Both Las17-binding sites on Arp2/3 complex are important for branching nucleation and assembly of functional endocytic actin networks in S. cerevisiae
Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites—one on the Arp3 subunit and one spanning Arp2 and ARPC1—b...
Saved in:
Published in | The Journal of biological chemistry Vol. 300; no. 3; p. 105766 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9258 1083-351X 1083-351X |
DOI | 10.1016/j.jbc.2024.105766 |
Cover
Loading…
Abstract | Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites—one on the Arp3 subunit and one spanning Arp2 and ARPC1—but the importance of each site in the regulation of force-producing actin networks is unclear. Here, we identify mutations in budding yeast Arp2/3 complex that decrease or block engagement of Las17, the budding yeast WASP, at each site. As in the mammalian system, both sites are required for maximal activation in vitro. Dimerization of Las17 partially restores activity of mutations at both CA-binding sites. Arp2/3 complexes defective at either site assemble force-producing actin networks in a bead motility assay, but their reduced activity hinders motility by decreasing actin assembly near the bead surface and by failing to suppress actin filament bundling within the networks. While even the most defective Las17-binding site mutants assembled actin filaments at endocytic sites, they showed significant internalization defects, potentially because they lack the proper architecture to drive plasma membrane remodeling. Together, our data indicate that both Las17-binding sites are important to assemble functional endocytic actin networks in budding yeast, but Arp2/3 complex retains some activity in vitro and in vivo even with a severe defect at either Las17-binding site. |
---|---|
AbstractList | Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites-one on the Arp3 subunit and one spanning Arp2 and ARPC1-but the importance of each site in the regulation of force-producing actin networks is unclear. Here, we identify mutations in budding yeast Arp2/3 complex that decrease or block engagement of Las17, the budding yeast WASP, at each site. As in the mammalian system, both sites are required for maximal activation in vitro. Dimerization of Las17 partially restores activity of mutations at both CA-binding sites. Arp2/3 complexes defective at either site assemble force-producing actin networks in a bead motility assay, but their reduced activity hinders motility by decreasing actin assembly near the bead surface and by failing to suppress actin filament bundling within the networks. While even the most defective Las17-binding site mutants assembled actin filaments at endocytic sites, they showed significant internalization defects, potentially because they lack the proper architecture to drive plasma membrane remodeling. Together, our data indicate that both Las17-binding sites are important to assemble functional endocytic actin networks in budding yeast, but Arp2/3 complex retains some activity in vitro and in vivo even with a severe defect at either Las17-binding site. Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites-one on the Arp3 subunit and one spanning Arp2 and ARPC1-but the importance of each site in the regulation of force-producing actin networks is unclear. Here, we identify mutations in budding yeast Arp2/3 complex that decrease or block engagement of Las17, the budding yeast WASP, at each site. As in the mammalian system, both sites are required for maximal activation in vitro. Dimerization of Las17 partially restores activity of mutations at both CA-binding sites. Arp2/3 complexes defective at either site assemble force-producing actin networks in a bead motility assay, but their reduced activity hinders motility by decreasing actin assembly near the bead surface and by failing to suppress actin filament bundling within the networks. While even the most defective Las17-binding site mutants assembled actin filaments at endocytic sites, they showed significant internalization defects, potentially because they lack the proper architecture to drive plasma membrane remodeling. Together, our data indicate that both Las17-binding sites are important to assemble functional endocytic actin networks in budding yeast, but Arp2/3 complex retains some activity in vitro and in vivo even with a severe defect at either Las17-binding site.Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites-one on the Arp3 subunit and one spanning Arp2 and ARPC1-but the importance of each site in the regulation of force-producing actin networks is unclear. Here, we identify mutations in budding yeast Arp2/3 complex that decrease or block engagement of Las17, the budding yeast WASP, at each site. As in the mammalian system, both sites are required for maximal activation in vitro. Dimerization of Las17 partially restores activity of mutations at both CA-binding sites. Arp2/3 complexes defective at either site assemble force-producing actin networks in a bead motility assay, but their reduced activity hinders motility by decreasing actin assembly near the bead surface and by failing to suppress actin filament bundling within the networks. While even the most defective Las17-binding site mutants assembled actin filaments at endocytic sites, they showed significant internalization defects, potentially because they lack the proper architecture to drive plasma membrane remodeling. Together, our data indicate that both Las17-binding sites are important to assemble functional endocytic actin networks in budding yeast, but Arp2/3 complex retains some activity in vitro and in vivo even with a severe defect at either Las17-binding site. |
ArticleNumber | 105766 |
Author | Liu, Su-Ling Lynch, Michael J. Nolen, Brad J. Narvaez-Ortiz, Heidy Y. Fries, Adam |
Author_xml | – sequence: 1 givenname: Heidy Y. orcidid: 0000-0002-6434-6292 surname: Narvaez-Ortiz fullname: Narvaez-Ortiz, Heidy Y. – sequence: 2 givenname: Michael J. orcidid: 0000-0002-3569-4749 surname: Lynch fullname: Lynch, Michael J. – sequence: 3 givenname: Su-Ling orcidid: 0000-0002-1213-110X surname: Liu fullname: Liu, Su-Ling – sequence: 4 givenname: Adam surname: Fries fullname: Fries, Adam – sequence: 5 givenname: Brad J. surname: Nolen fullname: Nolen, Brad J. email: bnolen@uoregon.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38367669$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcuOFCEUhokZ4_S0PoAbw9JN9XAp6Kq4Gifekk5cqIk7QsHBoa2CEqjRfpLZzrP4ZNLp0aVsgMP3kZzzX6CzEAMg9JySDSVUXu43-8FsGGFtvYutlI_QipKON1zQr2doRQijTc9Ed44uct6TutqePkHnvOOy4v0K3b2O5QbvdKbbZvDB-vANZ18g4xjwVZrZJccmTvMIv7BOgP00x1R0KNjFhIekg7k5OmExI-jiq6WDxTpnmIbxgKPDbgnm-KBHDMFGcyjeYF1LAQcoP2P6nnE9f9r8vjeQ4NZnr-Epeuz0mOHZw75GX96--Xz9vtl9fPfh-mrXGN52pdmSnhmxFUZ0wupeWGgHym1LQcjWguUSuOPacMmYMLyXkjjXD6LjnQNDKF-jl6d_5xR_LJCLmnw2MI46QFyyYj3rmCCyTnWNXjygyzCBVXPyk04H9XeYFaAnwKSYcwL3D6FEHQNTe1UDU8fA1Cmw6rw6OVCbvPWQVDYeggHrE5iibPT_sf8AReqfUg |
Cites_doi | 10.1083/jcb.202209105 10.1083/jcb.200404159 10.1016/S0076-6879(02)50957-5 10.1083/jcb.202103199 10.1083/jcb.153.3.627 10.1073/pnas.2306165120 10.1038/ncomms12226 10.1016/j.bpj.2016.02.018 10.1534/genetics.112.145540 10.1016/j.cell.2012.05.046 10.1091/mbc.8.7.1361 10.1371/journal.pone.0163177 10.1073/pnas.1716622115 10.1073/pnas.1517798113 10.1073/pnas.1100236108 10.7554/eLife.29140 10.1074/jbc.M114.587527 10.12688/f1000research.27171.1 10.1091/mbc.e04-08-0734 10.1038/ncomms4308 10.1038/s41467-021-25682-5 10.1073/pnas.1717594115 10.1529/biophysj.107.118653 10.1083/jcb.201111113 10.7554/eLife.50749 10.1073/pnas.2206722119 10.7554/eLife.04535 10.1016/j.devcel.2006.05.008 10.1371/journal.pbio.0060001 10.1021/bi991843+ 10.1016/j.devcel.2014.10.027 10.1371/journal.pone.0002736 10.1016/j.cub.2022.01.004 10.1126/sciadv.aaz7651 10.1083/jcb.202112138 10.1016/j.cub.2013.08.029 10.1038/35083087 10.1073/pnas.261419298 10.1016/j.tcb.2021.10.006 10.1073/pnas.1100125108 10.15252/embj.201797039 10.1016/S0960-9822(03)00383-X 10.1083/jcb.200811116 10.1021/bi9711386 10.1111/j.1742-4658.2009.07524.x 10.1007/s12551-018-0469-5 10.1016/j.bpj.2012.10.009 10.15252/embj.2018100005 10.1073/pnas.0507021102 10.1073/pnas.1202789109 10.1016/S0092-8674(03)00883-3 10.1016/j.chembiol.2013.03.019 10.1242/jcs.199570 10.1016/j.molcel.2008.10.012 10.1016/S0960-9822(06)00223-5 10.1038/nrm2026 10.1016/j.cell.2008.04.011 10.1016/j.ymeth.2016.09.016 10.1038/s41467-018-05260-y 10.1016/j.ab.2018.03.020 10.1073/pnas.2115129119 10.1074/jbc.M111.219964 10.1083/jcb.200408177 10.1016/j.cub.2012.12.024 10.1038/nrm3492 10.1083/jcb.200611011 10.1074/jbc.M803448200 10.1038/35050590 10.1016/j.ceb.2020.08.012 10.1016/S0092-8674(00)80732-1 10.1016/j.pep.2013.08.021 10.1002/1873-3468.14571 10.1016/j.cub.2009.12.056 10.1073/pnas.2202723119 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jbc.2024.105766 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
ExternalDocumentID | 38367669 10_1016_j_jbc_2024_105766 S002192582400142X |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM136319 |
GroupedDBID | --- -DZ -ET -~X .55 .GJ 0R~ 0SF 186 18M 29J 2WC 34G 39C 3O- 4.4 41~ 53G 5BI 5GY 5RE 5VS 6I. 6TJ 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO AAYJJ AAYOK ABDNZ ABFSI ABOCM ABPPZ ABRJW ABTAH ACGFO ACNCT ACSFO ACYGS ADBBV ADIYS ADNWM AENEX AEXQZ AFDAS AFFNX AFMIJ AFOSN AFPKN AI. AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E.L E3Z EBS EJD F20 F5P FA8 FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 J5H KQ8 L7B MVM N9A NHB OHT OK1 P-O P0W P2P QZG R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT UQL VH1 VQA W8F WH7 WHG WOQ X7M XFK XJT XSW Y6R YQT YSK YWH YYP YZZ ZA5 ZE2 ZGI ZY4 ~02 ~KM .7T AALRI AAYWO AAYXX ACVFH ADCNI ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKYEP CITATION H13 CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c348t-7092c575c585da95de4b13d41e564ded36e3f3ac36225c39660ff9b5838fec013 |
ISSN | 0021-9258 1083-351X |
IngestDate | Fri Jul 11 16:48:07 EDT 2025 Mon Jul 21 05:43:56 EDT 2025 Tue Jul 01 02:00:00 EDT 2025 Sat Apr 20 15:59:13 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | TEV NPF GST MRP WASP Arp2/3 complex nucleation actin PC Ni–NTA VCA Las17 endocytosis TCEP |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c348t-7092c575c585da95de4b13d41e564ded36e3f3ac36225c39660ff9b5838fec013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1213-110X 0000-0002-6434-6292 0000-0002-3569-4749 |
OpenAccessLink | http://dx.doi.org/10.1016/j.jbc.2024.105766 |
PMID | 38367669 |
PQID | 2928250608 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2928250608 pubmed_primary_38367669 crossref_primary_10_1016_j_jbc_2024_105766 elsevier_sciencedirect_doi_10_1016_j_jbc_2024_105766 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Achard, Martiel, Michelot, Guérin, Reymann, Blanchoin (bib12) 2010; 20 Idrissi, Blasco, Espinal, Geli (bib31) 2012; 109 Padrick, Doolittle, Brautigam, King, Rosen (bib15) 2011; 108 Ti, Jurgenson, Nolen, Pollard (bib16) 2011; 108 Liu, Needham, May, Nolen (bib45) 2011; 286 Luan, Zelter, MacCoss, Davis, Nolen (bib10) 2018; 115 Chou, Chatterjee, Pollard (bib47) 2022; 119 Chereau, Kerff, Graceffa, Grabarek, Langsetmo, Dominguez (bib11) 2005; 102 Ding, Narvaez-Ortiz, Singh, Hocky, Chowdhury, Nolen (bib46) 2022; 119 Narvaez-Ortiz, Nolen (bib55) 2022; 32 Alekhina, Burstein, Billadeau (bib8) 2017; 130 Zimmet, Van Eeuwen, Boczkowska, Rebowski, Murakami, Dominguez (bib9) 2020; 6 Higgs, Blanchoin, Pollard (bib5) 1999; 38 Padrick, Cheng, Ismail, Panchal, Doolittle, Kim (bib44) 2008; 32 Goode, Rodal, Barnes, Drubin (bib52) 2001; 153 Footer, Lyo, Theriot (bib25) 2008; 283 Wagner, Luan, Liu, Nolen (bib64) 2013; 23 Guo, Sokolova, Chung, Padrick, Gelles, Goode (bib61) 2018; 9 Funk, Merino, Schaks, Rottner, Raunser, Bieling (bib54) 2021; 12 Rodnick-Smith, Luan, Liu, Nolen (bib20) 2016; 113 Akin, Mullins (bib22) 2008; 133 Marchand, Kaiser, Pollard, Higgs (bib7) 2001; 3 Espinoza-Sanchez, Metskas, Chou, Rhoades, Pollard (bib21) 2018; 115 Hetrick, Han, Helgeson, Nolen (bib48) 2013; 20 van Eunen, Bouwman, Daran-Lapujade, Postmus, Canelas, Mensonides (bib39) 2010; 277 Sun, Leong, Jiang, Tangara, Darzacq, Drubin (bib65) 2017; 6 Casler, Johnson, Krahn, Pantazopoulou, Day, Glick (bib49) 2022; 221 Winter, Podtelejnikov, Mann, Li (bib29) 1997; 7 Rodal, Manning, Goode, Drubin (bib41) 2003; 13 Burston, Maldonado-Báez, Davey, Montpetit, Schluter, Wendland (bib62) 2009; 185 Papalazarou, Machesky (bib3) 2021; 68 Urbanek, Smith, Allwood, Booth, Ayscough (bib43) 2013; 23 Tinevez, Perry, Schindelin, Hoopes, Reynolds, Laplantine (bib73) 2017; 115 Sun, Schöneberg, Chen, Jiang, Kaplan, Xu (bib74) 2019; 8 Rodnick-Smith, Liu, Balzer, Luan, Nolen (bib19) 2016; 7 Moreau, Galan, Devilliers, Haguenauer-Tsapis, Winsor (bib28) 1997; 8 Allwood, Tyler, Urbanek, Smaczynska-de Rooij, Ayscough (bib42) 2016; 11 Gietz, Woods (bib71) 2002; 350 Köhler, Lieleg, Bausch (bib58) 2008; 3 Duncan, Cope, Goode, Wendland, Drubin (bib60) 2001; 3 Suarez, Carroll, Burke, Christensen, Bestul, Sees (bib53) 2015; 32 Rosenbloom, Pollard (bib67) 2023; 597 Goode, Eskin, Wendland (bib34) 2015; 199 Sun, Martin, Drubin (bib35) 2006; 11 Chung, Goode, Gelles (bib40) 2022; 119 Young, Cooper, Bridgman (bib68) 2004; 166 Mullins, Bieling, Fletcher (bib70) 2018; 10 Boczkowska, Rebowski, Kast, Dominguez (bib17) 2014; 5 Luan, Liu, Helgeson, Nolen (bib63) 2018; 37 Rohatgi, Ma, Miki, Lopez, Kirchhausen, Takenawa (bib6) 1999; 97 Kaksonen, Sun, Drubin (bib30) 2003; 115 Bieling, Hansen, Akin, Li, Hayden, Fletcher (bib27) 2018; 37 Rotty, Wu, Bear (bib4) 2013; 14 Ditlev, Michalski, Huber, Rivera, Mohler, Loew (bib26) 2012; 197 Goley, Welch (bib1) 2006; 7 Wirshing, Rodriguez, Goode (bib51) 2023; 222 Galletta, Carlsson, Cooper (bib37) 2012; 103 Picco, Mund, Ries, Nédélec, Kaksonen (bib32) 2015; 4 Sun, Carroll, Kaksonen, Toshima, Drubin (bib66) 2007; 177 Rodal, Kozubowski, Goode, Drubin, Hartwig (bib69) 2005; 16 Dayel, Holleran, Mullins (bib14) 2001; 98 Schmidt, Batz, Bonet, Carl, Holzapfel, Kiem (bib38) 2013; 92 Gautreau, Fregoso, Simanov, Dominguez (bib2) 2022; 32 Szkop, Kliszcz, Kasprzak (bib75) 2018; 549 Delatour, Helfer, Didry, Lê, Gaucher, Carlier (bib23) 2008; 94 Kukulski, Schorb, Kaksonen, Briggs (bib33) 2012; 150 Wang, Galletta, Cooper, Carlsson (bib24) 2016; 110 Miura (bib72) 2020; 9 Martin, Xu, Rouiller, Kaksonen, Sun, Belmont (bib13) 2005; 168 Helgeson, Prendergast, Wagner, Rodnick-Smith, Nolen (bib59) 2014; 289 Galletta, Chuang, Cooper (bib36) 2008; 6 Enshoji, Miyano, Yoshida, Nagano, Watanabe, Kunihiro (bib50) 2022; 221 Tang, Ito, Tao, Traub, Janmey (bib57) 1997; 36 van Eeuwen, Boczkowska, Rebowski, Carman, Fregoso, Dominguez (bib18) 2023; 120 Hu, Kuhn (bib56) 2012; 7 Gautreau (10.1016/j.jbc.2024.105766_bib2) 2022; 32 Wagner (10.1016/j.jbc.2024.105766_bib64) 2013; 23 Casler (10.1016/j.jbc.2024.105766_bib49) 2022; 221 Espinoza-Sanchez (10.1016/j.jbc.2024.105766_bib21) 2018; 115 Mullins (10.1016/j.jbc.2024.105766_bib70) 2018; 10 Rodnick-Smith (10.1016/j.jbc.2024.105766_bib19) 2016; 7 Hetrick (10.1016/j.jbc.2024.105766_bib48) 2013; 20 Sun (10.1016/j.jbc.2024.105766_bib74) 2019; 8 Zimmet (10.1016/j.jbc.2024.105766_bib9) 2020; 6 Luan (10.1016/j.jbc.2024.105766_bib10) 2018; 115 Ditlev (10.1016/j.jbc.2024.105766_bib26) 2012; 197 van Eunen (10.1016/j.jbc.2024.105766_bib39) 2010; 277 Burston (10.1016/j.jbc.2024.105766_bib62) 2009; 185 Papalazarou (10.1016/j.jbc.2024.105766_bib3) 2021; 68 Narvaez-Ortiz (10.1016/j.jbc.2024.105766_bib55) 2022; 32 Rosenbloom (10.1016/j.jbc.2024.105766_bib67) 2023; 597 Chereau (10.1016/j.jbc.2024.105766_bib11) 2005; 102 Galletta (10.1016/j.jbc.2024.105766_bib37) 2012; 103 Hu (10.1016/j.jbc.2024.105766_bib56) 2012; 7 Ding (10.1016/j.jbc.2024.105766_bib46) 2022; 119 Funk (10.1016/j.jbc.2024.105766_bib54) 2021; 12 Miura (10.1016/j.jbc.2024.105766_bib72) 2020; 9 Schmidt (10.1016/j.jbc.2024.105766_bib38) 2013; 92 Urbanek (10.1016/j.jbc.2024.105766_bib43) 2013; 23 Alekhina (10.1016/j.jbc.2024.105766_bib8) 2017; 130 Sun (10.1016/j.jbc.2024.105766_bib66) 2007; 177 Rodnick-Smith (10.1016/j.jbc.2024.105766_bib20) 2016; 113 Padrick (10.1016/j.jbc.2024.105766_bib44) 2008; 32 Martin (10.1016/j.jbc.2024.105766_bib13) 2005; 168 Achard (10.1016/j.jbc.2024.105766_bib12) 2010; 20 van Eeuwen (10.1016/j.jbc.2024.105766_bib18) 2023; 120 Chung (10.1016/j.jbc.2024.105766_bib40) 2022; 119 Suarez (10.1016/j.jbc.2024.105766_bib53) 2015; 32 Marchand (10.1016/j.jbc.2024.105766_bib7) 2001; 3 Padrick (10.1016/j.jbc.2024.105766_bib15) 2011; 108 Rodal (10.1016/j.jbc.2024.105766_bib41) 2003; 13 Helgeson (10.1016/j.jbc.2024.105766_bib59) 2014; 289 Gietz (10.1016/j.jbc.2024.105766_bib71) 2002; 350 Ti (10.1016/j.jbc.2024.105766_bib16) 2011; 108 Winter (10.1016/j.jbc.2024.105766_bib29) 1997; 7 Wirshing (10.1016/j.jbc.2024.105766_bib51) 2023; 222 Rotty (10.1016/j.jbc.2024.105766_bib4) 2013; 14 Sun (10.1016/j.jbc.2024.105766_bib65) 2017; 6 Bieling (10.1016/j.jbc.2024.105766_bib27) 2018; 37 Allwood (10.1016/j.jbc.2024.105766_bib42) 2016; 11 Young (10.1016/j.jbc.2024.105766_bib68) 2004; 166 Delatour (10.1016/j.jbc.2024.105766_bib23) 2008; 94 Goode (10.1016/j.jbc.2024.105766_bib34) 2015; 199 Akin (10.1016/j.jbc.2024.105766_bib22) 2008; 133 Galletta (10.1016/j.jbc.2024.105766_bib36) 2008; 6 Footer (10.1016/j.jbc.2024.105766_bib25) 2008; 283 Rohatgi (10.1016/j.jbc.2024.105766_bib6) 1999; 97 Tinevez (10.1016/j.jbc.2024.105766_bib73) 2017; 115 Wang (10.1016/j.jbc.2024.105766_bib24) 2016; 110 Boczkowska (10.1016/j.jbc.2024.105766_bib17) 2014; 5 Picco (10.1016/j.jbc.2024.105766_bib32) 2015; 4 Goode (10.1016/j.jbc.2024.105766_bib52) 2001; 153 Goley (10.1016/j.jbc.2024.105766_bib1) 2006; 7 Enshoji (10.1016/j.jbc.2024.105766_bib50) 2022; 221 Chou (10.1016/j.jbc.2024.105766_bib47) 2022; 119 Dayel (10.1016/j.jbc.2024.105766_bib14) 2001; 98 Idrissi (10.1016/j.jbc.2024.105766_bib31) 2012; 109 Moreau (10.1016/j.jbc.2024.105766_bib28) 1997; 8 Luan (10.1016/j.jbc.2024.105766_bib63) 2018; 37 Liu (10.1016/j.jbc.2024.105766_bib45) 2011; 286 Köhler (10.1016/j.jbc.2024.105766_bib58) 2008; 3 Kaksonen (10.1016/j.jbc.2024.105766_bib30) 2003; 115 Kukulski (10.1016/j.jbc.2024.105766_bib33) 2012; 150 Szkop (10.1016/j.jbc.2024.105766_bib75) 2018; 549 Guo (10.1016/j.jbc.2024.105766_bib61) 2018; 9 Sun (10.1016/j.jbc.2024.105766_bib35) 2006; 11 Rodal (10.1016/j.jbc.2024.105766_bib69) 2005; 16 Duncan (10.1016/j.jbc.2024.105766_bib60) 2001; 3 Tang (10.1016/j.jbc.2024.105766_bib57) 1997; 36 Higgs (10.1016/j.jbc.2024.105766_bib5) 1999; 38 |
References_xml | – volume: 13 start-page: 1000 year: 2003 end-page: 1008 ident: bib41 article-title: Negative regulation of yeast WASp by two SH3 domain-containing proteins publication-title: Curr. Biol. – volume: 32 start-page: 426 year: 2008 end-page: 438 ident: bib44 article-title: Hierarchical regulation of WASP/WAVE proteins publication-title: Mol. Cell – volume: 36 start-page: 12600 year: 1997 end-page: 12607 ident: bib57 article-title: Opposite effects of electrostatics and Steric exclusion on bundle formation by F-actin and other filamentous Polyelectrolytes publication-title: Biochemistry – volume: 289 start-page: 28856 year: 2014 end-page: 28869 ident: bib59 article-title: Interactions with actin monomers, actin filaments, and Arp2/3 complex define the roles of WASP family proteins and cortactin in coordinately regulating branched actin networks publication-title: J. Biol. Chem. – volume: 10 start-page: 1537 year: 2018 end-page: 1551 ident: bib70 article-title: From solution to surface to filament: actin flux into branched networks publication-title: Biophys. Rev. – volume: 3 year: 2008 ident: bib58 article-title: Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose publication-title: PLoS One – volume: 150 start-page: 508 year: 2012 end-page: 520 ident: bib33 article-title: Plasma membrane Reshaping during endocytosis is revealed by time-resolved electron tomography publication-title: Cell – volume: 3 start-page: 687 year: 2001 end-page: 690 ident: bib60 article-title: Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex publication-title: Nat. Cell Biol. – volume: 199 start-page: 315 year: 2015 end-page: 358 ident: bib34 article-title: Actin and endocytosis in budding yeast publication-title: Genetics – volume: 115 start-page: E8642 year: 2018 end-page: E8651 ident: bib21 article-title: Conformational changes in Arp2/3 complex induced by ATP, WASp-VCA and actin filaments publication-title: Proc Natl Acad Sci U S A – volume: 6 year: 2017 ident: bib65 article-title: Switch-like Arp2/3 activation upon WASP and WIP recruitment to an apparent threshold level by multivalent linker proteins publication-title: Elife – volume: 185 start-page: 1097 year: 2009 end-page: 1110 ident: bib62 article-title: Regulators of yeast endocytosis identified by systematic quantitative analysis publication-title: J. Cell Biol – volume: 32 start-page: 421 year: 2022 end-page: 432 ident: bib2 article-title: Nucleation, stabilization, and disassembly of branched actin networks publication-title: Trends Cell Biol. – volume: 12 start-page: 5329 year: 2021 ident: bib54 article-title: A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks publication-title: Nat. Commun. – volume: 350 start-page: 87 year: 2002 end-page: 96 ident: bib71 article-title: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method publication-title: Methods Enzymol. – volume: 4 year: 2015 ident: bib32 article-title: Visualizing the functional architecture of the endocytic machinery publication-title: Elife – volume: 597 start-page: 672 year: 2023 end-page: 681 ident: bib67 article-title: The proline-rich domain of fission yeast WASp (Wsp1p) interacts with actin filaments and inhibits actin polymerization publication-title: FEBS Lett. – volume: 16 start-page: 372 year: 2005 end-page: 384 ident: bib69 article-title: Actin and Septin Ultrastructures at the budding yeast cell cortex publication-title: Mol. Biol. Cell – volume: 113 start-page: E3834 year: 2016 end-page: E3843 ident: bib20 article-title: Role and structural mechanism of WASP-triggered conformational changes in branched actin filament nucleation by Arp2/3 complex publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 11 year: 2016 ident: bib42 article-title: Elucidating key Motifs required for Arp2/3-dependent and independent actin nucleation by Las17/WASP publication-title: PLoS One – volume: 5 start-page: 3308 year: 2014 ident: bib17 article-title: Structural analysis of the transitional state of Arp2/3 complex activation by two actin-bound WCAs publication-title: Nat. Commun. – volume: 20 start-page: 701 year: 2013 end-page: 712 ident: bib48 article-title: Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change publication-title: Chem. Biol. – volume: 115 start-page: 80 year: 2017 end-page: 90 ident: bib73 article-title: TrackMate: an open and extensible platform for single-particle tracking publication-title: Methods – volume: 32 start-page: 43 year: 2015 end-page: 53 ident: bib53 article-title: Profilin regulates F-actin network homeostasis by favoring formin over Arp2/3 complex publication-title: Dev. Cell – volume: 108 start-page: E463 year: 2011 end-page: E471 ident: bib16 article-title: Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 37 start-page: 102 year: 2018 end-page: 121 ident: bib27 article-title: WH2 and proline-rich domains of WASP-family proteins collaborate to accelerate actin filament elongation publication-title: EMBO J. – volume: 133 start-page: 841 year: 2008 end-page: 851 ident: bib22 article-title: Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex publication-title: Cell – volume: 130 start-page: 2235 year: 2017 end-page: 2241 ident: bib8 article-title: Cellular functions of WASP family proteins at a glance publication-title: J. Cell Sci. – volume: 94 start-page: 4890 year: 2008 end-page: 4905 ident: bib23 article-title: Arp2/3 controls the motile behavior of N-WASP-functionalized GUVs and modulates N-WASP surface distribution by mediating transient links with actin filaments publication-title: Biophys. J. – volume: 109 start-page: E2587 year: 2012 end-page: E2594 ident: bib31 article-title: Ultrastructural dynamics of proteins involved in endocytic budding publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 120 year: 2023 ident: bib18 article-title: Transition state of Arp2/3 complex activation by actin-bound dimeric nucleation-promoting factor publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 23 start-page: 196 year: 2013 end-page: 203 ident: bib43 article-title: A Novel actin-binding Motif in Las17/WASP nucleates actin filaments independently of Arp2/3 publication-title: Curr. Biol. – volume: 166 start-page: 629 year: 2004 end-page: 635 ident: bib68 article-title: Yeast actin patches are networks of branched actin filaments publication-title: J. Cell Biol. – volume: 221 year: 2022 ident: bib50 article-title: Eps15/Pan1p is a master regulator of the late stages of the endocytic pathway publication-title: J. Cell Biol. – volume: 119 year: 2022 ident: bib40 article-title: Single-molecule analysis of actin filament debranching by cofilin and GMF publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 7 start-page: 713 year: 2006 end-page: 726 ident: bib1 article-title: The ARP2/3 complex: an actin nucleator comes of age publication-title: Nat. Rev. Mol. Cell Biol. – volume: 168 start-page: 315 year: 2005 end-page: 328 ident: bib13 article-title: Effects of Arp2 and Arp3 nucleotide-binding pocket mutations on Arp2/3 complex function publication-title: J. Cell Biol – volume: 23 start-page: 1990 year: 2013 end-page: 1998 ident: bib64 article-title: Dip1 defines a class of Arp2/3 complex activators that function without preformed actin filaments publication-title: Curr. Biol. – volume: 38 start-page: 15212 year: 1999 end-page: 15222 ident: bib5 article-title: Influence of the C terminus of Wiskott-Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization publication-title: Biochemistry – volume: 221 year: 2022 ident: bib49 article-title: Clathrin adaptors mediate two sequential pathways of intra-Golgi recycling publication-title: J. Cell Biol. – volume: 37 year: 2018 ident: bib63 article-title: Structure of the nucleation-promoting factor SPIN90 bound to the actin filament nucleator Arp2/3 complex publication-title: EMBO J. – volume: 20 start-page: 423 year: 2010 end-page: 428 ident: bib12 article-title: A “primer”-based mechanism underlies branched actin filament network formation and motility publication-title: Curr. Biol. – volume: 32 start-page: 975 year: 2022 end-page: 987.e6 ident: bib55 article-title: Unconcerted conformational changes in Arp2/3 complex integrate multiple activating signals to assemble functional actin networks publication-title: Curr. Biol. – volume: 222 year: 2023 ident: bib51 article-title: Evolutionary tuning of barbed end competition allows simultaneous construction of architecturally distinct actin structures publication-title: J. Cell Biol. – volume: 11 start-page: 33 year: 2006 end-page: 46 ident: bib35 article-title: Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity publication-title: Dev. Cell – volume: 103 start-page: 2145 year: 2012 end-page: 2156 ident: bib37 article-title: Molecular analysis of Arp2/3 complex activation in cells publication-title: Biophys. J. – volume: 6 start-page: eaaz7651 year: 2020 ident: bib9 article-title: Cryo-EM structure of NPF-bound human Arp2/3 complex and activation mechanism publication-title: Sci. Adv. – volume: 68 start-page: 37 year: 2021 end-page: 44 ident: bib3 article-title: The cell pushes back: the Arp2/3 complex is a key orchestrator of cellular responses to environmental forces publication-title: Curr. Opin. Cell Biol. – volume: 7 year: 2016 ident: bib19 article-title: Identification of an ATP-controlled allosteric switch that controls actin filament nucleation by Arp2/3 complex publication-title: Nat. Commun. – volume: 119 year: 2022 ident: bib46 article-title: Structure of Arp2/3 complex at a branched actin filament junction resolved by single-particle cryo-electron microscopy publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 108 start-page: E472 year: 2011 end-page: E479 ident: bib15 article-title: Arp2/3 complex is bound and activated by two WASP proteins publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 start-page: 1361 year: 1997 end-page: 1375 ident: bib28 article-title: The yeast actin-related protein Arp2p is required for the internalization step of endocytosis publication-title: Mol. Biol. Cell – volume: 7 start-page: 519 year: 1997 end-page: 529 ident: bib29 article-title: The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches publication-title: Curr. Biol. – volume: 9 start-page: 1494 year: 2020 ident: bib72 article-title: Bleach correction ImageJ plugin for compensating the photobleaching of time-lapse sequences publication-title: F1000Res. – volume: 286 start-page: 17039 year: 2011 end-page: 17046 ident: bib45 article-title: Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3 complex by coronin publication-title: J. Biol. Chem. – volume: 98 start-page: 14871 year: 2001 end-page: 14876 ident: bib14 article-title: Arp2/3 complex requires hydrolyzable ATP for nucleation of new actin filaments publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 283 start-page: 23852 year: 2008 end-page: 23862 ident: bib25 article-title: Close packing of Listeria monocytogenes ActA, a natively unfolded protein, enhances F-actin assembly without dimerization publication-title: J. Biol. Chem. – volume: 7 year: 2012 ident: bib56 article-title: Actin filament attachments for sustained motility publication-title: PLoS One – volume: 115 start-page: 475 year: 2003 end-page: 487 ident: bib30 article-title: A pathway for association of receptors, adaptors, and actin during endocytic internalization publication-title: Cell – volume: 14 start-page: 7 year: 2013 end-page: 12 ident: bib4 article-title: New insights into the regulation and cellular functions of the ARP2/3 complex publication-title: Nat. Rev. Mol. Cell Biol. – volume: 92 start-page: 54 year: 2013 end-page: 61 ident: bib38 article-title: Development of the Twin-Strep-tag® and its application for purification of recombinant proteins from cell culture supernatants publication-title: Protein Expr. Purif. – volume: 119 year: 2022 ident: bib47 article-title: Mechanism of actin filament branch formation by Arp2/3 complex revealed by a high-resolution cryo-EM structureof the branch junction publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 102 start-page: 16644 year: 2005 end-page: 16649 ident: bib11 article-title: Actin-bound structures of Wiskott–Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 6 start-page: e1 year: 2008 ident: bib36 article-title: Distinct roles for Arp2/3 Regulators in actin assembly and endocytosis publication-title: PLoS Biol. – volume: 197 start-page: 643 year: 2012 end-page: 658 ident: bib26 article-title: Stoichiometry of Nck-dependent actin polymerization in living cells publication-title: J. Cell Biol. – volume: 177 start-page: 355 year: 2007 end-page: 367 ident: bib66 article-title: PtdIns(4,5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization publication-title: J. Cell Biol. – volume: 9 start-page: 2895 year: 2018 ident: bib61 article-title: Abp1 promotes Arp2/3 complex-dependent actin nucleation and stabilizes branch junctions by antagonizing GMF publication-title: Nat. Commun. – volume: 110 start-page: 1430 year: 2016 end-page: 1443 ident: bib24 article-title: Actin-Regulator feedback interactions during endocytosis publication-title: Biophys. J. – volume: 277 start-page: 749 year: 2010 end-page: 760 ident: bib39 article-title: Measuring enzyme activities under standardized in vivo-like conditions for systems biology publication-title: FEBS J. – volume: 8 year: 2019 ident: bib74 article-title: Direct comparison of clathrin-mediated endocytosis in budding and fission yeast reveals conserved and evolvable features publication-title: Elife – volume: 549 start-page: 119 year: 2018 end-page: 123 ident: bib75 article-title: A simple and reproducible protocol of glass surface silanization for TIRF microscopy imaging publication-title: Anal. Biochem. – volume: 153 start-page: 627 year: 2001 end-page: 634 ident: bib52 article-title: Activation of the Arp2/3 complex by the actin filament binding protein Abp1p publication-title: J. Cell Biol. – volume: 115 start-page: E1409 year: 2018 end-page: E1418 ident: bib10 article-title: Identification of Wiskott-Aldrich syndrome protein (WASP) binding sites on the branched actin filament nucleator Arp2/3 complex publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 97 start-page: 221 year: 1999 end-page: 231 ident: bib6 article-title: The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly publication-title: Cell – volume: 3 start-page: 76 year: 2001 end-page: 82 ident: bib7 article-title: Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex publication-title: Nat. Cell Biol. – volume: 222 year: 2023 ident: 10.1016/j.jbc.2024.105766_bib51 article-title: Evolutionary tuning of barbed end competition allows simultaneous construction of architecturally distinct actin structures publication-title: J. Cell Biol. doi: 10.1083/jcb.202209105 – volume: 166 start-page: 629 year: 2004 ident: 10.1016/j.jbc.2024.105766_bib68 article-title: Yeast actin patches are networks of branched actin filaments publication-title: J. Cell Biol. doi: 10.1083/jcb.200404159 – volume: 350 start-page: 87 year: 2002 ident: 10.1016/j.jbc.2024.105766_bib71 article-title: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(02)50957-5 – volume: 221 year: 2022 ident: 10.1016/j.jbc.2024.105766_bib49 article-title: Clathrin adaptors mediate two sequential pathways of intra-Golgi recycling publication-title: J. Cell Biol. doi: 10.1083/jcb.202103199 – volume: 153 start-page: 627 year: 2001 ident: 10.1016/j.jbc.2024.105766_bib52 article-title: Activation of the Arp2/3 complex by the actin filament binding protein Abp1p publication-title: J. Cell Biol. doi: 10.1083/jcb.153.3.627 – volume: 120 year: 2023 ident: 10.1016/j.jbc.2024.105766_bib18 article-title: Transition state of Arp2/3 complex activation by actin-bound dimeric nucleation-promoting factor publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2306165120 – volume: 7 year: 2016 ident: 10.1016/j.jbc.2024.105766_bib19 article-title: Identification of an ATP-controlled allosteric switch that controls actin filament nucleation by Arp2/3 complex publication-title: Nat. Commun. doi: 10.1038/ncomms12226 – volume: 110 start-page: 1430 year: 2016 ident: 10.1016/j.jbc.2024.105766_bib24 article-title: Actin-Regulator feedback interactions during endocytosis publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.02.018 – volume: 199 start-page: 315 year: 2015 ident: 10.1016/j.jbc.2024.105766_bib34 article-title: Actin and endocytosis in budding yeast publication-title: Genetics doi: 10.1534/genetics.112.145540 – volume: 150 start-page: 508 year: 2012 ident: 10.1016/j.jbc.2024.105766_bib33 article-title: Plasma membrane Reshaping during endocytosis is revealed by time-resolved electron tomography publication-title: Cell doi: 10.1016/j.cell.2012.05.046 – volume: 8 start-page: 1361 year: 1997 ident: 10.1016/j.jbc.2024.105766_bib28 article-title: The yeast actin-related protein Arp2p is required for the internalization step of endocytosis publication-title: Mol. Biol. Cell doi: 10.1091/mbc.8.7.1361 – volume: 11 year: 2016 ident: 10.1016/j.jbc.2024.105766_bib42 article-title: Elucidating key Motifs required for Arp2/3-dependent and independent actin nucleation by Las17/WASP publication-title: PLoS One doi: 10.1371/journal.pone.0163177 – volume: 115 start-page: E1409 year: 2018 ident: 10.1016/j.jbc.2024.105766_bib10 article-title: Identification of Wiskott-Aldrich syndrome protein (WASP) binding sites on the branched actin filament nucleator Arp2/3 complex publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1716622115 – volume: 113 start-page: E3834 year: 2016 ident: 10.1016/j.jbc.2024.105766_bib20 article-title: Role and structural mechanism of WASP-triggered conformational changes in branched actin filament nucleation by Arp2/3 complex publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1517798113 – volume: 108 start-page: E472 year: 2011 ident: 10.1016/j.jbc.2024.105766_bib15 article-title: Arp2/3 complex is bound and activated by two WASP proteins publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1100236108 – volume: 6 year: 2017 ident: 10.1016/j.jbc.2024.105766_bib65 article-title: Switch-like Arp2/3 activation upon WASP and WIP recruitment to an apparent threshold level by multivalent linker proteins in vivo publication-title: Elife doi: 10.7554/eLife.29140 – volume: 289 start-page: 28856 year: 2014 ident: 10.1016/j.jbc.2024.105766_bib59 article-title: Interactions with actin monomers, actin filaments, and Arp2/3 complex define the roles of WASP family proteins and cortactin in coordinately regulating branched actin networks publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.587527 – volume: 9 start-page: 1494 year: 2020 ident: 10.1016/j.jbc.2024.105766_bib72 article-title: Bleach correction ImageJ plugin for compensating the photobleaching of time-lapse sequences publication-title: F1000Res. doi: 10.12688/f1000research.27171.1 – volume: 16 start-page: 372 year: 2005 ident: 10.1016/j.jbc.2024.105766_bib69 article-title: Actin and Septin Ultrastructures at the budding yeast cell cortex publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e04-08-0734 – volume: 5 start-page: 3308 year: 2014 ident: 10.1016/j.jbc.2024.105766_bib17 article-title: Structural analysis of the transitional state of Arp2/3 complex activation by two actin-bound WCAs publication-title: Nat. Commun. doi: 10.1038/ncomms4308 – volume: 12 start-page: 5329 year: 2021 ident: 10.1016/j.jbc.2024.105766_bib54 article-title: A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks publication-title: Nat. Commun. doi: 10.1038/s41467-021-25682-5 – volume: 115 start-page: E8642 year: 2018 ident: 10.1016/j.jbc.2024.105766_bib21 article-title: Conformational changes in Arp2/3 complex induced by ATP, WASp-VCA and actin filaments publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1717594115 – volume: 94 start-page: 4890 year: 2008 ident: 10.1016/j.jbc.2024.105766_bib23 article-title: Arp2/3 controls the motile behavior of N-WASP-functionalized GUVs and modulates N-WASP surface distribution by mediating transient links with actin filaments publication-title: Biophys. J. doi: 10.1529/biophysj.107.118653 – volume: 197 start-page: 643 year: 2012 ident: 10.1016/j.jbc.2024.105766_bib26 article-title: Stoichiometry of Nck-dependent actin polymerization in living cells publication-title: J. Cell Biol. doi: 10.1083/jcb.201111113 – volume: 8 year: 2019 ident: 10.1016/j.jbc.2024.105766_bib74 article-title: Direct comparison of clathrin-mediated endocytosis in budding and fission yeast reveals conserved and evolvable features publication-title: Elife doi: 10.7554/eLife.50749 – volume: 119 year: 2022 ident: 10.1016/j.jbc.2024.105766_bib47 article-title: Mechanism of actin filament branch formation by Arp2/3 complex revealed by a high-resolution cryo-EM structureof the branch junction publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2206722119 – volume: 4 year: 2015 ident: 10.1016/j.jbc.2024.105766_bib32 article-title: Visualizing the functional architecture of the endocytic machinery publication-title: Elife doi: 10.7554/eLife.04535 – volume: 11 start-page: 33 year: 2006 ident: 10.1016/j.jbc.2024.105766_bib35 article-title: Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity publication-title: Dev. Cell doi: 10.1016/j.devcel.2006.05.008 – volume: 6 start-page: e1 year: 2008 ident: 10.1016/j.jbc.2024.105766_bib36 article-title: Distinct roles for Arp2/3 Regulators in actin assembly and endocytosis publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060001 – volume: 38 start-page: 15212 year: 1999 ident: 10.1016/j.jbc.2024.105766_bib5 article-title: Influence of the C terminus of Wiskott-Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization publication-title: Biochemistry doi: 10.1021/bi991843+ – volume: 32 start-page: 43 year: 2015 ident: 10.1016/j.jbc.2024.105766_bib53 article-title: Profilin regulates F-actin network homeostasis by favoring formin over Arp2/3 complex publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.10.027 – volume: 3 year: 2008 ident: 10.1016/j.jbc.2024.105766_bib58 article-title: Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose publication-title: PLoS One doi: 10.1371/journal.pone.0002736 – volume: 32 start-page: 975 year: 2022 ident: 10.1016/j.jbc.2024.105766_bib55 article-title: Unconcerted conformational changes in Arp2/3 complex integrate multiple activating signals to assemble functional actin networks publication-title: Curr. Biol. doi: 10.1016/j.cub.2022.01.004 – volume: 7 year: 2012 ident: 10.1016/j.jbc.2024.105766_bib56 article-title: Actin filament attachments for sustained motility in vitro are maintained by filament bundling publication-title: PLoS One – volume: 6 start-page: eaaz7651 year: 2020 ident: 10.1016/j.jbc.2024.105766_bib9 article-title: Cryo-EM structure of NPF-bound human Arp2/3 complex and activation mechanism publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz7651 – volume: 221 year: 2022 ident: 10.1016/j.jbc.2024.105766_bib50 article-title: Eps15/Pan1p is a master regulator of the late stages of the endocytic pathway publication-title: J. Cell Biol. doi: 10.1083/jcb.202112138 – volume: 23 start-page: 1990 year: 2013 ident: 10.1016/j.jbc.2024.105766_bib64 article-title: Dip1 defines a class of Arp2/3 complex activators that function without preformed actin filaments publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.08.029 – volume: 3 start-page: 687 year: 2001 ident: 10.1016/j.jbc.2024.105766_bib60 article-title: Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex publication-title: Nat. Cell Biol. doi: 10.1038/35083087 – volume: 98 start-page: 14871 year: 2001 ident: 10.1016/j.jbc.2024.105766_bib14 article-title: Arp2/3 complex requires hydrolyzable ATP for nucleation of new actin filaments publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.261419298 – volume: 32 start-page: 421 year: 2022 ident: 10.1016/j.jbc.2024.105766_bib2 article-title: Nucleation, stabilization, and disassembly of branched actin networks publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2021.10.006 – volume: 108 start-page: E463 year: 2011 ident: 10.1016/j.jbc.2024.105766_bib16 article-title: Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1100125108 – volume: 37 start-page: 102 year: 2018 ident: 10.1016/j.jbc.2024.105766_bib27 article-title: WH2 and proline-rich domains of WASP-family proteins collaborate to accelerate actin filament elongation publication-title: EMBO J. doi: 10.15252/embj.201797039 – volume: 13 start-page: 1000 year: 2003 ident: 10.1016/j.jbc.2024.105766_bib41 article-title: Negative regulation of yeast WASp by two SH3 domain-containing proteins publication-title: Curr. Biol. doi: 10.1016/S0960-9822(03)00383-X – volume: 185 start-page: 1097 year: 2009 ident: 10.1016/j.jbc.2024.105766_bib62 article-title: Regulators of yeast endocytosis identified by systematic quantitative analysis publication-title: J. Cell Biol doi: 10.1083/jcb.200811116 – volume: 36 start-page: 12600 year: 1997 ident: 10.1016/j.jbc.2024.105766_bib57 article-title: Opposite effects of electrostatics and Steric exclusion on bundle formation by F-actin and other filamentous Polyelectrolytes publication-title: Biochemistry doi: 10.1021/bi9711386 – volume: 277 start-page: 749 year: 2010 ident: 10.1016/j.jbc.2024.105766_bib39 article-title: Measuring enzyme activities under standardized in vivo-like conditions for systems biology publication-title: FEBS J. doi: 10.1111/j.1742-4658.2009.07524.x – volume: 10 start-page: 1537 year: 2018 ident: 10.1016/j.jbc.2024.105766_bib70 article-title: From solution to surface to filament: actin flux into branched networks publication-title: Biophys. Rev. doi: 10.1007/s12551-018-0469-5 – volume: 103 start-page: 2145 year: 2012 ident: 10.1016/j.jbc.2024.105766_bib37 article-title: Molecular analysis of Arp2/3 complex activation in cells publication-title: Biophys. J. doi: 10.1016/j.bpj.2012.10.009 – volume: 37 year: 2018 ident: 10.1016/j.jbc.2024.105766_bib63 article-title: Structure of the nucleation-promoting factor SPIN90 bound to the actin filament nucleator Arp2/3 complex publication-title: EMBO J. doi: 10.15252/embj.2018100005 – volume: 102 start-page: 16644 year: 2005 ident: 10.1016/j.jbc.2024.105766_bib11 article-title: Actin-bound structures of Wiskott–Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0507021102 – volume: 109 start-page: E2587 year: 2012 ident: 10.1016/j.jbc.2024.105766_bib31 article-title: Ultrastructural dynamics of proteins involved in endocytic budding publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1202789109 – volume: 115 start-page: 475 year: 2003 ident: 10.1016/j.jbc.2024.105766_bib30 article-title: A pathway for association of receptors, adaptors, and actin during endocytic internalization publication-title: Cell doi: 10.1016/S0092-8674(03)00883-3 – volume: 20 start-page: 701 year: 2013 ident: 10.1016/j.jbc.2024.105766_bib48 article-title: Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2013.03.019 – volume: 130 start-page: 2235 year: 2017 ident: 10.1016/j.jbc.2024.105766_bib8 article-title: Cellular functions of WASP family proteins at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.199570 – volume: 32 start-page: 426 year: 2008 ident: 10.1016/j.jbc.2024.105766_bib44 article-title: Hierarchical regulation of WASP/WAVE proteins publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.10.012 – volume: 7 start-page: 519 year: 1997 ident: 10.1016/j.jbc.2024.105766_bib29 article-title: The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches publication-title: Curr. Biol. doi: 10.1016/S0960-9822(06)00223-5 – volume: 7 start-page: 713 year: 2006 ident: 10.1016/j.jbc.2024.105766_bib1 article-title: The ARP2/3 complex: an actin nucleator comes of age publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2026 – volume: 133 start-page: 841 year: 2008 ident: 10.1016/j.jbc.2024.105766_bib22 article-title: Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex publication-title: Cell doi: 10.1016/j.cell.2008.04.011 – volume: 115 start-page: 80 year: 2017 ident: 10.1016/j.jbc.2024.105766_bib73 article-title: TrackMate: an open and extensible platform for single-particle tracking publication-title: Methods doi: 10.1016/j.ymeth.2016.09.016 – volume: 9 start-page: 2895 year: 2018 ident: 10.1016/j.jbc.2024.105766_bib61 article-title: Abp1 promotes Arp2/3 complex-dependent actin nucleation and stabilizes branch junctions by antagonizing GMF publication-title: Nat. Commun. doi: 10.1038/s41467-018-05260-y – volume: 549 start-page: 119 year: 2018 ident: 10.1016/j.jbc.2024.105766_bib75 article-title: A simple and reproducible protocol of glass surface silanization for TIRF microscopy imaging publication-title: Anal. Biochem. doi: 10.1016/j.ab.2018.03.020 – volume: 119 year: 2022 ident: 10.1016/j.jbc.2024.105766_bib40 article-title: Single-molecule analysis of actin filament debranching by cofilin and GMF publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2115129119 – volume: 286 start-page: 17039 year: 2011 ident: 10.1016/j.jbc.2024.105766_bib45 article-title: Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3 complex by coronin publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.219964 – volume: 168 start-page: 315 year: 2005 ident: 10.1016/j.jbc.2024.105766_bib13 article-title: Effects of Arp2 and Arp3 nucleotide-binding pocket mutations on Arp2/3 complex function publication-title: J. Cell Biol doi: 10.1083/jcb.200408177 – volume: 23 start-page: 196 year: 2013 ident: 10.1016/j.jbc.2024.105766_bib43 article-title: A Novel actin-binding Motif in Las17/WASP nucleates actin filaments independently of Arp2/3 publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.12.024 – volume: 14 start-page: 7 year: 2013 ident: 10.1016/j.jbc.2024.105766_bib4 article-title: New insights into the regulation and cellular functions of the ARP2/3 complex publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3492 – volume: 177 start-page: 355 year: 2007 ident: 10.1016/j.jbc.2024.105766_bib66 article-title: PtdIns(4,5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization publication-title: J. Cell Biol. doi: 10.1083/jcb.200611011 – volume: 283 start-page: 23852 year: 2008 ident: 10.1016/j.jbc.2024.105766_bib25 article-title: Close packing of Listeria monocytogenes ActA, a natively unfolded protein, enhances F-actin assembly without dimerization publication-title: J. Biol. Chem. doi: 10.1074/jbc.M803448200 – volume: 3 start-page: 76 year: 2001 ident: 10.1016/j.jbc.2024.105766_bib7 article-title: Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex publication-title: Nat. Cell Biol. doi: 10.1038/35050590 – volume: 68 start-page: 37 year: 2021 ident: 10.1016/j.jbc.2024.105766_bib3 article-title: The cell pushes back: the Arp2/3 complex is a key orchestrator of cellular responses to environmental forces publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2020.08.012 – volume: 97 start-page: 221 year: 1999 ident: 10.1016/j.jbc.2024.105766_bib6 article-title: The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly publication-title: Cell doi: 10.1016/S0092-8674(00)80732-1 – volume: 92 start-page: 54 year: 2013 ident: 10.1016/j.jbc.2024.105766_bib38 article-title: Development of the Twin-Strep-tag® and its application for purification of recombinant proteins from cell culture supernatants publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2013.08.021 – volume: 597 start-page: 672 year: 2023 ident: 10.1016/j.jbc.2024.105766_bib67 article-title: The proline-rich domain of fission yeast WASp (Wsp1p) interacts with actin filaments and inhibits actin polymerization publication-title: FEBS Lett. doi: 10.1002/1873-3468.14571 – volume: 20 start-page: 423 year: 2010 ident: 10.1016/j.jbc.2024.105766_bib12 article-title: A “primer”-based mechanism underlies branched actin filament network formation and motility publication-title: Curr. Biol. doi: 10.1016/j.cub.2009.12.056 – volume: 119 year: 2022 ident: 10.1016/j.jbc.2024.105766_bib46 article-title: Structure of Arp2/3 complex at a branched actin filament junction resolved by single-particle cryo-electron microscopy publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2202723119 |
SSID | ssj0000491 |
Score | 2.4501884 |
Snippet | Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 105766 |
SubjectTerms | actin Actin Cytoskeleton - metabolism Actin-Related Protein 2-3 Complex - genetics Actin-Related Protein 2-3 Complex - metabolism Actins - metabolism Animals Arp2/3 complex Binding Sites endocytosis Las17 Mammals - metabolism nucleation Protein Binding Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism WASP Wiskott-Aldrich Syndrome Protein - metabolism |
Title | Both Las17-binding sites on Arp2/3 complex are important for branching nucleation and assembly of functional endocytic actin networks in S. cerevisiae |
URI | https://dx.doi.org/10.1016/j.jbc.2024.105766 https://www.ncbi.nlm.nih.gov/pubmed/38367669 https://www.proquest.com/docview/2928250608 |
Volume | 300 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIkEvCFoe4VENEuVAZON4N659DBGoggBCbaXeLO_DkiNiR00ikfwRrvwNrvwyZne9dkoJAi6WZef9fdmZ2flmhpBn6LLGijLmhbniHosl89AqZh5PYhnHNOKJUbu__xAdn7G354PzTuf7hmppueC-WP-2ruR_UMVriKuukv0HZJsXxQt4jvjiERHG419h_Ap_5t44m6MJ4IUtT9HJYJMBGF7MdNNTakXj6ktPS7yKqXG3dT8mrdLUQzXMDlSpuxpbKpjmrfO5mvLPJvmuDV-9X6hKWYmV6fCKl8peaSXkRlF74h-OwsNhIIxueF5klyRGbQGacX1t5yfbm8QNnGt2pfWwIrX2PuLXXVvDWMhVr_G4x6vSTq-qBf9tXmtcLK3OyBs7e2zKWgq7Eg5lNt3c4whZK_LylV2X0VPURQfnmws3DYINhtKNZVgPL7bDXK5YCLtZMfEnXDewDJl_9bEI8mxqKIPhe4Q3k9ZYNhJGd-sauR5ihKJtwrtPbaN6DLz6Lolu5IS_vN8uueFeYZtHtC3iMZ7P6W1yq8YNhpZ_d0hHlXtkf1hmi2q6gudgRMQmO7NHbo4cnvvkq6YnXKInGHpCVYKm50sKNTkByQkNOQHJCQ05oSUnIDnBkROqHFpyQkNOMOQER07A8xP_x7eWmHfJ2ZvXp6Njr54D4gnK4oV3FCShwLBCYGgrs2QgFeN9KllfDSImlaSRojnNBPpi4UBQ3W82zxOuBQG5Ehjj3CM7ZVWqBwSOcsmFwJAhjxWG6gFnYZ7FaOXCnDMMNrrkhcMindl2L6nTQU5SxDDVGKYWwy5hDq209letH5oi2f70tKcO2RQR0Qm6rFTVcp6Gia4kD6Ig7pL7FvLmUzi2PNx65xHZbf87j8nO4mKpnqDHvOAHZqfpwDD0J2Z1xIU |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Both+Las17-binding+sites+on+Arp2%2F3+complex+are+important+for+branching+nucleation+and+assembly+of+functional+endocytic+actin+networks+in+S.%C2%A0cerevisiae&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Narvaez-Ortiz%2C+Heidy+Y&rft.au=Lynch%2C+Michael+J&rft.au=Liu%2C+Su-Ling&rft.au=Fries%2C+Adam&rft.date=2024-03-01&rft.eissn=1083-351X&rft.volume=300&rft.issue=3&rft.spage=105766&rft_id=info:doi/10.1016%2Fj.jbc.2024.105766&rft_id=info%3Apmid%2F38367669&rft.externalDocID=38367669 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |