Determinants of pedestrian mediolateral foot placement in walking on laterally-oscillating structures and their consequences for structural stability

An active control of foot placement in the frontal plane is required to maintain balance during walking. It has been previously shown that, for walking on stationary structures, the foot is placed at a mediolateral distance from the body centre of mass (CoM) determined by the CoM mediolateral veloci...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 222; p. 111793
Main Authors Bocian, Mateusz, Wdowicka, Hanna, Burn, Jeremy F., Macdonald, John H.G.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An active control of foot placement in the frontal plane is required to maintain balance during walking. It has been previously shown that, for walking on stationary structures, the foot is placed at a mediolateral distance from the body centre of mass (CoM) determined by the CoM mediolateral velocity at the instance of heel strike plus some constant offset. However, it is currently unknown whether the same relationship applies in walking on laterally-oscillating structures and to what extent the structural motion and visual conditions govern the pedestrian stepping behaviour in this case. To this end, six healthy subjects walked on a custom-built wide-belt self-paced treadmill with and without sinusoidal mediolateral treadmill motion. The visual environment was either that of a laboratory, or one of two scenes set in an immersive virtual reality (VR) delivered via a head mounted display. The VR scenes differed with respect to the type and amount of visual reference cues enabling the estimation of self-motion. Multilevel statistical modelling is performed on kinematic data on the behaviour of the walkers. It is shown that the foot placement control law based on the mediolateral velocity of the centre of mass applies, and that the lateral structural motion or lack thereof and visual conditions modulate the step width in different ways. Based on these findings, simulations of the inverted pendulum pedestrian model are conducted revealing the influence of parameters defining the foot placement control law on pedestrian-generated lateral forces governing the amplitudes of lateral structural response. •Pedestrians walking under various ground motion and visual conditions are tested.•Statistical multilevel models are used to analyse the foot placement control law.•That law is then adopted in simulations of the inverted pendulum pedestrian model.•Self-excited forces are quantified in terms of equivalent added damping and mass.•They are found independent of visual conditions, unlike other force components.
AbstractList An active control of foot placement in the frontal plane is required to maintain balance during walking. It has been previously shown that, for walking on stationary structures, the foot is placed at a mediolateral distance from the body centre of mass (CoM) determined by the CoM mediolateral velocity at the instance of heel strike plus some constant offset. However, it is currently unknown whether the same relationship applies in walking on laterally-oscillating structures and to what extent the structural motion and visual conditions govern the pedestrian stepping behaviour in this case. To this end, six healthy subjects walked on a custom-built wide-belt self-paced treadmill with and without sinusoidal mediolateral treadmill motion. The visual environment was either that of a laboratory, or one of two scenes set in an immersive virtual reality (VR) delivered via a head mounted display. The VR scenes differed with respect to the type and amount of visual reference cues enabling the estimation of self-motion. Multilevel statistical modelling is performed on kinematic data on the behaviour of the walkers. It is shown that the foot placement control law based on the mediolateral velocity of the centre of mass applies, and that the lateral structural motion or lack thereof and visual conditions modulate the step width in different ways. Based on these findings, simulations of the inverted pendulum pedestrian model are conducted revealing the influence of parameters defining the foot placement control law on pedestrian-generated lateral forces governing the amplitudes of lateral structural response. •Pedestrians walking under various ground motion and visual conditions are tested.•Statistical multilevel models are used to analyse the foot placement control law.•That law is then adopted in simulations of the inverted pendulum pedestrian model.•Self-excited forces are quantified in terms of equivalent added damping and mass.•They are found independent of visual conditions, unlike other force components.
ArticleNumber 111793
Author Bocian, Mateusz
Burn, Jeremy F.
Wdowicka, Hanna
Macdonald, John H.G.
Author_xml – sequence: 1
  givenname: Mateusz
  orcidid: 0000-0002-3539-5474
  surname: Bocian
  fullname: Bocian, Mateusz
  email: mateusz.bocian@pwr.edu.pl
  organization: Faculty of Civil Engineering, Wrocław University of Science and Technology, Poland
– sequence: 2
  givenname: Hanna
  surname: Wdowicka
  fullname: Wdowicka, Hanna
  organization: Department of Statistics, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875, Poland
– sequence: 3
  givenname: Jeremy F.
  surname: Burn
  fullname: Burn, Jeremy F.
  organization: Department of Mechanical Engineering, University of Bristol, Queen’s Building, University Walk, BS8 1TR, UK
– sequence: 4
  givenname: John H.G.
  surname: Macdonald
  fullname: Macdonald, John H.G.
  organization: Department of Civil Engineering, University of Bristol, Queen’s Building, University Walk, BS8 1TR, UK
BookMark eNqFkMtOAyEUhlloolWfwA0vMBWGGTqzcGHqNWniRteEyxmlMlCBavogvq_UGhcudEXgP985h2-C9nzwgNApJVNKKD9bTjdjSqtpTepmSimd9WwPHZKu6ypWz8gBmqS0JIT0DeGH6OMSMsTReulzwmHAKzCQcrTS4xGMDU6WXDo8hJDxykkNI_iMrcfv0r1Y_4SDx99FblOFpK0r121Q2qx1XkdIWHqD8zPYiHXwCV7X4HV5HkL8qSozUpbKOps3x2h_kC7Byfd5hB6vrx7mt9Xi_uZufrGoNGu6XM14V_PWMF03uh1Ur3jbMWOUkS2lXKtBG8kbpYlUrFFE9b2pW214y2lTawbsCPW7vjqGlCIMQttclg8-R2mdoERsnYql-HIqtk7Fzmlh2S92Fe0o4-Yf6nxHQfnWm4UoirCtDGMj6CxMsH_yn-tLnOA
CitedBy_id crossref_primary_10_3390_su17052077
Cites_doi 10.1016/j.gaitpost.2009.01.010
10.1016/j.gaitpost.2005.05.005
10.1098/rsos.200622
10.1038/438043a
10.1016/j.jsv.2010.09.034
10.1016/j.gaitpost.2013.12.005
10.1016/j.jsv.2016.12.022
10.1016/j.jbiomech.2011.12.027
10.1016/j.jbiomech.2010.02.003
10.1016/S0966-6362(96)01109-5
10.1016/j.compstruc.2014.02.003
10.1016/j.ymssp.2017.12.020
10.1016/j.jsv.2012.03.023
10.1016/0966-6362(96)82849-9
10.1152/jn.00138.2014
10.1016/j.jsv.2012.12.027
10.1016/j.jsv.2017.06.036
10.1016/j.engstruct.2015.09.043
10.1016/j.jbiomech.2014.02.033
10.1242/jeb.042572
10.1016/j.gaitpost.2015.09.026
10.1016/0021-9290(85)90042-9
10.1186/s11556-017-0188-0
10.1016/j.jsv.2014.06.022
10.1007/BF00227304
10.1016/j.gaitpost.2018.10.029
10.1016/j.jbiomech.2012.12.017
10.1098/rsbl.2014.0405
10.1016/j.gaitpost.2006.04.013
10.1519/JSC.0b013e31822e592c
10.1016/j.jbiomech.2017.12.026
10.1123/kr.2017-0053
10.1016/S0966-6362(03)00008-0
10.1016/j.jbiomech.2004.03.025
10.1016/j.jsv.2024.118494
10.1016/j.humov.2007.08.003
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ymssp.2024.111793
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ymssp_2024_111793
S0888327024006915
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG5
LG9
LY7
M41
R2-
RIG
SBC
SET
SSH
WUQ
ID FETCH-LOGICAL-c348t-768265d3c24c5fb9b6583ddbda5116cbfcda64bc0ab34b0b99d25cd656142c3e3
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Tue Jul 01 04:30:22 EDT 2025
Thu Apr 24 22:51:42 EDT 2025
Sat Aug 31 16:02:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Step width
Gait stability
Bridge dynamics
Foot placement control law
Virtual reality
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-768265d3c24c5fb9b6583ddbda5116cbfcda64bc0ab34b0b99d25cd656142c3e3
ORCID 0000-0002-3539-5474
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0888327024006915
ParticipantIDs crossref_citationtrail_10_1016_j_ymssp_2024_111793
crossref_primary_10_1016_j_ymssp_2024_111793
elsevier_sciencedirect_doi_10_1016_j_ymssp_2024_111793
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Mechanical systems and signal processing
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ciprandi, Bertozzi, Zago, Pimenta Ferreira, Boari, Sforza, Galvani (b35) 2017; 14
Keene, Moe-Nilssen, Lamb (b28) 2016; 43
Soczawa-Stronczyk, Bocian (b45) 2020; 7
Stimpson, Heitkamp, Horne, J.C. (b34) 2018; 48
Bocian, Burn, Macdonald, Brownjohn (b17) 2017; 392
Bocian, Macdonald, Burn (b51) 2014; 136
Beurskens, Wilken, Dingwell (b15) 2014; 47
Reimann, Fettrow, Jeka (b47) 2018; 7
Hof (b8) 2008; 27
Townsend (b5) 1985; 18
Bates (b29) 2010
Claff, Williams, Blakeborough (b33) 2017; 407
Rankin, Buffo, Dean (b11) 2014; 112
Winter (b24) 1995; 3
Vlutters, van Asseldonk, van der Kooij (b10) 2016; 219
Dallard, Fitzpatrick, Flint, Le Bourva, Low, Ridsdill Smith, Willford (b36) 2001; 79
M. Bocian, J. Macdonald, J. Burn, Determination of pedestrian loads in the presence of multi-modal lateral bridge vibrations, in: Proceedings of Eurodyn 2014 – 9th International Conference on Structural Dynamics, Porto, Portugal, 2014.
Katsavelis, Mukherjee, Decker, Stergiou (b42) 2010; 14
Hak, Houdijk, Steenbrink, Mert, van der Wurff, Beek, van Dieën (b44) 2013; 46/5
McAndrew, Dingwell, Wilken (b14) 2010; 43
National Health Service (NHS) (b52) 2009
Bocian, Macdonald, Burn, Brownjohn (b16) 2015; 105
Carroll, Owen, Hussein (b32) 2014; 333
Czaplewski, Bocian (b19) 2024
Goldstein (b26) 2003
Oddsson, Wall, McPartland, Krebs, Tucker (b12) 2004; 19
Sloot, van der Krogt, Harlaar (b41) 2014; 39
Hof, Vermerris, Gjaltema (b9) 2010; 213
Macdonald (b2) 2009; 465
Menegoni, Albani, Bigoni, Priano, Trotti, Galli, Mauro (b43) 2009; 144
McRobie (b50) 2013; 332
Belykh, Bocian, Champneys, Daley, Jeter, Macdonald, McRobie (b1) 2021; 12
Winter (b4) 2009
Patla (b20) 1997; 5/1
Bardy, Warren, Kay (b21) 1996; 111/2
Hof, van Bockel, Schoppen, Postema (b7) 2007; 25
Hollman, Brey, Robb, Bang, Kaufman (b39) 2006; 23
Wang, Srinivasan (b46) 2014; 10
Fettrow, Reimann, Grenet, Crenshaw, Higginson, Jeka (b48) 2019; 1/40
Schwarz (b30) 1978; 6/2
Czaplewski, Bocian, Macdonald (b18) 2023
Ingólfsson, Georgakis, Ricciardelli, Jönsson (b31) 2011; 330
Bocian, Macdonald, Burn (b38) 2012; 331
Hof, Gazendam, Sinke (b6) 2005; 38
Wilkin, Cheryl, Haddock (b22) 2012; 26/4
Martelli, Xia, Prado, Agrawal (b40) 2019; 67
Brady, Peters, Bloomberg (b13) 2009; 29
Alexander (b3) 2003
Bocian, Brownjohn, Racic, Hester, Quattrone, Gilbert, Beasley (b23) 2018; 105
Hox (b27) 2010
Strogatz, Abrams, McRobie, Eckhardt, Ott (b37) 2005; 438
McAndrew Young, Wilken, Dingwell (b25) 2012; 45
Belykh (10.1016/j.ymssp.2024.111793_b1) 2021; 12
Hof (10.1016/j.ymssp.2024.111793_b8) 2008; 27
Fettrow (10.1016/j.ymssp.2024.111793_b48) 2019; 1/40
Brady (10.1016/j.ymssp.2024.111793_b13) 2009; 29
Winter (10.1016/j.ymssp.2024.111793_b4) 2009
Beurskens (10.1016/j.ymssp.2024.111793_b15) 2014; 47
Patla (10.1016/j.ymssp.2024.111793_b20) 1997; 5/1
Bocian (10.1016/j.ymssp.2024.111793_b23) 2018; 105
Dallard (10.1016/j.ymssp.2024.111793_b36) 2001; 79
Hollman (10.1016/j.ymssp.2024.111793_b39) 2006; 23
Bocian (10.1016/j.ymssp.2024.111793_b17) 2017; 392
Vlutters (10.1016/j.ymssp.2024.111793_b10) 2016; 219
McRobie (10.1016/j.ymssp.2024.111793_b50) 2013; 332
Bocian (10.1016/j.ymssp.2024.111793_b51) 2014; 136
Soczawa-Stronczyk (10.1016/j.ymssp.2024.111793_b45) 2020; 7
Macdonald (10.1016/j.ymssp.2024.111793_b2) 2009; 465
Ciprandi (10.1016/j.ymssp.2024.111793_b35) 2017; 14
Martelli (10.1016/j.ymssp.2024.111793_b40) 2019; 67
Sloot (10.1016/j.ymssp.2024.111793_b41) 2014; 39
Oddsson (10.1016/j.ymssp.2024.111793_b12) 2004; 19
Bates (10.1016/j.ymssp.2024.111793_b29) 2010
Wang (10.1016/j.ymssp.2024.111793_b46) 2014; 10
Hak (10.1016/j.ymssp.2024.111793_b44) 2013; 46/5
Bardy (10.1016/j.ymssp.2024.111793_b21) 1996; 111/2
Carroll (10.1016/j.ymssp.2024.111793_b32) 2014; 333
Claff (10.1016/j.ymssp.2024.111793_b33) 2017; 407
National Health Service (NHS) (10.1016/j.ymssp.2024.111793_b52) 2009
Hof (10.1016/j.ymssp.2024.111793_b6) 2005; 38
Alexander (10.1016/j.ymssp.2024.111793_b3) 2003
Wilkin (10.1016/j.ymssp.2024.111793_b22) 2012; 26/4
10.1016/j.ymssp.2024.111793_b49
Stimpson (10.1016/j.ymssp.2024.111793_b34) 2018; 48
Katsavelis (10.1016/j.ymssp.2024.111793_b42) 2010; 14
Winter (10.1016/j.ymssp.2024.111793_b24) 1995; 3
Hof (10.1016/j.ymssp.2024.111793_b9) 2010; 213
Reimann (10.1016/j.ymssp.2024.111793_b47) 2018; 7
Hof (10.1016/j.ymssp.2024.111793_b7) 2007; 25
Bocian (10.1016/j.ymssp.2024.111793_b38) 2012; 331
Czaplewski (10.1016/j.ymssp.2024.111793_b19) 2024
Strogatz (10.1016/j.ymssp.2024.111793_b37) 2005; 438
McAndrew Young (10.1016/j.ymssp.2024.111793_b25) 2012; 45
Keene (10.1016/j.ymssp.2024.111793_b28) 2016; 43
Menegoni (10.1016/j.ymssp.2024.111793_b43) 2009; 144
Rankin (10.1016/j.ymssp.2024.111793_b11) 2014; 112
Bocian (10.1016/j.ymssp.2024.111793_b16) 2015; 105
Townsend (10.1016/j.ymssp.2024.111793_b5) 1985; 18
Hox (10.1016/j.ymssp.2024.111793_b27) 2010
Goldstein (10.1016/j.ymssp.2024.111793_b26) 2003
Schwarz (10.1016/j.ymssp.2024.111793_b30) 1978; 6/2
McAndrew (10.1016/j.ymssp.2024.111793_b14) 2010; 43
Czaplewski (10.1016/j.ymssp.2024.111793_b18) 2023
Ingólfsson (10.1016/j.ymssp.2024.111793_b31) 2011; 330
References_xml – volume: 465
  start-page: 1055
  year: 2009
  end-page: 1073
  ident: b2
  article-title: Lateral excitation of bridges by balancing pedestrians
  publication-title: Proc. R. Soc. Lond. Math. Phys. Eng. Sci.
– volume: 39
  start-page: 939
  year: 2014
  end-page: 945
  ident: b41
  article-title: Effects of adding a virtual reality environment to different modes of treadmill wlaking
  publication-title: Gait Posture
– year: 2003
  ident: b26
  article-title: Multilevel statistical models
– volume: 7
  year: 2020
  ident: b45
  article-title: Gait coordination in overground walking with a virtual reality avatar
  publication-title: R Soc. Open Sci.
– volume: 27
  start-page: 112
  year: 2008
  end-page: 125
  ident: b8
  article-title: The ’extrapolated center of mass’ concept suggests a simple control of balance in walking
  publication-title: Hum. Mov. Sci.
– volume: 47
  start-page: 1675
  year: 2014
  end-page: 1681
  ident: b15
  article-title: Dynamic stability of individuals with transtibial amputation walking in destabilizing environments
  publication-title: J. Biomech.
– volume: 38
  start-page: 1
  year: 2005
  end-page: 8
  ident: b6
  article-title: The condition for dynamic stability
  publication-title: J. Biomech.
– volume: 46/5
  start-page: 905
  year: 2013
  end-page: 911
  ident: b44
  article-title: Stepping strategies for regulating gait adaptability and stability
  publication-title: J. Biomech.
– volume: 213
  start-page: 2655
  year: 2010
  end-page: 2664
  ident: b9
  article-title: Balance responses to lateral perturbations in human treadmill walking
  publication-title: J Exp Biol
– volume: 331
  start-page: 3914
  year: 2012
  end-page: 3929
  ident: b38
  article-title: Biomechanically inspired modelling of pedestrian-induced forces on laterally oscillating structures
  publication-title: J. Sound Vib.
– year: 2024
  ident: b19
  article-title: Long-term solutions to calibrated and generalised Macdonald’s model for pedestrian-induced lateral forces
  publication-title: J. Sound Vib.
– volume: 14
  start-page: 19
  year: 2017
  ident: b35
  article-title: Estimating the dimenssion of a model
  publication-title: Eur. Rev Aging Phys Activity
– volume: 112
  start-page: 374
  year: 2014
  end-page: 383
  ident: b11
  article-title: A neuromechanical strategy for mediolateral foot placement in walking humans
  publication-title: J Neurophysiol
– volume: 438
  start-page: 43
  year: 2005
  end-page: 44
  ident: b37
  article-title: Crowd synchrony on the millennium bridge
  publication-title: Nature
– volume: 26/4
  start-page: 1039
  year: 2012
  end-page: 1044
  ident: b22
  article-title: Energy expenditure comparison between walking and running in average fitness individuals
  publication-title: J Strength and Cond. Res
– volume: 7
  start-page: 18
  year: 2018
  end-page: 25
  ident: b47
  article-title: Strategies for the control of balance during locomotion
  publication-title: Kinesiol. Rev.
– volume: 6/2
  start-page: 461
  year: 1978
  end-page: 464
  ident: b30
  article-title: Estimating the dimenssion of a model
  publication-title: Ann. Statist.
– volume: 48
  start-page: 78
  year: 2018
  end-page: 83
  ident: b34
  article-title: Effects of wlaking speed on the step-to-step control of step width
  publication-title: J. Biomech.
– volume: 136
  start-page: 108
  year: 2014
  end-page: 119
  ident: b51
  article-title: Probabilistic criteria for lateral dynamic stability of bridges under crowd loading
  publication-title: Comput. Struct.
– volume: 29
  start-page: 645
  year: 2009
  end-page: 649
  ident: b13
  article-title: Strategies of healthy adults walking on a laterally oscillating treadmill
  publication-title: Gait Posture
– volume: 219
  start-page: 1514
  year: 2016
  end-page: 1523
  ident: b10
  article-title: Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking
  publication-title: J Exp Biol
– volume: 5/1
  start-page: 54
  year: 1997
  end-page: 69
  ident: b20
  article-title: Understanding the roles of vision in the control of human locomotion
  publication-title: Gait Posture
– volume: 19
  start-page: 24
  year: 2004
  end-page: 34
  ident: b12
  article-title: Recovery from perturbations during paced walking
  publication-title: Gait Posture
– volume: 333
  start-page: 5865
  year: 2014
  end-page: 5884
  ident: b32
  article-title: Experimental identification of the lateral human-structure interaction mechanism and assessment of the inverted-pendulum biomechanical model
  publication-title: J. Sound Vib.
– volume: 18
  start-page: 21
  year: 1985
  end-page: 38
  ident: b5
  article-title: Biped gait stabilization via foot placement
  publication-title: J. Biomech.
– volume: 67
  start-page: 251
  year: 2019
  end-page: 256
  ident: b40
  article-title: Gait adaptations during overground wlaking and multidirectional oscillations of the visual field in a virtual reality headset
  publication-title: Gait Posture
– volume: 45
  start-page: 1053
  year: 2012
  end-page: 1059
  ident: b25
  article-title: Dynamic margins of stability during human walking in destabilizing environments
  publication-title: J. Biomech.
– volume: 105
  start-page: 502
  year: 2018
  end-page: 523
  ident: b23
  article-title: Time-dependent spectral analysis of interactions within groups of walking pedestrians and vertical structural motion using wavelets
  publication-title: Mech. Syst. Signal Process.
– volume: 1/40
  year: 2019
  ident: b48
  article-title: Walking cadence affects the recruitment of the medial-lateral balance mechanism
  publication-title: Front Sports and Act. Living
– volume: 25
  start-page: 250
  year: 2007
  end-page: 258
  ident: b7
  article-title: Control of lateral balance in walking: experimental findings in normal subjects and above-knee amputees
  publication-title: Gait Posture
– volume: 332
  start-page: 2846
  year: 2013
  end-page: 2855
  ident: b50
  article-title: Long-term solutions to macdonald’s model for pedestrian-induced lateral forces
  publication-title: J. Sound Vib.
– volume: 330
  start-page: 1265
  year: 2011
  end-page: 1284
  ident: b31
  article-title: Experimental identification of pedestrian-induced forces on footbridges
  publication-title: J. Sound Vib.
– volume: 105
  start-page: 62
  year: 2015
  end-page: 76
  ident: b16
  article-title: Experimental identification of the behaviour of and lateral forces from freely-walking pedestrians on laterally oscillating structures in a virtual reality environment
  publication-title: Eng. Struct.
– volume: 10
  year: 2014
  ident: b46
  article-title: Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking
  publication-title: Biol. Lett.
– year: 2003
  ident: b3
  article-title: Principles of Animal Locomotion
– volume: 43
  start-page: 1470
  year: 2010
  end-page: 1475
  ident: b14
  article-title: Walking variability during continuous pseudo-random oscillations of the support surface and visual field
  publication-title: J. Biomech.
– volume: 392
  start-page: 382
  year: 2017
  end-page: 399
  ident: b17
  article-title: From phase drift to synchronisation - pedestrian stepping behaviour on laterally oscillating structures and consequences for dynamic stability
  publication-title: J. Sound Vib.
– volume: 79
  start-page: 17
  year: 2001
  end-page: 21
  ident: b36
  article-title: The London Millennium Footbridge
  publication-title: Struct. Eng. Mech.
– volume: 43
  start-page: 216
  year: 2016
  end-page: 219
  ident: b28
  article-title: The application of multilevel modelling to account for the influence of walking speed in gait analysis
  publication-title: Gait Posture
– year: 2023
  ident: b18
  article-title: Calibration of inverted pendulum pedestrian model for laterally oscillating bridges based on stepping behaviour
  publication-title: J. Sound Vib.
– reference: M. Bocian, J. Macdonald, J. Burn, Determination of pedestrian loads in the presence of multi-modal lateral bridge vibrations, in: Proceedings of Eurodyn 2014 – 9th International Conference on Structural Dynamics, Porto, Portugal, 2014.
– volume: 14
  start-page: 239
  year: 2010
  end-page: 256
  ident: b42
  article-title: The effect of virtual reality on gait variability
  publication-title: Nonlinear Dyn. Psychol. Life Sci.
– year: 2010
  ident: b29
  article-title: Mixed-effects modeling with r
– volume: 23
  start-page: 441
  year: 2006
  end-page: 444
  ident: b39
  article-title: Spatiotemporal gait deviations in a virtual reality environment
  publication-title: Gait Posture
– year: 2010
  ident: b27
  article-title: Multilevel analysis: Techniques and applications
– volume: 407
  start-page: 286
  year: 2017
  end-page: 308
  ident: b33
  article-title: The kinematics and kinetics of pedestrians on a laterally swaying footbridge
  publication-title: J. Sound Vib.
– volume: 111/2
  start-page: 271
  year: 1996
  end-page: 282
  ident: b21
  article-title: Motion parallax is used to control postural sway during walking
  publication-title: Exp Brain Res
– year: 2009
  ident: b52
  article-title: Health Survey for England – 2008 trend tables
  publication-title: NHS
– volume: 3
  start-page: 193
  year: 1995
  end-page: 214
  ident: b24
  article-title: Human balance and posture control during standing and walking
  publication-title: Gait Posture
– year: 2009
  ident: b4
  article-title: Biomechanics and motor control of human movement
– volume: 12
  year: 2021
  ident: b1
  article-title: Emergence of the London Millennium Bridge instability without synchronisation
  publication-title: Nature Commun.
– volume: 144
  start-page: 72
  year: 2009
  end-page: 76
  ident: b43
  article-title: Walking in an immersive virtual reality
  publication-title: Stud. Health Technol. Inform.
– volume: 29
  start-page: 645
  year: 2009
  ident: 10.1016/j.ymssp.2024.111793_b13
  article-title: Strategies of healthy adults walking on a laterally oscillating treadmill
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.01.010
– volume: 23
  start-page: 441
  year: 2006
  ident: 10.1016/j.ymssp.2024.111793_b39
  article-title: Spatiotemporal gait deviations in a virtual reality environment
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2005.05.005
– volume: 7
  year: 2020
  ident: 10.1016/j.ymssp.2024.111793_b45
  article-title: Gait coordination in overground walking with a virtual reality avatar
  publication-title: R Soc. Open Sci.
  doi: 10.1098/rsos.200622
– year: 2009
  ident: 10.1016/j.ymssp.2024.111793_b52
  article-title: Health Survey for England – 2008 trend tables
  publication-title: NHS
– volume: 438
  start-page: 43
  year: 2005
  ident: 10.1016/j.ymssp.2024.111793_b37
  article-title: Crowd synchrony on the millennium bridge
  publication-title: Nature
  doi: 10.1038/438043a
– volume: 330
  start-page: 1265
  issue: 6
  year: 2011
  ident: 10.1016/j.ymssp.2024.111793_b31
  article-title: Experimental identification of pedestrian-induced forces on footbridges
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2010.09.034
– volume: 39
  start-page: 939
  year: 2014
  ident: 10.1016/j.ymssp.2024.111793_b41
  article-title: Effects of adding a virtual reality environment to different modes of treadmill wlaking
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.12.005
– ident: 10.1016/j.ymssp.2024.111793_b49
– volume: 392
  start-page: 382
  year: 2017
  ident: 10.1016/j.ymssp.2024.111793_b17
  article-title: From phase drift to synchronisation - pedestrian stepping behaviour on laterally oscillating structures and consequences for dynamic stability
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.12.022
– volume: 45
  start-page: 1053
  year: 2012
  ident: 10.1016/j.ymssp.2024.111793_b25
  article-title: Dynamic margins of stability during human walking in destabilizing environments
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.12.027
– volume: 43
  start-page: 1470
  year: 2010
  ident: 10.1016/j.ymssp.2024.111793_b14
  article-title: Walking variability during continuous pseudo-random oscillations of the support surface and visual field
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.02.003
– volume: 5/1
  start-page: 54
  year: 1997
  ident: 10.1016/j.ymssp.2024.111793_b20
  article-title: Understanding the roles of vision in the control of human locomotion
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(96)01109-5
– volume: 136
  start-page: 108
  year: 2014
  ident: 10.1016/j.ymssp.2024.111793_b51
  article-title: Probabilistic criteria for lateral dynamic stability of bridges under crowd loading
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2014.02.003
– volume: 105
  start-page: 502
  year: 2018
  ident: 10.1016/j.ymssp.2024.111793_b23
  article-title: Time-dependent spectral analysis of interactions within groups of walking pedestrians and vertical structural motion using wavelets
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.12.020
– year: 2023
  ident: 10.1016/j.ymssp.2024.111793_b18
  article-title: Calibration of inverted pendulum pedestrian model for laterally oscillating bridges based on stepping behaviour
  publication-title: J. Sound Vib.
– volume: 6/2
  start-page: 461
  year: 1978
  ident: 10.1016/j.ymssp.2024.111793_b30
  article-title: Estimating the dimenssion of a model
  publication-title: Ann. Statist.
– volume: 331
  start-page: 3914
  issue: 16
  year: 2012
  ident: 10.1016/j.ymssp.2024.111793_b38
  article-title: Biomechanically inspired modelling of pedestrian-induced forces on laterally oscillating structures
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2012.03.023
– volume: 3
  start-page: 193
  year: 1995
  ident: 10.1016/j.ymssp.2024.111793_b24
  article-title: Human balance and posture control during standing and walking
  publication-title: Gait Posture
  doi: 10.1016/0966-6362(96)82849-9
– volume: 112
  start-page: 374
  year: 2014
  ident: 10.1016/j.ymssp.2024.111793_b11
  article-title: A neuromechanical strategy for mediolateral foot placement in walking humans
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00138.2014
– year: 2003
  ident: 10.1016/j.ymssp.2024.111793_b26
– volume: 332
  start-page: 2846
  year: 2013
  ident: 10.1016/j.ymssp.2024.111793_b50
  article-title: Long-term solutions to macdonald’s model for pedestrian-induced lateral forces
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2012.12.027
– volume: 407
  start-page: 286
  year: 2017
  ident: 10.1016/j.ymssp.2024.111793_b33
  article-title: The kinematics and kinetics of pedestrians on a laterally swaying footbridge
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.06.036
– year: 2009
  ident: 10.1016/j.ymssp.2024.111793_b4
– year: 2003
  ident: 10.1016/j.ymssp.2024.111793_b3
– volume: 105
  start-page: 62
  year: 2015
  ident: 10.1016/j.ymssp.2024.111793_b16
  article-title: Experimental identification of the behaviour of and lateral forces from freely-walking pedestrians on laterally oscillating structures in a virtual reality environment
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.09.043
– volume: 47
  start-page: 1675
  year: 2014
  ident: 10.1016/j.ymssp.2024.111793_b15
  article-title: Dynamic stability of individuals with transtibial amputation walking in destabilizing environments
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.02.033
– volume: 12
  issue: 7223
  year: 2021
  ident: 10.1016/j.ymssp.2024.111793_b1
  article-title: Emergence of the London Millennium Bridge instability without synchronisation
  publication-title: Nature Commun.
– volume: 213
  start-page: 2655
  year: 2010
  ident: 10.1016/j.ymssp.2024.111793_b9
  article-title: Balance responses to lateral perturbations in human treadmill walking
  publication-title: J Exp Biol
  doi: 10.1242/jeb.042572
– volume: 219
  start-page: 1514
  year: 2016
  ident: 10.1016/j.ymssp.2024.111793_b10
  article-title: Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking
  publication-title: J Exp Biol
– volume: 43
  start-page: 216
  year: 2016
  ident: 10.1016/j.ymssp.2024.111793_b28
  article-title: The application of multilevel modelling to account for the influence of walking speed in gait analysis
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.09.026
– volume: 18
  start-page: 21
  year: 1985
  ident: 10.1016/j.ymssp.2024.111793_b5
  article-title: Biped gait stabilization via foot placement
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(85)90042-9
– volume: 14
  start-page: 19
  year: 2017
  ident: 10.1016/j.ymssp.2024.111793_b35
  article-title: Estimating the dimenssion of a model
  publication-title: Eur. Rev Aging Phys Activity
  doi: 10.1186/s11556-017-0188-0
– year: 2010
  ident: 10.1016/j.ymssp.2024.111793_b29
– volume: 333
  start-page: 5865
  year: 2014
  ident: 10.1016/j.ymssp.2024.111793_b32
  article-title: Experimental identification of the lateral human-structure interaction mechanism and assessment of the inverted-pendulum biomechanical model
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2014.06.022
– volume: 111/2
  start-page: 271
  year: 1996
  ident: 10.1016/j.ymssp.2024.111793_b21
  article-title: Motion parallax is used to control postural sway during walking
  publication-title: Exp Brain Res
  doi: 10.1007/BF00227304
– volume: 67
  start-page: 251
  year: 2019
  ident: 10.1016/j.ymssp.2024.111793_b40
  article-title: Gait adaptations during overground wlaking and multidirectional oscillations of the visual field in a virtual reality headset
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.10.029
– volume: 46/5
  start-page: 905
  year: 2013
  ident: 10.1016/j.ymssp.2024.111793_b44
  article-title: Stepping strategies for regulating gait adaptability and stability
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.12.017
– volume: 10
  year: 2014
  ident: 10.1016/j.ymssp.2024.111793_b46
  article-title: Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2014.0405
– volume: 1/40
  year: 2019
  ident: 10.1016/j.ymssp.2024.111793_b48
  article-title: Walking cadence affects the recruitment of the medial-lateral balance mechanism
  publication-title: Front Sports and Act. Living
– volume: 25
  start-page: 250
  year: 2007
  ident: 10.1016/j.ymssp.2024.111793_b7
  article-title: Control of lateral balance in walking: experimental findings in normal subjects and above-knee amputees
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.04.013
– year: 2010
  ident: 10.1016/j.ymssp.2024.111793_b27
– volume: 14
  start-page: 239
  year: 2010
  ident: 10.1016/j.ymssp.2024.111793_b42
  article-title: The effect of virtual reality on gait variability
  publication-title: Nonlinear Dyn. Psychol. Life Sci.
– volume: 26/4
  start-page: 1039
  year: 2012
  ident: 10.1016/j.ymssp.2024.111793_b22
  article-title: Energy expenditure comparison between walking and running in average fitness individuals
  publication-title: J Strength and Cond. Res
  doi: 10.1519/JSC.0b013e31822e592c
– volume: 48
  start-page: 78
  year: 2018
  ident: 10.1016/j.ymssp.2024.111793_b34
  article-title: Effects of wlaking speed on the step-to-step control of step width
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.12.026
– volume: 7
  start-page: 18
  year: 2018
  ident: 10.1016/j.ymssp.2024.111793_b47
  article-title: Strategies for the control of balance during locomotion
  publication-title: Kinesiol. Rev.
  doi: 10.1123/kr.2017-0053
– volume: 465
  start-page: 1055
  year: 2009
  ident: 10.1016/j.ymssp.2024.111793_b2
  article-title: Lateral excitation of bridges by balancing pedestrians
  publication-title: Proc. R. Soc. Lond. Math. Phys. Eng. Sci.
– volume: 19
  start-page: 24
  year: 2004
  ident: 10.1016/j.ymssp.2024.111793_b12
  article-title: Recovery from perturbations during paced walking
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(03)00008-0
– volume: 38
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.ymssp.2024.111793_b6
  article-title: The condition for dynamic stability
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.03.025
– year: 2024
  ident: 10.1016/j.ymssp.2024.111793_b19
  article-title: Long-term solutions to calibrated and generalised Macdonald’s model for pedestrian-induced lateral forces
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2024.118494
– volume: 79
  start-page: 17
  issue: 22
  year: 2001
  ident: 10.1016/j.ymssp.2024.111793_b36
  article-title: The London Millennium Footbridge
  publication-title: Struct. Eng. Mech.
– volume: 27
  start-page: 112
  year: 2008
  ident: 10.1016/j.ymssp.2024.111793_b8
  article-title: The ’extrapolated center of mass’ concept suggests a simple control of balance in walking
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2007.08.003
– volume: 144
  start-page: 72
  year: 2009
  ident: 10.1016/j.ymssp.2024.111793_b43
  article-title: Walking in an immersive virtual reality
  publication-title: Stud. Health Technol. Inform.
SSID ssj0009406
Score 2.4489615
Snippet An active control of foot placement in the frontal plane is required to maintain balance during walking. It has been previously shown that, for walking on...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111793
SubjectTerms Bridge dynamics
Foot placement control law
Gait stability
Step width
Virtual reality
Title Determinants of pedestrian mediolateral foot placement in walking on laterally-oscillating structures and their consequences for structural stability
URI https://dx.doi.org/10.1016/j.ymssp.2024.111793
Volume 222
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIrykgdGQqPYceoR8VAB0QUqdYv8ilQUkooWoS78C_4vd05SioQ6sCbnJLq73J3tz98RcuagpoBEZgPIzibgNlKBNGAQ0UscY0rEmSfTeRyI_pDfj-JRi1w1Z2EQVlnH_iqm-2hdX-nW2uxOxuPuE_wf4I4JknSFQvqD5pwn6OUXnz8wD8l9f00UDlC6YR7yGK_563SKpJURx9CRSPZ3dlrKOLdbZLMuFell9TXbpOWKHbKxRCC4S76ul9AstMzoxFnnO3EUFHfNYd6KJ4xzmpXljHr8Fa4G0nFBP1SOq-S0LGgtlM8DZLbMER0HNypm2XeYjlNVWOp3FKhZAl_DQ98WUvAOqDM90na-R4a3N89X_aButBAYxnuzAKYckYgtMxE3caalhrKEWautgnJMGJ0ZqwTXJlSacR1qKW0UGyuQRTQyzLF90i7Kwh0Q6oySGSjXZhqnu1JjS3V4grKh1jJhHRI1Ck5NzUKOzTDytIGbvaTeKilaJa2s0iHni0GTioRjtbhoLJf-8qUU0sSqgYf_HXhE1iPsC-yXZo5JG1TvTqBYmelT742nZO3y7qE_-AZ6hu-A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGYAB8RTl6YGR0Cp2HDyiAirPhVZii_yKVBSSCopQF_4F_5c7JylBQh1Yk7MT-ex72J-_I-TYQUwBjswG4J1NwG2oAmlAIeIsdowpEaWeTOf-QfSH_OYpelogvfouDMIqK9tf2nRvrasnnWo0O-PRqPMI6wOmY4wkXV0h8aL5Iofli2UMTj9_cB6S-wKbKB2geE095EFe05e3N2StDDnajliyv91Tw-VcrZHVKlak5-XvrJMFl2-QlQaD4Cb5umjAWWiR0rGzzpfiyCkem0PiileMM5oWxYR6ABZuB9JRTj9UhtvktMhpJZRNA6S2zBAeBy9Katl3yMepyi31RwrUNNDX0OnrTAq-AYGmh9pOt8jw6nLQ6wdVpYXAMH42CSDnCEVkmQm5iVItNcQlzFptFcRjwujUWCW4Nl2lGdddLaUNI2MF0oiGhjm2TVp5kbsdQp1RMoXBtanGfFdqrKkOPSjb1VrGrE3CeoATU9GQYzWMLKnxZs-J10qCWklKrbTJyazRuGThmC8uas0lvyZTAn5iXsPd_zY8Ikv9wf1dcnf9cLtHlkMsEuz3afZJC9TgDiBymehDPzO_AfVi8Q4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determinants+of+pedestrian+mediolateral+foot+placement+in+walking+on+laterally-oscillating+structures+and+their+consequences+for+structural+stability&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Bocian%2C+Mateusz&rft.au=Wdowicka%2C+Hanna&rft.au=Burn%2C+Jeremy+F.&rft.au=Macdonald%2C+John+H.G.&rft.date=2025-01-01&rft.issn=0888-3270&rft.volume=222&rft.spage=111793&rft_id=info:doi/10.1016%2Fj.ymssp.2024.111793&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2024_111793
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon