsv.2014.06.022 10.1007/BF00227304 10.1016/j.gaitpost.2018.10.029 10.1016/j.jbiomech.2012.12.017 10.1098/rsbl.2014.0405 10.1016/j.gaitpost.2006.04.013 10.1519/JSC.0b013e31822e592c 10.1016/j.jbiomech.2017.12.026 10.1123/kr.2017-0053 10.1016/S0966-6362(03)00008-0 10.1016/j.jbiomech.2004.03.025 10.1016/j.jsv.2024.118494 10.1016/j.humov.2007.08.003 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.ymssp.2024.111793 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_ymssp_2024_111793 S0888327024006915 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG5 LG9 LY7 M41 R2- RIG SBC SET SSH WUQ |
ID | FETCH-LOGICAL-c348t-768265d3c24c5fb9b6583ddbda5116cbfcda64bc0ab34b0b99d25cd656142c3e3 |
IEDL.DBID | .~1 |
ISSN | 0888-3270 |
IngestDate | Tue Jul 01 04:30:22 EDT 2025 Thu Apr 24 22:51:42 EDT 2025 Sat Aug 31 16:02:50 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Step width Gait stability Bridge dynamics Foot placement control law Virtual reality |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-768265d3c24c5fb9b6583ddbda5116cbfcda64bc0ab34b0b99d25cd656142c3e3 |
ORCID | 0000-0002-3539-5474 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0888327024006915 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ymssp_2024_111793 crossref_primary_10_1016_j_ymssp_2024_111793 elsevier_sciencedirect_doi_10_1016_j_ymssp_2024_111793 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 2025-01-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ciprandi, Bertozzi, Zago, Pimenta Ferreira, Boari, Sforza, Galvani (b35) 2017; 14 Keene, Moe-Nilssen, Lamb (b28) 2016; 43 Soczawa-Stronczyk, Bocian (b45) 2020; 7 Stimpson, Heitkamp, Horne, J.C. (b34) 2018; 48 Bocian, Burn, Macdonald, Brownjohn (b17) 2017; 392 Bocian, Macdonald, Burn (b51) 2014; 136 Beurskens, Wilken, Dingwell (b15) 2014; 47 Reimann, Fettrow, Jeka (b47) 2018; 7 Hof (b8) 2008; 27 Townsend (b5) 1985; 18 Bates (b29) 2010 Claff, Williams, Blakeborough (b33) 2017; 407 Rankin, Buffo, Dean (b11) 2014; 112 Winter (b24) 1995; 3 Vlutters, van Asseldonk, van der Kooij (b10) 2016; 219 Dallard, Fitzpatrick, Flint, Le Bourva, Low, Ridsdill Smith, Willford (b36) 2001; 79 M. Bocian, J. Macdonald, J. Burn, Determination of pedestrian loads in the presence of multi-modal lateral bridge vibrations, in: Proceedings of Eurodyn 2014 – 9th International Conference on Structural Dynamics, Porto, Portugal, 2014. Katsavelis, Mukherjee, Decker, Stergiou (b42) 2010; 14 Hak, Houdijk, Steenbrink, Mert, van der Wurff, Beek, van Dieën (b44) 2013; 46/5 McAndrew, Dingwell, Wilken (b14) 2010; 43 National Health Service (NHS) (b52) 2009 Bocian, Macdonald, Burn, Brownjohn (b16) 2015; 105 Carroll, Owen, Hussein (b32) 2014; 333 Czaplewski, Bocian (b19) 2024 Goldstein (b26) 2003 Oddsson, Wall, McPartland, Krebs, Tucker (b12) 2004; 19 Sloot, van der Krogt, Harlaar (b41) 2014; 39 Hof, Vermerris, Gjaltema (b9) 2010; 213 Macdonald (b2) 2009; 465 Menegoni, Albani, Bigoni, Priano, Trotti, Galli, Mauro (b43) 2009; 144 McRobie (b50) 2013; 332 Belykh, Bocian, Champneys, Daley, Jeter, Macdonald, McRobie (b1) 2021; 12 Winter (b4) 2009 Patla (b20) 1997; 5/1 Bardy, Warren, Kay (b21) 1996; 111/2 Hof, van Bockel, Schoppen, Postema (b7) 2007; 25 Hollman, Brey, Robb, Bang, Kaufman (b39) 2006; 23 Wang, Srinivasan (b46) 2014; 10 Fettrow, Reimann, Grenet, Crenshaw, Higginson, Jeka (b48) 2019; 1/40 Schwarz (b30) 1978; 6/2 Czaplewski, Bocian, Macdonald (b18) 2023 Ingólfsson, Georgakis, Ricciardelli, Jönsson (b31) 2011; 330 Bocian, Macdonald, Burn (b38) 2012; 331 Hof, Gazendam, Sinke (b6) 2005; 38 Wilkin, Cheryl, Haddock (b22) 2012; 26/4 Martelli, Xia, Prado, Agrawal (b40) 2019; 67 Brady, Peters, Bloomberg (b13) 2009; 29 Alexander (b3) 2003 Bocian, Brownjohn, Racic, Hester, Quattrone, Gilbert, Beasley (b23) 2018; 105 Hox (b27) 2010 Strogatz, Abrams, McRobie, Eckhardt, Ott (b37) 2005; 438 McAndrew Young, Wilken, Dingwell (b25) 2012; 45 Belykh (10.1016/j.ymssp.2024.111793_b1) 2021; 12 Hof (10.1016/j.ymssp.2024.111793_b8) 2008; 27 Fettrow (10.1016/j.ymssp.2024.111793_b48) 2019; 1/40 Brady (10.1016/j.ymssp.2024.111793_b13) 2009; 29 Winter (10.1016/j.ymssp.2024.111793_b4) 2009 Beurskens (10.1016/j.ymssp.2024.111793_b15) 2014; 47 Patla (10.1016/j.ymssp.2024.111793_b20) 1997; 5/1 Bocian (10.1016/j.ymssp.2024.111793_b23) 2018; 105 Dallard (10.1016/j.ymssp.2024.111793_b36) 2001; 79 Hollman (10.1016/j.ymssp.2024.111793_b39) 2006; 23 Bocian (10.1016/j.ymssp.2024.111793_b17) 2017; 392 Vlutters (10.1016/j.ymssp.2024.111793_b10) 2016; 219 McRobie (10.1016/j.ymssp.2024.111793_b50) 2013; 332 Bocian (10.1016/j.ymssp.2024.111793_b51) 2014; 136 Soczawa-Stronczyk (10.1016/j.ymssp.2024.111793_b45) 2020; 7 Macdonald (10.1016/j.ymssp.2024.111793_b2) 2009; 465 Ciprandi (10.1016/j.ymssp.2024.111793_b35) 2017; 14 Martelli (10.1016/j.ymssp.2024.111793_b40) 2019; 67 Sloot (10.1016/j.ymssp.2024.111793_b41) 2014; 39 Oddsson (10.1016/j.ymssp.2024.111793_b12) 2004; 19 Bates (10.1016/j.ymssp.2024.111793_b29) 2010 Wang (10.1016/j.ymssp.2024.111793_b46) 2014; 10 Hak (10.1016/j.ymssp.2024.111793_b44) 2013; 46/5 Bardy (10.1016/j.ymssp.2024.111793_b21) 1996; 111/2 Carroll (10.1016/j.ymssp.2024.111793_b32) 2014; 333 Claff (10.1016/j.ymssp.2024.111793_b33) 2017; 407 National Health Service (NHS) (10.1016/j.ymssp.2024.111793_b52) 2009 Hof (10.1016/j.ymssp.2024.111793_b6) 2005; 38 Alexander (10.1016/j.ymssp.2024.111793_b3) 2003 Wilkin (10.1016/j.ymssp.2024.111793_b22) 2012; 26/4 10.1016/j.ymssp.2024.111793_b49 Stimpson (10.1016/j.ymssp.2024.111793_b34) 2018; 48 Katsavelis (10.1016/j.ymssp.2024.111793_b42) 2010; 14 Winter (10.1016/j.ymssp.2024.111793_b24) 1995; 3 Hof (10.1016/j.ymssp.2024.111793_b9) 2010; 213 Reimann (10.1016/j.ymssp.2024.111793_b47) 2018; 7 Hof (10.1016/j.ymssp.2024.111793_b7) 2007; 25 Bocian (10.1016/j.ymssp.2024.111793_b38) 2012; 331 Czaplewski (10.1016/j.ymssp.2024.111793_b19) 2024 Strogatz (10.1016/j.ymssp.2024.111793_b37) 2005; 438 McAndrew Young (10.1016/j.ymssp.2024.111793_b25) 2012; 45 Keene (10.1016/j.ymssp.2024.111793_b28) 2016; 43 Menegoni (10.1016/j.ymssp.2024.111793_b43) 2009; 144 Rankin (10.1016/j.ymssp.2024.111793_b11) 2014; 112 Bocian (10.1016/j.ymssp.2024.111793_b16) 2015; 105 Townsend (10.1016/j.ymssp.2024.111793_b5) 1985; 18 Hox (10.1016/j.ymssp.2024.111793_b27) 2010 Goldstein (10.1016/j.ymssp.2024.111793_b26) 2003 Schwarz (10.1016/j.ymssp.2024.111793_b30) 1978; 6/2 McAndrew (10.1016/j.ymssp.2024.111793_b14) 2010; 43 Czaplewski (10.1016/j.ymssp.2024.111793_b18) 2023 Ingólfsson (10.1016/j.ymssp.2024.111793_b31) 2011; 330 |
References_xml | – volume: 465 start-page: 1055 year: 2009 end-page: 1073 ident: b2 article-title: Lateral excitation of bridges by balancing pedestrians publication-title: Proc. R. Soc. Lond. Math. Phys. Eng. Sci. – volume: 39 start-page: 939 year: 2014 end-page: 945 ident: b41 article-title: Effects of adding a virtual reality environment to different modes of treadmill wlaking publication-title: Gait Posture – year: 2003 ident: b26 article-title: Multilevel statistical models – volume: 7 year: 2020 ident: b45 article-title: Gait coordination in overground walking with a virtual reality avatar publication-title: R Soc. Open Sci. – volume: 27 start-page: 112 year: 2008 end-page: 125 ident: b8 article-title: The ’extrapolated center of mass’ concept suggests a simple control of balance in walking publication-title: Hum. Mov. Sci. – volume: 47 start-page: 1675 year: 2014 end-page: 1681 ident: b15 article-title: Dynamic stability of individuals with transtibial amputation walking in destabilizing environments publication-title: J. Biomech. – volume: 38 start-page: 1 year: 2005 end-page: 8 ident: b6 article-title: The condition for dynamic stability publication-title: J. Biomech. – volume: 46/5 start-page: 905 year: 2013 end-page: 911 ident: b44 article-title: Stepping strategies for regulating gait adaptability and stability publication-title: J. Biomech. – volume: 213 start-page: 2655 year: 2010 end-page: 2664 ident: b9 article-title: Balance responses to lateral perturbations in human treadmill walking publication-title: J Exp Biol – volume: 331 start-page: 3914 year: 2012 end-page: 3929 ident: b38 article-title: Biomechanically inspired modelling of pedestrian-induced forces on laterally oscillating structures publication-title: J. Sound Vib. – year: 2024 ident: b19 article-title: Long-term solutions to calibrated and generalised Macdonald’s model for pedestrian-induced lateral forces publication-title: J. Sound Vib. – volume: 14 start-page: 19 year: 2017 ident: b35 article-title: Estimating the dimenssion of a model publication-title: Eur. Rev Aging Phys Activity – volume: 112 start-page: 374 year: 2014 end-page: 383 ident: b11 article-title: A neuromechanical strategy for mediolateral foot placement in walking humans publication-title: J Neurophysiol – volume: 438 start-page: 43 year: 2005 end-page: 44 ident: b37 article-title: Crowd synchrony on the millennium bridge publication-title: Nature – volume: 26/4 start-page: 1039 year: 2012 end-page: 1044 ident: b22 article-title: Energy expenditure comparison between walking and running in average fitness individuals publication-title: J Strength and Cond. Res – volume: 7 start-page: 18 year: 2018 end-page: 25 ident: b47 article-title: Strategies for the control of balance during locomotion publication-title: Kinesiol. Rev. – volume: 6/2 start-page: 461 year: 1978 end-page: 464 ident: b30 article-title: Estimating the dimenssion of a model publication-title: Ann. Statist. – volume: 48 start-page: 78 year: 2018 end-page: 83 ident: b34 article-title: Effects of wlaking speed on the step-to-step control of step width publication-title: J. Biomech. – volume: 136 start-page: 108 year: 2014 end-page: 119 ident: b51 article-title: Probabilistic criteria for lateral dynamic stability of bridges under crowd loading publication-title: Comput. Struct. – volume: 29 start-page: 645 year: 2009 end-page: 649 ident: b13 article-title: Strategies of healthy adults walking on a laterally oscillating treadmill publication-title: Gait Posture – volume: 219 start-page: 1514 year: 2016 end-page: 1523 ident: b10 article-title: Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking publication-title: J Exp Biol – volume: 5/1 start-page: 54 year: 1997 end-page: 69 ident: b20 article-title: Understanding the roles of vision in the control of human locomotion publication-title: Gait Posture – volume: 19 start-page: 24 year: 2004 end-page: 34 ident: b12 article-title: Recovery from perturbations during paced walking publication-title: Gait Posture – volume: 333 start-page: 5865 year: 2014 end-page: 5884 ident: b32 article-title: Experimental identification of the lateral human-structure interaction mechanism and assessment of the inverted-pendulum biomechanical model publication-title: J. Sound Vib. – volume: 18 start-page: 21 year: 1985 end-page: 38 ident: b5 article-title: Biped gait stabilization via foot placement publication-title: J. Biomech. – volume: 67 start-page: 251 year: 2019 end-page: 256 ident: b40 article-title: Gait adaptations during overground wlaking and multidirectional oscillations of the visual field in a virtual reality headset publication-title: Gait Posture – volume: 45 start-page: 1053 year: 2012 end-page: 1059 ident: b25 article-title: Dynamic margins of stability during human walking in destabilizing environments publication-title: J. Biomech. – volume: 105 start-page: 502 year: 2018 end-page: 523 ident: b23 article-title: Time-dependent spectral analysis of interactions within groups of walking pedestrians and vertical structural motion using wavelets publication-title: Mech. Syst. Signal Process. – volume: 1/40 year: 2019 ident: b48 article-title: Walking cadence affects the recruitment of the medial-lateral balance mechanism publication-title: Front Sports and Act. Living – volume: 25 start-page: 250 year: 2007 end-page: 258 ident: b7 article-title: Control of lateral balance in walking: experimental findings in normal subjects and above-knee amputees publication-title: Gait Posture – volume: 332 start-page: 2846 year: 2013 end-page: 2855 ident: b50 article-title: Long-term solutions to macdonald’s model for pedestrian-induced lateral forces publication-title: J. Sound Vib. – volume: 330 start-page: 1265 year: 2011 end-page: 1284 ident: b31 article-title: Experimental identification of pedestrian-induced forces on footbridges publication-title: J. Sound Vib. – volume: 105 start-page: 62 year: 2015 end-page: 76 ident: b16 article-title: Experimental identification of the behaviour of and lateral forces from freely-walking pedestrians on laterally oscillating structures in a virtual reality environment publication-title: Eng. Struct. – volume: 10 year: 2014 ident: b46 article-title: Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking publication-title: Biol. Lett. – year: 2003 ident: b3 article-title: Principles of Animal Locomotion – volume: 43 start-page: 1470 year: 2010 end-page: 1475 ident: b14 article-title: Walking variability during continuous pseudo-random oscillations of the support surface and visual field publication-title: J. Biomech. – volume: 392 start-page: 382 year: 2017 end-page: 399 ident: b17 article-title: From phase drift to synchronisation - pedestrian stepping behaviour on laterally oscillating structures and consequences for dynamic stability publication-title: J. Sound Vib. – volume: 79 start-page: 17 year: 2001 end-page: 21 ident: b36 article-title: The London Millennium Footbridge publication-title: Struct. Eng. Mech. – volume: 43 start-page: 216 year: 2016 end-page: 219 ident: b28 article-title: The application of multilevel modelling to account for the influence of walking speed in gait analysis publication-title: Gait Posture – year: 2023 ident: b18 article-title: Calibration of inverted pendulum pedestrian model for laterally oscillating bridges based on stepping behaviour publication-title: J. Sound Vib. – reference: M. Bocian, J. Macdonald, J. Burn, Determination of pedestrian loads in the presence of multi-modal lateral bridge vibrations, in: Proceedings of Eurodyn 2014 – 9th International Conference on Structural Dynamics, Porto, Portugal, 2014. – volume: 14 start-page: 239 year: 2010 end-page: 256 ident: b42 article-title: The effect of virtual reality on gait variability publication-title: Nonlinear Dyn. Psychol. Life Sci. – year: 2010 ident: b29 article-title: Mixed-effects modeling with r – volume: 23 start-page: 441 year: 2006 end-page: 444 ident: b39 article-title: Spatiotemporal gait deviations in a virtual reality environment publication-title: Gait Posture – year: 2010 ident: b27 article-title: Multilevel analysis: Techniques and applications – volume: 407 start-page: 286 year: 2017 end-page: 308 ident: b33 article-title: The kinematics and kinetics of pedestrians on a laterally swaying footbridge publication-title: J. Sound Vib. – volume: 111/2 start-page: 271 year: 1996 end-page: 282 ident: b21 article-title: Motion parallax is used to control postural sway during walking publication-title: Exp Brain Res – year: 2009 ident: b52 article-title: Health Survey for England – 2008 trend tables publication-title: NHS – volume: 3 start-page: 193 year: 1995 end-page: 214 ident: b24 article-title: Human balance and posture control during standing and walking publication-title: Gait Posture – year: 2009 ident: b4 article-title: Biomechanics and motor control of human movement – volume: 12 year: 2021 ident: b1 article-title: Emergence of the London Millennium Bridge instability without synchronisation publication-title: Nature Commun. – volume: 144 start-page: 72 year: 2009 end-page: 76 ident: b43 article-title: Walking in an immersive virtual reality publication-title: Stud. Health Technol. Inform. – volume: 29 start-page: 645 year: 2009 ident: 10.1016/j.ymssp.2024.111793_b13 article-title: Strategies of healthy adults walking on a laterally oscillating treadmill publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.01.010 – volume: 23 start-page: 441 year: 2006 ident: 10.1016/j.ymssp.2024.111793_b39 article-title: Spatiotemporal gait deviations in a virtual reality environment publication-title: Gait Posture doi: 10.1016/j.gaitpost.2005.05.005 – volume: 7 year: 2020 ident: 10.1016/j.ymssp.2024.111793_b45 article-title: Gait coordination in overground walking with a virtual reality avatar publication-title: R Soc. Open Sci. doi: 10.1098/rsos.200622 – year: 2009 ident: 10.1016/j.ymssp.2024.111793_b52 article-title: Health Survey for England – 2008 trend tables publication-title: NHS – volume: 438 start-page: 43 year: 2005 ident: 10.1016/j.ymssp.2024.111793_b37 article-title: Crowd synchrony on the millennium bridge publication-title: Nature doi: 10.1038/438043a – volume: 330 start-page: 1265 issue: 6 year: 2011 ident: 10.1016/j.ymssp.2024.111793_b31 article-title: Experimental identification of pedestrian-induced forces on footbridges publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2010.09.034 – volume: 39 start-page: 939 year: 2014 ident: 10.1016/j.ymssp.2024.111793_b41 article-title: Effects of adding a virtual reality environment to different modes of treadmill wlaking publication-title: Gait Posture doi: 10.1016/j.gaitpost.2013.12.005 – ident: 10.1016/j.ymssp.2024.111793_b49 – volume: 392 start-page: 382 year: 2017 ident: 10.1016/j.ymssp.2024.111793_b17 article-title: From phase drift to synchronisation - pedestrian stepping behaviour on laterally oscillating structures and consequences for dynamic stability publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.12.022 – volume: 45 start-page: 1053 year: 2012 ident: 10.1016/j.ymssp.2024.111793_b25 article-title: Dynamic margins of stability during human walking in destabilizing environments publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.12.027 – volume: 43 start-page: 1470 year: 2010 ident: 10.1016/j.ymssp.2024.111793_b14 article-title: Walking variability during continuous pseudo-random oscillations of the support surface and visual field publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.02.003 – volume: 5/1 start-page: 54 year: 1997 ident: 10.1016/j.ymssp.2024.111793_b20 article-title: Understanding the roles of vision in the control of human locomotion publication-title: Gait Posture doi: 10.1016/S0966-6362(96)01109-5 – volume: 136 start-page: 108 year: 2014 ident: 10.1016/j.ymssp.2024.111793_b51 article-title: Probabilistic criteria for lateral dynamic stability of bridges under crowd loading publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2014.02.003 – volume: 105 start-page: 502 year: 2018 ident: 10.1016/j.ymssp.2024.111793_b23 article-title: Time-dependent spectral analysis of interactions within groups of walking pedestrians and vertical structural motion using wavelets publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.12.020 – year: 2023 ident: 10.1016/j.ymssp.2024.111793_b18 article-title: Calibration of inverted pendulum pedestrian model for laterally oscillating bridges based on stepping behaviour publication-title: J. Sound Vib. – volume: 6/2 start-page: 461 year: 1978 ident: 10.1016/j.ymssp.2024.111793_b30 article-title: Estimating the dimenssion of a model publication-title: Ann. Statist. – volume: 331 start-page: 3914 issue: 16 year: 2012 ident: 10.1016/j.ymssp.2024.111793_b38 article-title: Biomechanically inspired modelling of pedestrian-induced forces on laterally oscillating structures publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2012.03.023 – volume: 3 start-page: 193 year: 1995 ident: 10.1016/j.ymssp.2024.111793_b24 article-title: Human balance and posture control during standing and walking publication-title: Gait Posture doi: 10.1016/0966-6362(96)82849-9 – volume: 112 start-page: 374 year: 2014 ident: 10.1016/j.ymssp.2024.111793_b11 article-title: A neuromechanical strategy for mediolateral foot placement in walking humans publication-title: J Neurophysiol doi: 10.1152/jn.00138.2014 – year: 2003 ident: 10.1016/j.ymssp.2024.111793_b26 – volume: 332 start-page: 2846 year: 2013 ident: 10.1016/j.ymssp.2024.111793_b50 article-title: Long-term solutions to macdonald’s model for pedestrian-induced lateral forces publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2012.12.027 – volume: 407 start-page: 286 year: 2017 ident: 10.1016/j.ymssp.2024.111793_b33 article-title: The kinematics and kinetics of pedestrians on a laterally swaying footbridge publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.06.036 – year: 2009 ident: 10.1016/j.ymssp.2024.111793_b4 – year: 2003 ident: 10.1016/j.ymssp.2024.111793_b3 – volume: 105 start-page: 62 year: 2015 ident: 10.1016/j.ymssp.2024.111793_b16 article-title: Experimental identification of the behaviour of and lateral forces from freely-walking pedestrians on laterally oscillating structures in a virtual reality environment publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2015.09.043 – volume: 47 start-page: 1675 year: 2014 ident: 10.1016/j.ymssp.2024.111793_b15 article-title: Dynamic stability of individuals with transtibial amputation walking in destabilizing environments publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.02.033 – volume: 12 issue: 7223 year: 2021 ident: 10.1016/j.ymssp.2024.111793_b1 article-title: Emergence of the London Millennium Bridge instability without synchronisation publication-title: Nature Commun. – volume: 213 start-page: 2655 year: 2010 ident: 10.1016/j.ymssp.2024.111793_b9 article-title: Balance responses to lateral perturbations in human treadmill walking publication-title: J Exp Biol doi: 10.1242/jeb.042572 – volume: 219 start-page: 1514 year: 2016 ident: 10.1016/j.ymssp.2024.111793_b10 article-title: Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking publication-title: J Exp Biol – volume: 43 start-page: 216 year: 2016 ident: 10.1016/j.ymssp.2024.111793_b28 article-title: The application of multilevel modelling to account for the influence of walking speed in gait analysis publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.09.026 – volume: 18 start-page: 21 year: 1985 ident: 10.1016/j.ymssp.2024.111793_b5 article-title: Biped gait stabilization via foot placement publication-title: J. Biomech. doi: 10.1016/0021-9290(85)90042-9 – volume: 14 start-page: 19 year: 2017 ident: 10.1016/j.ymssp.2024.111793_b35 article-title: Estimating the dimenssion of a model publication-title: Eur. Rev Aging Phys Activity doi: 10.1186/s11556-017-0188-0 – year: 2010 ident: 10.1016/j.ymssp.2024.111793_b29 – volume: 333 start-page: 5865 year: 2014 ident: 10.1016/j.ymssp.2024.111793_b32 article-title: Experimental identification of the lateral human-structure interaction mechanism and assessment of the inverted-pendulum biomechanical model publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2014.06.022 – volume: 111/2 start-page: 271 year: 1996 ident: 10.1016/j.ymssp.2024.111793_b21 article-title: Motion parallax is used to control postural sway during walking publication-title: Exp Brain Res doi: 10.1007/BF00227304 – volume: 67 start-page: 251 year: 2019 ident: 10.1016/j.ymssp.2024.111793_b40 article-title: Gait adaptations during overground wlaking and multidirectional oscillations of the visual field in a virtual reality headset publication-title: Gait Posture doi: 10.1016/j.gaitpost.2018.10.029 – volume: 46/5 start-page: 905 year: 2013 ident: 10.1016/j.ymssp.2024.111793_b44 article-title: Stepping strategies for regulating gait adaptability and stability publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.12.017 – volume: 10 year: 2014 ident: 10.1016/j.ymssp.2024.111793_b46 article-title: Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking publication-title: Biol. Lett. doi: 10.1098/rsbl.2014.0405 – volume: 1/40 year: 2019 ident: 10.1016/j.ymssp.2024.111793_b48 article-title: Walking cadence affects the recruitment of the medial-lateral balance mechanism publication-title: Front Sports and Act. Living – volume: 25 start-page: 250 year: 2007 ident: 10.1016/j.ymssp.2024.111793_b7 article-title: Control of lateral balance in walking: experimental findings in normal subjects and above-knee amputees publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.04.013 – year: 2010 ident: 10.1016/j.ymssp.2024.111793_b27 – volume: 14 start-page: 239 year: 2010 ident: 10.1016/j.ymssp.2024.111793_b42 article-title: The effect of virtual reality on gait variability publication-title: Nonlinear Dyn. Psychol. Life Sci. – volume: 26/4 start-page: 1039 year: 2012 ident: 10.1016/j.ymssp.2024.111793_b22 article-title: Energy expenditure comparison between walking and running in average fitness individuals publication-title: J Strength and Cond. Res doi: 10.1519/JSC.0b013e31822e592c – volume: 48 start-page: 78 year: 2018 ident: 10.1016/j.ymssp.2024.111793_b34 article-title: Effects of wlaking speed on the step-to-step control of step width publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.12.026 – volume: 7 start-page: 18 year: 2018 ident: 10.1016/j.ymssp.2024.111793_b47 article-title: Strategies for the control of balance during locomotion publication-title: Kinesiol. Rev. doi: 10.1123/kr.2017-0053 – volume: 465 start-page: 1055 year: 2009 ident: 10.1016/j.ymssp.2024.111793_b2 article-title: Lateral excitation of bridges by balancing pedestrians publication-title: Proc. R. Soc. Lond. Math. Phys. Eng. Sci. – volume: 19 start-page: 24 year: 2004 ident: 10.1016/j.ymssp.2024.111793_b12 article-title: Recovery from perturbations during paced walking publication-title: Gait Posture doi: 10.1016/S0966-6362(03)00008-0 – volume: 38 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.ymssp.2024.111793_b6 article-title: The condition for dynamic stability publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.03.025 – year: 2024 ident: 10.1016/j.ymssp.2024.111793_b19 article-title: Long-term solutions to calibrated and generalised Macdonald’s model for pedestrian-induced lateral forces publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2024.118494 – volume: 79 start-page: 17 issue: 22 year: 2001 ident: 10.1016/j.ymssp.2024.111793_b36 article-title: The London Millennium Footbridge publication-title: Struct. Eng. Mech. – volume: 27 start-page: 112 year: 2008 ident: 10.1016/j.ymssp.2024.111793_b8 article-title: The ’extrapolated center of mass’ concept suggests a simple control of balance in walking publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2007.08.003 – volume: 144 start-page: 72 year: 2009 ident: 10.1016/j.ymssp.2024.111793_b43 article-title: Walking in an immersive virtual reality publication-title: Stud. Health Technol. Inform. |
SSID | ssj0009406 |
Score | 2.4489615 |
Snippet | An active control of foot placement in the frontal plane is required to maintain balance during walking. It has been previously shown that, for walking on... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 111793 |
SubjectTerms | Bridge dynamics Foot placement control law Gait stability Step width Virtual reality |
Title | Determinants of pedestrian mediolateral foot placement in walking on laterally-oscillating structures and their consequences for structural stability |
URI | https://dx.doi.org/10.1016/j.ymssp.2024.111793 |
Volume | 222 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIrykgdGQqPYceoR8VAB0QUqdYv8ilQUkooWoS78C_4vd05SioQ6sCbnJLq73J3tz98RcuagpoBEZgPIzibgNlKBNGAQ0UscY0rEmSfTeRyI_pDfj-JRi1w1Z2EQVlnH_iqm-2hdX-nW2uxOxuPuE_wf4I4JknSFQvqD5pwn6OUXnz8wD8l9f00UDlC6YR7yGK_563SKpJURx9CRSPZ3dlrKOLdbZLMuFell9TXbpOWKHbKxRCC4S76ul9AstMzoxFnnO3EUFHfNYd6KJ4xzmpXljHr8Fa4G0nFBP1SOq-S0LGgtlM8DZLbMER0HNypm2XeYjlNVWOp3FKhZAl_DQ98WUvAOqDM90na-R4a3N89X_aButBAYxnuzAKYckYgtMxE3caalhrKEWautgnJMGJ0ZqwTXJlSacR1qKW0UGyuQRTQyzLF90i7Kwh0Q6oySGSjXZhqnu1JjS3V4grKh1jJhHRI1Ck5NzUKOzTDytIGbvaTeKilaJa2s0iHni0GTioRjtbhoLJf-8qUU0sSqgYf_HXhE1iPsC-yXZo5JG1TvTqBYmelT742nZO3y7qE_-AZ6hu-A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGYAB8RTl6YGR0Cp2HDyiAirPhVZii_yKVBSSCopQF_4F_5c7JylBQh1Yk7MT-ex72J-_I-TYQUwBjswG4J1NwG2oAmlAIeIsdowpEaWeTOf-QfSH_OYpelogvfouDMIqK9tf2nRvrasnnWo0O-PRqPMI6wOmY4wkXV0h8aL5Iofli2UMTj9_cB6S-wKbKB2geE095EFe05e3N2StDDnajliyv91Tw-VcrZHVKlak5-XvrJMFl2-QlQaD4Cb5umjAWWiR0rGzzpfiyCkem0PiileMM5oWxYR6ABZuB9JRTj9UhtvktMhpJZRNA6S2zBAeBy9Katl3yMepyi31RwrUNNDX0OnrTAq-AYGmh9pOt8jw6nLQ6wdVpYXAMH42CSDnCEVkmQm5iVItNcQlzFptFcRjwujUWCW4Nl2lGdddLaUNI2MF0oiGhjm2TVp5kbsdQp1RMoXBtanGfFdqrKkOPSjb1VrGrE3CeoATU9GQYzWMLKnxZs-J10qCWklKrbTJyazRuGThmC8uas0lvyZTAn5iXsPd_zY8Ikv9wf1dcnf9cLtHlkMsEuz3afZJC9TgDiBymehDPzO_AfVi8Q4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determinants+of+pedestrian+mediolateral+foot+placement+in+walking+on+laterally-oscillating+structures+and+their+consequences+for+structural+stability&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Bocian%2C+Mateusz&rft.au=Wdowicka%2C+Hanna&rft.au=Burn%2C+Jeremy+F.&rft.au=Macdonald%2C+John+H.G.&rft.date=2025-01-01&rft.issn=0888-3270&rft.volume=222&rft.spage=111793&rft_id=info:doi/10.1016%2Fj.ymssp.2024.111793&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2024_111793 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |