Both Las17-binding sites on Arp2/3 complex are important for branching nucleation and assembly of functional endocytic actin networks in S. cerevisiae

Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites—one on the Arp3 subunit and one spanning Arp2 and ARPC1—b...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 300; no. 3; p. 105766
Main Authors Narvaez-Ortiz, Heidy Y., Lynch, Michael J., Liu, Su-Ling, Fries, Adam, Nolen, Brad J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2024
Subjects
Online AccessGet full text
ISSN0021-9258
1083-351X
1083-351X
DOI10.1016/j.jbc.2024.105766

Cover

Loading…
Abstract Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites—one on the Arp3 subunit and one spanning Arp2 and ARPC1—but the importance of each site in the regulation of force-producing actin networks is unclear. Here, we identify mutations in budding yeast Arp2/3 complex that decrease or block engagement of Las17, the budding yeast WASP, at each site. As in the mammalian system, both sites are required for maximal activation in vitro. Dimerization of Las17 partially restores activity of mutations at both CA-binding sites. Arp2/3 complexes defective at either site assemble force-producing actin networks in a bead motility assay, but their reduced activity hinders motility by decreasing actin assembly near the bead surface and by failing to suppress actin filament bundling within the networks. While even the most defective Las17-binding site mutants assembled actin filaments at endocytic sites, they showed significant internalization defects, potentially because they lack the proper architecture to drive plasma membrane remodeling. Together, our data indicate that both Las17-binding sites are important to assemble functional endocytic actin networks in budding yeast, but Arp2/3 complex retains some activity in vitro and in vivo even with a severe defect at either Las17-binding site.
AbstractList Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites-one on the Arp3 subunit and one spanning Arp2 and ARPC1-but the importance of each site in the regulation of force-producing actin networks is unclear. Here, we identify mutations in budding yeast Arp2/3 complex that decrease or block engagement of Las17, the budding yeast WASP, at each site. As in the mammalian system, both sites are required for maximal activation in vitro. Dimerization of Las17 partially restores activity of mutations at both CA-binding sites. Arp2/3 complexes defective at either site assemble force-producing actin networks in a bead motility assay, but their reduced activity hinders motility by decreasing actin assembly near the bead surface and by failing to suppress actin filament bundling within the networks. While even the most defective Las17-binding site mutants assembled actin filaments at endocytic sites, they showed significant internalization defects, potentially because they lack the proper architecture to drive plasma membrane remodeling. Together, our data indicate that both Las17-binding sites are important to assemble functional endocytic actin networks in budding yeast, but Arp2/3 complex retains some activity in vitro and in vivo even with a severe defect at either Las17-binding site.
Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites-one on the Arp3 subunit and one spanning Arp2 and ARPC1-but the importance of each site in the regulation of force-producing actin networks is unclear. Here, we identify mutations in budding yeast Arp2/3 complex that decrease or block engagement of Las17, the budding yeast WASP, at each site. As in the mammalian system, both sites are required for maximal activation in vitro. Dimerization of Las17 partially restores activity of mutations at both CA-binding sites. Arp2/3 complexes defective at either site assemble force-producing actin networks in a bead motility assay, but their reduced activity hinders motility by decreasing actin assembly near the bead surface and by failing to suppress actin filament bundling within the networks. While even the most defective Las17-binding site mutants assembled actin filaments at endocytic sites, they showed significant internalization defects, potentially because they lack the proper architecture to drive plasma membrane remodeling. Together, our data indicate that both Las17-binding sites are important to assemble functional endocytic actin networks in budding yeast, but Arp2/3 complex retains some activity in vitro and in vivo even with a severe defect at either Las17-binding site.Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites-one on the Arp3 subunit and one spanning Arp2 and ARPC1-but the importance of each site in the regulation of force-producing actin networks is unclear. Here, we identify mutations in budding yeast Arp2/3 complex that decrease or block engagement of Las17, the budding yeast WASP, at each site. As in the mammalian system, both sites are required for maximal activation in vitro. Dimerization of Las17 partially restores activity of mutations at both CA-binding sites. Arp2/3 complexes defective at either site assemble force-producing actin networks in a bead motility assay, but their reduced activity hinders motility by decreasing actin assembly near the bead surface and by failing to suppress actin filament bundling within the networks. While even the most defective Las17-binding site mutants assembled actin filaments at endocytic sites, they showed significant internalization defects, potentially because they lack the proper architecture to drive plasma membrane remodeling. Together, our data indicate that both Las17-binding sites are important to assemble functional endocytic actin networks in budding yeast, but Arp2/3 complex retains some activity in vitro and in vivo even with a severe defect at either Las17-binding site.
ArticleNumber 105766
Author Liu, Su-Ling
Lynch, Michael J.
Nolen, Brad J.
Narvaez-Ortiz, Heidy Y.
Fries, Adam
Author_xml – sequence: 1
  givenname: Heidy Y.
  orcidid: 0000-0002-6434-6292
  surname: Narvaez-Ortiz
  fullname: Narvaez-Ortiz, Heidy Y.
– sequence: 2
  givenname: Michael J.
  orcidid: 0000-0002-3569-4749
  surname: Lynch
  fullname: Lynch, Michael J.
– sequence: 3
  givenname: Su-Ling
  orcidid: 0000-0002-1213-110X
  surname: Liu
  fullname: Liu, Su-Ling
– sequence: 4
  givenname: Adam
  surname: Fries
  fullname: Fries, Adam
– sequence: 5
  givenname: Brad J.
  surname: Nolen
  fullname: Nolen, Brad J.
  email: bnolen@uoregon.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38367669$$D View this record in MEDLINE/PubMed
BookMark eNp9kcuOFCEUhokZ4_S0PoAbw9JN9XAp6Kq4Gifekk5cqIk7QsHBoa2CEqjRfpLZzrP4ZNLp0aVsgMP3kZzzX6CzEAMg9JySDSVUXu43-8FsGGFtvYutlI_QipKON1zQr2doRQijTc9Ed44uct6TutqePkHnvOOy4v0K3b2O5QbvdKbbZvDB-vANZ18g4xjwVZrZJccmTvMIv7BOgP00x1R0KNjFhIekg7k5OmExI-jiq6WDxTpnmIbxgKPDbgnm-KBHDMFGcyjeYF1LAQcoP2P6nnE9f9r8vjeQ4NZnr-Epeuz0mOHZw75GX96--Xz9vtl9fPfh-mrXGN52pdmSnhmxFUZ0wupeWGgHym1LQcjWguUSuOPacMmYMLyXkjjXD6LjnQNDKF-jl6d_5xR_LJCLmnw2MI46QFyyYj3rmCCyTnWNXjygyzCBVXPyk04H9XeYFaAnwKSYcwL3D6FEHQNTe1UDU8fA1Cmw6rw6OVCbvPWQVDYeggHrE5iibPT_sf8AReqfUg
Cites_doi 10.1083/jcb.202209105
10.1083/jcb.200404159
10.1016/S0076-6879(02)50957-5
10.1083/jcb.202103199
10.1083/jcb.153.3.627
10.1073/pnas.2306165120
10.1038/ncomms12226
10.1016/j.bpj.2016.02.018
10.1534/genetics.112.145540
10.1016/j.cell.2012.05.046
10.1091/mbc.8.7.1361
10.1371/journal.pone.0163177
10.1073/pnas.1716622115
10.1073/pnas.1517798113
10.1073/pnas.1100236108
10.7554/eLife.29140
10.1074/jbc.M114.587527
10.12688/f1000research.27171.1
10.1091/mbc.e04-08-0734
10.1038/ncomms4308
10.1038/s41467-021-25682-5
10.1073/pnas.1717594115
10.1529/biophysj.107.118653
10.1083/jcb.201111113
10.7554/eLife.50749
10.1073/pnas.2206722119
10.7554/eLife.04535
10.1016/j.devcel.2006.05.008
10.1371/journal.pbio.0060001
10.1021/bi991843+
10.1016/j.devcel.2014.10.027
10.1371/journal.pone.0002736
10.1016/j.cub.2022.01.004
10.1126/sciadv.aaz7651
10.1083/jcb.202112138
10.1016/j.cub.2013.08.029
10.1038/35083087
10.1073/pnas.261419298
10.1016/j.tcb.2021.10.006
10.1073/pnas.1100125108
10.15252/embj.201797039
10.1016/S0960-9822(03)00383-X
10.1083/jcb.200811116
10.1021/bi9711386
10.1111/j.1742-4658.2009.07524.x
10.1007/s12551-018-0469-5
10.1016/j.bpj.2012.10.009
10.15252/embj.2018100005
10.1073/pnas.0507021102
10.1073/pnas.1202789109
10.1016/S0092-8674(03)00883-3
10.1016/j.chembiol.2013.03.019
10.1242/jcs.199570
10.1016/j.molcel.2008.10.012
10.1016/S0960-9822(06)00223-5
10.1038/nrm2026
10.1016/j.cell.2008.04.011
10.1016/j.ymeth.2016.09.016
10.1038/s41467-018-05260-y
10.1016/j.ab.2018.03.020
10.1073/pnas.2115129119
10.1074/jbc.M111.219964
10.1083/jcb.200408177
10.1016/j.cub.2012.12.024
10.1038/nrm3492
10.1083/jcb.200611011
10.1074/jbc.M803448200
10.1038/35050590
10.1016/j.ceb.2020.08.012
10.1016/S0092-8674(00)80732-1
10.1016/j.pep.2013.08.021
10.1002/1873-3468.14571
10.1016/j.cub.2009.12.056
10.1073/pnas.2202723119
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jbc.2024.105766
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
ExternalDocumentID 38367669
10_1016_j_jbc_2024_105766
S002192582400142X
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM136319
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0R~
0SF
186
18M
29J
2WC
34G
39C
3O-
4.4
41~
53G
5BI
5GY
5RE
5VS
6I.
6TJ
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
AAYJJ
AAYOK
ABDNZ
ABFSI
ABOCM
ABPPZ
ABRJW
ABTAH
ACGFO
ACNCT
ACSFO
ACYGS
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFDAS
AFFNX
AFMIJ
AFOSN
AFPKN
AI.
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CJ0
CS3
DIK
DU5
E.L
E3Z
EBS
EJD
F20
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
J5H
KQ8
L7B
MVM
N9A
NHB
OHT
OK1
P-O
P0W
P2P
QZG
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
XJT
XSW
Y6R
YQT
YSK
YWH
YYP
YZZ
ZA5
ZE2
ZGI
ZY4
~02
~KM
.7T
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKYEP
CITATION
H13
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c348t-7092c575c585da95de4b13d41e564ded36e3f3ac36225c39660ff9b5838fec013
ISSN 0021-9258
1083-351X
IngestDate Fri Jul 11 16:48:07 EDT 2025
Mon Jul 21 05:43:56 EDT 2025
Tue Jul 01 02:00:00 EDT 2025
Sat Apr 20 15:59:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords TEV
NPF
GST
MRP
WASP
Arp2/3 complex
nucleation
actin
PC
Ni–NTA
VCA
Las17
endocytosis
TCEP
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-7092c575c585da95de4b13d41e564ded36e3f3ac36225c39660ff9b5838fec013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1213-110X
0000-0002-6434-6292
0000-0002-3569-4749
OpenAccessLink http://dx.doi.org/10.1016/j.jbc.2024.105766
PMID 38367669
PQID 2928250608
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2928250608
pubmed_primary_38367669
crossref_primary_10_1016_j_jbc_2024_105766
elsevier_sciencedirect_doi_10_1016_j_jbc_2024_105766
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Achard, Martiel, Michelot, Guérin, Reymann, Blanchoin (bib12) 2010; 20
Idrissi, Blasco, Espinal, Geli (bib31) 2012; 109
Padrick, Doolittle, Brautigam, King, Rosen (bib15) 2011; 108
Ti, Jurgenson, Nolen, Pollard (bib16) 2011; 108
Liu, Needham, May, Nolen (bib45) 2011; 286
Luan, Zelter, MacCoss, Davis, Nolen (bib10) 2018; 115
Chou, Chatterjee, Pollard (bib47) 2022; 119
Chereau, Kerff, Graceffa, Grabarek, Langsetmo, Dominguez (bib11) 2005; 102
Ding, Narvaez-Ortiz, Singh, Hocky, Chowdhury, Nolen (bib46) 2022; 119
Narvaez-Ortiz, Nolen (bib55) 2022; 32
Alekhina, Burstein, Billadeau (bib8) 2017; 130
Zimmet, Van Eeuwen, Boczkowska, Rebowski, Murakami, Dominguez (bib9) 2020; 6
Higgs, Blanchoin, Pollard (bib5) 1999; 38
Padrick, Cheng, Ismail, Panchal, Doolittle, Kim (bib44) 2008; 32
Goode, Rodal, Barnes, Drubin (bib52) 2001; 153
Footer, Lyo, Theriot (bib25) 2008; 283
Wagner, Luan, Liu, Nolen (bib64) 2013; 23
Guo, Sokolova, Chung, Padrick, Gelles, Goode (bib61) 2018; 9
Funk, Merino, Schaks, Rottner, Raunser, Bieling (bib54) 2021; 12
Rodnick-Smith, Luan, Liu, Nolen (bib20) 2016; 113
Akin, Mullins (bib22) 2008; 133
Marchand, Kaiser, Pollard, Higgs (bib7) 2001; 3
Espinoza-Sanchez, Metskas, Chou, Rhoades, Pollard (bib21) 2018; 115
Hetrick, Han, Helgeson, Nolen (bib48) 2013; 20
van Eunen, Bouwman, Daran-Lapujade, Postmus, Canelas, Mensonides (bib39) 2010; 277
Sun, Leong, Jiang, Tangara, Darzacq, Drubin (bib65) 2017; 6
Casler, Johnson, Krahn, Pantazopoulou, Day, Glick (bib49) 2022; 221
Winter, Podtelejnikov, Mann, Li (bib29) 1997; 7
Rodal, Manning, Goode, Drubin (bib41) 2003; 13
Burston, Maldonado-Báez, Davey, Montpetit, Schluter, Wendland (bib62) 2009; 185
Papalazarou, Machesky (bib3) 2021; 68
Urbanek, Smith, Allwood, Booth, Ayscough (bib43) 2013; 23
Tinevez, Perry, Schindelin, Hoopes, Reynolds, Laplantine (bib73) 2017; 115
Sun, Schöneberg, Chen, Jiang, Kaplan, Xu (bib74) 2019; 8
Rodnick-Smith, Liu, Balzer, Luan, Nolen (bib19) 2016; 7
Moreau, Galan, Devilliers, Haguenauer-Tsapis, Winsor (bib28) 1997; 8
Allwood, Tyler, Urbanek, Smaczynska-de Rooij, Ayscough (bib42) 2016; 11
Gietz, Woods (bib71) 2002; 350
Köhler, Lieleg, Bausch (bib58) 2008; 3
Duncan, Cope, Goode, Wendland, Drubin (bib60) 2001; 3
Suarez, Carroll, Burke, Christensen, Bestul, Sees (bib53) 2015; 32
Rosenbloom, Pollard (bib67) 2023; 597
Goode, Eskin, Wendland (bib34) 2015; 199
Sun, Martin, Drubin (bib35) 2006; 11
Chung, Goode, Gelles (bib40) 2022; 119
Young, Cooper, Bridgman (bib68) 2004; 166
Mullins, Bieling, Fletcher (bib70) 2018; 10
Boczkowska, Rebowski, Kast, Dominguez (bib17) 2014; 5
Luan, Liu, Helgeson, Nolen (bib63) 2018; 37
Rohatgi, Ma, Miki, Lopez, Kirchhausen, Takenawa (bib6) 1999; 97
Kaksonen, Sun, Drubin (bib30) 2003; 115
Bieling, Hansen, Akin, Li, Hayden, Fletcher (bib27) 2018; 37
Rotty, Wu, Bear (bib4) 2013; 14
Ditlev, Michalski, Huber, Rivera, Mohler, Loew (bib26) 2012; 197
Goley, Welch (bib1) 2006; 7
Wirshing, Rodriguez, Goode (bib51) 2023; 222
Galletta, Carlsson, Cooper (bib37) 2012; 103
Picco, Mund, Ries, Nédélec, Kaksonen (bib32) 2015; 4
Sun, Carroll, Kaksonen, Toshima, Drubin (bib66) 2007; 177
Rodal, Kozubowski, Goode, Drubin, Hartwig (bib69) 2005; 16
Dayel, Holleran, Mullins (bib14) 2001; 98
Schmidt, Batz, Bonet, Carl, Holzapfel, Kiem (bib38) 2013; 92
Gautreau, Fregoso, Simanov, Dominguez (bib2) 2022; 32
Szkop, Kliszcz, Kasprzak (bib75) 2018; 549
Delatour, Helfer, Didry, Lê, Gaucher, Carlier (bib23) 2008; 94
Kukulski, Schorb, Kaksonen, Briggs (bib33) 2012; 150
Wang, Galletta, Cooper, Carlsson (bib24) 2016; 110
Miura (bib72) 2020; 9
Martin, Xu, Rouiller, Kaksonen, Sun, Belmont (bib13) 2005; 168
Helgeson, Prendergast, Wagner, Rodnick-Smith, Nolen (bib59) 2014; 289
Galletta, Chuang, Cooper (bib36) 2008; 6
Enshoji, Miyano, Yoshida, Nagano, Watanabe, Kunihiro (bib50) 2022; 221
Tang, Ito, Tao, Traub, Janmey (bib57) 1997; 36
van Eeuwen, Boczkowska, Rebowski, Carman, Fregoso, Dominguez (bib18) 2023; 120
Hu, Kuhn (bib56) 2012; 7
Gautreau (10.1016/j.jbc.2024.105766_bib2) 2022; 32
Wagner (10.1016/j.jbc.2024.105766_bib64) 2013; 23
Casler (10.1016/j.jbc.2024.105766_bib49) 2022; 221
Espinoza-Sanchez (10.1016/j.jbc.2024.105766_bib21) 2018; 115
Mullins (10.1016/j.jbc.2024.105766_bib70) 2018; 10
Rodnick-Smith (10.1016/j.jbc.2024.105766_bib19) 2016; 7
Hetrick (10.1016/j.jbc.2024.105766_bib48) 2013; 20
Sun (10.1016/j.jbc.2024.105766_bib74) 2019; 8
Zimmet (10.1016/j.jbc.2024.105766_bib9) 2020; 6
Luan (10.1016/j.jbc.2024.105766_bib10) 2018; 115
Ditlev (10.1016/j.jbc.2024.105766_bib26) 2012; 197
van Eunen (10.1016/j.jbc.2024.105766_bib39) 2010; 277
Burston (10.1016/j.jbc.2024.105766_bib62) 2009; 185
Papalazarou (10.1016/j.jbc.2024.105766_bib3) 2021; 68
Narvaez-Ortiz (10.1016/j.jbc.2024.105766_bib55) 2022; 32
Rosenbloom (10.1016/j.jbc.2024.105766_bib67) 2023; 597
Chereau (10.1016/j.jbc.2024.105766_bib11) 2005; 102
Galletta (10.1016/j.jbc.2024.105766_bib37) 2012; 103
Hu (10.1016/j.jbc.2024.105766_bib56) 2012; 7
Ding (10.1016/j.jbc.2024.105766_bib46) 2022; 119
Funk (10.1016/j.jbc.2024.105766_bib54) 2021; 12
Miura (10.1016/j.jbc.2024.105766_bib72) 2020; 9
Schmidt (10.1016/j.jbc.2024.105766_bib38) 2013; 92
Urbanek (10.1016/j.jbc.2024.105766_bib43) 2013; 23
Alekhina (10.1016/j.jbc.2024.105766_bib8) 2017; 130
Sun (10.1016/j.jbc.2024.105766_bib66) 2007; 177
Rodnick-Smith (10.1016/j.jbc.2024.105766_bib20) 2016; 113
Padrick (10.1016/j.jbc.2024.105766_bib44) 2008; 32
Martin (10.1016/j.jbc.2024.105766_bib13) 2005; 168
Achard (10.1016/j.jbc.2024.105766_bib12) 2010; 20
van Eeuwen (10.1016/j.jbc.2024.105766_bib18) 2023; 120
Chung (10.1016/j.jbc.2024.105766_bib40) 2022; 119
Suarez (10.1016/j.jbc.2024.105766_bib53) 2015; 32
Marchand (10.1016/j.jbc.2024.105766_bib7) 2001; 3
Padrick (10.1016/j.jbc.2024.105766_bib15) 2011; 108
Rodal (10.1016/j.jbc.2024.105766_bib41) 2003; 13
Helgeson (10.1016/j.jbc.2024.105766_bib59) 2014; 289
Gietz (10.1016/j.jbc.2024.105766_bib71) 2002; 350
Ti (10.1016/j.jbc.2024.105766_bib16) 2011; 108
Winter (10.1016/j.jbc.2024.105766_bib29) 1997; 7
Wirshing (10.1016/j.jbc.2024.105766_bib51) 2023; 222
Rotty (10.1016/j.jbc.2024.105766_bib4) 2013; 14
Sun (10.1016/j.jbc.2024.105766_bib65) 2017; 6
Bieling (10.1016/j.jbc.2024.105766_bib27) 2018; 37
Allwood (10.1016/j.jbc.2024.105766_bib42) 2016; 11
Young (10.1016/j.jbc.2024.105766_bib68) 2004; 166
Delatour (10.1016/j.jbc.2024.105766_bib23) 2008; 94
Goode (10.1016/j.jbc.2024.105766_bib34) 2015; 199
Akin (10.1016/j.jbc.2024.105766_bib22) 2008; 133
Galletta (10.1016/j.jbc.2024.105766_bib36) 2008; 6
Footer (10.1016/j.jbc.2024.105766_bib25) 2008; 283
Rohatgi (10.1016/j.jbc.2024.105766_bib6) 1999; 97
Tinevez (10.1016/j.jbc.2024.105766_bib73) 2017; 115
Wang (10.1016/j.jbc.2024.105766_bib24) 2016; 110
Boczkowska (10.1016/j.jbc.2024.105766_bib17) 2014; 5
Picco (10.1016/j.jbc.2024.105766_bib32) 2015; 4
Goode (10.1016/j.jbc.2024.105766_bib52) 2001; 153
Goley (10.1016/j.jbc.2024.105766_bib1) 2006; 7
Enshoji (10.1016/j.jbc.2024.105766_bib50) 2022; 221
Chou (10.1016/j.jbc.2024.105766_bib47) 2022; 119
Dayel (10.1016/j.jbc.2024.105766_bib14) 2001; 98
Idrissi (10.1016/j.jbc.2024.105766_bib31) 2012; 109
Moreau (10.1016/j.jbc.2024.105766_bib28) 1997; 8
Luan (10.1016/j.jbc.2024.105766_bib63) 2018; 37
Liu (10.1016/j.jbc.2024.105766_bib45) 2011; 286
Köhler (10.1016/j.jbc.2024.105766_bib58) 2008; 3
Kaksonen (10.1016/j.jbc.2024.105766_bib30) 2003; 115
Kukulski (10.1016/j.jbc.2024.105766_bib33) 2012; 150
Szkop (10.1016/j.jbc.2024.105766_bib75) 2018; 549
Guo (10.1016/j.jbc.2024.105766_bib61) 2018; 9
Sun (10.1016/j.jbc.2024.105766_bib35) 2006; 11
Rodal (10.1016/j.jbc.2024.105766_bib69) 2005; 16
Duncan (10.1016/j.jbc.2024.105766_bib60) 2001; 3
Tang (10.1016/j.jbc.2024.105766_bib57) 1997; 36
Higgs (10.1016/j.jbc.2024.105766_bib5) 1999; 38
References_xml – volume: 13
  start-page: 1000
  year: 2003
  end-page: 1008
  ident: bib41
  article-title: Negative regulation of yeast WASp by two SH3 domain-containing proteins
  publication-title: Curr. Biol.
– volume: 32
  start-page: 426
  year: 2008
  end-page: 438
  ident: bib44
  article-title: Hierarchical regulation of WASP/WAVE proteins
  publication-title: Mol. Cell
– volume: 36
  start-page: 12600
  year: 1997
  end-page: 12607
  ident: bib57
  article-title: Opposite effects of electrostatics and Steric exclusion on bundle formation by F-actin and other filamentous Polyelectrolytes
  publication-title: Biochemistry
– volume: 289
  start-page: 28856
  year: 2014
  end-page: 28869
  ident: bib59
  article-title: Interactions with actin monomers, actin filaments, and Arp2/3 complex define the roles of WASP family proteins and cortactin in coordinately regulating branched actin networks
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 1537
  year: 2018
  end-page: 1551
  ident: bib70
  article-title: From solution to surface to filament: actin flux into branched networks
  publication-title: Biophys. Rev.
– volume: 3
  year: 2008
  ident: bib58
  article-title: Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose
  publication-title: PLoS One
– volume: 150
  start-page: 508
  year: 2012
  end-page: 520
  ident: bib33
  article-title: Plasma membrane Reshaping during endocytosis is revealed by time-resolved electron tomography
  publication-title: Cell
– volume: 3
  start-page: 687
  year: 2001
  end-page: 690
  ident: bib60
  article-title: Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex
  publication-title: Nat. Cell Biol.
– volume: 199
  start-page: 315
  year: 2015
  end-page: 358
  ident: bib34
  article-title: Actin and endocytosis in budding yeast
  publication-title: Genetics
– volume: 115
  start-page: E8642
  year: 2018
  end-page: E8651
  ident: bib21
  article-title: Conformational changes in Arp2/3 complex induced by ATP, WASp-VCA and actin filaments
  publication-title: Proc Natl Acad Sci U S A
– volume: 6
  year: 2017
  ident: bib65
  article-title: Switch-like Arp2/3 activation upon WASP and WIP recruitment to an apparent threshold level by multivalent linker proteins
  publication-title: Elife
– volume: 185
  start-page: 1097
  year: 2009
  end-page: 1110
  ident: bib62
  article-title: Regulators of yeast endocytosis identified by systematic quantitative analysis
  publication-title: J. Cell Biol
– volume: 32
  start-page: 421
  year: 2022
  end-page: 432
  ident: bib2
  article-title: Nucleation, stabilization, and disassembly of branched actin networks
  publication-title: Trends Cell Biol.
– volume: 12
  start-page: 5329
  year: 2021
  ident: bib54
  article-title: A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks
  publication-title: Nat. Commun.
– volume: 350
  start-page: 87
  year: 2002
  end-page: 96
  ident: bib71
  article-title: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
  publication-title: Methods Enzymol.
– volume: 4
  year: 2015
  ident: bib32
  article-title: Visualizing the functional architecture of the endocytic machinery
  publication-title: Elife
– volume: 597
  start-page: 672
  year: 2023
  end-page: 681
  ident: bib67
  article-title: The proline-rich domain of fission yeast WASp (Wsp1p) interacts with actin filaments and inhibits actin polymerization
  publication-title: FEBS Lett.
– volume: 16
  start-page: 372
  year: 2005
  end-page: 384
  ident: bib69
  article-title: Actin and Septin Ultrastructures at the budding yeast cell cortex
  publication-title: Mol. Biol. Cell
– volume: 113
  start-page: E3834
  year: 2016
  end-page: E3843
  ident: bib20
  article-title: Role and structural mechanism of WASP-triggered conformational changes in branched actin filament nucleation by Arp2/3 complex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  year: 2016
  ident: bib42
  article-title: Elucidating key Motifs required for Arp2/3-dependent and independent actin nucleation by Las17/WASP
  publication-title: PLoS One
– volume: 5
  start-page: 3308
  year: 2014
  ident: bib17
  article-title: Structural analysis of the transitional state of Arp2/3 complex activation by two actin-bound WCAs
  publication-title: Nat. Commun.
– volume: 20
  start-page: 701
  year: 2013
  end-page: 712
  ident: bib48
  article-title: Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change
  publication-title: Chem. Biol.
– volume: 115
  start-page: 80
  year: 2017
  end-page: 90
  ident: bib73
  article-title: TrackMate: an open and extensible platform for single-particle tracking
  publication-title: Methods
– volume: 32
  start-page: 43
  year: 2015
  end-page: 53
  ident: bib53
  article-title: Profilin regulates F-actin network homeostasis by favoring formin over Arp2/3 complex
  publication-title: Dev. Cell
– volume: 108
  start-page: E463
  year: 2011
  end-page: E471
  ident: bib16
  article-title: Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 37
  start-page: 102
  year: 2018
  end-page: 121
  ident: bib27
  article-title: WH2 and proline-rich domains of WASP-family proteins collaborate to accelerate actin filament elongation
  publication-title: EMBO J.
– volume: 133
  start-page: 841
  year: 2008
  end-page: 851
  ident: bib22
  article-title: Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex
  publication-title: Cell
– volume: 130
  start-page: 2235
  year: 2017
  end-page: 2241
  ident: bib8
  article-title: Cellular functions of WASP family proteins at a glance
  publication-title: J. Cell Sci.
– volume: 94
  start-page: 4890
  year: 2008
  end-page: 4905
  ident: bib23
  article-title: Arp2/3 controls the motile behavior of N-WASP-functionalized GUVs and modulates N-WASP surface distribution by mediating transient links with actin filaments
  publication-title: Biophys. J.
– volume: 109
  start-page: E2587
  year: 2012
  end-page: E2594
  ident: bib31
  article-title: Ultrastructural dynamics of proteins involved in endocytic budding
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 120
  year: 2023
  ident: bib18
  article-title: Transition state of Arp2/3 complex activation by actin-bound dimeric nucleation-promoting factor
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 23
  start-page: 196
  year: 2013
  end-page: 203
  ident: bib43
  article-title: A Novel actin-binding Motif in Las17/WASP nucleates actin filaments independently of Arp2/3
  publication-title: Curr. Biol.
– volume: 166
  start-page: 629
  year: 2004
  end-page: 635
  ident: bib68
  article-title: Yeast actin patches are networks of branched actin filaments
  publication-title: J. Cell Biol.
– volume: 221
  year: 2022
  ident: bib50
  article-title: Eps15/Pan1p is a master regulator of the late stages of the endocytic pathway
  publication-title: J. Cell Biol.
– volume: 119
  year: 2022
  ident: bib40
  article-title: Single-molecule analysis of actin filament debranching by cofilin and GMF
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 7
  start-page: 713
  year: 2006
  end-page: 726
  ident: bib1
  article-title: The ARP2/3 complex: an actin nucleator comes of age
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 168
  start-page: 315
  year: 2005
  end-page: 328
  ident: bib13
  article-title: Effects of Arp2 and Arp3 nucleotide-binding pocket mutations on Arp2/3 complex function
  publication-title: J. Cell Biol
– volume: 23
  start-page: 1990
  year: 2013
  end-page: 1998
  ident: bib64
  article-title: Dip1 defines a class of Arp2/3 complex activators that function without preformed actin filaments
  publication-title: Curr. Biol.
– volume: 38
  start-page: 15212
  year: 1999
  end-page: 15222
  ident: bib5
  article-title: Influence of the C terminus of Wiskott-Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization
  publication-title: Biochemistry
– volume: 221
  year: 2022
  ident: bib49
  article-title: Clathrin adaptors mediate two sequential pathways of intra-Golgi recycling
  publication-title: J. Cell Biol.
– volume: 37
  year: 2018
  ident: bib63
  article-title: Structure of the nucleation-promoting factor SPIN90 bound to the actin filament nucleator Arp2/3 complex
  publication-title: EMBO J.
– volume: 20
  start-page: 423
  year: 2010
  end-page: 428
  ident: bib12
  article-title: A “primer”-based mechanism underlies branched actin filament network formation and motility
  publication-title: Curr. Biol.
– volume: 32
  start-page: 975
  year: 2022
  end-page: 987.e6
  ident: bib55
  article-title: Unconcerted conformational changes in Arp2/3 complex integrate multiple activating signals to assemble functional actin networks
  publication-title: Curr. Biol.
– volume: 222
  year: 2023
  ident: bib51
  article-title: Evolutionary tuning of barbed end competition allows simultaneous construction of architecturally distinct actin structures
  publication-title: J. Cell Biol.
– volume: 11
  start-page: 33
  year: 2006
  end-page: 46
  ident: bib35
  article-title: Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity
  publication-title: Dev. Cell
– volume: 103
  start-page: 2145
  year: 2012
  end-page: 2156
  ident: bib37
  article-title: Molecular analysis of Arp2/3 complex activation in cells
  publication-title: Biophys. J.
– volume: 6
  start-page: eaaz7651
  year: 2020
  ident: bib9
  article-title: Cryo-EM structure of NPF-bound human Arp2/3 complex and activation mechanism
  publication-title: Sci. Adv.
– volume: 68
  start-page: 37
  year: 2021
  end-page: 44
  ident: bib3
  article-title: The cell pushes back: the Arp2/3 complex is a key orchestrator of cellular responses to environmental forces
  publication-title: Curr. Opin. Cell Biol.
– volume: 7
  year: 2016
  ident: bib19
  article-title: Identification of an ATP-controlled allosteric switch that controls actin filament nucleation by Arp2/3 complex
  publication-title: Nat. Commun.
– volume: 119
  year: 2022
  ident: bib46
  article-title: Structure of Arp2/3 complex at a branched actin filament junction resolved by single-particle cryo-electron microscopy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 108
  start-page: E472
  year: 2011
  end-page: E479
  ident: bib15
  article-title: Arp2/3 complex is bound and activated by two WASP proteins
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 8
  start-page: 1361
  year: 1997
  end-page: 1375
  ident: bib28
  article-title: The yeast actin-related protein Arp2p is required for the internalization step of endocytosis
  publication-title: Mol. Biol. Cell
– volume: 7
  start-page: 519
  year: 1997
  end-page: 529
  ident: bib29
  article-title: The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches
  publication-title: Curr. Biol.
– volume: 9
  start-page: 1494
  year: 2020
  ident: bib72
  article-title: Bleach correction ImageJ plugin for compensating the photobleaching of time-lapse sequences
  publication-title: F1000Res.
– volume: 286
  start-page: 17039
  year: 2011
  end-page: 17046
  ident: bib45
  article-title: Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3 complex by coronin
  publication-title: J. Biol. Chem.
– volume: 98
  start-page: 14871
  year: 2001
  end-page: 14876
  ident: bib14
  article-title: Arp2/3 complex requires hydrolyzable ATP for nucleation of new actin filaments
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 283
  start-page: 23852
  year: 2008
  end-page: 23862
  ident: bib25
  article-title: Close packing of Listeria monocytogenes ActA, a natively unfolded protein, enhances F-actin assembly without dimerization
  publication-title: J. Biol. Chem.
– volume: 7
  year: 2012
  ident: bib56
  article-title: Actin filament attachments for sustained motility
  publication-title: PLoS One
– volume: 115
  start-page: 475
  year: 2003
  end-page: 487
  ident: bib30
  article-title: A pathway for association of receptors, adaptors, and actin during endocytic internalization
  publication-title: Cell
– volume: 14
  start-page: 7
  year: 2013
  end-page: 12
  ident: bib4
  article-title: New insights into the regulation and cellular functions of the ARP2/3 complex
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 92
  start-page: 54
  year: 2013
  end-page: 61
  ident: bib38
  article-title: Development of the Twin-Strep-tag® and its application for purification of recombinant proteins from cell culture supernatants
  publication-title: Protein Expr. Purif.
– volume: 119
  year: 2022
  ident: bib47
  article-title: Mechanism of actin filament branch formation by Arp2/3 complex revealed by a high-resolution cryo-EM structureof the branch junction
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 102
  start-page: 16644
  year: 2005
  end-page: 16649
  ident: bib11
  article-title: Actin-bound structures of Wiskott–Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 6
  start-page: e1
  year: 2008
  ident: bib36
  article-title: Distinct roles for Arp2/3 Regulators in actin assembly and endocytosis
  publication-title: PLoS Biol.
– volume: 197
  start-page: 643
  year: 2012
  end-page: 658
  ident: bib26
  article-title: Stoichiometry of Nck-dependent actin polymerization in living cells
  publication-title: J. Cell Biol.
– volume: 177
  start-page: 355
  year: 2007
  end-page: 367
  ident: bib66
  article-title: PtdIns(4,5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization
  publication-title: J. Cell Biol.
– volume: 9
  start-page: 2895
  year: 2018
  ident: bib61
  article-title: Abp1 promotes Arp2/3 complex-dependent actin nucleation and stabilizes branch junctions by antagonizing GMF
  publication-title: Nat. Commun.
– volume: 110
  start-page: 1430
  year: 2016
  end-page: 1443
  ident: bib24
  article-title: Actin-Regulator feedback interactions during endocytosis
  publication-title: Biophys. J.
– volume: 277
  start-page: 749
  year: 2010
  end-page: 760
  ident: bib39
  article-title: Measuring enzyme activities under standardized in vivo-like conditions for systems biology
  publication-title: FEBS J.
– volume: 8
  year: 2019
  ident: bib74
  article-title: Direct comparison of clathrin-mediated endocytosis in budding and fission yeast reveals conserved and evolvable features
  publication-title: Elife
– volume: 549
  start-page: 119
  year: 2018
  end-page: 123
  ident: bib75
  article-title: A simple and reproducible protocol of glass surface silanization for TIRF microscopy imaging
  publication-title: Anal. Biochem.
– volume: 153
  start-page: 627
  year: 2001
  end-page: 634
  ident: bib52
  article-title: Activation of the Arp2/3 complex by the actin filament binding protein Abp1p
  publication-title: J. Cell Biol.
– volume: 115
  start-page: E1409
  year: 2018
  end-page: E1418
  ident: bib10
  article-title: Identification of Wiskott-Aldrich syndrome protein (WASP) binding sites on the branched actin filament nucleator Arp2/3 complex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 97
  start-page: 221
  year: 1999
  end-page: 231
  ident: bib6
  article-title: The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly
  publication-title: Cell
– volume: 3
  start-page: 76
  year: 2001
  end-page: 82
  ident: bib7
  article-title: Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex
  publication-title: Nat. Cell Biol.
– volume: 222
  year: 2023
  ident: 10.1016/j.jbc.2024.105766_bib51
  article-title: Evolutionary tuning of barbed end competition allows simultaneous construction of architecturally distinct actin structures
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.202209105
– volume: 166
  start-page: 629
  year: 2004
  ident: 10.1016/j.jbc.2024.105766_bib68
  article-title: Yeast actin patches are networks of branched actin filaments
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200404159
– volume: 350
  start-page: 87
  year: 2002
  ident: 10.1016/j.jbc.2024.105766_bib71
  article-title: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(02)50957-5
– volume: 221
  year: 2022
  ident: 10.1016/j.jbc.2024.105766_bib49
  article-title: Clathrin adaptors mediate two sequential pathways of intra-Golgi recycling
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.202103199
– volume: 153
  start-page: 627
  year: 2001
  ident: 10.1016/j.jbc.2024.105766_bib52
  article-title: Activation of the Arp2/3 complex by the actin filament binding protein Abp1p
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.153.3.627
– volume: 120
  year: 2023
  ident: 10.1016/j.jbc.2024.105766_bib18
  article-title: Transition state of Arp2/3 complex activation by actin-bound dimeric nucleation-promoting factor
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2306165120
– volume: 7
  year: 2016
  ident: 10.1016/j.jbc.2024.105766_bib19
  article-title: Identification of an ATP-controlled allosteric switch that controls actin filament nucleation by Arp2/3 complex
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12226
– volume: 110
  start-page: 1430
  year: 2016
  ident: 10.1016/j.jbc.2024.105766_bib24
  article-title: Actin-Regulator feedback interactions during endocytosis
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2016.02.018
– volume: 199
  start-page: 315
  year: 2015
  ident: 10.1016/j.jbc.2024.105766_bib34
  article-title: Actin and endocytosis in budding yeast
  publication-title: Genetics
  doi: 10.1534/genetics.112.145540
– volume: 150
  start-page: 508
  year: 2012
  ident: 10.1016/j.jbc.2024.105766_bib33
  article-title: Plasma membrane Reshaping during endocytosis is revealed by time-resolved electron tomography
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.046
– volume: 8
  start-page: 1361
  year: 1997
  ident: 10.1016/j.jbc.2024.105766_bib28
  article-title: The yeast actin-related protein Arp2p is required for the internalization step of endocytosis
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.8.7.1361
– volume: 11
  year: 2016
  ident: 10.1016/j.jbc.2024.105766_bib42
  article-title: Elucidating key Motifs required for Arp2/3-dependent and independent actin nucleation by Las17/WASP
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0163177
– volume: 115
  start-page: E1409
  year: 2018
  ident: 10.1016/j.jbc.2024.105766_bib10
  article-title: Identification of Wiskott-Aldrich syndrome protein (WASP) binding sites on the branched actin filament nucleator Arp2/3 complex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1716622115
– volume: 113
  start-page: E3834
  year: 2016
  ident: 10.1016/j.jbc.2024.105766_bib20
  article-title: Role and structural mechanism of WASP-triggered conformational changes in branched actin filament nucleation by Arp2/3 complex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1517798113
– volume: 108
  start-page: E472
  year: 2011
  ident: 10.1016/j.jbc.2024.105766_bib15
  article-title: Arp2/3 complex is bound and activated by two WASP proteins
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1100236108
– volume: 6
  year: 2017
  ident: 10.1016/j.jbc.2024.105766_bib65
  article-title: Switch-like Arp2/3 activation upon WASP and WIP recruitment to an apparent threshold level by multivalent linker proteins in vivo
  publication-title: Elife
  doi: 10.7554/eLife.29140
– volume: 289
  start-page: 28856
  year: 2014
  ident: 10.1016/j.jbc.2024.105766_bib59
  article-title: Interactions with actin monomers, actin filaments, and Arp2/3 complex define the roles of WASP family proteins and cortactin in coordinately regulating branched actin networks
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.587527
– volume: 9
  start-page: 1494
  year: 2020
  ident: 10.1016/j.jbc.2024.105766_bib72
  article-title: Bleach correction ImageJ plugin for compensating the photobleaching of time-lapse sequences
  publication-title: F1000Res.
  doi: 10.12688/f1000research.27171.1
– volume: 16
  start-page: 372
  year: 2005
  ident: 10.1016/j.jbc.2024.105766_bib69
  article-title: Actin and Septin Ultrastructures at the budding yeast cell cortex
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-08-0734
– volume: 5
  start-page: 3308
  year: 2014
  ident: 10.1016/j.jbc.2024.105766_bib17
  article-title: Structural analysis of the transitional state of Arp2/3 complex activation by two actin-bound WCAs
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4308
– volume: 12
  start-page: 5329
  year: 2021
  ident: 10.1016/j.jbc.2024.105766_bib54
  article-title: A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25682-5
– volume: 115
  start-page: E8642
  year: 2018
  ident: 10.1016/j.jbc.2024.105766_bib21
  article-title: Conformational changes in Arp2/3 complex induced by ATP, WASp-VCA and actin filaments
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1717594115
– volume: 94
  start-page: 4890
  year: 2008
  ident: 10.1016/j.jbc.2024.105766_bib23
  article-title: Arp2/3 controls the motile behavior of N-WASP-functionalized GUVs and modulates N-WASP surface distribution by mediating transient links with actin filaments
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.118653
– volume: 197
  start-page: 643
  year: 2012
  ident: 10.1016/j.jbc.2024.105766_bib26
  article-title: Stoichiometry of Nck-dependent actin polymerization in living cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201111113
– volume: 8
  year: 2019
  ident: 10.1016/j.jbc.2024.105766_bib74
  article-title: Direct comparison of clathrin-mediated endocytosis in budding and fission yeast reveals conserved and evolvable features
  publication-title: Elife
  doi: 10.7554/eLife.50749
– volume: 119
  year: 2022
  ident: 10.1016/j.jbc.2024.105766_bib47
  article-title: Mechanism of actin filament branch formation by Arp2/3 complex revealed by a high-resolution cryo-EM structureof the branch junction
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2206722119
– volume: 4
  year: 2015
  ident: 10.1016/j.jbc.2024.105766_bib32
  article-title: Visualizing the functional architecture of the endocytic machinery
  publication-title: Elife
  doi: 10.7554/eLife.04535
– volume: 11
  start-page: 33
  year: 2006
  ident: 10.1016/j.jbc.2024.105766_bib35
  article-title: Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2006.05.008
– volume: 6
  start-page: e1
  year: 2008
  ident: 10.1016/j.jbc.2024.105766_bib36
  article-title: Distinct roles for Arp2/3 Regulators in actin assembly and endocytosis
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060001
– volume: 38
  start-page: 15212
  year: 1999
  ident: 10.1016/j.jbc.2024.105766_bib5
  article-title: Influence of the C terminus of Wiskott-Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization
  publication-title: Biochemistry
  doi: 10.1021/bi991843+
– volume: 32
  start-page: 43
  year: 2015
  ident: 10.1016/j.jbc.2024.105766_bib53
  article-title: Profilin regulates F-actin network homeostasis by favoring formin over Arp2/3 complex
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.10.027
– volume: 3
  year: 2008
  ident: 10.1016/j.jbc.2024.105766_bib58
  article-title: Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002736
– volume: 32
  start-page: 975
  year: 2022
  ident: 10.1016/j.jbc.2024.105766_bib55
  article-title: Unconcerted conformational changes in Arp2/3 complex integrate multiple activating signals to assemble functional actin networks
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2022.01.004
– volume: 7
  year: 2012
  ident: 10.1016/j.jbc.2024.105766_bib56
  article-title: Actin filament attachments for sustained motility in vitro are maintained by filament bundling
  publication-title: PLoS One
– volume: 6
  start-page: eaaz7651
  year: 2020
  ident: 10.1016/j.jbc.2024.105766_bib9
  article-title: Cryo-EM structure of NPF-bound human Arp2/3 complex and activation mechanism
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz7651
– volume: 221
  year: 2022
  ident: 10.1016/j.jbc.2024.105766_bib50
  article-title: Eps15/Pan1p is a master regulator of the late stages of the endocytic pathway
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.202112138
– volume: 23
  start-page: 1990
  year: 2013
  ident: 10.1016/j.jbc.2024.105766_bib64
  article-title: Dip1 defines a class of Arp2/3 complex activators that function without preformed actin filaments
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.08.029
– volume: 3
  start-page: 687
  year: 2001
  ident: 10.1016/j.jbc.2024.105766_bib60
  article-title: Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35083087
– volume: 98
  start-page: 14871
  year: 2001
  ident: 10.1016/j.jbc.2024.105766_bib14
  article-title: Arp2/3 complex requires hydrolyzable ATP for nucleation of new actin filaments
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.261419298
– volume: 32
  start-page: 421
  year: 2022
  ident: 10.1016/j.jbc.2024.105766_bib2
  article-title: Nucleation, stabilization, and disassembly of branched actin networks
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2021.10.006
– volume: 108
  start-page: E463
  year: 2011
  ident: 10.1016/j.jbc.2024.105766_bib16
  article-title: Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1100125108
– volume: 37
  start-page: 102
  year: 2018
  ident: 10.1016/j.jbc.2024.105766_bib27
  article-title: WH2 and proline-rich domains of WASP-family proteins collaborate to accelerate actin filament elongation
  publication-title: EMBO J.
  doi: 10.15252/embj.201797039
– volume: 13
  start-page: 1000
  year: 2003
  ident: 10.1016/j.jbc.2024.105766_bib41
  article-title: Negative regulation of yeast WASp by two SH3 domain-containing proteins
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(03)00383-X
– volume: 185
  start-page: 1097
  year: 2009
  ident: 10.1016/j.jbc.2024.105766_bib62
  article-title: Regulators of yeast endocytosis identified by systematic quantitative analysis
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.200811116
– volume: 36
  start-page: 12600
  year: 1997
  ident: 10.1016/j.jbc.2024.105766_bib57
  article-title: Opposite effects of electrostatics and Steric exclusion on bundle formation by F-actin and other filamentous Polyelectrolytes
  publication-title: Biochemistry
  doi: 10.1021/bi9711386
– volume: 277
  start-page: 749
  year: 2010
  ident: 10.1016/j.jbc.2024.105766_bib39
  article-title: Measuring enzyme activities under standardized in vivo-like conditions for systems biology
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2009.07524.x
– volume: 10
  start-page: 1537
  year: 2018
  ident: 10.1016/j.jbc.2024.105766_bib70
  article-title: From solution to surface to filament: actin flux into branched networks
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-018-0469-5
– volume: 103
  start-page: 2145
  year: 2012
  ident: 10.1016/j.jbc.2024.105766_bib37
  article-title: Molecular analysis of Arp2/3 complex activation in cells
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2012.10.009
– volume: 37
  year: 2018
  ident: 10.1016/j.jbc.2024.105766_bib63
  article-title: Structure of the nucleation-promoting factor SPIN90 bound to the actin filament nucleator Arp2/3 complex
  publication-title: EMBO J.
  doi: 10.15252/embj.2018100005
– volume: 102
  start-page: 16644
  year: 2005
  ident: 10.1016/j.jbc.2024.105766_bib11
  article-title: Actin-bound structures of Wiskott–Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0507021102
– volume: 109
  start-page: E2587
  year: 2012
  ident: 10.1016/j.jbc.2024.105766_bib31
  article-title: Ultrastructural dynamics of proteins involved in endocytic budding
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1202789109
– volume: 115
  start-page: 475
  year: 2003
  ident: 10.1016/j.jbc.2024.105766_bib30
  article-title: A pathway for association of receptors, adaptors, and actin during endocytic internalization
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00883-3
– volume: 20
  start-page: 701
  year: 2013
  ident: 10.1016/j.jbc.2024.105766_bib48
  article-title: Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2013.03.019
– volume: 130
  start-page: 2235
  year: 2017
  ident: 10.1016/j.jbc.2024.105766_bib8
  article-title: Cellular functions of WASP family proteins at a glance
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.199570
– volume: 32
  start-page: 426
  year: 2008
  ident: 10.1016/j.jbc.2024.105766_bib44
  article-title: Hierarchical regulation of WASP/WAVE proteins
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.10.012
– volume: 7
  start-page: 519
  year: 1997
  ident: 10.1016/j.jbc.2024.105766_bib29
  article-title: The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(06)00223-5
– volume: 7
  start-page: 713
  year: 2006
  ident: 10.1016/j.jbc.2024.105766_bib1
  article-title: The ARP2/3 complex: an actin nucleator comes of age
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2026
– volume: 133
  start-page: 841
  year: 2008
  ident: 10.1016/j.jbc.2024.105766_bib22
  article-title: Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex
  publication-title: Cell
  doi: 10.1016/j.cell.2008.04.011
– volume: 115
  start-page: 80
  year: 2017
  ident: 10.1016/j.jbc.2024.105766_bib73
  article-title: TrackMate: an open and extensible platform for single-particle tracking
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.09.016
– volume: 9
  start-page: 2895
  year: 2018
  ident: 10.1016/j.jbc.2024.105766_bib61
  article-title: Abp1 promotes Arp2/3 complex-dependent actin nucleation and stabilizes branch junctions by antagonizing GMF
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05260-y
– volume: 549
  start-page: 119
  year: 2018
  ident: 10.1016/j.jbc.2024.105766_bib75
  article-title: A simple and reproducible protocol of glass surface silanization for TIRF microscopy imaging
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2018.03.020
– volume: 119
  year: 2022
  ident: 10.1016/j.jbc.2024.105766_bib40
  article-title: Single-molecule analysis of actin filament debranching by cofilin and GMF
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2115129119
– volume: 286
  start-page: 17039
  year: 2011
  ident: 10.1016/j.jbc.2024.105766_bib45
  article-title: Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3 complex by coronin
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.219964
– volume: 168
  start-page: 315
  year: 2005
  ident: 10.1016/j.jbc.2024.105766_bib13
  article-title: Effects of Arp2 and Arp3 nucleotide-binding pocket mutations on Arp2/3 complex function
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.200408177
– volume: 23
  start-page: 196
  year: 2013
  ident: 10.1016/j.jbc.2024.105766_bib43
  article-title: A Novel actin-binding Motif in Las17/WASP nucleates actin filaments independently of Arp2/3
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.12.024
– volume: 14
  start-page: 7
  year: 2013
  ident: 10.1016/j.jbc.2024.105766_bib4
  article-title: New insights into the regulation and cellular functions of the ARP2/3 complex
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3492
– volume: 177
  start-page: 355
  year: 2007
  ident: 10.1016/j.jbc.2024.105766_bib66
  article-title: PtdIns(4,5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200611011
– volume: 283
  start-page: 23852
  year: 2008
  ident: 10.1016/j.jbc.2024.105766_bib25
  article-title: Close packing of Listeria monocytogenes ActA, a natively unfolded protein, enhances F-actin assembly without dimerization
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M803448200
– volume: 3
  start-page: 76
  year: 2001
  ident: 10.1016/j.jbc.2024.105766_bib7
  article-title: Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35050590
– volume: 68
  start-page: 37
  year: 2021
  ident: 10.1016/j.jbc.2024.105766_bib3
  article-title: The cell pushes back: the Arp2/3 complex is a key orchestrator of cellular responses to environmental forces
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2020.08.012
– volume: 97
  start-page: 221
  year: 1999
  ident: 10.1016/j.jbc.2024.105766_bib6
  article-title: The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80732-1
– volume: 92
  start-page: 54
  year: 2013
  ident: 10.1016/j.jbc.2024.105766_bib38
  article-title: Development of the Twin-Strep-tag® and its application for purification of recombinant proteins from cell culture supernatants
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2013.08.021
– volume: 597
  start-page: 672
  year: 2023
  ident: 10.1016/j.jbc.2024.105766_bib67
  article-title: The proline-rich domain of fission yeast WASp (Wsp1p) interacts with actin filaments and inhibits actin polymerization
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.14571
– volume: 20
  start-page: 423
  year: 2010
  ident: 10.1016/j.jbc.2024.105766_bib12
  article-title: A “primer”-based mechanism underlies branched actin filament network formation and motility
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2009.12.056
– volume: 119
  year: 2022
  ident: 10.1016/j.jbc.2024.105766_bib46
  article-title: Structure of Arp2/3 complex at a branched actin filament junction resolved by single-particle cryo-electron microscopy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2202723119
SSID ssj0000491
Score 2.4501884
Snippet Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 105766
SubjectTerms actin
Actin Cytoskeleton - metabolism
Actin-Related Protein 2-3 Complex - genetics
Actin-Related Protein 2-3 Complex - metabolism
Actins - metabolism
Animals
Arp2/3 complex
Binding Sites
endocytosis
Las17
Mammals - metabolism
nucleation
Protein Binding
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
WASP
Wiskott-Aldrich Syndrome Protein - metabolism
Title Both Las17-binding sites on Arp2/3 complex are important for branching nucleation and assembly of functional endocytic actin networks in S. cerevisiae
URI https://dx.doi.org/10.1016/j.jbc.2024.105766
https://www.ncbi.nlm.nih.gov/pubmed/38367669
https://www.proquest.com/docview/2928250608
Volume 300
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIkEvCFoe4VENEuVAZON4N659DBGoggBCbaXeLO_DkiNiR00ikfwRrvwNrvwyZne9dkoJAi6WZef9fdmZ2flmhpBn6LLGijLmhbniHosl89AqZh5PYhnHNOKJUbu__xAdn7G354PzTuf7hmppueC-WP-2ruR_UMVriKuukv0HZJsXxQt4jvjiERHG419h_Ap_5t44m6MJ4IUtT9HJYJMBGF7MdNNTakXj6ktPS7yKqXG3dT8mrdLUQzXMDlSpuxpbKpjmrfO5mvLPJvmuDV-9X6hKWYmV6fCKl8peaSXkRlF74h-OwsNhIIxueF5klyRGbQGacX1t5yfbm8QNnGt2pfWwIrX2PuLXXVvDWMhVr_G4x6vSTq-qBf9tXmtcLK3OyBs7e2zKWgq7Eg5lNt3c4whZK_LylV2X0VPURQfnmws3DYINhtKNZVgPL7bDXK5YCLtZMfEnXDewDJl_9bEI8mxqKIPhe4Q3k9ZYNhJGd-sauR5ihKJtwrtPbaN6DLz6Lolu5IS_vN8uueFeYZtHtC3iMZ7P6W1yq8YNhpZ_d0hHlXtkf1hmi2q6gudgRMQmO7NHbo4cnvvkq6YnXKInGHpCVYKm50sKNTkByQkNOQHJCQ05oSUnIDnBkROqHFpyQkNOMOQER07A8xP_x7eWmHfJ2ZvXp6Njr54D4gnK4oV3FCShwLBCYGgrs2QgFeN9KllfDSImlaSRojnNBPpi4UBQ3W82zxOuBQG5Ehjj3CM7ZVWqBwSOcsmFwJAhjxWG6gFnYZ7FaOXCnDMMNrrkhcMindl2L6nTQU5SxDDVGKYWwy5hDq209letH5oi2f70tKcO2RQR0Qm6rFTVcp6Gia4kD6Ig7pL7FvLmUzi2PNx65xHZbf87j8nO4mKpnqDHvOAHZqfpwDD0J2Z1xIU
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Both+Las17-binding+sites+on+Arp2%2F3+complex+are+important+for+branching+nucleation+and+assembly+of+functional+endocytic+actin+networks+in+S.%C2%A0cerevisiae&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Narvaez-Ortiz%2C+Heidy+Y&rft.au=Lynch%2C+Michael+J&rft.au=Liu%2C+Su-Ling&rft.au=Fries%2C+Adam&rft.date=2024-03-01&rft.eissn=1083-351X&rft.volume=300&rft.issue=3&rft.spage=105766&rft_id=info:doi/10.1016%2Fj.jbc.2024.105766&rft_id=info%3Apmid%2F38367669&rft.externalDocID=38367669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon