A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS)

•A full-scale fluvial flood modelling framework based on a high-performance hydrodynamic model solving the 2D SWEs.•Successful application to reproduce a storm induced flood in a 2500 km2 catchment at 5 m resolution.•High-resolution grid is essential for accurately simulating large-scale fluvial flo...

Full description

Saved in:
Bibliographic Details
Published inAdvances in water resources Vol. 132; p. 103392
Main Authors Xia, Xilin, Liang, Qiuhua, Ming, Xiaodong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A full-scale fluvial flood modelling framework based on a high-performance hydrodynamic model solving the 2D SWEs.•Successful application to reproduce a storm induced flood in a 2500 km2 catchment at 5 m resolution.•High-resolution grid is essential for accurately simulating large-scale fluvial flood using a 2D hydrodynamic model. Full-scale fluvial flood modelling over large catchments has traditionally been carried out using coupled hydrological and hydraulic/hydrodynamic models. Such a traditional modelling approach is not well suited for the simulation of extreme floods induced by intense rainfall, which is usually featured with highly transient and dynamic rainfall-runoff and flooding process. This work aims to develop and demonstrate a modelling framework to predict the full-scale process of fluvial flooding from the source (rainfall) to impact (inundation) over a large catchment using a single high-performance hydrodynamic model driven by rainfall inputs. The modelling framework is applied to reproduce the flood event caused by the 2015 Storm Desmond in the 2500 km2 Eden Catchment at 5 m resolution. Without intensive model calibration, the predicted results compare well with field observations in terms of inundation extent and gauged water levels across the catchment. Sensitivity tests reveal that high-resolution grid is essential for accurate simulation of fluvial flood events using a 2D hydrodynamic model. Accelerated by multiple modern GPUs, the simulation is more than 2.5 times faster than real time although it involves 100 million computational cells inside the computational domain. This work provides a novel and promising approach to assess and forecast at real time the risk of extreme fluvial floods from intense rainfall.
AbstractList •A full-scale fluvial flood modelling framework based on a high-performance hydrodynamic model solving the 2D SWEs.•Successful application to reproduce a storm induced flood in a 2500 km2 catchment at 5 m resolution.•High-resolution grid is essential for accurately simulating large-scale fluvial flood using a 2D hydrodynamic model. Full-scale fluvial flood modelling over large catchments has traditionally been carried out using coupled hydrological and hydraulic/hydrodynamic models. Such a traditional modelling approach is not well suited for the simulation of extreme floods induced by intense rainfall, which is usually featured with highly transient and dynamic rainfall-runoff and flooding process. This work aims to develop and demonstrate a modelling framework to predict the full-scale process of fluvial flooding from the source (rainfall) to impact (inundation) over a large catchment using a single high-performance hydrodynamic model driven by rainfall inputs. The modelling framework is applied to reproduce the flood event caused by the 2015 Storm Desmond in the 2500 km2 Eden Catchment at 5 m resolution. Without intensive model calibration, the predicted results compare well with field observations in terms of inundation extent and gauged water levels across the catchment. Sensitivity tests reveal that high-resolution grid is essential for accurate simulation of fluvial flood events using a 2D hydrodynamic model. Accelerated by multiple modern GPUs, the simulation is more than 2.5 times faster than real time although it involves 100 million computational cells inside the computational domain. This work provides a novel and promising approach to assess and forecast at real time the risk of extreme fluvial floods from intense rainfall.
Full-scale fluvial flood modelling over large catchments has traditionally been carried out using coupled hydrological and hydraulic/hydrodynamic models. Such a traditional modelling approach is not well suited for the simulation of extreme floods induced by intense rainfall, which is usually featured with highly transient and dynamic rainfall-runoff and flooding process. This work aims to develop and demonstrate a modelling framework to predict the full-scale process of fluvial flooding from the source (rainfall) to impact (inundation) over a large catchment using a single high-performance hydrodynamic model driven by rainfall inputs. The modelling framework is applied to reproduce the flood event caused by the 2015 Storm Desmond in the 2500 km² Eden Catchment at 5 m resolution. Without intensive model calibration, the predicted results compare well with field observations in terms of inundation extent and gauged water levels across the catchment. Sensitivity tests reveal that high-resolution grid is essential for accurate simulation of fluvial flood events using a 2D hydrodynamic model. Accelerated by multiple modern GPUs, the simulation is more than 2.5 times faster than real time although it involves 100 million computational cells inside the computational domain. This work provides a novel and promising approach to assess and forecast at real time the risk of extreme fluvial floods from intense rainfall.
ArticleNumber 103392
Author Ming, Xiaodong
Xia, Xilin
Liang, Qiuhua
Author_xml – sequence: 1
  givenname: Xilin
  surname: Xia
  fullname: Xia, Xilin
  organization: School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, UK
– sequence: 2
  givenname: Qiuhua
  surname: Liang
  fullname: Liang, Qiuhua
  email: Q.Liang@lboro.ac.uk
  organization: School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, UK
– sequence: 3
  givenname: Xiaodong
  surname: Ming
  fullname: Ming, Xiaodong
  organization: School of Engineering, Newcastle University, Newcastle upon Tyne, UK
BookMark eNqNkM9rFDEYhoO04Lb6N5hjPcyaHzOTzMHDUtQWKgptzyGTfNnNmknWJLtlwT_eKSsiXvT0wsf7vHw8F-gspggIvaFkSQnt322X2h6edM1QlozQYb5yPrAXaEGlYM3Qd-IMLQgnQ0MFkS_RRSlbQohsBVugHyvs9iE0xegA2IX9weswZ0oWT8lCCD6usct6gqeUv-FRF7A4Razxxq83zQ6yS3nS0QD2scI66zoXNkebkz1GPXnzx045lgoTvrrxX28_3799hc6dDgVe_8pL9Pjxw8P1TXP35dPt9equMbyVtRFcDIyNoyS9s2Pbi06PVEvCOtpL0oLlHGjn-rYF0jnpCAwdcDkYTQYu5Mgv0dVpd5fT9z2UqiZfzPyTjpD2RTFOOzavCzFX35-qJqdSMjhlfNXVp1iz9kFRop6tq636bV09W1cn6zMv_uJ32U86H_-DXJ1ImE0cPGRVjIfZq_UZTFU2-X9u_AQaP6WI
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_130724
crossref_primary_10_1016_j_jhydrol_2024_131814
crossref_primary_10_3389_feart_2020_527363
crossref_primary_10_1016_j_jhydrol_2023_129735
crossref_primary_10_1155_2021_5538059
crossref_primary_10_1029_2021WR030820
crossref_primary_10_1007_s11269_023_03696_6
crossref_primary_10_3390_hydrology8040146
crossref_primary_10_1016_j_envsoft_2020_104889
crossref_primary_10_1029_2019WR025583
crossref_primary_10_1080_19942060_2023_2240392
crossref_primary_10_1007_s11625_021_01034_6
crossref_primary_10_1007_s10666_023_09887_0
crossref_primary_10_3390_w14070997
crossref_primary_10_3390_w16131844
crossref_primary_10_1016_j_scitotenv_2021_151289
crossref_primary_10_3390_w15071300
crossref_primary_10_3390_hydrology8030109
crossref_primary_10_1016_j_jenvman_2023_119289
crossref_primary_10_1016_j_envsoft_2024_106166
crossref_primary_10_1007_s10584_021_03282_y
crossref_primary_10_1016_j_envsoft_2024_106047
crossref_primary_10_1016_j_scitotenv_2021_145327
crossref_primary_10_1016_j_envsoft_2021_105205
crossref_primary_10_4995_ia_2021_15565
crossref_primary_10_1016_j_jhydrol_2024_132474
crossref_primary_10_1029_2019EF001391
crossref_primary_10_3390_w13030259
crossref_primary_10_1016_j_jhydrol_2023_129277
crossref_primary_10_1007_s10346_025_02492_0
crossref_primary_10_1016_j_jhydrol_2024_131918
crossref_primary_10_1016_j_jhydrol_2024_132564
crossref_primary_10_3390_w15193395
crossref_primary_10_1016_j_ejrh_2025_102243
crossref_primary_10_1007_s11069_022_05308_9
crossref_primary_10_1016_j_softx_2023_101397
crossref_primary_10_1016_j_jhydrol_2024_131076
crossref_primary_10_5194_hess_25_2843_2021
crossref_primary_10_1016_j_jhydrol_2021_126524
crossref_primary_10_3390_w13233347
crossref_primary_10_5194_nhess_24_2315_2024
crossref_primary_10_1061__ASCE_HE_1943_5584_0002135
crossref_primary_10_1016_j_jhydrol_2020_125481
crossref_primary_10_1016_j_jhydrol_2023_130135
crossref_primary_10_1007_s11269_024_03972_z
crossref_primary_10_1016_j_jhydrol_2024_132334
crossref_primary_10_1016_j_envsoft_2020_104951
crossref_primary_10_3390_w12092326
crossref_primary_10_3390_w12040926
crossref_primary_10_1016_j_ijdrr_2024_105154
crossref_primary_10_1016_j_envsoft_2021_105034
crossref_primary_10_1016_j_jhydrol_2020_125924
crossref_primary_10_1016_j_envsoft_2021_105035
crossref_primary_10_1016_j_jhydrol_2024_131481
crossref_primary_10_1016_j_jenvman_2021_112986
crossref_primary_10_5194_gmd_16_2391_2023
crossref_primary_10_1111_jfr3_12899
crossref_primary_10_1007_s11069_022_05267_1
crossref_primary_10_1016_j_catena_2023_107522
crossref_primary_10_1007_s00477_023_02505_1
crossref_primary_10_1016_j_jhydrol_2021_126262
crossref_primary_10_1016_j_jhydrol_2022_127870
crossref_primary_10_5194_gmd_14_3577_2021
crossref_primary_10_1029_2021WR031279
crossref_primary_10_1016_j_jhydrol_2022_127477
crossref_primary_10_1016_j_scitotenv_2024_176372
crossref_primary_10_1016_j_aei_2024_102672
crossref_primary_10_1007_s12205_021_2158_3
crossref_primary_10_2166_hydro_2023_154
crossref_primary_10_1007_s10346_021_01695_5
crossref_primary_10_1016_j_jhydrol_2019_124508
crossref_primary_10_1016_j_jhydrol_2021_126306
crossref_primary_10_2166_hydro_2020_198
crossref_primary_10_1016_j_jhydrol_2024_131863
crossref_primary_10_1016_j_jhydrol_2025_133105
crossref_primary_10_1016_j_jhydrol_2024_131620
crossref_primary_10_1029_2020WR027147
crossref_primary_10_2166_hydro_2024_257
crossref_primary_10_1029_2023WR034599
crossref_primary_10_5194_gmd_16_977_2023
crossref_primary_10_1029_2023WR036269
crossref_primary_10_1029_2023WR036421
crossref_primary_10_1007_s11069_020_03855_7
crossref_primary_10_1007_s11269_024_03867_z
crossref_primary_10_3390_hydrology9030050
crossref_primary_10_1016_j_advwatres_2021_103867
crossref_primary_10_4995_ia_2023_18750
crossref_primary_10_3390_su15054589
crossref_primary_10_1007_s13753_021_00368_0
crossref_primary_10_1016_j_envsoft_2024_106132
crossref_primary_10_1016_j_jhydrol_2023_129114
crossref_primary_10_1016_j_nbsj_2024_100120
crossref_primary_10_1016_j_jhydrol_2022_128182
crossref_primary_10_1016_j_advwatres_2022_104357
crossref_primary_10_3390_su14148576
crossref_primary_10_2478_mgr_2022_0009
crossref_primary_10_1080_00221686_2023_2201210
crossref_primary_10_2166_hydro_2023_012
crossref_primary_10_1016_j_envsoft_2022_105480
crossref_primary_10_1016_j_mex_2023_102202
crossref_primary_10_1111_jfr3_13039
crossref_primary_10_1016_j_ijsrc_2022_05_002
crossref_primary_10_1016_j_isci_2024_111037
crossref_primary_10_1016_j_ejrh_2022_101247
crossref_primary_10_1016_j_jhydrol_2024_131606
crossref_primary_10_3390_w14162488
crossref_primary_10_1016_j_envsoft_2025_106441
crossref_primary_10_1016_j_jhydrol_2021_127365
crossref_primary_10_5194_nhess_24_3357_2024
crossref_primary_10_1029_2021GL095795
crossref_primary_10_1016_j_jhydrol_2024_130751
crossref_primary_10_1016_j_envsoft_2024_105974
crossref_primary_10_3390_w12051288
crossref_primary_10_1007_s12517_022_10836_6
crossref_primary_10_1016_j_uclim_2023_101628
crossref_primary_10_1016_j_advwatres_2022_104187
crossref_primary_10_5194_nhess_24_225_2024
crossref_primary_10_1016_j_jher_2022_10_001
crossref_primary_10_1080_00221686_2024_2401905
crossref_primary_10_3390_w14091367
crossref_primary_10_2166_hydro_2023_128
Cites_doi 10.1016/j.advwatres.2018.05.004
10.1061/(ASCE)HY.1943-7900.0000219
10.1061/(ASCE)HY.1943-7900.0000913
10.1016/S0022-1694(00)00278-X
10.1061/(ASCE)0733-9429(2008)134:6(714)
10.1061/(ASCE)1084-0699(2000)5:3(250)
10.1016/j.jhydrol.2011.06.007
10.1016/j.envsoft.2015.10.002
10.1016/j.proeng.2016.07.585
10.1002/hyp.252
10.1016/0022-1694(86)90114-9
10.1016/j.advwatres.2012.08.003
10.1061/(ASCE)HE.1943-5584.0001497
10.1016/j.cpc.2013.03.008
10.1016/j.compfluid.2013.09.018
10.1002/fld.1305
10.1002/fld.285
10.1029/94JD00483
10.1007/s12665-015-4215-z
10.1016/j.jcp.2012.01.007
10.1029/94WR00436
10.1016/0022-1694(86)90115-0
10.1029/WR009i002p00384
10.2166/hydro.2013.173
10.1016/j.advwatres.2011.11.009
10.2166/hydro.2011.077
10.1016/j.advwatres.2016.09.011
10.1002/asl.754
10.1002/2016WR020055
10.1016/j.compfluid.2011.10.012
10.1002/wrcr.20067
10.1002/2013WR014906
10.1016/j.jhydrol.2015.10.047
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.advwatres.2019.103392
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9657
ExternalDocumentID 10_1016_j_advwatres_2019_103392
S030917081930243X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c348t-737922bb806fdb4675ab1a802516804ed33e15f644e05f8f0e95e389ca09378b3
IEDL.DBID .~1
ISSN 0309-1708
IngestDate Mon Jul 21 09:36:47 EDT 2025
Tue Jul 01 01:23:11 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Fri Feb 23 02:48:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrodynamic model
Godunov-type finite volume method
High-performance computing
GPU
High-resolution simulation
Fluvial flood modelling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-737922bb806fdb4675ab1a802516804ed33e15f644e05f8f0e95e389ca09378b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2315280677
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2315280677
crossref_citationtrail_10_1016_j_advwatres_2019_103392
crossref_primary_10_1016_j_advwatres_2019_103392
elsevier_sciencedirect_doi_10_1016_j_advwatres_2019_103392
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationTitle Advances in water resources
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ordnance Survey, 2018. OS Terrain 5 [WWW document]. URL
Telemac software, 2016. Telemac 2D [WWW Document]. URL
Liang (bib0030) 2010; 136
Danish Hydraulic Institute, 2003. MIKE11 a modelling system for rivers and channels - User Guide.
Cea, Vázquez-Cendón (bib0010) 2012; 231
OpenACC Organization, 2018. About OpenACC [WWW document]. URL
Xia, Liang (bib0046) 2016; 75
Digimap, 2018. Edina's digimap [WWW document]. URL
Kesserwani, Wang (bib0026) 2014; 50
Begnudelli, Sanders, Bradford (bib0005) 2008; 134
Mein, Larson (bib0033) 1973; 9
Lacaster, Morales-Hernandez, Murillo, Garcia-Navarro (bib0028) 2015; 74
Xia, Liang (bib0045) 2018; 117
Sætra, Brodtkorb (bib0039) 2012
Liang, Lin, Falconer (bib0029) 2007; 53
CEDA, 2018. Land cover map 2015 [WWW document]. URL
Beven, Freer (bib0007) 2001; 15
.
NVIDIA Corporation, 2018. About CUDA [WWW document]. URL
Environment Agency, 2018a. Carlisle flood investigation report [WWW document]. URL
Environment Agency, 2018b. Spatial flood defences (including standardised attributes) [WWW document]. URL
Yu, Duan (bib0049) 2017; 22
Abbott, Bathurst, Cunge, O’Connell, Rasmussen (bib0002) 1986; 87
Abbott, Bathurst, Cunge, O'Connell, Rasmussen (bib0001) 1986; 87
Liang, Lettenmaier, Wood, Burges (bib0032) 1994; 99
Met Office, 2003. Met office rain radar data from the nimrod system [WWW document]. URL
Xia, Liang, Ming, Hou (bib0047) 2017; 53
Ewen, Parkin, O'Connell (bib0022) 2000; 5
Kim, Warnock, Ivanov, Katopodes (bib0027qq) 2012; 37
(bib0025) 2014
Simons, Busse, Hou, Özgen, Hinkelmann (bib0041) 2014; 16
Bates, De Roo (bib0004) 2000; 236
CRED, 2018. EM-DAT: The international disaster database [WWW document]. URL
Paiva, Collischonn, Bonnet, Buarque, Frappart, Calmant, Mendes (bib0016) 2013; 49
Hou, Liang, Simons, Hinkelmann (bib0024) 2013; 52
Chow (bib0012) 1959
Bergström (bib0006) 1995
Brufau, Vázquez-Cendón, García-Navarro (bib0009) 2002; 39
Bao, Wang, Zhang, Li (bib0003) 2017; 18
Yu, Duan (bib0050) 2014; 140
Wigmosta, Vail, Lettenmaier (bib0044) 1994; 30
Paiva, Collischonn, Tucci (bib0038aa) 2011; 406
Domínguez, Crespo, Valdez-Balderas, Rogers, Gómez-Gesteira (bib0018) 2013; 184
Liang, Xia, Hou (bib0031) 2016; 154
Smith, Liang (bib0042) 2013; 88
Environment Agency, 2018c. Historic flood map [WWW document].
Costabile, Costanzo, Macchione (bib0013) 2012; 14
Brodtkorb, Sætra, Altinakar (bib0008) 2012; 55
Nguyen, Thorstensen, Sorooshian, Hsu, AghaKouchak, Sanders, Koren, Cui, Smith (bib0035) 2016; 541
Khronos Group, 2018. OpenCL overview [WWW document]. URL
Hasan, Sharma, Mariethoz, Johnson, Seed (bib0023) 2016; 97
Xia (10.1016/j.advwatres.2019.103392_bib0045) 2018; 117
10.1016/j.advwatres.2019.103392_bib0027
Abbott (10.1016/j.advwatres.2019.103392_bib0001) 1986; 87
10.1016/j.advwatres.2019.103392_bib0021
Ewen (10.1016/j.advwatres.2019.103392_bib0022) 2000; 5
10.1016/j.advwatres.2019.103392_bib0020
Brodtkorb (10.1016/j.advwatres.2019.103392_bib0008) 2012; 55
Paiva (10.1016/j.advwatres.2019.103392_bib0016) 2013; 49
Wigmosta (10.1016/j.advwatres.2019.103392_bib0044) 1994; 30
(10.1016/j.advwatres.2019.103392_bib0025) 2014
Xia (10.1016/j.advwatres.2019.103392_bib0046) 2016; 75
Bates (10.1016/j.advwatres.2019.103392_bib0004) 2000; 236
10.1016/j.advwatres.2019.103392_bib0014
10.1016/j.advwatres.2019.103392_bib0015
Beven (10.1016/j.advwatres.2019.103392_bib0007) 2001; 15
10.1016/j.advwatres.2019.103392_bib0019
10.1016/j.advwatres.2019.103392_bib0017
Kesserwani (10.1016/j.advwatres.2019.103392_bib0026) 2014; 50
10.1016/j.advwatres.2019.103392_bib0011
Chow (10.1016/j.advwatres.2019.103392_sbref0011) 1959
Liang (10.1016/j.advwatres.2019.103392_bib0031) 2016; 154
Bergström (10.1016/j.advwatres.2019.103392_bib0006) 1995
10.1016/j.advwatres.2019.103392_bib0043
Sætra (10.1016/j.advwatres.2019.103392_bib0039) 2012
Yu (10.1016/j.advwatres.2019.103392_bib0050) 2014; 140
Kim (10.1016/j.advwatres.2019.103392_bib0027qq) 2012; 37
Domínguez (10.1016/j.advwatres.2019.103392_bib0018) 2013; 184
Xia (10.1016/j.advwatres.2019.103392_bib0047) 2017; 53
Cea (10.1016/j.advwatres.2019.103392_bib0010) 2012; 231
Nguyen (10.1016/j.advwatres.2019.103392_bib0035) 2016; 541
Hou (10.1016/j.advwatres.2019.103392_bib0024) 2013; 52
Brufau (10.1016/j.advwatres.2019.103392_bib0009) 2002; 39
10.1016/j.advwatres.2019.103392_bib0036
Liang (10.1016/j.advwatres.2019.103392_bib0030) 2010; 136
10.1016/j.advwatres.2019.103392_bib0037
10.1016/j.advwatres.2019.103392_bib0034
10.1016/j.advwatres.2019.103392_bib0038
Liang (10.1016/j.advwatres.2019.103392_bib0029) 2007; 53
Mein (10.1016/j.advwatres.2019.103392_bib0033) 1973; 9
Simons (10.1016/j.advwatres.2019.103392_bib0041) 2014; 16
Bao (10.1016/j.advwatres.2019.103392_bib0003) 2017; 18
Abbott (10.1016/j.advwatres.2019.103392_bib0002) 1986; 87
Costabile (10.1016/j.advwatres.2019.103392_bib0013) 2012; 14
Lacaster (10.1016/j.advwatres.2019.103392_bib0028) 2015; 74
Yu (10.1016/j.advwatres.2019.103392_bib0049) 2017; 22
Smith (10.1016/j.advwatres.2019.103392_bib0042) 2013; 88
Hasan (10.1016/j.advwatres.2019.103392_bib0023) 2016; 97
Paiva (10.1016/j.advwatres.2019.103392_bib0038aa) 2011; 406
Liang (10.1016/j.advwatres.2019.103392_bib0032) 1994; 99
Begnudelli (10.1016/j.advwatres.2019.103392_bib0005) 2008; 134
References_xml – volume: 140
  start-page: 04014045
  year: 2014
  ident: bib0050
  article-title: Two-dimensional hydrodynamic model for surface-flow routing
  publication-title: J. Hydraul. Eng.
– volume: 30
  start-page: 1665
  year: 1994
  end-page: 1679
  ident: bib0044
  article-title: A distributed hydrology-vegetation model for complex terrain
  publication-title: Water Resour. Res.
– reference: Environment Agency, 2018a. Carlisle flood investigation report [WWW document]. URL
– reference: Environment Agency, 2018b. Spatial flood defences (including standardised attributes) [WWW document]. URL
– volume: 541
  start-page: 401
  year: 2016
  end-page: 420
  ident: bib0035
  article-title: A high resolution coupled hydrologic-hydraulic model (HiResFlood-UCI) for flash flood modeling
  publication-title: J. Hydrol.
– volume: 99
  start-page: 14415
  year: 1994
  end-page: 14428
  ident: bib0032
  article-title: A simple hydrologically based model of land surface water and energy fluxes for general circulation models
  publication-title: J. Geophys. Res. Atmos.
– reference: Met Office, 2003. Met office rain radar data from the nimrod system [WWW document]. URL
– volume: 18
  start-page: 284
  year: 2017
  end-page: 293
  ident: bib0003
  article-title: Application of a developed distributed hydrological model based on the mixed runoff generation model and 2D kinematic wave flow routing model for better flood forecasting
  publication-title: Atmos. Sci. Lett.
– reference: NVIDIA Corporation, 2018. About CUDA [WWW document]. URL
– volume: 16
  start-page: 375
  year: 2014
  end-page: 391
  ident: bib0041
  article-title: A model for overland flow and associated processes within the hydroinformatics modelling system
  publication-title: J. Hydroinformatics
– year: 2014
  ident: bib0025
  article-title: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
– year: 1995
  ident: bib0006
  article-title: The HBV model
  publication-title: Computer Models of Watershed Hydrology
– volume: 134
  start-page: 714
  year: 2008
  end-page: 725
  ident: bib0005
  article-title: Adaptive godunov-based model for flood simulation
  publication-title: J. Hydraul. Eng.
– volume: 236
  start-page: 54
  year: 2000
  end-page: 77
  ident: bib0004
  article-title: A simple raster-based model for flood inundation simulation
  publication-title: J. Hydrol.
– volume: 184
  start-page: 1848
  year: 2013
  end-page: 1860
  ident: bib0018
  article-title: New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters
  publication-title: Comput. Phys. Commun.
– volume: 97
  start-page: 205
  year: 2016
  end-page: 218
  ident: bib0023
  article-title: Improving radar rainfall estimation by merging point rainfall measurements within a model combination framework
  publication-title: Adv. Water Resour.
– volume: 37
  start-page: 104
  year: 2012
  end-page: 126
  ident: bib0027qq
  article-title: Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow
  publication-title: Adv. Water Resour.
– volume: 53
  start-page: 3730
  year: 2017
  end-page: 3759
  ident: bib0047
  article-title: An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations
  publication-title: Water Resour. Res.
– reference: Khronos Group, 2018. OpenCL overview [WWW document]. URL
– volume: 88
  start-page: 17
  year: 2013
  end-page: 20
  ident: bib0042
  article-title: Towards a generalised GPU/CPU shallow-flow modelling tool
  publication-title: Comput. Fluids
– volume: 39
  start-page: 247
  year: 2002
  end-page: 275
  ident: bib0009
  article-title: A numerical model for the flooding and drying of irregular domains
  publication-title: Int. J. Numer. Methods Fluids
– volume: 406
  start-page: 170
  year: 2011
  end-page: 181
  ident: bib0038aa
  article-title: Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach
  publication-title: J. Hydrol.
– volume: 87
  start-page: 45
  year: 1986
  end-page: 59
  ident: bib0001
  article-title: An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 1: history and philosophy of a physically-based, distributed modelling system
  publication-title: J. Hydrol.
– volume: 231
  start-page: 3317
  year: 2012
  end-page: 3339
  ident: bib0010
  article-title: Unstructured finite volume discretisation of bed friction and convective flux in solute transport models linked to the shallow water equations
  publication-title: J. Comput. Phys.
– volume: 53
  start-page: 811
  year: 2007
  end-page: 826
  ident: bib0029
  article-title: Simulation of rapidly varying flow using an efficient TVD–MacCormack scheme
  publication-title: Int. J. Numer. Methods Fluids
– volume: 154
  start-page: 975
  year: 2016
  end-page: 981
  ident: bib0031
  article-title: Catchment-scale high-resolution flash flood simulation using the GPU-based technology
  publication-title: Procedia Eng.
– reference: Environment Agency, 2018c. Historic flood map [WWW document].
– volume: 49
  start-page: 1226
  year: 2013
  end-page: 1243
  ident: bib0016
  article-title: Large scale hydrologic and hydrodynamic modelling of the Amazon River basin
  publication-title: Water Resour. Res.
– volume: 74
  start-page: 7295
  year: 2015
  end-page: 7305
  ident: bib0028
  article-title: Gpu implementation of the 2D shallow water equations for the simulation of rainfall/runoff events
  publication-title: Environ. Earth Sci.
– volume: 117
  start-page: 87
  year: 2018
  end-page: 97
  ident: bib0045
  article-title: A new efficient implicit scheme for discretising the stiff friction terms in the shallow water equations
  publication-title: Adv. Water Resour.
– reference: Digimap, 2018. Edina's digimap [WWW document]. URL
– volume: 15
  start-page: 1993
  year: 2001
  end-page: 2011
  ident: bib0007
  article-title: A dynamic TOPMODEL
  publication-title: Hydrol. Process
– start-page: 56
  year: 2012
  end-page: 66
  ident: bib0039
  article-title: Shallow Water Simulations On Multiple GPUs
  publication-title: PARA2010, Applied Parallel and Scientific Computing
– volume: 87
  start-page: 61
  year: 1986
  end-page: 773
  ident: bib0002
  article-title: An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 2: structure of a physically-based, distributed modelling system
  publication-title: J. Hydrol.
– reference: CRED, 2018. EM-DAT: The international disaster database [WWW document]. URL
– volume: 14
  start-page: 122-135
  year: 2012
  ident: bib0013
  article-title: Comparative analysis of overland flow models using finite volume schemes
  publication-title: J. Hydroinformatics
– volume: 22
  start-page: 04017006
  year: 2017
  ident: bib0049
  article-title: Simulation of surface runoff using hydrodynamic model
  publication-title: J. Hydrol. Eng.
– volume: 52
  start-page: 107
  year: 2013
  end-page: 131
  ident: bib0024
  article-title: A 2D well-balanced shallow flow model for unstructured grids with novel slope source term treatment
  publication-title: Adv. Water Resour.
– reference: Ordnance Survey, 2018. OS Terrain 5 [WWW document]. URL
– reference: Telemac software, 2016. Telemac 2D [WWW Document]. URL
– reference: .
– reference: OpenACC Organization, 2018. About OpenACC [WWW document]. URL
– volume: 55
  start-page: 1
  year: 2012
  end-page: 12
  ident: bib0008
  article-title: Efficient shallow water simulations on GPUs: implementation, visualization, verification, and validation
  publication-title: Comput. Fluids
– reference: CEDA, 2018. Land cover map 2015 [WWW document]. URL
– volume: 9
  start-page: 384
  year: 1973
  end-page: 394
  ident: bib0033
  article-title: Modeling infiltration during a steady rain
  publication-title: Water Resour. Res.
– volume: 5
  start-page: 250
  year: 2000
  end-page: 258
  ident: bib0022
  article-title: Shetran: Distributed river basin flow and transport modeling system
  publication-title: J. Hydrol. Eng.
– reference: Danish Hydraulic Institute, 2003. MIKE11 a modelling system for rivers and channels - User Guide.
– volume: 50
  start-page: 6522
  year: 2014
  end-page: 6541
  ident: bib0026
  article-title: Discontinuous galerkin flood model formulation: Luxury or necessity?
  publication-title: Water Resour. Res
– volume: 75
  start-page: 28
  year: 2016
  end-page: 43
  ident: bib0046
  article-title: A GPU-accelerated smoothed particle hydrodynamics (SPH) model for the shallow water equations
  publication-title: Environ. Model. Softw.
– year: 1959
  ident: bib0012
  article-title: Open Channel Hydraulics
– volume: 136
  start-page: 669
  year: 2010
  end-page: 675
  ident: bib0030
  article-title: Flood simulation using a well-balanced shallow flow model
  publication-title: J. Hydraul. Eng.
– volume: 117
  start-page: 87
  year: 2018
  ident: 10.1016/j.advwatres.2019.103392_bib0045
  article-title: A new efficient implicit scheme for discretising the stiff friction terms in the shallow water equations
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2018.05.004
– ident: 10.1016/j.advwatres.2019.103392_bib0027
– volume: 136
  start-page: 669
  year: 2010
  ident: 10.1016/j.advwatres.2019.103392_bib0030
  article-title: Flood simulation using a well-balanced shallow flow model
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0000219
– volume: 140
  start-page: 04014045
  year: 2014
  ident: 10.1016/j.advwatres.2019.103392_bib0050
  article-title: Two-dimensional hydrodynamic model for surface-flow routing
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0000913
– volume: 236
  start-page: 54
  year: 2000
  ident: 10.1016/j.advwatres.2019.103392_bib0004
  article-title: A simple raster-based model for flood inundation simulation
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(00)00278-X
– ident: 10.1016/j.advwatres.2019.103392_bib0036
– volume: 134
  start-page: 714
  year: 2008
  ident: 10.1016/j.advwatres.2019.103392_bib0005
  article-title: Adaptive godunov-based model for flood simulation
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(2008)134:6(714)
– ident: 10.1016/j.advwatres.2019.103392_bib0017
– volume: 5
  start-page: 250
  year: 2000
  ident: 10.1016/j.advwatres.2019.103392_bib0022
  article-title: Shetran: Distributed river basin flow and transport modeling system
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2000)5:3(250)
– ident: 10.1016/j.advwatres.2019.103392_bib0020
– volume: 406
  start-page: 170
  year: 2011
  ident: 10.1016/j.advwatres.2019.103392_bib0038aa
  article-title: Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.06.007
– volume: 75
  start-page: 28
  year: 2016
  ident: 10.1016/j.advwatres.2019.103392_bib0046
  article-title: A GPU-accelerated smoothed particle hydrodynamics (SPH) model for the shallow water equations
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2015.10.002
– volume: 154
  start-page: 975
  year: 2016
  ident: 10.1016/j.advwatres.2019.103392_bib0031
  article-title: Catchment-scale high-resolution flash flood simulation using the GPU-based technology
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2016.07.585
– volume: 15
  start-page: 1993
  year: 2001
  ident: 10.1016/j.advwatres.2019.103392_bib0007
  article-title: A dynamic TOPMODEL
  publication-title: Hydrol. Process
  doi: 10.1002/hyp.252
– year: 1995
  ident: 10.1016/j.advwatres.2019.103392_bib0006
  article-title: The HBV model
– volume: 87
  start-page: 45
  year: 1986
  ident: 10.1016/j.advwatres.2019.103392_bib0001
  article-title: An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 1: history and philosophy of a physically-based, distributed modelling system
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(86)90114-9
– volume: 52
  start-page: 107
  year: 2013
  ident: 10.1016/j.advwatres.2019.103392_bib0024
  article-title: A 2D well-balanced shallow flow model for unstructured grids with novel slope source term treatment
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2012.08.003
– volume: 22
  start-page: 04017006
  year: 2017
  ident: 10.1016/j.advwatres.2019.103392_bib0049
  article-title: Simulation of surface runoff using hydrodynamic model
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0001497
– ident: 10.1016/j.advwatres.2019.103392_bib0014
– volume: 184
  start-page: 1848
  year: 2013
  ident: 10.1016/j.advwatres.2019.103392_bib0018
  article-title: New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.03.008
– year: 1959
  ident: 10.1016/j.advwatres.2019.103392_sbref0011
– volume: 88
  start-page: 17
  year: 2013
  ident: 10.1016/j.advwatres.2019.103392_bib0042
  article-title: Towards a generalised GPU/CPU shallow-flow modelling tool
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2013.09.018
– ident: 10.1016/j.advwatres.2019.103392_bib0021
– volume: 53
  start-page: 811
  year: 2007
  ident: 10.1016/j.advwatres.2019.103392_bib0029
  article-title: Simulation of rapidly varying flow using an efficient TVD–MacCormack scheme
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.1305
– volume: 39
  start-page: 247
  year: 2002
  ident: 10.1016/j.advwatres.2019.103392_bib0009
  article-title: A numerical model for the flooding and drying of irregular domains
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.285
– volume: 99
  start-page: 14415
  year: 1994
  ident: 10.1016/j.advwatres.2019.103392_bib0032
  article-title: A simple hydrologically based model of land surface water and energy fluxes for general circulation models
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/94JD00483
– volume: 74
  start-page: 7295
  year: 2015
  ident: 10.1016/j.advwatres.2019.103392_bib0028
  article-title: Gpu implementation of the 2D shallow water equations for the simulation of rainfall/runoff events
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4215-z
– volume: 231
  start-page: 3317
  year: 2012
  ident: 10.1016/j.advwatres.2019.103392_bib0010
  article-title: Unstructured finite volume discretisation of bed friction and convective flux in solute transport models linked to the shallow water equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.01.007
– start-page: 56
  year: 2012
  ident: 10.1016/j.advwatres.2019.103392_bib0039
  article-title: Shallow Water Simulations On Multiple GPUs
– ident: 10.1016/j.advwatres.2019.103392_bib0038
– ident: 10.1016/j.advwatres.2019.103392_bib0011
– ident: 10.1016/j.advwatres.2019.103392_bib0034
– volume: 30
  start-page: 1665
  year: 1994
  ident: 10.1016/j.advwatres.2019.103392_bib0044
  article-title: A distributed hydrology-vegetation model for complex terrain
  publication-title: Water Resour. Res.
  doi: 10.1029/94WR00436
– ident: 10.1016/j.advwatres.2019.103392_bib0015
– ident: 10.1016/j.advwatres.2019.103392_bib0019
– volume: 87
  start-page: 61
  year: 1986
  ident: 10.1016/j.advwatres.2019.103392_bib0002
  article-title: An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 2: structure of a physically-based, distributed modelling system
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(86)90115-0
– volume: 9
  start-page: 384
  year: 1973
  ident: 10.1016/j.advwatres.2019.103392_bib0033
  article-title: Modeling infiltration during a steady rain
  publication-title: Water Resour. Res.
  doi: 10.1029/WR009i002p00384
– volume: 16
  start-page: 375
  year: 2014
  ident: 10.1016/j.advwatres.2019.103392_bib0041
  article-title: A model for overland flow and associated processes within the hydroinformatics modelling system
  publication-title: J. Hydroinformatics
  doi: 10.2166/hydro.2013.173
– volume: 37
  start-page: 104
  year: 2012
  ident: 10.1016/j.advwatres.2019.103392_bib0027qq
  article-title: Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2011.11.009
– volume: 14
  start-page: 122-135
  year: 2012
  ident: 10.1016/j.advwatres.2019.103392_bib0013
  article-title: Comparative analysis of overland flow models using finite volume schemes
  publication-title: J. Hydroinformatics
  doi: 10.2166/hydro.2011.077
– volume: 97
  start-page: 205
  year: 2016
  ident: 10.1016/j.advwatres.2019.103392_bib0023
  article-title: Improving radar rainfall estimation by merging point rainfall measurements within a model combination framework
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2016.09.011
– ident: 10.1016/j.advwatres.2019.103392_bib0043
– volume: 18
  start-page: 284
  year: 2017
  ident: 10.1016/j.advwatres.2019.103392_bib0003
  article-title: Application of a developed distributed hydrological model based on the mixed runoff generation model and 2D kinematic wave flow routing model for better flood forecasting
  publication-title: Atmos. Sci. Lett.
  doi: 10.1002/asl.754
– volume: 53
  start-page: 3730
  year: 2017
  ident: 10.1016/j.advwatres.2019.103392_bib0047
  article-title: An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR020055
– ident: 10.1016/j.advwatres.2019.103392_bib0037
– volume: 55
  start-page: 1
  year: 2012
  ident: 10.1016/j.advwatres.2019.103392_bib0008
  article-title: Efficient shallow water simulations on GPUs: implementation, visualization, verification, and validation
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2011.10.012
– year: 2014
  ident: 10.1016/j.advwatres.2019.103392_bib0025
  article-title: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 49
  start-page: 1226
  year: 2013
  ident: 10.1016/j.advwatres.2019.103392_bib0016
  article-title: Large scale hydrologic and hydrodynamic modelling of the Amazon River basin
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20067
– volume: 50
  start-page: 6522
  year: 2014
  ident: 10.1016/j.advwatres.2019.103392_bib0026
  article-title: Discontinuous galerkin flood model formulation: Luxury or necessity?
  publication-title: Water Resour. Res
  doi: 10.1002/2013WR014906
– volume: 541
  start-page: 401
  year: 2016
  ident: 10.1016/j.advwatres.2019.103392_bib0035
  article-title: A high resolution coupled hydrologic-hydraulic model (HiResFlood-UCI) for flash flood modeling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.10.047
SSID ssj0008472
Score 2.598081
Snippet •A full-scale fluvial flood modelling framework based on a high-performance hydrodynamic model solving the 2D SWEs.•Successful application to reproduce a storm...
Full-scale fluvial flood modelling over large catchments has traditionally been carried out using coupled hydrological and hydraulic/hydrodynamic models. Such...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103392
SubjectTerms floods
Fluvial flood modelling
Godunov-type finite volume method
GPU
High-performance computing
High-resolution simulation
Hydrodynamic model
hydrologic models
rain
risk
runoff
storms
water resources
watersheds
Title A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS)
URI https://dx.doi.org/10.1016/j.advwatres.2019.103392
https://www.proquest.com/docview/2315280677
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lBU86CE2yWaTjbdSLK3SItRCb8smu8FKSYq2FUH87e7k1VaQHjyFhN0k7ExmvsnOfIPQlUtCIhUl0L1MBygesQ3BpDRoaCvbkrYiAgqce323M3QeRnRUQa2iFgbSKnPbn9n01FrnVxr5ajam43FjAJsDlgcujQCt3ggq2B0PtPz2e5nmoa1vuZMAo9dyvIRcfAioyYAcLx8K0Ilv_-Whftnq1AG199BujhxxM3u5fVRR8QHaWeETPERfTQy_0413vfAKR5P5QmuXPiaJxGnLG6g9x1GRj4XBhUmcxFhgoC02pssqAlzySEj88im1mc1a16_cJyOBxted8VO3N7g5QsP2_XOrY-TtFYyQOGxmeMTzbTsImOlGMtAGk4rAEgyCDpeZjpKEKItGGjApk0YsMpVPlcY3oTA1pmEBOUbVOInVCcLSEQETDg0hQFMa40SWE1nM9DyfhpaiNeQWS8rDnHscWmBMeJFk9spLWXCQBc9kUUNmOXGa0W9snnJXyIyvaRLXTmLz5MtCylx_Z7B5ImKVzPUgopEOA7690_884Axtw1mWDniOqrO3ubrQsGYW1FO9raOtZvex0_8BYw75RA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58HNSD-MT6XMGDHmKTbDbZeBOx1EeL0Aq9LZvsBislKdpWBPG3O9MktRXEg6dAspuEnc0332ZnviHkxGcx04YzrF4GC5SAuZYSWls8do3raNcwhQnOjaZff_RuO7wzR67KXBgMqyywP8f0MVoXZ6rFaFb73W61hZsDToAujaGsXmeeLHrw-WIZg_PP7zgPgN_JVgI2nwnyUnr0pjApA4O8QsxAZ6H7m4v6AdZjD1RbI6sFdaSX-dutkzmTbpCVKUHBTfJxSfF_uvUKI29o0huOYHrBMcs0Hde8weRzmpQBWRR9mKZZShVF3WKr_51GQCdCEpo-vWvA2bx2_dR9chVoelrvPtw0Wmdb5LF23b6qW0V9BStmnhhYAQtC140iYfuJjgAxuYocJXDV4QvbM5ox4_AEGJOxeSIS24TcAMGJlQ2kRkRsmyykWWp2CNWeioTyeIwrNAMkJ3G8xBF2EIQ8dgyvEL8cUhkX4uNYA6MnyyizZzmxhURbyNwWFWJPOvZz_Y2_u1yUNpMzU0mCl_i783FpZQkfGu6eqNRkQ2jEgOoIFNzb_c8DjshSvd24l_c3zbs9soxX8tjAfbIweBmaA-A4g-hwPIe_AA2d-tI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+full-scale+fluvial+flood+modelling+framework+based+on+a+high-performance+integrated+hydrodynamic+modelling+system+%28HiPIMS%29&rft.jtitle=Advances+in+water+resources&rft.au=Xia%2C+Xilin&rft.au=Liang%2C+Qiuhua&rft.au=Ming%2C+Xiaodong&rft.date=2019-10-01&rft.pub=Elsevier+Ltd&rft.issn=0309-1708&rft.eissn=1872-9657&rft.volume=132&rft_id=info:doi/10.1016%2Fj.advwatres.2019.103392&rft.externalDocID=S030917081930243X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0309-1708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0309-1708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0309-1708&client=summon