Numerical simulation of annular flow hydrodynamics in microchannels

•CFD simulation of steady, laminar, fully-developed annular flow.•Investigation of Kelvin-Helmholtz instability using numerical perturbations.•Numerical investigation of interfacial instabilities of inviscid parallel flows.•Comparison between simulation results and existing analytical theories. Annu...

Full description

Saved in:
Bibliographic Details
Published inComputers & fluids Vol. 133; pp. 90 - 102
Main Authors Guo, Zhenyi, Fletcher, David F., Haynes, Brian S.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.07.2016
Subjects
Online AccessGet full text
ISSN0045-7930
1879-0747
DOI10.1016/j.compfluid.2016.04.017

Cover

Loading…
Abstract •CFD simulation of steady, laminar, fully-developed annular flow.•Investigation of Kelvin-Helmholtz instability using numerical perturbations.•Numerical investigation of interfacial instabilities of inviscid parallel flows.•Comparison between simulation results and existing analytical theories. Annular flow is the dominant flow regime in microchannel flow boiling because it appears at very low vapor quality and persists until dryout at high quality. This flow regime is hydrodynamically unstable, as the phase interfaces are subject to instabilities triggered by flow perturbations. In this work, a computational fluid dynamics (CFD) model is proposed and verified for the studies of annular flow hydrodynamics in microchannels, using the commercial software ANSYS Fluent. Verification of the model is performed by comparing simulation results with existing analytical theories. The potential for the application of this model to microchannel annular flow boiling has been demonstrated.
AbstractList •CFD simulation of steady, laminar, fully-developed annular flow.•Investigation of Kelvin-Helmholtz instability using numerical perturbations.•Numerical investigation of interfacial instabilities of inviscid parallel flows.•Comparison between simulation results and existing analytical theories. Annular flow is the dominant flow regime in microchannel flow boiling because it appears at very low vapor quality and persists until dryout at high quality. This flow regime is hydrodynamically unstable, as the phase interfaces are subject to instabilities triggered by flow perturbations. In this work, a computational fluid dynamics (CFD) model is proposed and verified for the studies of annular flow hydrodynamics in microchannels, using the commercial software ANSYS Fluent. Verification of the model is performed by comparing simulation results with existing analytical theories. The potential for the application of this model to microchannel annular flow boiling has been demonstrated.
Annular flow is the dominant flow regime in microchannel flow boiling because it appears at very low vapor quality and persists until dryout at high quality. This flow regime is hydrodynamically unstable, as the phase interfaces are subject to instabilities triggered by flow perturbations. In this work, a computational fluid dynamics (CFD) model is proposed and verified for the studies of annular flow hydrodynamics in microchannels, using the commercial software ANSYS Fluent. Verification of the model is performed by comparing simulation results with existing analytical theories. The potential for the application of this model to microchannel annular flow boiling has been demonstrated.
Author Fletcher, David F.
Haynes, Brian S.
Guo, Zhenyi
Author_xml – sequence: 1
  givenname: Zhenyi
  surname: Guo
  fullname: Guo, Zhenyi
– sequence: 2
  givenname: David F.
  orcidid: 0000-0003-2221-4192
  surname: Fletcher
  fullname: Fletcher, David F.
  email: david.fletcher@sydney.edu.au
– sequence: 3
  givenname: Brian S.
  surname: Haynes
  fullname: Haynes, Brian S.
BookMark eNqNkDtPwzAUhS1UJNrCbyAjS4Kd-JWBoap4SRUsMFuuY6uuHLvYCaj_HpciBhaYju7VOVfnfjMw8cFrAC4RrBBE9HpbqdDvjBttV9V5UUFcQcROwBRx1paQYTYBUwgxKVnbwDMwS2kL89zUeAqWT2Ovo1XSFcn2o5ODDb4IppDe5ykWxoWPYrPvYuj2XvZWpcL6ImsMapNN2qVzcGqkS_riW-fg9e72ZflQrp7vH5eLVakazIeSIbTuEOeYEsIJx1IZpGlrlNK0pqShhLWqQYTKtewwNA2TuTBv16ZGiKG2mYOr491dDG-jToPobVLaOel1GJNAvCaYtZTCbL05WnPNlKI2Qtnh67chSusEguIAT2zFDzxxgCcgFhlezrNf-V20vYz7fyQXx2QGo9-tjiIpq73SnY1aDaIL9s8bn6ewkXM
CitedBy_id crossref_primary_10_1016_j_procir_2020_01_152
crossref_primary_10_1007_s00231_019_02664_4
crossref_primary_10_1016_j_cherd_2022_04_027
crossref_primary_10_1016_j_applthermaleng_2023_122049
crossref_primary_10_1016_j_cjche_2023_06_006
crossref_primary_10_1016_j_ijft_2024_100871
crossref_primary_10_2478_ama_2023_0069
crossref_primary_10_1016_j_applthermaleng_2022_119267
crossref_primary_10_1080_15567265_2021_2019861
crossref_primary_10_1016_j_applthermaleng_2024_124464
crossref_primary_10_1021_acs_iecr_2c01905
crossref_primary_10_1016_j_cej_2024_155611
crossref_primary_10_1007_s00542_018_4124_7
crossref_primary_10_1016_j_cep_2020_107916
crossref_primary_10_1177_1757482X16634205
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119973
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119246
crossref_primary_10_1007_s43153_021_00094_6
crossref_primary_10_1016_j_expthermflusci_2017_07_014
crossref_primary_10_1016_j_petrol_2019_106576
crossref_primary_10_1016_j_icheatmasstransfer_2017_09_017
Cites_doi 10.1016/S0301-9322(97)00087-6
10.1017/S0022112059000842
10.1016/j.apm.2015.04.022
10.1016/0301-9322(77)90012-X
10.1016/0021-9991(81)90145-5
10.1016/0301-9322(96)00010-9
10.1016/j.ces.2010.07.004
10.1017/S0022112059000568
10.1002/(SICI)1097-0363(19990330)29:6<685::AID-FLD807>3.0.CO;2-D
10.1016/S0997-7546(01)01161-X
10.1016/j.ces.2013.10.027
10.1080/10893950490477518
10.1115/1.4005126
10.1115/1.4005710
10.1016/j.cep.2013.12.004
10.1016/S0301-9322(00)00070-7
10.1016/0021-9991(92)90240-Y
10.1016/j.ijthermalsci.2014.10.017
10.1177/1757482X16634205
10.1016/0017-9310(89)90155-5
10.1016/S0301-9322(98)00054-8
10.1016/S0017-9310(98)00362-7
10.1016/j.expthermflusci.2010.08.004
10.1016/j.ces.2009.03.018
10.1260/1757-482X.6.2.79
10.1016/j.ijthermalsci.2006.07.012
10.1016/j.ijmultiphaseflow.2004.05.002
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
DBID AAYXX
CITATION
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compfluid.2016.04.017
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0747
EndPage 102
ExternalDocumentID 10_1016_j_compfluid_2016_04_017
S0045793016301220
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
TN5
XPP
ZMT
~G-
29F
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
T9H
VH1
WUQ
7SC
7TB
7U5
8FD
EFKBS
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c348t-711bd18846558584acf1e69fcce626536579c3156abad40f37a79389bf2117193
IEDL.DBID .~1
ISSN 0045-7930
IngestDate Fri Sep 05 06:04:14 EDT 2025
Tue Jul 01 02:21:24 EDT 2025
Thu Apr 24 23:09:32 EDT 2025
Fri Feb 23 02:19:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Interfacial instabilities
Annular flow hydrodynamics
Microchannel annular flow
K-H instability
Computational fluid dynamics (CFD)
Flow boiling in microchannels
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-711bd18846558584acf1e69fcce626536579c3156abad40f37a79389bf2117193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2221-4192
PQID 1825479660
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1825479660
crossref_citationtrail_10_1016_j_compfluid_2016_04_017
crossref_primary_10_1016_j_compfluid_2016_04_017
elsevier_sciencedirect_doi_10_1016_j_compfluid_2016_04_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-15
PublicationDateYYYYMMDD 2016-07-15
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-15
  day: 15
PublicationDecade 2010
PublicationTitle Computers & fluids
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Youngs (bib0027) 1982; 24
Triplett, Ghiaasiaan, Abdel-Khalik, Sadowski (bib0006) 1999; 25
Meier, Yadigaroglu, Smith (bib0030) 2002; 21
Coleman, Garimella (bib0008) 1999; 42
Azzopardi (bib0015) 1997; 23
Guo, Fletcher, Haynes (bib0002) 2014; 6
Chung, Kawaji (bib0007) 2004; 30
Ide, Kariyasaki, Fukano (bib0009) 2007; 46
Brackbill, Kothe, Zemach (bib0024) 1992; 100
Guo, Fletcher, Haynes (bib0029) 2015; 39
Kawaji, Chung (bib0033) 2004; 8
Jesseela, Sobhan (bib0005) 2015; 89
Hirt, Nichols (bib0020) 1981; 39
Kandlikar (bib0001) 2012; 134
Fouilland, Fletcher, Haynes (bib0018) 2010; 65
Park, Kim, Miyata (bib0026) 1999; 29
McCoy, Hanratty (bib0017) 1977; 3
Mishima, Hibiki (bib0010) 1996; 22
Chen, Yang, Duan, Chen, Wu (bib0003) 2014; 76
Ishii, Mishima (bib0016) 1989; 32
Ong, Thome (bib0023) 2011; 35
(bib0028) 2013
Miles (bib0014) 1959; 6
Patankar (bib0032) 1980
Lamb (bib0012) 1953
Da Riva, Del Col (bib0004) 2012; 134
Gupta (bib0025) 2010
Yang, Shieh (bib0011) 2001; 27
Gupta, Fletcher, Haynes (bib0034) 2009; 64
Wehinger, Peeters, Muzaferija, Eppinger, Kraume (bib0019) 2013; 104
Muzaferija, Peric (bib0021) 1999; 24
Benjamin (bib0013) 1959; 6
(bib0031) 2013
Guo, Haynes, Fletcher (bib0022) 2016
Azzopardi (10.1016/j.compfluid.2016.04.017_bib0015) 1997; 23
Jesseela (10.1016/j.compfluid.2016.04.017_bib0005) 2015; 89
Mishima (10.1016/j.compfluid.2016.04.017_bib0010) 1996; 22
Hirt (10.1016/j.compfluid.2016.04.017_bib0020) 1981; 39
Youngs (10.1016/j.compfluid.2016.04.017_bib0027) 1982; 24
Wehinger (10.1016/j.compfluid.2016.04.017_bib0019) 2013; 104
Brackbill (10.1016/j.compfluid.2016.04.017_bib0024) 1992; 100
(10.1016/j.compfluid.2016.04.017_bib0028) 2013
Muzaferija (10.1016/j.compfluid.2016.04.017_bib0021) 1999; 24
Gupta (10.1016/j.compfluid.2016.04.017_bib0025) 2010
Miles (10.1016/j.compfluid.2016.04.017_bib0014) 1959; 6
Park (10.1016/j.compfluid.2016.04.017_bib0026) 1999; 29
Guo (10.1016/j.compfluid.2016.04.017_bib0022) 2016
Fouilland (10.1016/j.compfluid.2016.04.017_bib0018) 2010; 65
Kandlikar (10.1016/j.compfluid.2016.04.017_bib0001) 2012; 134
Da Riva (10.1016/j.compfluid.2016.04.017_bib0004) 2012; 134
Coleman (10.1016/j.compfluid.2016.04.017_bib0008) 1999; 42
Patankar (10.1016/j.compfluid.2016.04.017_bib0032) 1980
Meier (10.1016/j.compfluid.2016.04.017_bib0030) 2002; 21
Ishii (10.1016/j.compfluid.2016.04.017_bib0016) 1989; 32
McCoy (10.1016/j.compfluid.2016.04.017_bib0017) 1977; 3
Guo (10.1016/j.compfluid.2016.04.017_bib0029) 2015; 39
Chen (10.1016/j.compfluid.2016.04.017_bib0003) 2014; 76
Ide (10.1016/j.compfluid.2016.04.017_bib0009) 2007; 46
Lamb (10.1016/j.compfluid.2016.04.017_bib0012) 1953
Gupta (10.1016/j.compfluid.2016.04.017_bib0034) 2009; 64
Triplett (10.1016/j.compfluid.2016.04.017_bib0006) 1999; 25
Benjamin (10.1016/j.compfluid.2016.04.017_bib0013) 1959; 6
Kawaji (10.1016/j.compfluid.2016.04.017_bib0033) 2004; 8
Yang (10.1016/j.compfluid.2016.04.017_bib0011) 2001; 27
Chung (10.1016/j.compfluid.2016.04.017_bib0007) 2004; 30
Ong (10.1016/j.compfluid.2016.04.017_bib0023) 2011; 35
(10.1016/j.compfluid.2016.04.017_bib0031) 2013
Guo (10.1016/j.compfluid.2016.04.017_bib0002) 2014; 6
References_xml – volume: 6
  start-page: 79
  year: 2014
  end-page: 110
  ident: bib0002
  article-title: A review of computational modelling of flow boiling in microchannels
  publication-title: J Comput Multiphase Flows
– volume: 76
  start-page: 60
  year: 2014
  end-page: 69
  ident: bib0003
  article-title: Simulation of condensation flow in a rectangular microchannel
  publication-title: Chem Eng Process
– volume: 39
  start-page: 4665
  year: 2015
  end-page: 4686
  ident: bib0029
  article-title: Implementation of a height function method to alleviate spurious currents in CFD modelling of annular flow in microchannels
  publication-title: Appl Math Modell
– year: 2013
  ident: bib0031
  article-title: ANSYS Fluent 15.0 UDF Manual
– year: 1980
  ident: bib0032
  article-title: Numerical heat transfer and fluid flow
– volume: 29
  start-page: 685
  year: 1999
  end-page: 703
  ident: bib0026
  article-title: Fully non-linear free-surface simulations by a 3D viscous numerical wave tank
  publication-title: Int J Numer Methods Fluids
– volume: 65
  start-page: 5344
  year: 2010
  end-page: 5355
  ident: bib0018
  article-title: Film and slug behaviour in intermittent slug–annular microchannel flows
  publication-title: Chem Eng Sci
– volume: 6
  start-page: 583
  year: 1959
  end-page: 598
  ident: bib0014
  article-title: On the generation of surface waves by shear flows Part 3. Kelvin-Helmholtz instability
  publication-title: J Fluid Mech
– volume: 21
  start-page: 61
  year: 2002
  end-page: 73
  ident: bib0030
  article-title: A novel technique for including surface tension in PLIC-VOF methods
  publication-title: Eur J Mech B Fluids
– year: 2010
  ident: bib0025
  article-title: CFD simulations of gas-liquid flow in microchannels
– volume: 64
  start-page: 2941
  year: 2009
  end-page: 2950
  ident: bib0034
  article-title: On the CFD modelling of Taylor flow in microchannels
  publication-title: Chem Eng Sci
– volume: 42
  start-page: 2869
  year: 1999
  end-page: 2881
  ident: bib0008
  article-title: Characterization of two-phase flow patterns in small diameter round and rectangular tubes
  publication-title: Int J Heat Mass Transf
– volume: 39
  start-page: 201
  year: 1981
  end-page: 225
  ident: bib0020
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J Comput Phys
– year: 2016
  ident: bib0022
  article-title: Numerical simulation of annular flow boiling in microchannels
  publication-title: J Comput Multiphase Flows
– volume: 3
  start-page: 319
  year: 1977
  end-page: 331
  ident: bib0017
  article-title: Rate of deposition of droplets in annular two-phase flow
  publication-title: Int J Multiphase Flow
– volume: 134
  year: 2012
  ident: bib0004
  article-title: Numerical simulation of laminar liquid film condensation in a horizontal circular minichannel
  publication-title: J Heat Transf
– volume: 24
  start-page: 59
  year: 1999
  end-page: 100
  ident: bib0021
  article-title: Computation of free-surface flows using interface tracking and interface-capturing methods
  publication-title: Adv Fluid Mech
– volume: 27
  start-page: 1163
  year: 2001
  end-page: 1177
  ident: bib0011
  article-title: Flow pattern of air–water and two-phase R-134a in small circular tubes
  publication-title: Int J Multiphase Flow
– volume: 8
  start-page: 239
  year: 2004
  end-page: 257
  ident: bib0033
  article-title: Adiabatic gas–liquid flow in microchannels
  publication-title: Microscale Thermophys Eng
– volume: 6
  start-page: 161
  year: 1959
  end-page: 205
  ident: bib0013
  article-title: Shearing flow over a wavy boundary
  publication-title: J Fluid Mech
– volume: 46
  start-page: 519
  year: 2007
  end-page: 530
  ident: bib0009
  article-title: Fundamental data on the gas–liquid two-phase flow in minichannels
  publication-title: Int J Therm Sci
– year: 1953
  ident: bib0012
  article-title: Hydrodynamics
– volume: 104
  start-page: 934
  year: 2013
  end-page: 944
  ident: bib0019
  article-title: Numerical simulation of vertical liquid-film wave dynamics
  publication-title: Chem Eng Sci
– volume: 100
  start-page: 335
  year: 1992
  end-page: 354
  ident: bib0024
  article-title: A continuum method for modeling surface tension
  publication-title: J Comput Phys
– volume: 134
  year: 2012
  ident: bib0001
  article-title: History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review
  publication-title: J Heat Transf
– year: 2013
  ident: bib0028
  article-title: ANSYS Fluent 15.0 Theory Guide
– volume: 23
  start-page: 1
  year: 1997
  end-page: 53
  ident: bib0015
  article-title: Drops in annular two-phase flow
  publication-title: Int J Multiphase Flow
– volume: 35
  start-page: 37
  year: 2011
  end-page: 47
  ident: bib0023
  article-title: Macro-to-microchannel transition in two-phase flow: Part 1 – two-phase flow patterns and film thickness measurements
  publication-title: Exp Therm Fluid Sci
– volume: 30
  start-page: 735
  year: 2004
  end-page: 761
  ident: bib0007
  article-title: The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels
  publication-title: Int J Multiphase Flow
– volume: 32
  start-page: 1835
  year: 1989
  end-page: 1846
  ident: bib0016
  article-title: Droplet entrainment correlation in annular two-phase flow
  publication-title: Int J Heat Mass Transf
– volume: 25
  start-page: 377
  year: 1999
  end-page: 394
  ident: bib0006
  article-title: Gas–liquid two-phase flow in microchannels Part I: two-phase flow patterns
  publication-title: Int J Multiphase Flow
– volume: 24
  start-page: 273
  year: 1982
  end-page: 285
  ident: bib0027
  article-title: Time-dependent multi-material flow with large fluid distortion
  publication-title: Numer Meth Fluid Dyn
– volume: 89
  start-page: 87
  year: 2015
  end-page: 99
  ident: bib0005
  article-title: Numerical modeling of annular flow with phase change in a microchannel
  publication-title: Int J Therm Sci
– volume: 22
  start-page: 703
  year: 1996
  end-page: 712
  ident: bib0010
  article-title: Some characteristics of air-water two-phase flow in small diameter vertical tubes
  publication-title: Int J Multiphase Flow
– volume: 23
  start-page: 1
  year: 1997
  ident: 10.1016/j.compfluid.2016.04.017_bib0015
  article-title: Drops in annular two-phase flow
  publication-title: Int J Multiphase Flow
  doi: 10.1016/S0301-9322(97)00087-6
– volume: 6
  start-page: 583
  year: 1959
  ident: 10.1016/j.compfluid.2016.04.017_bib0014
  article-title: On the generation of surface waves by shear flows Part 3. Kelvin-Helmholtz instability
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112059000842
– volume: 39
  start-page: 4665
  year: 2015
  ident: 10.1016/j.compfluid.2016.04.017_bib0029
  article-title: Implementation of a height function method to alleviate spurious currents in CFD modelling of annular flow in microchannels
  publication-title: Appl Math Modell
  doi: 10.1016/j.apm.2015.04.022
– volume: 24
  start-page: 273
  year: 1982
  ident: 10.1016/j.compfluid.2016.04.017_bib0027
  article-title: Time-dependent multi-material flow with large fluid distortion
  publication-title: Numer Meth Fluid Dyn
– volume: 3
  start-page: 319
  year: 1977
  ident: 10.1016/j.compfluid.2016.04.017_bib0017
  article-title: Rate of deposition of droplets in annular two-phase flow
  publication-title: Int J Multiphase Flow
  doi: 10.1016/0301-9322(77)90012-X
– volume: 39
  start-page: 201
  year: 1981
  ident: 10.1016/j.compfluid.2016.04.017_bib0020
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(81)90145-5
– volume: 22
  start-page: 703
  year: 1996
  ident: 10.1016/j.compfluid.2016.04.017_bib0010
  article-title: Some characteristics of air-water two-phase flow in small diameter vertical tubes
  publication-title: Int J Multiphase Flow
  doi: 10.1016/0301-9322(96)00010-9
– volume: 65
  start-page: 5344
  year: 2010
  ident: 10.1016/j.compfluid.2016.04.017_bib0018
  article-title: Film and slug behaviour in intermittent slug–annular microchannel flows
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2010.07.004
– volume: 24
  start-page: 59
  year: 1999
  ident: 10.1016/j.compfluid.2016.04.017_bib0021
  article-title: Computation of free-surface flows using interface tracking and interface-capturing methods
  publication-title: Adv Fluid Mech
– volume: 6
  start-page: 161
  year: 1959
  ident: 10.1016/j.compfluid.2016.04.017_bib0013
  article-title: Shearing flow over a wavy boundary
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112059000568
– volume: 29
  start-page: 685
  year: 1999
  ident: 10.1016/j.compfluid.2016.04.017_bib0026
  article-title: Fully non-linear free-surface simulations by a 3D viscous numerical wave tank
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/(SICI)1097-0363(19990330)29:6<685::AID-FLD807>3.0.CO;2-D
– volume: 21
  start-page: 61
  year: 2002
  ident: 10.1016/j.compfluid.2016.04.017_bib0030
  article-title: A novel technique for including surface tension in PLIC-VOF methods
  publication-title: Eur J Mech B Fluids
  doi: 10.1016/S0997-7546(01)01161-X
– year: 1953
  ident: 10.1016/j.compfluid.2016.04.017_bib0012
– volume: 104
  start-page: 934
  year: 2013
  ident: 10.1016/j.compfluid.2016.04.017_bib0019
  article-title: Numerical simulation of vertical liquid-film wave dynamics
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2013.10.027
– year: 1980
  ident: 10.1016/j.compfluid.2016.04.017_bib0032
– volume: 8
  start-page: 239
  year: 2004
  ident: 10.1016/j.compfluid.2016.04.017_bib0033
  article-title: Adiabatic gas–liquid flow in microchannels
  publication-title: Microscale Thermophys Eng
  doi: 10.1080/10893950490477518
– volume: 134
  year: 2012
  ident: 10.1016/j.compfluid.2016.04.017_bib0001
  article-title: History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review
  publication-title: J Heat Transf
  doi: 10.1115/1.4005126
– volume: 134
  year: 2012
  ident: 10.1016/j.compfluid.2016.04.017_bib0004
  article-title: Numerical simulation of laminar liquid film condensation in a horizontal circular minichannel
  publication-title: J Heat Transf
  doi: 10.1115/1.4005710
– volume: 76
  start-page: 60
  year: 2014
  ident: 10.1016/j.compfluid.2016.04.017_bib0003
  article-title: Simulation of condensation flow in a rectangular microchannel
  publication-title: Chem Eng Process
  doi: 10.1016/j.cep.2013.12.004
– volume: 27
  start-page: 1163
  year: 2001
  ident: 10.1016/j.compfluid.2016.04.017_bib0011
  article-title: Flow pattern of air–water and two-phase R-134a in small circular tubes
  publication-title: Int J Multiphase Flow
  doi: 10.1016/S0301-9322(00)00070-7
– volume: 100
  start-page: 335
  year: 1992
  ident: 10.1016/j.compfluid.2016.04.017_bib0024
  article-title: A continuum method for modeling surface tension
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(92)90240-Y
– volume: 89
  start-page: 87
  year: 2015
  ident: 10.1016/j.compfluid.2016.04.017_bib0005
  article-title: Numerical modeling of annular flow with phase change in a microchannel
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2014.10.017
– year: 2016
  ident: 10.1016/j.compfluid.2016.04.017_bib0022
  article-title: Numerical simulation of annular flow boiling in microchannels
  publication-title: J Comput Multiphase Flows
  doi: 10.1177/1757482X16634205
– year: 2013
  ident: 10.1016/j.compfluid.2016.04.017_bib0031
– volume: 32
  start-page: 1835
  year: 1989
  ident: 10.1016/j.compfluid.2016.04.017_bib0016
  article-title: Droplet entrainment correlation in annular two-phase flow
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(89)90155-5
– volume: 25
  start-page: 377
  year: 1999
  ident: 10.1016/j.compfluid.2016.04.017_bib0006
  article-title: Gas–liquid two-phase flow in microchannels Part I: two-phase flow patterns
  publication-title: Int J Multiphase Flow
  doi: 10.1016/S0301-9322(98)00054-8
– volume: 42
  start-page: 2869
  year: 1999
  ident: 10.1016/j.compfluid.2016.04.017_bib0008
  article-title: Characterization of two-phase flow patterns in small diameter round and rectangular tubes
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/S0017-9310(98)00362-7
– year: 2013
  ident: 10.1016/j.compfluid.2016.04.017_bib0028
– volume: 35
  start-page: 37
  year: 2011
  ident: 10.1016/j.compfluid.2016.04.017_bib0023
  article-title: Macro-to-microchannel transition in two-phase flow: Part 1 – two-phase flow patterns and film thickness measurements
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2010.08.004
– volume: 64
  start-page: 2941
  year: 2009
  ident: 10.1016/j.compfluid.2016.04.017_bib0034
  article-title: On the CFD modelling of Taylor flow in microchannels
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2009.03.018
– volume: 6
  start-page: 79
  year: 2014
  ident: 10.1016/j.compfluid.2016.04.017_bib0002
  article-title: A review of computational modelling of flow boiling in microchannels
  publication-title: J Comput Multiphase Flows
  doi: 10.1260/1757-482X.6.2.79
– volume: 46
  start-page: 519
  year: 2007
  ident: 10.1016/j.compfluid.2016.04.017_bib0009
  article-title: Fundamental data on the gas–liquid two-phase flow in minichannels
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2006.07.012
– year: 2010
  ident: 10.1016/j.compfluid.2016.04.017_bib0025
– volume: 30
  start-page: 735
  year: 2004
  ident: 10.1016/j.compfluid.2016.04.017_bib0007
  article-title: The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels
  publication-title: Int J Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2004.05.002
SSID ssj0004324
Score 2.2476315
Snippet •CFD simulation of steady, laminar, fully-developed annular flow.•Investigation of Kelvin-Helmholtz instability using numerical perturbations.•Numerical...
Annular flow is the dominant flow regime in microchannel flow boiling because it appears at very low vapor quality and persists until dryout at high quality....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 90
SubjectTerms Annular flow
Annular flow hydrodynamics
Boiling
Computational fluid dynamics
Computational fluid dynamics (CFD)
Computer simulation
Flow boiling in microchannels
Fluid flow
Hydrodynamics
Interfacial instabilities
K-H instability
Mathematical models
Microchannel annular flow
Microchannels
Title Numerical simulation of annular flow hydrodynamics in microchannels
URI https://dx.doi.org/10.1016/j.compfluid.2016.04.017
https://www.proquest.com/docview/1825479660
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lBW8xibdTbLxVoqlKvZkobcl2exiJE2KbRAv_nZn8qgPhB48JrBk-bI7-83OzDeEXAEDd-BUjSwv9JTFI-ZbgaeFpV0W2yL2OVd4of848cZTfj9zZy0ybGphMK2ytv2VTS-tdf2mV6PZWyQJ1vhyF1YXcBaG8SH02zn3UT__-uMrzQMV56ooM0ozMvtHjhembZu0SFAy1PFKzdOyc9mfJ9QvW10eQKM9slszRzqoJrdPWjo7IDvf9AQPyXBSVAGYlC6Ted2Yi-aGYj0wuLDUpPkbfX6PwWpWneiXNMnoHJPysAI4g2kckeno9mk4tuouCZZiXKws33Gi2BEChdAE0IlQGUd7gVFKg7PiMg9AUgzctDAKY24b5oeAgwgiA76fD_ztmLSzPNMnhAIdifFGyPR92NhaRMAm-ixQtjCurQTrEK9BRqpaQhw7WaSyyRV7kWtIJUIqbS4B0g6x1wMXlYrG5iE3DfTyx4KQYOs3D75sfpaE7YIxkDDTebGUDnrEPkqSnv7nA2dkG5_wktdxz0l79VroC2Anq6hbLr8u2RrcPYwnn-6q5A8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF5ED20PpU9qn1voNZi4m2TTm0hFq-ak4G1JNrs0RaNUpfTfd8Yk9kHBQ68JS5Yvs7Pf7M58Q8gDMHAHdtXY8iJPWTxmvhV4WljaZYktEp9zhQf6w9DrjvnzxJ1USLushcG0ysL35z59462LJ40CzcYiTbHGl7tgXcBZGN4PQdxeQ3UqMPZaq9fvhl_lkayZizFzVGdk9o80L8zcNtN1iqqhjreRPd00L_tzk_rlrjd7UOeIHBbkkbby-R2Tis5OyME3ScFT0g7X-R3MlC7TWdGbi84NxZJgiGKpmc7f6ctHAo4zb0a_pGlGZ5iXh0XAGUzjjIw7T6N21yoaJViKcbGyfMeJE0cI1EITwCgiZRztBUYpDfGKyzzASTGI1KI4SrhtmB8BDiKIDYR_PlC4c1LN5pm-IBQYSYKHQqbpw9rWIgZC0WSBsoVxbSVYnXglMlIVKuLYzGIqy3SxV7mFVCKk0uYSIK0TeztwkQtp7B7yWEIvf9iEBHe_e_B9-bMkrBi8BokyPV8vpYNBsY-qpJf_-cAd2euOhgM56IX9K7KPb_DM13GvSXX1ttY3QFZW8W1hjJ_FIebA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+annular+flow+hydrodynamics+in+microchannels&rft.jtitle=Computers+%26+fluids&rft.au=Guo%2C+Zhenyi&rft.au=Fletcher%2C+David+F.&rft.au=Haynes%2C+Brian+S.&rft.date=2016-07-15&rft.issn=0045-7930&rft.volume=133&rft.spage=90&rft.epage=102&rft_id=info:doi/10.1016%2Fj.compfluid.2016.04.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compfluid_2016_04_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon