A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS)
•A full-scale fluvial flood modelling framework based on a high-performance hydrodynamic model solving the 2D SWEs.•Successful application to reproduce a storm induced flood in a 2500 km2 catchment at 5 m resolution.•High-resolution grid is essential for accurately simulating large-scale fluvial flo...
Saved in:
Published in | Advances in water resources Vol. 132; p. 103392 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A full-scale fluvial flood modelling framework based on a high-performance hydrodynamic model solving the 2D SWEs.•Successful application to reproduce a storm induced flood in a 2500 km2 catchment at 5 m resolution.•High-resolution grid is essential for accurately simulating large-scale fluvial flood using a 2D hydrodynamic model.
Full-scale fluvial flood modelling over large catchments has traditionally been carried out using coupled hydrological and hydraulic/hydrodynamic models. Such a traditional modelling approach is not well suited for the simulation of extreme floods induced by intense rainfall, which is usually featured with highly transient and dynamic rainfall-runoff and flooding process. This work aims to develop and demonstrate a modelling framework to predict the full-scale process of fluvial flooding from the source (rainfall) to impact (inundation) over a large catchment using a single high-performance hydrodynamic model driven by rainfall inputs. The modelling framework is applied to reproduce the flood event caused by the 2015 Storm Desmond in the 2500 km2 Eden Catchment at 5 m resolution. Without intensive model calibration, the predicted results compare well with field observations in terms of inundation extent and gauged water levels across the catchment. Sensitivity tests reveal that high-resolution grid is essential for accurate simulation of fluvial flood events using a 2D hydrodynamic model. Accelerated by multiple modern GPUs, the simulation is more than 2.5 times faster than real time although it involves 100 million computational cells inside the computational domain. This work provides a novel and promising approach to assess and forecast at real time the risk of extreme fluvial floods from intense rainfall. |
---|---|
AbstractList | •A full-scale fluvial flood modelling framework based on a high-performance hydrodynamic model solving the 2D SWEs.•Successful application to reproduce a storm induced flood in a 2500 km2 catchment at 5 m resolution.•High-resolution grid is essential for accurately simulating large-scale fluvial flood using a 2D hydrodynamic model.
Full-scale fluvial flood modelling over large catchments has traditionally been carried out using coupled hydrological and hydraulic/hydrodynamic models. Such a traditional modelling approach is not well suited for the simulation of extreme floods induced by intense rainfall, which is usually featured with highly transient and dynamic rainfall-runoff and flooding process. This work aims to develop and demonstrate a modelling framework to predict the full-scale process of fluvial flooding from the source (rainfall) to impact (inundation) over a large catchment using a single high-performance hydrodynamic model driven by rainfall inputs. The modelling framework is applied to reproduce the flood event caused by the 2015 Storm Desmond in the 2500 km2 Eden Catchment at 5 m resolution. Without intensive model calibration, the predicted results compare well with field observations in terms of inundation extent and gauged water levels across the catchment. Sensitivity tests reveal that high-resolution grid is essential for accurate simulation of fluvial flood events using a 2D hydrodynamic model. Accelerated by multiple modern GPUs, the simulation is more than 2.5 times faster than real time although it involves 100 million computational cells inside the computational domain. This work provides a novel and promising approach to assess and forecast at real time the risk of extreme fluvial floods from intense rainfall. Full-scale fluvial flood modelling over large catchments has traditionally been carried out using coupled hydrological and hydraulic/hydrodynamic models. Such a traditional modelling approach is not well suited for the simulation of extreme floods induced by intense rainfall, which is usually featured with highly transient and dynamic rainfall-runoff and flooding process. This work aims to develop and demonstrate a modelling framework to predict the full-scale process of fluvial flooding from the source (rainfall) to impact (inundation) over a large catchment using a single high-performance hydrodynamic model driven by rainfall inputs. The modelling framework is applied to reproduce the flood event caused by the 2015 Storm Desmond in the 2500 km² Eden Catchment at 5 m resolution. Without intensive model calibration, the predicted results compare well with field observations in terms of inundation extent and gauged water levels across the catchment. Sensitivity tests reveal that high-resolution grid is essential for accurate simulation of fluvial flood events using a 2D hydrodynamic model. Accelerated by multiple modern GPUs, the simulation is more than 2.5 times faster than real time although it involves 100 million computational cells inside the computational domain. This work provides a novel and promising approach to assess and forecast at real time the risk of extreme fluvial floods from intense rainfall. |
ArticleNumber | 103392 |
Author | Ming, Xiaodong Xia, Xilin Liang, Qiuhua |
Author_xml | – sequence: 1 givenname: Xilin surname: Xia fullname: Xia, Xilin organization: School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, UK – sequence: 2 givenname: Qiuhua surname: Liang fullname: Liang, Qiuhua email: Q.Liang@lboro.ac.uk organization: School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, UK – sequence: 3 givenname: Xiaodong surname: Ming fullname: Ming, Xiaodong organization: School of Engineering, Newcastle University, Newcastle upon Tyne, UK |
BookMark | eNqNkM9rFDEYhoO04Lb6N5hjPcyaHzOTzMHDUtQWKgptzyGTfNnNmknWJLtlwT_eKSsiXvT0wsf7vHw8F-gspggIvaFkSQnt322X2h6edM1QlozQYb5yPrAXaEGlYM3Qd-IMLQgnQ0MFkS_RRSlbQohsBVugHyvs9iE0xegA2IX9weswZ0oWT8lCCD6usct6gqeUv-FRF7A4Razxxq83zQ6yS3nS0QD2scI66zoXNkebkz1GPXnzx045lgoTvrrxX28_3799hc6dDgVe_8pL9Pjxw8P1TXP35dPt9equMbyVtRFcDIyNoyS9s2Pbi06PVEvCOtpL0oLlHGjn-rYF0jnpCAwdcDkYTQYu5Mgv0dVpd5fT9z2UqiZfzPyTjpD2RTFOOzavCzFX35-qJqdSMjhlfNXVp1iz9kFRop6tq636bV09W1cn6zMv_uJ32U86H_-DXJ1ImE0cPGRVjIfZq_UZTFU2-X9u_AQaP6WI |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2024_130724 crossref_primary_10_1016_j_jhydrol_2024_131814 crossref_primary_10_3389_feart_2020_527363 crossref_primary_10_1016_j_jhydrol_2023_129735 crossref_primary_10_1155_2021_5538059 crossref_primary_10_1029_2021WR030820 crossref_primary_10_1007_s11269_023_03696_6 crossref_primary_10_3390_hydrology8040146 crossref_primary_10_1016_j_envsoft_2020_104889 crossref_primary_10_1029_2019WR025583 crossref_primary_10_1080_19942060_2023_2240392 crossref_primary_10_1007_s11625_021_01034_6 crossref_primary_10_1007_s10666_023_09887_0 crossref_primary_10_3390_w14070997 crossref_primary_10_3390_w16131844 crossref_primary_10_1016_j_scitotenv_2021_151289 crossref_primary_10_3390_w15071300 crossref_primary_10_3390_hydrology8030109 crossref_primary_10_1016_j_jenvman_2023_119289 crossref_primary_10_1016_j_envsoft_2024_106166 crossref_primary_10_1007_s10584_021_03282_y crossref_primary_10_1016_j_envsoft_2024_106047 crossref_primary_10_1016_j_scitotenv_2021_145327 crossref_primary_10_1016_j_envsoft_2021_105205 crossref_primary_10_4995_ia_2021_15565 crossref_primary_10_1016_j_jhydrol_2024_132474 crossref_primary_10_1029_2019EF001391 crossref_primary_10_3390_w13030259 crossref_primary_10_1016_j_jhydrol_2023_129277 crossref_primary_10_1007_s10346_025_02492_0 crossref_primary_10_1016_j_jhydrol_2024_131918 crossref_primary_10_1016_j_jhydrol_2024_132564 crossref_primary_10_3390_w15193395 crossref_primary_10_1016_j_ejrh_2025_102243 crossref_primary_10_1007_s11069_022_05308_9 crossref_primary_10_1016_j_softx_2023_101397 crossref_primary_10_1016_j_jhydrol_2024_131076 crossref_primary_10_5194_hess_25_2843_2021 crossref_primary_10_1016_j_jhydrol_2021_126524 crossref_primary_10_3390_w13233347 crossref_primary_10_5194_nhess_24_2315_2024 crossref_primary_10_1061__ASCE_HE_1943_5584_0002135 crossref_primary_10_1016_j_jhydrol_2020_125481 crossref_primary_10_1016_j_jhydrol_2023_130135 crossref_primary_10_1007_s11269_024_03972_z crossref_primary_10_1016_j_jhydrol_2024_132334 crossref_primary_10_1016_j_envsoft_2020_104951 crossref_primary_10_3390_w12092326 crossref_primary_10_3390_w12040926 crossref_primary_10_1016_j_ijdrr_2024_105154 crossref_primary_10_1016_j_envsoft_2021_105034 crossref_primary_10_1016_j_jhydrol_2020_125924 crossref_primary_10_1016_j_envsoft_2021_105035 crossref_primary_10_1016_j_jhydrol_2024_131481 crossref_primary_10_1016_j_jenvman_2021_112986 crossref_primary_10_5194_gmd_16_2391_2023 crossref_primary_10_1111_jfr3_12899 crossref_primary_10_1007_s11069_022_05267_1 crossref_primary_10_1016_j_catena_2023_107522 crossref_primary_10_1007_s00477_023_02505_1 crossref_primary_10_1016_j_jhydrol_2021_126262 crossref_primary_10_1016_j_jhydrol_2022_127870 crossref_primary_10_5194_gmd_14_3577_2021 crossref_primary_10_1029_2021WR031279 crossref_primary_10_1016_j_jhydrol_2022_127477 crossref_primary_10_1016_j_scitotenv_2024_176372 crossref_primary_10_1016_j_aei_2024_102672 crossref_primary_10_1007_s12205_021_2158_3 crossref_primary_10_2166_hydro_2023_154 crossref_primary_10_1007_s10346_021_01695_5 crossref_primary_10_1016_j_jhydrol_2019_124508 crossref_primary_10_1016_j_jhydrol_2021_126306 crossref_primary_10_2166_hydro_2020_198 crossref_primary_10_1016_j_jhydrol_2024_131863 crossref_primary_10_1016_j_jhydrol_2025_133105 crossref_primary_10_1016_j_jhydrol_2024_131620 crossref_primary_10_1029_2020WR027147 crossref_primary_10_2166_hydro_2024_257 crossref_primary_10_1029_2023WR034599 crossref_primary_10_5194_gmd_16_977_2023 crossref_primary_10_1029_2023WR036269 crossref_primary_10_1029_2023WR036421 crossref_primary_10_1007_s11069_020_03855_7 crossref_primary_10_1007_s11269_024_03867_z crossref_primary_10_3390_hydrology9030050 crossref_primary_10_1016_j_advwatres_2021_103867 crossref_primary_10_4995_ia_2023_18750 crossref_primary_10_3390_su15054589 crossref_primary_10_1007_s13753_021_00368_0 crossref_primary_10_1016_j_envsoft_2024_106132 crossref_primary_10_1016_j_jhydrol_2023_129114 crossref_primary_10_1016_j_nbsj_2024_100120 crossref_primary_10_1016_j_jhydrol_2022_128182 crossref_primary_10_1016_j_advwatres_2022_104357 crossref_primary_10_3390_su14148576 crossref_primary_10_2478_mgr_2022_0009 crossref_primary_10_1080_00221686_2023_2201210 crossref_primary_10_2166_hydro_2023_012 crossref_primary_10_1016_j_envsoft_2022_105480 crossref_primary_10_1016_j_mex_2023_102202 crossref_primary_10_1111_jfr3_13039 crossref_primary_10_1016_j_ijsrc_2022_05_002 crossref_primary_10_1016_j_isci_2024_111037 crossref_primary_10_1016_j_ejrh_2022_101247 crossref_primary_10_1016_j_jhydrol_2024_131606 crossref_primary_10_3390_w14162488 crossref_primary_10_1016_j_envsoft_2025_106441 crossref_primary_10_1016_j_jhydrol_2021_127365 crossref_primary_10_5194_nhess_24_3357_2024 crossref_primary_10_1029_2021GL095795 crossref_primary_10_1016_j_jhydrol_2024_130751 crossref_primary_10_1016_j_envsoft_2024_105974 crossref_primary_10_3390_w12051288 crossref_primary_10_1007_s12517_022_10836_6 crossref_primary_10_1016_j_uclim_2023_101628 crossref_primary_10_1016_j_advwatres_2022_104187 crossref_primary_10_5194_nhess_24_225_2024 crossref_primary_10_1016_j_jher_2022_10_001 crossref_primary_10_1080_00221686_2024_2401905 crossref_primary_10_3390_w14091367 crossref_primary_10_2166_hydro_2023_128 |
Cites_doi | 10.1016/j.advwatres.2018.05.004 10.1061/(ASCE)HY.1943-7900.0000219 10.1061/(ASCE)HY.1943-7900.0000913 10.1016/S0022-1694(00)00278-X 10.1061/(ASCE)0733-9429(2008)134:6(714) 10.1061/(ASCE)1084-0699(2000)5:3(250) 10.1016/j.jhydrol.2011.06.007 10.1016/j.envsoft.2015.10.002 10.1016/j.proeng.2016.07.585 10.1002/hyp.252 10.1016/0022-1694(86)90114-9 10.1016/j.advwatres.2012.08.003 10.1061/(ASCE)HE.1943-5584.0001497 10.1016/j.cpc.2013.03.008 10.1016/j.compfluid.2013.09.018 10.1002/fld.1305 10.1002/fld.285 10.1029/94JD00483 10.1007/s12665-015-4215-z 10.1016/j.jcp.2012.01.007 10.1029/94WR00436 10.1016/0022-1694(86)90115-0 10.1029/WR009i002p00384 10.2166/hydro.2013.173 10.1016/j.advwatres.2011.11.009 10.2166/hydro.2011.077 10.1016/j.advwatres.2016.09.011 10.1002/asl.754 10.1002/2016WR020055 10.1016/j.compfluid.2011.10.012 10.1002/wrcr.20067 10.1002/2013WR014906 10.1016/j.jhydrol.2015.10.047 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.advwatres.2019.103392 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-9657 |
ExternalDocumentID | 10_1016_j_advwatres_2019_103392 S030917081930243X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEP SES SEW SPC SPCBC SSA SSE SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c348t-737922bb806fdb4675ab1a802516804ed33e15f644e05f8f0e95e389ca09378b3 |
IEDL.DBID | .~1 |
ISSN | 0309-1708 |
IngestDate | Mon Jul 21 09:36:47 EDT 2025 Tue Jul 01 01:23:11 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 Fri Feb 23 02:48:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydrodynamic model Godunov-type finite volume method High-performance computing GPU High-resolution simulation Fluvial flood modelling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-737922bb806fdb4675ab1a802516804ed33e15f644e05f8f0e95e389ca09378b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2315280677 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2315280677 crossref_citationtrail_10_1016_j_advwatres_2019_103392 crossref_primary_10_1016_j_advwatres_2019_103392 elsevier_sciencedirect_doi_10_1016_j_advwatres_2019_103392 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationTitle | Advances in water resources |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ordnance Survey, 2018. OS Terrain 5 [WWW document]. URL Telemac software, 2016. Telemac 2D [WWW Document]. URL Liang (bib0030) 2010; 136 Danish Hydraulic Institute, 2003. MIKE11 a modelling system for rivers and channels - User Guide. Cea, Vázquez-Cendón (bib0010) 2012; 231 OpenACC Organization, 2018. About OpenACC [WWW document]. URL Xia, Liang (bib0046) 2016; 75 Digimap, 2018. Edina's digimap [WWW document]. URL Kesserwani, Wang (bib0026) 2014; 50 Begnudelli, Sanders, Bradford (bib0005) 2008; 134 Mein, Larson (bib0033) 1973; 9 Lacaster, Morales-Hernandez, Murillo, Garcia-Navarro (bib0028) 2015; 74 Xia, Liang (bib0045) 2018; 117 Sætra, Brodtkorb (bib0039) 2012 Liang, Lin, Falconer (bib0029) 2007; 53 CEDA, 2018. Land cover map 2015 [WWW document]. URL Beven, Freer (bib0007) 2001; 15 . NVIDIA Corporation, 2018. About CUDA [WWW document]. URL Environment Agency, 2018a. Carlisle flood investigation report [WWW document]. URL Environment Agency, 2018b. Spatial flood defences (including standardised attributes) [WWW document]. URL Yu, Duan (bib0049) 2017; 22 Abbott, Bathurst, Cunge, O’Connell, Rasmussen (bib0002) 1986; 87 Abbott, Bathurst, Cunge, O'Connell, Rasmussen (bib0001) 1986; 87 Liang, Lettenmaier, Wood, Burges (bib0032) 1994; 99 Met Office, 2003. Met office rain radar data from the nimrod system [WWW document]. URL Xia, Liang, Ming, Hou (bib0047) 2017; 53 Ewen, Parkin, O'Connell (bib0022) 2000; 5 Kim, Warnock, Ivanov, Katopodes (bib0027qq) 2012; 37 (bib0025) 2014 Simons, Busse, Hou, Özgen, Hinkelmann (bib0041) 2014; 16 Bates, De Roo (bib0004) 2000; 236 CRED, 2018. EM-DAT: The international disaster database [WWW document]. URL Paiva, Collischonn, Bonnet, Buarque, Frappart, Calmant, Mendes (bib0016) 2013; 49 Hou, Liang, Simons, Hinkelmann (bib0024) 2013; 52 Chow (bib0012) 1959 Bergström (bib0006) 1995 Brufau, Vázquez-Cendón, García-Navarro (bib0009) 2002; 39 Bao, Wang, Zhang, Li (bib0003) 2017; 18 Yu, Duan (bib0050) 2014; 140 Wigmosta, Vail, Lettenmaier (bib0044) 1994; 30 Paiva, Collischonn, Tucci (bib0038aa) 2011; 406 Domínguez, Crespo, Valdez-Balderas, Rogers, Gómez-Gesteira (bib0018) 2013; 184 Liang, Xia, Hou (bib0031) 2016; 154 Smith, Liang (bib0042) 2013; 88 Environment Agency, 2018c. Historic flood map [WWW document]. Costabile, Costanzo, Macchione (bib0013) 2012; 14 Brodtkorb, Sætra, Altinakar (bib0008) 2012; 55 Nguyen, Thorstensen, Sorooshian, Hsu, AghaKouchak, Sanders, Koren, Cui, Smith (bib0035) 2016; 541 Khronos Group, 2018. OpenCL overview [WWW document]. URL Hasan, Sharma, Mariethoz, Johnson, Seed (bib0023) 2016; 97 Xia (10.1016/j.advwatres.2019.103392_bib0045) 2018; 117 10.1016/j.advwatres.2019.103392_bib0027 Abbott (10.1016/j.advwatres.2019.103392_bib0001) 1986; 87 10.1016/j.advwatres.2019.103392_bib0021 Ewen (10.1016/j.advwatres.2019.103392_bib0022) 2000; 5 10.1016/j.advwatres.2019.103392_bib0020 Brodtkorb (10.1016/j.advwatres.2019.103392_bib0008) 2012; 55 Paiva (10.1016/j.advwatres.2019.103392_bib0016) 2013; 49 Wigmosta (10.1016/j.advwatres.2019.103392_bib0044) 1994; 30 (10.1016/j.advwatres.2019.103392_bib0025) 2014 Xia (10.1016/j.advwatres.2019.103392_bib0046) 2016; 75 Bates (10.1016/j.advwatres.2019.103392_bib0004) 2000; 236 10.1016/j.advwatres.2019.103392_bib0014 10.1016/j.advwatres.2019.103392_bib0015 Beven (10.1016/j.advwatres.2019.103392_bib0007) 2001; 15 10.1016/j.advwatres.2019.103392_bib0019 10.1016/j.advwatres.2019.103392_bib0017 Kesserwani (10.1016/j.advwatres.2019.103392_bib0026) 2014; 50 10.1016/j.advwatres.2019.103392_bib0011 Chow (10.1016/j.advwatres.2019.103392_sbref0011) 1959 Liang (10.1016/j.advwatres.2019.103392_bib0031) 2016; 154 Bergström (10.1016/j.advwatres.2019.103392_bib0006) 1995 10.1016/j.advwatres.2019.103392_bib0043 Sætra (10.1016/j.advwatres.2019.103392_bib0039) 2012 Yu (10.1016/j.advwatres.2019.103392_bib0050) 2014; 140 Kim (10.1016/j.advwatres.2019.103392_bib0027qq) 2012; 37 Domínguez (10.1016/j.advwatres.2019.103392_bib0018) 2013; 184 Xia (10.1016/j.advwatres.2019.103392_bib0047) 2017; 53 Cea (10.1016/j.advwatres.2019.103392_bib0010) 2012; 231 Nguyen (10.1016/j.advwatres.2019.103392_bib0035) 2016; 541 Hou (10.1016/j.advwatres.2019.103392_bib0024) 2013; 52 Brufau (10.1016/j.advwatres.2019.103392_bib0009) 2002; 39 10.1016/j.advwatres.2019.103392_bib0036 Liang (10.1016/j.advwatres.2019.103392_bib0030) 2010; 136 10.1016/j.advwatres.2019.103392_bib0037 10.1016/j.advwatres.2019.103392_bib0034 10.1016/j.advwatres.2019.103392_bib0038 Liang (10.1016/j.advwatres.2019.103392_bib0029) 2007; 53 Mein (10.1016/j.advwatres.2019.103392_bib0033) 1973; 9 Simons (10.1016/j.advwatres.2019.103392_bib0041) 2014; 16 Bao (10.1016/j.advwatres.2019.103392_bib0003) 2017; 18 Abbott (10.1016/j.advwatres.2019.103392_bib0002) 1986; 87 Costabile (10.1016/j.advwatres.2019.103392_bib0013) 2012; 14 Lacaster (10.1016/j.advwatres.2019.103392_bib0028) 2015; 74 Yu (10.1016/j.advwatres.2019.103392_bib0049) 2017; 22 Smith (10.1016/j.advwatres.2019.103392_bib0042) 2013; 88 Hasan (10.1016/j.advwatres.2019.103392_bib0023) 2016; 97 Paiva (10.1016/j.advwatres.2019.103392_bib0038aa) 2011; 406 Liang (10.1016/j.advwatres.2019.103392_bib0032) 1994; 99 Begnudelli (10.1016/j.advwatres.2019.103392_bib0005) 2008; 134 |
References_xml | – volume: 140 start-page: 04014045 year: 2014 ident: bib0050 article-title: Two-dimensional hydrodynamic model for surface-flow routing publication-title: J. Hydraul. Eng. – volume: 30 start-page: 1665 year: 1994 end-page: 1679 ident: bib0044 article-title: A distributed hydrology-vegetation model for complex terrain publication-title: Water Resour. Res. – reference: Environment Agency, 2018a. Carlisle flood investigation report [WWW document]. URL – reference: Environment Agency, 2018b. Spatial flood defences (including standardised attributes) [WWW document]. URL – volume: 541 start-page: 401 year: 2016 end-page: 420 ident: bib0035 article-title: A high resolution coupled hydrologic-hydraulic model (HiResFlood-UCI) for flash flood modeling publication-title: J. Hydrol. – volume: 99 start-page: 14415 year: 1994 end-page: 14428 ident: bib0032 article-title: A simple hydrologically based model of land surface water and energy fluxes for general circulation models publication-title: J. Geophys. Res. Atmos. – reference: Met Office, 2003. Met office rain radar data from the nimrod system [WWW document]. URL – volume: 18 start-page: 284 year: 2017 end-page: 293 ident: bib0003 article-title: Application of a developed distributed hydrological model based on the mixed runoff generation model and 2D kinematic wave flow routing model for better flood forecasting publication-title: Atmos. Sci. Lett. – reference: NVIDIA Corporation, 2018. About CUDA [WWW document]. URL – volume: 16 start-page: 375 year: 2014 end-page: 391 ident: bib0041 article-title: A model for overland flow and associated processes within the hydroinformatics modelling system publication-title: J. Hydroinformatics – year: 2014 ident: bib0025 article-title: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change – year: 1995 ident: bib0006 article-title: The HBV model publication-title: Computer Models of Watershed Hydrology – volume: 134 start-page: 714 year: 2008 end-page: 725 ident: bib0005 article-title: Adaptive godunov-based model for flood simulation publication-title: J. Hydraul. Eng. – volume: 236 start-page: 54 year: 2000 end-page: 77 ident: bib0004 article-title: A simple raster-based model for flood inundation simulation publication-title: J. Hydrol. – volume: 184 start-page: 1848 year: 2013 end-page: 1860 ident: bib0018 article-title: New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters publication-title: Comput. Phys. Commun. – volume: 97 start-page: 205 year: 2016 end-page: 218 ident: bib0023 article-title: Improving radar rainfall estimation by merging point rainfall measurements within a model combination framework publication-title: Adv. Water Resour. – volume: 37 start-page: 104 year: 2012 end-page: 126 ident: bib0027qq article-title: Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow publication-title: Adv. Water Resour. – volume: 53 start-page: 3730 year: 2017 end-page: 3759 ident: bib0047 article-title: An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations publication-title: Water Resour. Res. – reference: Khronos Group, 2018. OpenCL overview [WWW document]. URL – volume: 88 start-page: 17 year: 2013 end-page: 20 ident: bib0042 article-title: Towards a generalised GPU/CPU shallow-flow modelling tool publication-title: Comput. Fluids – volume: 39 start-page: 247 year: 2002 end-page: 275 ident: bib0009 article-title: A numerical model for the flooding and drying of irregular domains publication-title: Int. J. Numer. Methods Fluids – volume: 406 start-page: 170 year: 2011 end-page: 181 ident: bib0038aa article-title: Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach publication-title: J. Hydrol. – volume: 87 start-page: 45 year: 1986 end-page: 59 ident: bib0001 article-title: An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 1: history and philosophy of a physically-based, distributed modelling system publication-title: J. Hydrol. – volume: 231 start-page: 3317 year: 2012 end-page: 3339 ident: bib0010 article-title: Unstructured finite volume discretisation of bed friction and convective flux in solute transport models linked to the shallow water equations publication-title: J. Comput. Phys. – volume: 53 start-page: 811 year: 2007 end-page: 826 ident: bib0029 article-title: Simulation of rapidly varying flow using an efficient TVD–MacCormack scheme publication-title: Int. J. Numer. Methods Fluids – volume: 154 start-page: 975 year: 2016 end-page: 981 ident: bib0031 article-title: Catchment-scale high-resolution flash flood simulation using the GPU-based technology publication-title: Procedia Eng. – reference: Environment Agency, 2018c. Historic flood map [WWW document]. – volume: 49 start-page: 1226 year: 2013 end-page: 1243 ident: bib0016 article-title: Large scale hydrologic and hydrodynamic modelling of the Amazon River basin publication-title: Water Resour. Res. – volume: 74 start-page: 7295 year: 2015 end-page: 7305 ident: bib0028 article-title: Gpu implementation of the 2D shallow water equations for the simulation of rainfall/runoff events publication-title: Environ. Earth Sci. – volume: 117 start-page: 87 year: 2018 end-page: 97 ident: bib0045 article-title: A new efficient implicit scheme for discretising the stiff friction terms in the shallow water equations publication-title: Adv. Water Resour. – reference: Digimap, 2018. Edina's digimap [WWW document]. URL – volume: 15 start-page: 1993 year: 2001 end-page: 2011 ident: bib0007 article-title: A dynamic TOPMODEL publication-title: Hydrol. Process – start-page: 56 year: 2012 end-page: 66 ident: bib0039 article-title: Shallow Water Simulations On Multiple GPUs publication-title: PARA2010, Applied Parallel and Scientific Computing – volume: 87 start-page: 61 year: 1986 end-page: 773 ident: bib0002 article-title: An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 2: structure of a physically-based, distributed modelling system publication-title: J. Hydrol. – reference: CRED, 2018. EM-DAT: The international disaster database [WWW document]. URL – volume: 14 start-page: 122-135 year: 2012 ident: bib0013 article-title: Comparative analysis of overland flow models using finite volume schemes publication-title: J. Hydroinformatics – volume: 22 start-page: 04017006 year: 2017 ident: bib0049 article-title: Simulation of surface runoff using hydrodynamic model publication-title: J. Hydrol. Eng. – volume: 52 start-page: 107 year: 2013 end-page: 131 ident: bib0024 article-title: A 2D well-balanced shallow flow model for unstructured grids with novel slope source term treatment publication-title: Adv. Water Resour. – reference: Ordnance Survey, 2018. OS Terrain 5 [WWW document]. URL – reference: Telemac software, 2016. Telemac 2D [WWW Document]. URL – reference: . – reference: OpenACC Organization, 2018. About OpenACC [WWW document]. URL – volume: 55 start-page: 1 year: 2012 end-page: 12 ident: bib0008 article-title: Efficient shallow water simulations on GPUs: implementation, visualization, verification, and validation publication-title: Comput. Fluids – reference: CEDA, 2018. Land cover map 2015 [WWW document]. URL – volume: 9 start-page: 384 year: 1973 end-page: 394 ident: bib0033 article-title: Modeling infiltration during a steady rain publication-title: Water Resour. Res. – volume: 5 start-page: 250 year: 2000 end-page: 258 ident: bib0022 article-title: Shetran: Distributed river basin flow and transport modeling system publication-title: J. Hydrol. Eng. – reference: Danish Hydraulic Institute, 2003. MIKE11 a modelling system for rivers and channels - User Guide. – volume: 50 start-page: 6522 year: 2014 end-page: 6541 ident: bib0026 article-title: Discontinuous galerkin flood model formulation: Luxury or necessity? publication-title: Water Resour. Res – volume: 75 start-page: 28 year: 2016 end-page: 43 ident: bib0046 article-title: A GPU-accelerated smoothed particle hydrodynamics (SPH) model for the shallow water equations publication-title: Environ. Model. Softw. – year: 1959 ident: bib0012 article-title: Open Channel Hydraulics – volume: 136 start-page: 669 year: 2010 end-page: 675 ident: bib0030 article-title: Flood simulation using a well-balanced shallow flow model publication-title: J. Hydraul. Eng. – volume: 117 start-page: 87 year: 2018 ident: 10.1016/j.advwatres.2019.103392_bib0045 article-title: A new efficient implicit scheme for discretising the stiff friction terms in the shallow water equations publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2018.05.004 – ident: 10.1016/j.advwatres.2019.103392_bib0027 – volume: 136 start-page: 669 year: 2010 ident: 10.1016/j.advwatres.2019.103392_bib0030 article-title: Flood simulation using a well-balanced shallow flow model publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0000219 – volume: 140 start-page: 04014045 year: 2014 ident: 10.1016/j.advwatres.2019.103392_bib0050 article-title: Two-dimensional hydrodynamic model for surface-flow routing publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0000913 – volume: 236 start-page: 54 year: 2000 ident: 10.1016/j.advwatres.2019.103392_bib0004 article-title: A simple raster-based model for flood inundation simulation publication-title: J. Hydrol. doi: 10.1016/S0022-1694(00)00278-X – ident: 10.1016/j.advwatres.2019.103392_bib0036 – volume: 134 start-page: 714 year: 2008 ident: 10.1016/j.advwatres.2019.103392_bib0005 article-title: Adaptive godunov-based model for flood simulation publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(2008)134:6(714) – ident: 10.1016/j.advwatres.2019.103392_bib0017 – volume: 5 start-page: 250 year: 2000 ident: 10.1016/j.advwatres.2019.103392_bib0022 article-title: Shetran: Distributed river basin flow and transport modeling system publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2000)5:3(250) – ident: 10.1016/j.advwatres.2019.103392_bib0020 – volume: 406 start-page: 170 year: 2011 ident: 10.1016/j.advwatres.2019.103392_bib0038aa article-title: Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.06.007 – volume: 75 start-page: 28 year: 2016 ident: 10.1016/j.advwatres.2019.103392_bib0046 article-title: A GPU-accelerated smoothed particle hydrodynamics (SPH) model for the shallow water equations publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2015.10.002 – volume: 154 start-page: 975 year: 2016 ident: 10.1016/j.advwatres.2019.103392_bib0031 article-title: Catchment-scale high-resolution flash flood simulation using the GPU-based technology publication-title: Procedia Eng. doi: 10.1016/j.proeng.2016.07.585 – volume: 15 start-page: 1993 year: 2001 ident: 10.1016/j.advwatres.2019.103392_bib0007 article-title: A dynamic TOPMODEL publication-title: Hydrol. Process doi: 10.1002/hyp.252 – year: 1995 ident: 10.1016/j.advwatres.2019.103392_bib0006 article-title: The HBV model – volume: 87 start-page: 45 year: 1986 ident: 10.1016/j.advwatres.2019.103392_bib0001 article-title: An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 1: history and philosophy of a physically-based, distributed modelling system publication-title: J. Hydrol. doi: 10.1016/0022-1694(86)90114-9 – volume: 52 start-page: 107 year: 2013 ident: 10.1016/j.advwatres.2019.103392_bib0024 article-title: A 2D well-balanced shallow flow model for unstructured grids with novel slope source term treatment publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.08.003 – volume: 22 start-page: 04017006 year: 2017 ident: 10.1016/j.advwatres.2019.103392_bib0049 article-title: Simulation of surface runoff using hydrodynamic model publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0001497 – ident: 10.1016/j.advwatres.2019.103392_bib0014 – volume: 184 start-page: 1848 year: 2013 ident: 10.1016/j.advwatres.2019.103392_bib0018 article-title: New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2013.03.008 – year: 1959 ident: 10.1016/j.advwatres.2019.103392_sbref0011 – volume: 88 start-page: 17 year: 2013 ident: 10.1016/j.advwatres.2019.103392_bib0042 article-title: Towards a generalised GPU/CPU shallow-flow modelling tool publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2013.09.018 – ident: 10.1016/j.advwatres.2019.103392_bib0021 – volume: 53 start-page: 811 year: 2007 ident: 10.1016/j.advwatres.2019.103392_bib0029 article-title: Simulation of rapidly varying flow using an efficient TVD–MacCormack scheme publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.1305 – volume: 39 start-page: 247 year: 2002 ident: 10.1016/j.advwatres.2019.103392_bib0009 article-title: A numerical model for the flooding and drying of irregular domains publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.285 – volume: 99 start-page: 14415 year: 1994 ident: 10.1016/j.advwatres.2019.103392_bib0032 article-title: A simple hydrologically based model of land surface water and energy fluxes for general circulation models publication-title: J. Geophys. Res. Atmos. doi: 10.1029/94JD00483 – volume: 74 start-page: 7295 year: 2015 ident: 10.1016/j.advwatres.2019.103392_bib0028 article-title: Gpu implementation of the 2D shallow water equations for the simulation of rainfall/runoff events publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-4215-z – volume: 231 start-page: 3317 year: 2012 ident: 10.1016/j.advwatres.2019.103392_bib0010 article-title: Unstructured finite volume discretisation of bed friction and convective flux in solute transport models linked to the shallow water equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.01.007 – start-page: 56 year: 2012 ident: 10.1016/j.advwatres.2019.103392_bib0039 article-title: Shallow Water Simulations On Multiple GPUs – ident: 10.1016/j.advwatres.2019.103392_bib0038 – ident: 10.1016/j.advwatres.2019.103392_bib0011 – ident: 10.1016/j.advwatres.2019.103392_bib0034 – volume: 30 start-page: 1665 year: 1994 ident: 10.1016/j.advwatres.2019.103392_bib0044 article-title: A distributed hydrology-vegetation model for complex terrain publication-title: Water Resour. Res. doi: 10.1029/94WR00436 – ident: 10.1016/j.advwatres.2019.103392_bib0015 – ident: 10.1016/j.advwatres.2019.103392_bib0019 – volume: 87 start-page: 61 year: 1986 ident: 10.1016/j.advwatres.2019.103392_bib0002 article-title: An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 2: structure of a physically-based, distributed modelling system publication-title: J. Hydrol. doi: 10.1016/0022-1694(86)90115-0 – volume: 9 start-page: 384 year: 1973 ident: 10.1016/j.advwatres.2019.103392_bib0033 article-title: Modeling infiltration during a steady rain publication-title: Water Resour. Res. doi: 10.1029/WR009i002p00384 – volume: 16 start-page: 375 year: 2014 ident: 10.1016/j.advwatres.2019.103392_bib0041 article-title: A model for overland flow and associated processes within the hydroinformatics modelling system publication-title: J. Hydroinformatics doi: 10.2166/hydro.2013.173 – volume: 37 start-page: 104 year: 2012 ident: 10.1016/j.advwatres.2019.103392_bib0027qq article-title: Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2011.11.009 – volume: 14 start-page: 122-135 year: 2012 ident: 10.1016/j.advwatres.2019.103392_bib0013 article-title: Comparative analysis of overland flow models using finite volume schemes publication-title: J. Hydroinformatics doi: 10.2166/hydro.2011.077 – volume: 97 start-page: 205 year: 2016 ident: 10.1016/j.advwatres.2019.103392_bib0023 article-title: Improving radar rainfall estimation by merging point rainfall measurements within a model combination framework publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2016.09.011 – ident: 10.1016/j.advwatres.2019.103392_bib0043 – volume: 18 start-page: 284 year: 2017 ident: 10.1016/j.advwatres.2019.103392_bib0003 article-title: Application of a developed distributed hydrological model based on the mixed runoff generation model and 2D kinematic wave flow routing model for better flood forecasting publication-title: Atmos. Sci. Lett. doi: 10.1002/asl.754 – volume: 53 start-page: 3730 year: 2017 ident: 10.1016/j.advwatres.2019.103392_bib0047 article-title: An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations publication-title: Water Resour. Res. doi: 10.1002/2016WR020055 – ident: 10.1016/j.advwatres.2019.103392_bib0037 – volume: 55 start-page: 1 year: 2012 ident: 10.1016/j.advwatres.2019.103392_bib0008 article-title: Efficient shallow water simulations on GPUs: implementation, visualization, verification, and validation publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2011.10.012 – year: 2014 ident: 10.1016/j.advwatres.2019.103392_bib0025 article-title: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 49 start-page: 1226 year: 2013 ident: 10.1016/j.advwatres.2019.103392_bib0016 article-title: Large scale hydrologic and hydrodynamic modelling of the Amazon River basin publication-title: Water Resour. Res. doi: 10.1002/wrcr.20067 – volume: 50 start-page: 6522 year: 2014 ident: 10.1016/j.advwatres.2019.103392_bib0026 article-title: Discontinuous galerkin flood model formulation: Luxury or necessity? publication-title: Water Resour. Res doi: 10.1002/2013WR014906 – volume: 541 start-page: 401 year: 2016 ident: 10.1016/j.advwatres.2019.103392_bib0035 article-title: A high resolution coupled hydrologic-hydraulic model (HiResFlood-UCI) for flash flood modeling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.10.047 |
SSID | ssj0008472 |
Score | 2.598081 |
Snippet | •A full-scale fluvial flood modelling framework based on a high-performance hydrodynamic model solving the 2D SWEs.•Successful application to reproduce a storm... Full-scale fluvial flood modelling over large catchments has traditionally been carried out using coupled hydrological and hydraulic/hydrodynamic models. Such... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103392 |
SubjectTerms | floods Fluvial flood modelling Godunov-type finite volume method GPU High-performance computing High-resolution simulation Hydrodynamic model hydrologic models rain risk runoff storms water resources watersheds |
Title | A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS) |
URI | https://dx.doi.org/10.1016/j.advwatres.2019.103392 https://www.proquest.com/docview/2315280677 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lBU86CE2yWaTjbdSLK3SItRCb8smu8FKSYq2FUH87e7k1VaQHjyFhN0k7ExmvsnOfIPQlUtCIhUl0L1MBygesQ3BpDRoaCvbkrYiAgqce323M3QeRnRUQa2iFgbSKnPbn9n01FrnVxr5ajam43FjAJsDlgcujQCt3ggq2B0PtPz2e5nmoa1vuZMAo9dyvIRcfAioyYAcLx8K0Ilv_-Whftnq1AG199BujhxxM3u5fVRR8QHaWeETPERfTQy_0413vfAKR5P5QmuXPiaJxGnLG6g9x1GRj4XBhUmcxFhgoC02pssqAlzySEj88im1mc1a16_cJyOBxted8VO3N7g5QsP2_XOrY-TtFYyQOGxmeMTzbTsImOlGMtAGk4rAEgyCDpeZjpKEKItGGjApk0YsMpVPlcY3oTA1pmEBOUbVOInVCcLSEQETDg0hQFMa40SWE1nM9DyfhpaiNeQWS8rDnHscWmBMeJFk9spLWXCQBc9kUUNmOXGa0W9snnJXyIyvaRLXTmLz5MtCylx_Z7B5ImKVzPUgopEOA7690_884Axtw1mWDniOqrO3ubrQsGYW1FO9raOtZvex0_8BYw75RA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58HNSD-MT6XMGDHmKTbDbZeBOx1EeL0Aq9LZvsBislKdpWBPG3O9MktRXEg6dAspuEnc0332ZnviHkxGcx04YzrF4GC5SAuZYSWls8do3raNcwhQnOjaZff_RuO7wzR67KXBgMqyywP8f0MVoXZ6rFaFb73W61hZsDToAujaGsXmeeLHrw-WIZg_PP7zgPgN_JVgI2nwnyUnr0pjApA4O8QsxAZ6H7m4v6AdZjD1RbI6sFdaSX-dutkzmTbpCVKUHBTfJxSfF_uvUKI29o0huOYHrBMcs0Hde8weRzmpQBWRR9mKZZShVF3WKr_51GQCdCEpo-vWvA2bx2_dR9chVoelrvPtw0Wmdb5LF23b6qW0V9BStmnhhYAQtC140iYfuJjgAxuYocJXDV4QvbM5ox4_AEGJOxeSIS24TcAMGJlQ2kRkRsmyykWWp2CNWeioTyeIwrNAMkJ3G8xBF2EIQ8dgyvEL8cUhkX4uNYA6MnyyizZzmxhURbyNwWFWJPOvZz_Y2_u1yUNpMzU0mCl_i783FpZQkfGu6eqNRkQ2jEgOoIFNzb_c8DjshSvd24l_c3zbs9soxX8tjAfbIweBmaA-A4g-hwPIe_AA2d-tI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+full-scale+fluvial+flood+modelling+framework+based+on+a+high-performance+integrated+hydrodynamic+modelling+system+%28HiPIMS%29&rft.jtitle=Advances+in+water+resources&rft.au=Xia%2C+Xilin&rft.au=Liang%2C+Qiuhua&rft.au=Ming%2C+Xiaodong&rft.date=2019-10-01&rft.pub=Elsevier+Ltd&rft.issn=0309-1708&rft.eissn=1872-9657&rft.volume=132&rft_id=info:doi/10.1016%2Fj.advwatres.2019.103392&rft.externalDocID=S030917081930243X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0309-1708&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0309-1708&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0309-1708&client=summon |