Endogenous hydrogen sulfide homeostasis is responsible for the difference in osmotic stress tolerance in two cultivars of Vigna radiate
Hydrogen sulfide (H2S) has been proved to possess many biological functions and it is an essential component of plant osmotic signaling. However, how endogenous H2S homeostasis is maintained and how this function determines mung bean osmotic tolerance is less explored. To fully answer this question,...
Saved in:
Published in | Environmental and experimental botany Vol. 204; p. 105075 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen sulfide (H2S) has been proved to possess many biological functions and it is an essential component of plant osmotic signaling. However, how endogenous H2S homeostasis is maintained and how this function determines mung bean osmotic tolerance is less explored. To fully answer this question, two cultivars with different osmotic stress tolerance (namely MM015 and MM047) were used in this study. Under osmotic stress, osmosis-tolerant cultivar MM047 had higher H2S-producing capacity, which was impaired in osmosis-sensitive cultivar MM015. In MM015, alleviation of the osmotic stress-induced wilting phenotype and destruction of redox homeostasis were achieved by the application of NaHS (a H2S donor) at both low (10 μM) and high (200 μM) concentrations. Moreover, NaHS treatment mitigated osmotic stress-induced reduction on photosynthetic capacity in MM015, as evaluated by net photosynthetic rate and Rubisco carboxylation activity, etc. However, in MM047, a similar protective role against osmotic stress-triggered damage was observed only when NaHS was applied at low concentration, whereas aggravated at high dose. Importantly, we identified three genes encoding L-cysteine desulfhydrase (VrLCDs, EC 4.4.1.1) from mung bean genome, all of which possess H2S-producing enzymatic activities. The molecular function of VrLCD2, a major basal and inducible VrLCD form was subsequently investigated through A.rhizogenes-induced hairy roots system. Overexpression of this gene mitigated osmotic stress-triggered oxidative damage in osmosis-sensitive cultivar, which was exacerbated osmosis-sensitive cultivar. Taken together, our results demonstrated VrLCD-modulated endogenous H2S homeostasis regulates mung bean osmotic tolerance through maintaining redox homeostasis and photosynthetic capacity. These results further provide valuable resource for molecular breeding and genetic development of stress-resilient mung bean crop through the modulation of endogenous H2S homeostasis.
•Mung bean osmotic stress tolerance was associated with the regulation of endogenous H2S homeostasis.•The maintenance of H2S homeostasis mitigated the osmotic stress-induced destruction of redox homeostasis and photosynthetic capacity in mung bean.•Osmotic stress tolerance was enhanced by overexpression of VrLCD2 in mung bean osmosis-sensitive cultivar, whereas exacerbated in osmosis-tolerant cultivar. |
---|---|
AbstractList | Hydrogen sulfide (H2S) has been proved to possess many biological functions and it is an essential component of plant osmotic signaling. However, how endogenous H2S homeostasis is maintained and how this function determines mung bean osmotic tolerance is less explored. To fully answer this question, two cultivars with different osmotic stress tolerance (namely MM015 and MM047) were used in this study. Under osmotic stress, osmosis-tolerant cultivar MM047 had higher H2S-producing capacity, which was impaired in osmosis-sensitive cultivar MM015. In MM015, alleviation of the osmotic stress-induced wilting phenotype and destruction of redox homeostasis were achieved by the application of NaHS (a H2S donor) at both low (10 μM) and high (200 μM) concentrations. Moreover, NaHS treatment mitigated osmotic stress-induced reduction on photosynthetic capacity in MM015, as evaluated by net photosynthetic rate and Rubisco carboxylation activity, etc. However, in MM047, a similar protective role against osmotic stress-triggered damage was observed only when NaHS was applied at low concentration, whereas aggravated at high dose. Importantly, we identified three genes encoding L-cysteine desulfhydrase (VrLCDs, EC 4.4.1.1) from mung bean genome, all of which possess H2S-producing enzymatic activities. The molecular function of VrLCD2, a major basal and inducible VrLCD form was subsequently investigated through A.rhizogenes-induced hairy roots system. Overexpression of this gene mitigated osmotic stress-triggered oxidative damage in osmosis-sensitive cultivar, which was exacerbated osmosis-sensitive cultivar. Taken together, our results demonstrated VrLCD-modulated endogenous H2S homeostasis regulates mung bean osmotic tolerance through maintaining redox homeostasis and photosynthetic capacity. These results further provide valuable resource for molecular breeding and genetic development of stress-resilient mung bean crop through the modulation of endogenous H2S homeostasis.
•Mung bean osmotic stress tolerance was associated with the regulation of endogenous H2S homeostasis.•The maintenance of H2S homeostasis mitigated the osmotic stress-induced destruction of redox homeostasis and photosynthetic capacity in mung bean.•Osmotic stress tolerance was enhanced by overexpression of VrLCD2 in mung bean osmosis-sensitive cultivar, whereas exacerbated in osmosis-tolerant cultivar. Hydrogen sulfide (H₂S) has been proved to possess many biological functions and it is an essential component of plant osmotic signaling. However, how endogenous H₂S homeostasis is maintained and how this function determines mung bean osmotic tolerance is less explored. To fully answer this question, two cultivars with different osmotic stress tolerance (namely MM015 and MM047) were used in this study. Under osmotic stress, osmosis-tolerant cultivar MM047 had higher H₂S-producing capacity, which was impaired in osmosis-sensitive cultivar MM015. In MM015, alleviation of the osmotic stress-induced wilting phenotype and destruction of redox homeostasis were achieved by the application of NaHS (a H₂S donor) at both low (10 μM) and high (200 μM) concentrations. Moreover, NaHS treatment mitigated osmotic stress-induced reduction on photosynthetic capacity in MM015, as evaluated by net photosynthetic rate and Rubisco carboxylation activity, etc. However, in MM047, a similar protective role against osmotic stress-triggered damage was observed only when NaHS was applied at low concentration, whereas aggravated at high dose. Importantly, we identified three genes encoding L-cysteine desulfhydrase (VrLCDs, EC 4.4.1.1) from mung bean genome, all of which possess H₂S-producing enzymatic activities. The molecular function of VrLCD2, a major basal and inducible VrLCD form was subsequently investigated through A.rhizogenes-induced hairy roots system. Overexpression of this gene mitigated osmotic stress-triggered oxidative damage in osmosis-sensitive cultivar, which was exacerbated osmosis-sensitive cultivar. Taken together, our results demonstrated VrLCD-modulated endogenous H₂S homeostasis regulates mung bean osmotic tolerance through maintaining redox homeostasis and photosynthetic capacity. These results further provide valuable resource for molecular breeding and genetic development of stress-resilient mung bean crop through the modulation of endogenous H₂S homeostasis. |
ArticleNumber | 105075 |
Author | Zhang, Hejia Zhang, Xiangyi Yang, Yufan Ge, Zhenglin Xie, Yanjie Hu, Huixin Su, Hongfei Yuan, Xingxing Wu, Mingzhu Cao, Jiaqi Geng, Lingxi |
Author_xml | – sequence: 1 givenname: Zhenglin surname: Ge fullname: Ge, Zhenglin organization: Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China – sequence: 2 givenname: Jiaqi surname: Cao fullname: Cao, Jiaqi organization: Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China – sequence: 3 givenname: Hejia surname: Zhang fullname: Zhang, Hejia organization: Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China – sequence: 4 givenname: Huixin surname: Hu fullname: Hu, Huixin organization: Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China – sequence: 5 givenname: Lingxi surname: Geng fullname: Geng, Lingxi organization: Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China – sequence: 6 givenname: Yufan surname: Yang fullname: Yang, Yufan organization: Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China – sequence: 7 givenname: Hongfei surname: Su fullname: Su, Hongfei organization: Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China – sequence: 8 givenname: Xiangyi surname: Zhang fullname: Zhang, Xiangyi organization: Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China – sequence: 9 givenname: Mingzhu surname: Wu fullname: Wu, Mingzhu organization: Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China – sequence: 10 givenname: Xingxing surname: Yuan fullname: Yuan, Xingxing email: yxx@jaas.ac.cn organization: Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China – sequence: 11 givenname: Yanjie surname: Xie fullname: Xie, Yanjie email: yjxie@njau.edu.cn organization: Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China |
BookMark | eNqNkM1OIzEQhC3ESgSWZ8BHLpO1PT-eHDggxP5ISFwWrpbH7iEdTezgdsLyBPva6yiIAxdWaqlb1VV1-E7ZcYgBGLuQYi6F7L6t5hB28GczxDxXQqmitkK3R2wme11Xuhb6mM2EWPRV32h1wk6JVkIIXetuxv7eBh-fIMQt8eWrT_ub03Ya0QNfxjVEypaQeJkEtImBcJiAjzHxvATucRwhQXDAMfBI65jRccrFSzzHCZJ9--WXyN12yriziXgc-SM-BcuT9WgzfGVfRjsRnL_tM_bw_fb3zc_q7v7Hr5vru8rVTZ-rzqlOSblw1vpBik44LWxRBteMnZQCfAeLTrdWL1TdatH2Q--khuK0tWqb-oxdHno3KT5vgbJZIzmYJhugMDBKq7pgbXRfrPpgdSkSJRjNJuHaplcjhdmjNyvzjt7s0ZsD-pK8-pB0mG3GGHKyOP1H_vqQh0Jih5AMOdwz9pjAZeMjftrxDzXNqrM |
CitedBy_id | crossref_primary_10_1016_j_scienta_2024_113346 |
Cites_doi | 10.1371/journal.pone.0243537 10.5958/0975-6906.2018.00013.5 10.1007/s11120-020-00708-z 10.1111/pce.12425 10.3389/fpls.2020.01121 10.1007/s11120-013-9889-z 10.1016/j.foodchem.2017.02.127 10.1016/j.jgg.2022.02.019 10.3389/fpls.2016.00068 10.1111/nph.14920 10.1111/ppl.13012 10.1111/ppl.13633 10.1016/S0168-9452(99)00197-1 10.1105/tpc.20.00766 10.1016/j.plaphy.2020.07.038 10.1186/s12870-022-03490-3 10.1016/j.gene.2022.146658 10.1371/journal.pone.0163082 10.1016/j.gene.2018.02.005 10.1007/s10265-022-01391-y 10.1111/jipb.13022 10.1016/j.plaphy.2013.07.021 10.1111/ppl.13432 10.1186/s12870-018-1426-y 10.3906/biy-1801-64 10.3389/fpls.2020.00108 10.1007/s11103-018-0751-8 10.1146/annurev.arplant.53.091401.143329 10.1016/j.plaphy.2020.09.017 10.1104/pp.15.00009 10.1016/j.jplph.2013.06.016 10.1104/pp.109.147975 10.1111/pbi.13729 10.1007/s10265-021-01285-5 10.1104/pp.93.4.1337 10.1016/j.plaphy.2021.12.002 10.1186/s12870-021-03184-2 10.1016/0076-6879(87)48036-1 10.1007/s11427-020-1683-x 10.1105/tpc.19.00826 10.1371/journal.pone.0066056 10.3389/fmicb.2020.01518 10.1186/s12870-020-02687-8 10.1016/0003-2697(76)90488-7 10.1016/j.jplph.2022.153617 10.1016/j.plaphy.2020.08.033 10.3389/fpls.2015.01055 10.1038/s41598-017-01046-2 10.1016/j.bbrc.2020.10.074 10.1371/journal.pgen.1007662 10.1016/j.molp.2021.03.007 10.1590/S1517-83822013000400045 10.1038/nrg3901 10.3389/fpls.2020.00481 10.1016/j.plaphy.2018.04.012 10.1016/S0168-9452(00)00273-9 10.1111/ppl.13374 10.1007/s10265-015-0773-0 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.envexpbot.2022.105075 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Environmental Sciences |
EISSN | 1873-7307 |
ExternalDocumentID | 10_1016_j_envexpbot_2022_105075 S0098847222002970 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABPPZ ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SEN SES SEW SPCBC SSA SSZ T5K TN5 TWZ WH7 WUQ XOL ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION GROUPED_DOAJ SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c348t-6c262119caadb1060c70a621bc4f6110ed6e9675a792357058b8c17e060a32543 |
IEDL.DBID | .~1 |
ISSN | 0098-8472 |
IngestDate | Fri Jul 11 11:29:28 EDT 2025 Tue Jul 01 01:41:17 EDT 2025 Thu Apr 24 23:02:41 EDT 2025 Fri Feb 23 02:36:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | H2S VrLCD Rubisco Hairy roots Redox homeostasis Osmotic stress |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-6c262119caadb1060c70a621bc4f6110ed6e9675a792357058b8c17e060a32543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2723101478 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2723101478 crossref_primary_10_1016_j_envexpbot_2022_105075 crossref_citationtrail_10_1016_j_envexpbot_2022_105075 elsevier_sciencedirect_doi_10_1016_j_envexpbot_2022_105075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationTitle | Environmental and experimental botany |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bangar, Chaudhury, Umdale, Kumari, Tiwari, Kumar, Gaikwad, Bhat (bib4) 2018; 78 Shen, Zhang, Zhou, Zhou, Cui, Gotor, Romero, Fu, Yang, Foyer, Pan, Shen, Xie (bib45) 2020; 32 Zhao, Zhang, Liu, Zhou, Ma, Wang (bib68) 2021 Carmo-Silva, Scales, Madgwick, Parry (bib7) 2015; 38 Alvarez, Calo, Romero, García, Gotor (bib2) 2010; 152 Uzilday, Turkan, Ozgur, Sekmen (bib54) 2014; 171 Aroca, Serna, Gotor, Romero (bib3) 2015; 168 Chen, Liu, Wang, Wang, Cheng (bib8) 2016; 129 Hasan, Bhuiyan, Hoque, Jewel, Ashrafuzzaman, Prodhan (bib16) 2022; 35 Hussain, Li, Feng, Asrar, Gul, Liu (bib19) 2021; 134 Kimura (bib27) 2021 Yin, Zhang, Wu, Chen, Liu, Xing (bib61) 2021; 21 Hou, Wang, Gong, Zhu, Ye, Lu, Liu (bib17) 2022 Sharp, Hsiao, Silk (bib43) 1990; 93 Shi, Ye, Chan (bib46) 2013; 71 Sunil, Talla, Aswani, Raghavendra (bib49) 2013; 117 Shen, Xing, Yuan, Liu, Jin, Zhang, Pei (bib44) 2013; 8 Liu, Liu, Zhou, Wang, Wu, Yang (bib35) 2022; 270 Khan, Siddiqui, AlSolami, Alamri, Hu, Ali, Al-Amri, Alsubaie, Al-Munqedhi, Al-Ghamdi (bib26) 2020; 156 Madhava Rao, Sresty (bib39) 2000; 157 Zhu (bib73) 2002; 53 Ma, Ding, Wang, Qin, Han, Hou, Lu, Xie, Guo (bib38) 2016; 11 Turan, Ekinci, Kul, Boynueyri, Yildirim (bib53) 2022; 135 Mostofa, Saegusa, Fujita, Tran (bib41) 2015; 6 Nadarajah (bib42) 2020 Ahmad, Zahir, Nazli, Akram, Arshad, Khalid (bib1) 2013; 44 Jia, Wang, Shi, Guo, Ma, Ren, Wei, Liu, Li (bib21) 2020; 155 Zhang, Su, Cheng, Wang, Mei, Hu, Shen, Zhang (bib66) 2018; 18 Zhou, Zhang, Zhou, Zhao, Duan, Wang, Yuan, Xie (bib72) 2022 Dinakar, Vishwakarma, Raghavendra, Padmasree (bib10) 2016; 7 Liu, Xue, Lin, Yan, Chen, Wu, Zhang, Chen, Yuan (bib32) 2022; 836 de Bont, Mu, Wei, Han (bib6) 2022; 49 Zhang, Luo, Wang, Xu (bib65) 2017; 7 Singh, Suhel, Husain, Prasad, Singh (bib47) 2022 Zhou, Zhou, Zhang, Guan, Su, Yuan, Xie (bib70) 2021 Liu, Zhang, You, Li, Long, Wen, Liu, Liu, Guo, Xu (bib31) 2022; 170 Feng, Song, Yang, Amee, Chen, Xie (bib13) 2021; 172 Jing, Yao, Ma, Zhang, Sun, Xiang, Hou, Li, Zhao, Li, Zhou, Chen (bib22) 2020 Thakur, Anand (bib52) 2021; 172 Wang, Zhu, Li, Wang, Wu (bib57) 2018; 651 Wang, Mu, Chen, Han (bib58) 2022; 22 Iqbal, Umar, Khan, Corpas (bib20) 2021 Zhou, Chen, Zhai, Zhang, Zhang, Yuan, Xie (bib69) 2020; 155 Kaya, Ashraf, Alyemeni, Ahmad (bib24) 2020; 168 Liu, Wei, Feng, Zhang, Hu, Tie, Liao (bib36) 2022 Kaushal (bib23) 2020; 11 Chung, Cho, So, Kang, Chung, Lee (bib9) 2013; 8 Tang, An, Cao, Xu, Wang, Zhang, Liu, Sun (bib50) 2020; 11 Gong, Xiong, Shi, Yang, Herrera-Estrella, Xu, Chao, Li, Wang, Qin, Li, Ding, Shi, Wang, Yang, Guo, Zhu (bib15) 2020; 63 Wada, Miyake, Makino, Suzuki (bib56) 2020; 11 Lichtenthaler (bib30) 1987 Elsawy, Mekawy, Elhity, Abdel-Dayem, Abdelaziz, Assaha, Ueda, Saneoka (bib11) 2018; 127 Elstner, Heupel (bib12) 1976; 70 Yang, Guo (bib60) 2018; 217 Mickelbart, Hasegawa, Bailey-Serres (bib40) 2015; 16 Zhang, Zhou, Zhou, Zhao, Gotor, Romero, Shen, Ge, Zhang, Shen, Yuan, Xie (bib63) 2021; 63 Yu, Meng, Liu, Li, Zhang, Wang, Jiang, Pang, Zhao, Qi, Zhang, Wang, Liu, Xu (bib62) 2018; 97 Ghani, Barril, Bedgood, Prenzler (bib14) 2017; 230 Zhou, Zhang, Shen, Zhou, Zhao, Gotor, Romero, Fu, Li, Yang, Shen, Yuan, Xie (bib71) 2021; 14 Zhao, Li, Wang, Wang, Xiao, Liu, Quan, Zhang, Huang, Zhu, Zhang (bib67) 2022; 20 Kaya, Murillo-Amador, Ashraf (bib25) 2020 Kolomeichuk, Efimova, Zlobin, Kreslavski, Murgan, Kovtun, Khripach, Kuznetsov, Allakhverdiev (bib28) 2020; 146 Srivastava, Chowdhary, Verma, Mehrotra, Mishra (bib48) 2022; 174 Bangar, Chaudhury, Tiwari, Kumar, Kumari, Bhat (bib5) 2019; 43 Laureano-Marin, Aroca, Perez-Perez, Yruela, Jurado-Flores, Moreno, Crespo, Romero, Gotor (bib29) 2020; 32 Liu, Lin, Guan, Gaughan, Lin (bib33) 2014; 9 Xu, Chu, Chen, Li, Wu, Jin, Wang, Huang (bib59) 2018; 14 Liu, Zhou, Li, Liu, Wang, Wu, Yang, Wang (bib34) 2021; 534 Luo, Tang, Yu, Liao, Xie, Lv, Feng, Dawuda (bib37) 2020; 20 Zhang, He, Qin, Jin, Wang, Ren, Cao, Zhang (bib64) 2020; 15 Hussain, Koyro, Zhang, Liu, Gul, Liu (bib18) 2020; 11 Tavakol, Jákli, Cakmak, Dittert, Senbayram (bib51) 2021 Velikova, Yordanov, Edreva (bib55) 2000; 151 Hasan (10.1016/j.envexpbot.2022.105075_bib16) 2022; 35 Chung (10.1016/j.envexpbot.2022.105075_bib9) 2013; 8 Feng (10.1016/j.envexpbot.2022.105075_bib13) 2021; 172 Hussain (10.1016/j.envexpbot.2022.105075_bib19) 2021; 134 Alvarez (10.1016/j.envexpbot.2022.105075_bib2) 2010; 152 Liu (10.1016/j.envexpbot.2022.105075_bib32) 2022; 836 Ghani (10.1016/j.envexpbot.2022.105075_bib14) 2017; 230 Liu (10.1016/j.envexpbot.2022.105075_bib35) 2022; 270 Yu (10.1016/j.envexpbot.2022.105075_bib62) 2018; 97 Nadarajah (10.1016/j.envexpbot.2022.105075_bib42) 2020 Elsawy (10.1016/j.envexpbot.2022.105075_bib11) 2018; 127 Hussain (10.1016/j.envexpbot.2022.105075_bib18) 2020; 11 Zhou (10.1016/j.envexpbot.2022.105075_bib69) 2020; 155 Laureano-Marin (10.1016/j.envexpbot.2022.105075_bib29) 2020; 32 Mickelbart (10.1016/j.envexpbot.2022.105075_bib40) 2015; 16 Ma (10.1016/j.envexpbot.2022.105075_bib38) 2016; 11 Wada (10.1016/j.envexpbot.2022.105075_bib56) 2020; 11 Zhang (10.1016/j.envexpbot.2022.105075_bib63) 2021; 63 Sharp (10.1016/j.envexpbot.2022.105075_bib43) 1990; 93 Tavakol (10.1016/j.envexpbot.2022.105075_bib51) 2021 Liu (10.1016/j.envexpbot.2022.105075_bib36) 2022 Velikova (10.1016/j.envexpbot.2022.105075_bib55) 2000; 151 Zhao (10.1016/j.envexpbot.2022.105075_bib67) 2022; 20 Kimura (10.1016/j.envexpbot.2022.105075_bib27) 2021 Bangar (10.1016/j.envexpbot.2022.105075_bib4) 2018; 78 Khan (10.1016/j.envexpbot.2022.105075_bib26) 2020; 156 Kolomeichuk (10.1016/j.envexpbot.2022.105075_bib28) 2020; 146 Zhou (10.1016/j.envexpbot.2022.105075_bib72) 2022 Chen (10.1016/j.envexpbot.2022.105075_bib8) 2016; 129 Xu (10.1016/j.envexpbot.2022.105075_bib59) 2018; 14 Jing (10.1016/j.envexpbot.2022.105075_bib22) 2020 Elstner (10.1016/j.envexpbot.2022.105075_bib12) 1976; 70 Zhang (10.1016/j.envexpbot.2022.105075_bib65) 2017; 7 Luo (10.1016/j.envexpbot.2022.105075_bib37) 2020; 20 Srivastava (10.1016/j.envexpbot.2022.105075_bib48) 2022; 174 Kaya (10.1016/j.envexpbot.2022.105075_bib25) 2020 Thakur (10.1016/j.envexpbot.2022.105075_bib52) 2021; 172 Jia (10.1016/j.envexpbot.2022.105075_bib21) 2020; 155 Iqbal (10.1016/j.envexpbot.2022.105075_bib20) 2021 Liu (10.1016/j.envexpbot.2022.105075_bib34) 2021; 534 Dinakar (10.1016/j.envexpbot.2022.105075_bib10) 2016; 7 Zhang (10.1016/j.envexpbot.2022.105075_bib66) 2018; 18 Mostofa (10.1016/j.envexpbot.2022.105075_bib41) 2015; 6 Zhou (10.1016/j.envexpbot.2022.105075_bib70) 2021 Zhu (10.1016/j.envexpbot.2022.105075_bib73) 2002; 53 Bangar (10.1016/j.envexpbot.2022.105075_bib5) 2019; 43 Madhava Rao (10.1016/j.envexpbot.2022.105075_bib39) 2000; 157 Aroca (10.1016/j.envexpbot.2022.105075_bib3) 2015; 168 Zhang (10.1016/j.envexpbot.2022.105075_bib64) 2020; 15 Zhao (10.1016/j.envexpbot.2022.105075_bib68) 2021 Uzilday (10.1016/j.envexpbot.2022.105075_bib54) 2014; 171 Kaya (10.1016/j.envexpbot.2022.105075_bib24) 2020; 168 Wang (10.1016/j.envexpbot.2022.105075_bib57) 2018; 651 Wang (10.1016/j.envexpbot.2022.105075_bib58) 2022; 22 Kaushal (10.1016/j.envexpbot.2022.105075_bib23) 2020; 11 Singh (10.1016/j.envexpbot.2022.105075_bib47) 2022 Liu (10.1016/j.envexpbot.2022.105075_bib33) 2014; 9 Yin (10.1016/j.envexpbot.2022.105075_bib61) 2021; 21 Ahmad (10.1016/j.envexpbot.2022.105075_bib1) 2013; 44 Shen (10.1016/j.envexpbot.2022.105075_bib44) 2013; 8 Gong (10.1016/j.envexpbot.2022.105075_bib15) 2020; 63 Sunil (10.1016/j.envexpbot.2022.105075_bib49) 2013; 117 Hou (10.1016/j.envexpbot.2022.105075_bib17) 2022 de Bont (10.1016/j.envexpbot.2022.105075_bib6) 2022; 49 Lichtenthaler (10.1016/j.envexpbot.2022.105075_bib30) 1987 Carmo-Silva (10.1016/j.envexpbot.2022.105075_bib7) 2015; 38 Yang (10.1016/j.envexpbot.2022.105075_bib60) 2018; 217 Shi (10.1016/j.envexpbot.2022.105075_bib46) 2013; 71 Liu (10.1016/j.envexpbot.2022.105075_bib31) 2022; 170 Zhou (10.1016/j.envexpbot.2022.105075_bib71) 2021; 14 Tang (10.1016/j.envexpbot.2022.105075_bib50) 2020; 11 Turan (10.1016/j.envexpbot.2022.105075_bib53) 2022; 135 Shen (10.1016/j.envexpbot.2022.105075_bib45) 2020; 32 |
References_xml | – start-page: 9 year: 2020 ident: bib25 article-title: Involvement of publication-title: Antioxidants – volume: 7 start-page: 68 year: 2016 ident: bib10 article-title: Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ROs, malate valve and antioxidative systems publication-title: Front Plant Sci. – volume: 155 start-page: 605 year: 2020 end-page: 612 ident: bib21 article-title: Hydrogen sulfide decreases Cd translocation from root to shoot through increasing Cd accumulation in cell wall and decreasing Cd2+ influx in Isatis indigotica publication-title: Plant Physiol. Biochem. – volume: 172 start-page: 1227 year: 2021 end-page: 1243 ident: bib52 article-title: Hydrogen sulfide: an emerging signaling molecule regulating drought stress response in plants publication-title: Physiol. Plant – volume: 15 year: 2020 ident: bib64 article-title: Exogenous melatonin reduces the inhibitory effect of osmotic stress on antioxidant properties and cell ultrastructure at germination stage of soybean publication-title: PLoS One – start-page: 22 year: 2021 ident: bib68 article-title: Regulation of plant responses to salt stress publication-title: Int J. Mol. Sci. – volume: 157 start-page: 113 year: 2000 end-page: 128 ident: bib39 article-title: Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses publication-title: Plant Sci. – volume: 71 start-page: 226 year: 2013 end-page: 234 ident: bib46 article-title: Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers publication-title: Plant Physiol. Biochem. – volume: 270 year: 2022 ident: bib35 article-title: Phospholipase Dδ and H(2)S increase the production of NADPH oxidase-dependent H(2)O(2) to respond to osmotic stress-induced stomatal closure in Arabidopsis thaliana publication-title: J. Plant Physiol. – volume: 18 start-page: 207 year: 2018 ident: bib66 article-title: Nitric oxide contributes to methane-induced osmotic stress tolerance in mung bean publication-title: BMC Plant Biol. – volume: 32 start-page: 1000 year: 2020 end-page: 1017 ident: bib45 article-title: Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling publication-title: Plant Cell – volume: 168 start-page: 334 year: 2015 end-page: 342 ident: bib3 article-title: S-sulfhydration: a cysteine posttranslational modification in plant systems publication-title: Plant Physiol. – volume: 63 start-page: 635 year: 2020 end-page: 674 ident: bib15 article-title: Plant abiotic stress response and nutrient use efficiency publication-title: Sci. China Life Sci. – volume: 134 start-page: 779 year: 2021 end-page: 796 ident: bib19 article-title: Salinity induced alterations in photosynthetic and oxidative regulation are ameliorated as a function of salt secretion publication-title: J. Plant Res – start-page: 23 year: 2022 ident: bib72 article-title: Hydrogen sulfide-linked persulfidation maintains protein stability of ABSCISIC ACID-INSENSITIVE 4 and delays seed germination publication-title: Int J. Mol. Sci. – volume: 217 start-page: 523 year: 2018 end-page: 539 ident: bib60 article-title: Elucidating the molecular mechanisms mediating plant salt-stress responses publication-title: New Phytol. – volume: 170 start-page: 133 year: 2022 end-page: 145 ident: bib31 article-title: Hydrogen sulfide improves tall fescue photosynthesis response to low-light stress by regulating chlorophyll and carotenoid metabolisms publication-title: Plant Physiol. Biochem – start-page: 21 year: 2020 ident: bib42 article-title: ROS homeostasis in abiotic stress tolerance in plants publication-title: Int. J. Mol. Sci. – volume: 152 start-page: 656 year: 2010 end-page: 669 ident: bib2 article-title: An O-acetylserine(thiol)lyase homolog with publication-title: Plant Physiol. – start-page: 11 year: 2021 ident: bib27 article-title: Hydrogen sulfide (H(2)S) and polysulfide (H(2)S(n)) signaling: the first 25 years publication-title: Biomolecules – volume: 21 start-page: 408 year: 2021 ident: bib61 article-title: Genome-wide analysis of OSCA gene family members in Vigna radiata and their involvement in the osmotic response publication-title: BMC Plant Biol. – start-page: 10 year: 2021 ident: bib20 article-title: Nitric oxide and hydrogen sulfide coordinately reduce glucose sensitivity and decrease oxidative stress via ascorbate-glutathione cycle in heat-stressed wheat (Triticum aestivum L.) plants publication-title: Antioxidants – volume: 651 start-page: 152 year: 2018 end-page: 160 ident: bib57 article-title: Salt and drought stress and ABA responses related to bZIP genes from V. radiata and V. angularis publication-title: Gene – volume: 172 start-page: 1688 year: 2021 end-page: 1699 ident: bib13 article-title: Comparative physiological and metabolic analyzes of two Italian ryegrass (Lolium multiflorum) cultivars with contrasting salinity tolerance publication-title: Physiol. Plant – volume: 129 start-page: 263 year: 2016 end-page: 273 ident: bib8 article-title: VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana publication-title: J. Plant Res. – start-page: 11 year: 2021 ident: bib51 article-title: Optimization of potassium supply under osmotic stress mitigates oxidative damage in barley publication-title: Plants – volume: 16 start-page: 237 year: 2015 end-page: 251 ident: bib40 article-title: Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability publication-title: Nat. Rev. Genet. – volume: 78 start-page: 111 year: 2018 end-page: 117 ident: bib4 article-title: Detection and Characterization of Polymorphic simple sequence repeat (SSR) marker for the analysis of genetic diversity in Indian mungbean [Vigna radiata (L.) Wilczek] publication-title: Indian J. Genet. Plant Breed. – volume: 32 start-page: 3902 year: 2020 end-page: 3920 ident: bib29 article-title: Abscisic acid-triggered persulfidation of the cys protease ATG4 mediates regulation of autophagy by sulfide publication-title: Plant Cell – volume: 11 start-page: 1121 year: 2020 ident: bib56 article-title: Photorespiration coupled with CO(2) assimilation protects photosystem I from photoinhibition under moderate poly(ethylene glycol)-induced osmotic stress in rice publication-title: Front. Plant Sci. – volume: 35 year: 2022 ident: bib16 article-title: Ectopic expression of Vigna radiata's vacuolar Na(+)/H(+) antiporter gene (VrNHX1) in indica rice (Oryza sativa L.) publication-title: Biotechnol. Rep. – volume: 117 start-page: 61 year: 2013 end-page: 71 ident: bib49 article-title: Optimization of photosynthesis by multiple metabolic pathways involving interorganelle interactions: resource sharing and ROS maintenance as the bases publication-title: Photosynth Res. – volume: 6 start-page: 1055 year: 2015 ident: bib41 article-title: Hydrogen sulfide regulates salt tolerance in rice by maintaining na(+)/k(+) balance, mineral homeostasis and oxidative metabolism under excessive salt stress publication-title: Front. Plant Sci. – volume: 11 start-page: 108 year: 2020 ident: bib50 article-title: Improving photosynthetic capacity, alleviating photosynthetic inhibition and oxidative stress under low temperature stress with exogenous hydrogen sulfide in blueberry seedlings publication-title: Front. Plant Sci. – volume: 11 year: 2016 ident: bib38 article-title: Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat publication-title: PLoS One – volume: 70 start-page: 616 year: 1976 end-page: 620 ident: bib12 article-title: Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase publication-title: Anal. Biochem – volume: 135 start-page: 517 year: 2022 end-page: 529 ident: bib53 article-title: Mitigation of salinity stress in cucumber seedlings by exogenous hydrogen sulfide publication-title: J. Plant Res. – volume: 836 year: 2022 ident: bib32 article-title: Genetic analysis and identification of VrFRO8, a salt tolerance-related gene in mungbean publication-title: Gene – volume: 230 start-page: 195 year: 2017 end-page: 207 ident: bib14 article-title: Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay publication-title: Food Chem. – volume: 9 year: 2014 ident: bib33 article-title: Antioxidant enzymes regulate reactive oxygen species during pod elongation in Pisum sativum and Brassica chinensis publication-title: PLoS One – volume: 171 start-page: 65 year: 2014 end-page: 75 ident: bib54 article-title: Strategies of ROS regulation and antioxidant defense during transition from C₃ to C₄ photosynthesis in the genus Flaveria under PEG-induced osmotic stress publication-title: J. Plant Physiol. – volume: 151 start-page: 59 year: 2000 end-page: 66 ident: bib55 article-title: Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines publication-title: Plant Sci. – volume: 14 year: 2018 ident: bib59 article-title: Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging publication-title: PLoS Genet. – volume: 97 start-page: 451 year: 2018 end-page: 465 ident: bib62 article-title: The chromatin remodeler ZmCHB101 impacts expression of osmotic stress-responsive genes in maize publication-title: Plant Mol. Biol. – volume: 20 start-page: 468 year: 2022 end-page: 484 ident: bib67 article-title: Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance publication-title: Plant Biotechnol. J. – volume: 168 start-page: 345 year: 2020 end-page: 360 ident: bib24 article-title: Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress publication-title: Physiol. Plant – volume: 93 start-page: 1337 year: 1990 end-page: 1346 ident: bib43 article-title: Growth of the maize primary root at low water potentials: II. role of growth and deposition of hexose and potassium in osmotic adjustment publication-title: Plant Physiol. – volume: 7 start-page: 868 year: 2017 ident: bib65 article-title: Hydrogen sulfide toxicity inhibits primary root growth through the ROS-NO pathway publication-title: Sci. Rep. – volume: 14 start-page: 921 year: 2021 end-page: 936 ident: bib71 article-title: Hydrogen sulfide-linked persulfidation of ABI4 controls ABA responses through the transactivation of MAPKKK18 in Arabidopsis publication-title: Mol. Plant – start-page: 21 year: 2020 ident: bib22 article-title: Kandelia candel thioredoxin f confers osmotic stress tolerance in transgenic tobacco publication-title: Int J. Mol. Sci. – volume: 43 start-page: 58 year: 2019 end-page: 69 ident: bib5 article-title: Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress publication-title: Turk. J. Biol. – volume: 155 start-page: 213 year: 2020 end-page: 220 ident: bib69 article-title: Hydrogen sulfide promotes rice drought tolerance via reestablishing redox homeostasis and activation of ABA biosynthesis and signaling publication-title: Plant Physiol. Biochem. – volume: 127 start-page: 425 year: 2018 end-page: 435 ident: bib11 article-title: Differential responses of two Egyptian barley (Hordeum vulgare L.) cultivars to salt stress publication-title: Plant Physiol. Biochem – volume: 20 start-page: 480 year: 2020 ident: bib37 article-title: Hydrogen sulfide negatively regulates cd-induced cell death in cucumber (Cucumis sativus L) root tip cells publication-title: BMC Plant Biol. – volume: 534 start-page: 914 year: 2021 end-page: 920 ident: bib34 article-title: Osmotic stress-triggered stomatal closure requires Phospholipase Dδ and hydrogen sulfide in Arabidopsis thaliana publication-title: Biochem. Biophys. Res Commun. – start-page: 350 year: 1987 end-page: 382 ident: bib30 article-title: [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes publication-title: Methods in Enzymology – volume: 44 start-page: 1341 year: 2013 end-page: 1348 ident: bib1 article-title: Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.) publication-title: Braz. J. Microbiol – volume: 38 start-page: 1817 year: 2015 end-page: 1832 ident: bib7 article-title: Optimizing Rubisco and its regulation for greater resource use efficiency publication-title: Plant Cell Environ. – volume: 11 start-page: 1518 year: 2020 ident: bib23 article-title: Insights Into Microbially Induced Salt Tolerance and Endurance Mechanisms (STEM) in Plants publication-title: Front. Microbiol. – start-page: 11 year: 2022 ident: bib36 article-title: Hydrogen sulfide promotes adventitious root development in cucumber under salt stress by enhancing antioxidant ability publication-title: Plants – volume: 8 year: 2013 ident: bib44 article-title: Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions publication-title: PLoS One – start-page: 22 year: 2021 ident: bib70 article-title: Persulfidation of nitrate reductase 2 is involved in l-cysteine desulfhydrase-regulated rice drought tolerance publication-title: Int. J. Mol. Sci. – start-page: 23 year: 2022 ident: bib17 article-title: Hydrogen sulfide alleviates manganese stress in arabidopsis publication-title: Int. J. Mol. Sci. – volume: 63 start-page: 146 year: 2021 end-page: 160 ident: bib63 article-title: Hydrogen sulfide, a signaling molecule in plant stress responses publication-title: J. Integr. Plant Biol. – volume: 49 start-page: 748 year: 2022 end-page: 755 ident: bib6 article-title: Abiotic stress-triggered oxidative challenges: Where does H(2)S act? publication-title: J. Genet. Genom. – volume: 22 start-page: 98 year: 2022 ident: bib58 article-title: Hydrogen sulfide attenuates intracellular oxidative stress via repressing glycolate oxidase activities in Arabidopsis thaliana publication-title: BMC Plant Biol. – volume: 11 start-page: 481 year: 2020 ident: bib18 article-title: Low salinity improves photosynthetic performance in panicum antidotale under drought stress publication-title: Front. Plant Sci. – volume: 156 start-page: 278 year: 2020 end-page: 290 ident: bib26 article-title: Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata publication-title: Plant Physiol. Biochem – volume: 8 year: 2013 ident: bib9 article-title: Overexpression of VrUBC1, a mung bean E2 ubiquitin-conjugating enzyme, enhances osmotic stress tolerance in arabidopsis publication-title: PLoS One – volume: 53 start-page: 247 year: 2002 end-page: 273 ident: bib73 article-title: Salt and drought stress signal transduction in plants publication-title: Annu Rev. Plant Biol. – volume: 146 start-page: 151 year: 2020 end-page: 163 ident: bib28 article-title: 24-Epibrassinolide alleviates the toxic effects of NaCl on photosynthetic processes in potato plants publication-title: Photosynth Res. – start-page: 307 year: 2022 ident: bib47 article-title: Hydrogen sulfide manages hexavalent chromium toxicity in wheat and rice seedlings: The role of sulfur assimilation and ascorbate-glutathione cycle publication-title: Environ. Pollut. – volume: 174 year: 2022 ident: bib48 article-title: Hydrogen sulfide-mediated mitigation and its integrated signaling crosstalk during salinity stress publication-title: Physiol. Plant – volume: 15 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib64 article-title: Exogenous melatonin reduces the inhibitory effect of osmotic stress on antioxidant properties and cell ultrastructure at germination stage of soybean publication-title: PLoS One doi: 10.1371/journal.pone.0243537 – volume: 78 start-page: 111 year: 2018 ident: 10.1016/j.envexpbot.2022.105075_bib4 article-title: Detection and Characterization of Polymorphic simple sequence repeat (SSR) marker for the analysis of genetic diversity in Indian mungbean [Vigna radiata (L.) Wilczek] publication-title: Indian J. Genet. Plant Breed. doi: 10.5958/0975-6906.2018.00013.5 – start-page: 22 year: 2021 ident: 10.1016/j.envexpbot.2022.105075_bib68 article-title: Regulation of plant responses to salt stress publication-title: Int J. Mol. Sci. – volume: 146 start-page: 151 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib28 article-title: 24-Epibrassinolide alleviates the toxic effects of NaCl on photosynthetic processes in potato plants publication-title: Photosynth Res. doi: 10.1007/s11120-020-00708-z – volume: 38 start-page: 1817 year: 2015 ident: 10.1016/j.envexpbot.2022.105075_bib7 article-title: Optimizing Rubisco and its regulation for greater resource use efficiency publication-title: Plant Cell Environ. doi: 10.1111/pce.12425 – volume: 11 start-page: 1121 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib56 article-title: Photorespiration coupled with CO(2) assimilation protects photosystem I from photoinhibition under moderate poly(ethylene glycol)-induced osmotic stress in rice publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.01121 – volume: 117 start-page: 61 year: 2013 ident: 10.1016/j.envexpbot.2022.105075_bib49 article-title: Optimization of photosynthesis by multiple metabolic pathways involving interorganelle interactions: resource sharing and ROS maintenance as the bases publication-title: Photosynth Res. doi: 10.1007/s11120-013-9889-z – volume: 230 start-page: 195 year: 2017 ident: 10.1016/j.envexpbot.2022.105075_bib14 article-title: Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.02.127 – start-page: 23 year: 2022 ident: 10.1016/j.envexpbot.2022.105075_bib72 article-title: Hydrogen sulfide-linked persulfidation maintains protein stability of ABSCISIC ACID-INSENSITIVE 4 and delays seed germination publication-title: Int J. Mol. Sci. – volume: 49 start-page: 748 year: 2022 ident: 10.1016/j.envexpbot.2022.105075_bib6 article-title: Abiotic stress-triggered oxidative challenges: Where does H(2)S act? publication-title: J. Genet. Genom. doi: 10.1016/j.jgg.2022.02.019 – start-page: 22 year: 2021 ident: 10.1016/j.envexpbot.2022.105075_bib70 article-title: Persulfidation of nitrate reductase 2 is involved in l-cysteine desulfhydrase-regulated rice drought tolerance publication-title: Int. J. Mol. Sci. – volume: 7 start-page: 68 year: 2016 ident: 10.1016/j.envexpbot.2022.105075_bib10 article-title: Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ROs, malate valve and antioxidative systems publication-title: Front Plant Sci. doi: 10.3389/fpls.2016.00068 – start-page: 11 year: 2022 ident: 10.1016/j.envexpbot.2022.105075_bib36 article-title: Hydrogen sulfide promotes adventitious root development in cucumber under salt stress by enhancing antioxidant ability publication-title: Plants – volume: 217 start-page: 523 year: 2018 ident: 10.1016/j.envexpbot.2022.105075_bib60 article-title: Elucidating the molecular mechanisms mediating plant salt-stress responses publication-title: New Phytol. doi: 10.1111/nph.14920 – volume: 168 start-page: 345 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib24 article-title: Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress publication-title: Physiol. Plant doi: 10.1111/ppl.13012 – volume: 174 year: 2022 ident: 10.1016/j.envexpbot.2022.105075_bib48 article-title: Hydrogen sulfide-mediated mitigation and its integrated signaling crosstalk during salinity stress publication-title: Physiol. Plant doi: 10.1111/ppl.13633 – volume: 151 start-page: 59 year: 2000 ident: 10.1016/j.envexpbot.2022.105075_bib55 article-title: Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines publication-title: Plant Sci. doi: 10.1016/S0168-9452(99)00197-1 – volume: 32 start-page: 3902 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib29 article-title: Abscisic acid-triggered persulfidation of the cys protease ATG4 mediates regulation of autophagy by sulfide publication-title: Plant Cell doi: 10.1105/tpc.20.00766 – volume: 155 start-page: 213 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib69 article-title: Hydrogen sulfide promotes rice drought tolerance via reestablishing redox homeostasis and activation of ABA biosynthesis and signaling publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.07.038 – start-page: 11 year: 2021 ident: 10.1016/j.envexpbot.2022.105075_bib51 article-title: Optimization of potassium supply under osmotic stress mitigates oxidative damage in barley publication-title: Plants – volume: 22 start-page: 98 year: 2022 ident: 10.1016/j.envexpbot.2022.105075_bib58 article-title: Hydrogen sulfide attenuates intracellular oxidative stress via repressing glycolate oxidase activities in Arabidopsis thaliana publication-title: BMC Plant Biol. doi: 10.1186/s12870-022-03490-3 – volume: 8 year: 2013 ident: 10.1016/j.envexpbot.2022.105075_bib44 article-title: Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions publication-title: PLoS One – start-page: 21 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib42 article-title: ROS homeostasis in abiotic stress tolerance in plants publication-title: Int. J. Mol. Sci. – volume: 836 year: 2022 ident: 10.1016/j.envexpbot.2022.105075_bib32 article-title: Genetic analysis and identification of VrFRO8, a salt tolerance-related gene in mungbean publication-title: Gene doi: 10.1016/j.gene.2022.146658 – volume: 11 year: 2016 ident: 10.1016/j.envexpbot.2022.105075_bib38 article-title: Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat publication-title: PLoS One doi: 10.1371/journal.pone.0163082 – volume: 651 start-page: 152 year: 2018 ident: 10.1016/j.envexpbot.2022.105075_bib57 article-title: Salt and drought stress and ABA responses related to bZIP genes from V. radiata and V. angularis publication-title: Gene doi: 10.1016/j.gene.2018.02.005 – start-page: 23 year: 2022 ident: 10.1016/j.envexpbot.2022.105075_bib17 article-title: Hydrogen sulfide alleviates manganese stress in arabidopsis publication-title: Int. J. Mol. Sci. – volume: 135 start-page: 517 year: 2022 ident: 10.1016/j.envexpbot.2022.105075_bib53 article-title: Mitigation of salinity stress in cucumber seedlings by exogenous hydrogen sulfide publication-title: J. Plant Res. doi: 10.1007/s10265-022-01391-y – volume: 63 start-page: 146 year: 2021 ident: 10.1016/j.envexpbot.2022.105075_bib63 article-title: Hydrogen sulfide, a signaling molecule in plant stress responses publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13022 – volume: 71 start-page: 226 year: 2013 ident: 10.1016/j.envexpbot.2022.105075_bib46 article-title: Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.07.021 – volume: 172 start-page: 1227 year: 2021 ident: 10.1016/j.envexpbot.2022.105075_bib52 article-title: Hydrogen sulfide: an emerging signaling molecule regulating drought stress response in plants publication-title: Physiol. Plant doi: 10.1111/ppl.13432 – start-page: 307 year: 2022 ident: 10.1016/j.envexpbot.2022.105075_bib47 article-title: Hydrogen sulfide manages hexavalent chromium toxicity in wheat and rice seedlings: The role of sulfur assimilation and ascorbate-glutathione cycle publication-title: Environ. Pollut. – volume: 18 start-page: 207 year: 2018 ident: 10.1016/j.envexpbot.2022.105075_bib66 article-title: Nitric oxide contributes to methane-induced osmotic stress tolerance in mung bean publication-title: BMC Plant Biol. doi: 10.1186/s12870-018-1426-y – volume: 43 start-page: 58 year: 2019 ident: 10.1016/j.envexpbot.2022.105075_bib5 article-title: Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress publication-title: Turk. J. Biol. doi: 10.3906/biy-1801-64 – volume: 35 year: 2022 ident: 10.1016/j.envexpbot.2022.105075_bib16 article-title: Ectopic expression of Vigna radiata's vacuolar Na(+)/H(+) antiporter gene (VrNHX1) in indica rice (Oryza sativa L.) publication-title: Biotechnol. Rep. – volume: 11 start-page: 108 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib50 article-title: Improving photosynthetic capacity, alleviating photosynthetic inhibition and oxidative stress under low temperature stress with exogenous hydrogen sulfide in blueberry seedlings publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00108 – volume: 97 start-page: 451 year: 2018 ident: 10.1016/j.envexpbot.2022.105075_bib62 article-title: The chromatin remodeler ZmCHB101 impacts expression of osmotic stress-responsive genes in maize publication-title: Plant Mol. Biol. doi: 10.1007/s11103-018-0751-8 – volume: 9 year: 2014 ident: 10.1016/j.envexpbot.2022.105075_bib33 article-title: Antioxidant enzymes regulate reactive oxygen species during pod elongation in Pisum sativum and Brassica chinensis publication-title: PLoS One – volume: 53 start-page: 247 year: 2002 ident: 10.1016/j.envexpbot.2022.105075_bib73 article-title: Salt and drought stress signal transduction in plants publication-title: Annu Rev. Plant Biol. doi: 10.1146/annurev.arplant.53.091401.143329 – volume: 156 start-page: 278 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib26 article-title: Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata publication-title: Plant Physiol. Biochem doi: 10.1016/j.plaphy.2020.09.017 – volume: 168 start-page: 334 year: 2015 ident: 10.1016/j.envexpbot.2022.105075_bib3 article-title: S-sulfhydration: a cysteine posttranslational modification in plant systems publication-title: Plant Physiol. doi: 10.1104/pp.15.00009 – volume: 171 start-page: 65 year: 2014 ident: 10.1016/j.envexpbot.2022.105075_bib54 article-title: Strategies of ROS regulation and antioxidant defense during transition from C₃ to C₄ photosynthesis in the genus Flaveria under PEG-induced osmotic stress publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2013.06.016 – volume: 152 start-page: 656 year: 2010 ident: 10.1016/j.envexpbot.2022.105075_bib2 article-title: An O-acetylserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.109.147975 – volume: 20 start-page: 468 year: 2022 ident: 10.1016/j.envexpbot.2022.105075_bib67 article-title: Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.13729 – volume: 134 start-page: 779 year: 2021 ident: 10.1016/j.envexpbot.2022.105075_bib19 article-title: Salinity induced alterations in photosynthetic and oxidative regulation are ameliorated as a function of salt secretion publication-title: J. Plant Res doi: 10.1007/s10265-021-01285-5 – volume: 93 start-page: 1337 year: 1990 ident: 10.1016/j.envexpbot.2022.105075_bib43 article-title: Growth of the maize primary root at low water potentials: II. role of growth and deposition of hexose and potassium in osmotic adjustment publication-title: Plant Physiol. doi: 10.1104/pp.93.4.1337 – volume: 170 start-page: 133 year: 2022 ident: 10.1016/j.envexpbot.2022.105075_bib31 article-title: Hydrogen sulfide improves tall fescue photosynthesis response to low-light stress by regulating chlorophyll and carotenoid metabolisms publication-title: Plant Physiol. Biochem doi: 10.1016/j.plaphy.2021.12.002 – volume: 21 start-page: 408 year: 2021 ident: 10.1016/j.envexpbot.2022.105075_bib61 article-title: Genome-wide analysis of OSCA gene family members in Vigna radiata and their involvement in the osmotic response publication-title: BMC Plant Biol. doi: 10.1186/s12870-021-03184-2 – start-page: 350 year: 1987 ident: 10.1016/j.envexpbot.2022.105075_bib30 article-title: [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes doi: 10.1016/0076-6879(87)48036-1 – volume: 63 start-page: 635 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib15 article-title: Plant abiotic stress response and nutrient use efficiency publication-title: Sci. China Life Sci. doi: 10.1007/s11427-020-1683-x – volume: 32 start-page: 1000 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib45 article-title: Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling publication-title: Plant Cell doi: 10.1105/tpc.19.00826 – volume: 8 year: 2013 ident: 10.1016/j.envexpbot.2022.105075_bib9 article-title: Overexpression of VrUBC1, a mung bean E2 ubiquitin-conjugating enzyme, enhances osmotic stress tolerance in arabidopsis publication-title: PLoS One doi: 10.1371/journal.pone.0066056 – volume: 11 start-page: 1518 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib23 article-title: Insights Into Microbially Induced Salt Tolerance and Endurance Mechanisms (STEM) in Plants publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.01518 – volume: 20 start-page: 480 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib37 article-title: Hydrogen sulfide negatively regulates cd-induced cell death in cucumber (Cucumis sativus L) root tip cells publication-title: BMC Plant Biol. doi: 10.1186/s12870-020-02687-8 – volume: 70 start-page: 616 year: 1976 ident: 10.1016/j.envexpbot.2022.105075_bib12 article-title: Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase publication-title: Anal. Biochem doi: 10.1016/0003-2697(76)90488-7 – volume: 270 year: 2022 ident: 10.1016/j.envexpbot.2022.105075_bib35 article-title: Phospholipase Dδ and H(2)S increase the production of NADPH oxidase-dependent H(2)O(2) to respond to osmotic stress-induced stomatal closure in Arabidopsis thaliana publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2022.153617 – volume: 155 start-page: 605 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib21 article-title: Hydrogen sulfide decreases Cd translocation from root to shoot through increasing Cd accumulation in cell wall and decreasing Cd2+ influx in Isatis indigotica publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.08.033 – volume: 6 start-page: 1055 year: 2015 ident: 10.1016/j.envexpbot.2022.105075_bib41 article-title: Hydrogen sulfide regulates salt tolerance in rice by maintaining na(+)/k(+) balance, mineral homeostasis and oxidative metabolism under excessive salt stress publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.01055 – start-page: 21 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib22 article-title: Kandelia candel thioredoxin f confers osmotic stress tolerance in transgenic tobacco publication-title: Int J. Mol. Sci. – volume: 7 start-page: 868 year: 2017 ident: 10.1016/j.envexpbot.2022.105075_bib65 article-title: Hydrogen sulfide toxicity inhibits primary root growth through the ROS-NO pathway publication-title: Sci. Rep. doi: 10.1038/s41598-017-01046-2 – volume: 534 start-page: 914 year: 2021 ident: 10.1016/j.envexpbot.2022.105075_bib34 article-title: Osmotic stress-triggered stomatal closure requires Phospholipase Dδ and hydrogen sulfide in Arabidopsis thaliana publication-title: Biochem. Biophys. Res Commun. doi: 10.1016/j.bbrc.2020.10.074 – volume: 14 year: 2018 ident: 10.1016/j.envexpbot.2022.105075_bib59 article-title: Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1007662 – volume: 14 start-page: 921 year: 2021 ident: 10.1016/j.envexpbot.2022.105075_bib71 article-title: Hydrogen sulfide-linked persulfidation of ABI4 controls ABA responses through the transactivation of MAPKKK18 in Arabidopsis publication-title: Mol. Plant doi: 10.1016/j.molp.2021.03.007 – volume: 44 start-page: 1341 year: 2013 ident: 10.1016/j.envexpbot.2022.105075_bib1 article-title: Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.) publication-title: Braz. J. Microbiol doi: 10.1590/S1517-83822013000400045 – volume: 16 start-page: 237 year: 2015 ident: 10.1016/j.envexpbot.2022.105075_bib40 article-title: Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3901 – volume: 11 start-page: 481 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib18 article-title: Low salinity improves photosynthetic performance in panicum antidotale under drought stress publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00481 – start-page: 9 year: 2020 ident: 10.1016/j.envexpbot.2022.105075_bib25 article-title: Involvement of L-cysteine desulfhydrase and hydrogen sulfide in glutathione-induced tolerance to salinity by accelerating ascorbate-glutathione cycle and glyoxalase system in capsicum publication-title: Antioxidants – volume: 127 start-page: 425 year: 2018 ident: 10.1016/j.envexpbot.2022.105075_bib11 article-title: Differential responses of two Egyptian barley (Hordeum vulgare L.) cultivars to salt stress publication-title: Plant Physiol. Biochem doi: 10.1016/j.plaphy.2018.04.012 – volume: 157 start-page: 113 year: 2000 ident: 10.1016/j.envexpbot.2022.105075_bib39 article-title: Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses publication-title: Plant Sci. doi: 10.1016/S0168-9452(00)00273-9 – volume: 172 start-page: 1688 year: 2021 ident: 10.1016/j.envexpbot.2022.105075_bib13 article-title: Comparative physiological and metabolic analyzes of two Italian ryegrass (Lolium multiflorum) cultivars with contrasting salinity tolerance publication-title: Physiol. Plant doi: 10.1111/ppl.13374 – start-page: 11 year: 2021 ident: 10.1016/j.envexpbot.2022.105075_bib27 article-title: Hydrogen sulfide (H(2)S) and polysulfide (H(2)S(n)) signaling: the first 25 years publication-title: Biomolecules – volume: 129 start-page: 263 year: 2016 ident: 10.1016/j.envexpbot.2022.105075_bib8 article-title: VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana publication-title: J. Plant Res. doi: 10.1007/s10265-015-0773-0 – start-page: 10 year: 2021 ident: 10.1016/j.envexpbot.2022.105075_bib20 article-title: Nitric oxide and hydrogen sulfide coordinately reduce glucose sensitivity and decrease oxidative stress via ascorbate-glutathione cycle in heat-stressed wheat (Triticum aestivum L.) plants publication-title: Antioxidants |
SSID | ssj0007376 |
Score | 2.3787265 |
Snippet | Hydrogen sulfide (H2S) has been proved to possess many biological functions and it is an essential component of plant osmotic signaling. However, how... Hydrogen sulfide (H₂S) has been proved to possess many biological functions and it is an essential component of plant osmotic signaling. However, how... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105075 |
SubjectTerms | botany carboxylation cultivars cystathionine gamma-lyase cysteine genes H2S Hairy roots homeostasis hydrogen sulfide mung beans Osmotic stress osmotolerance phenotype photosynthesis protective effect Redox homeostasis ribulose-bisphosphate carboxylase Rubisco stress tolerance Vigna radiata VrLCD |
Title | Endogenous hydrogen sulfide homeostasis is responsible for the difference in osmotic stress tolerance in two cultivars of Vigna radiate |
URI | https://dx.doi.org/10.1016/j.envexpbot.2022.105075 https://www.proquest.com/docview/2723101478 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQ9MClAloEfSBX6jUlD6_t5UbRom2rcioVN8uPSUm1xKvd8Lr02r_dmTxAICQOlXJIHFuJPOPxN8nMN4x9zMrMOyVcEgToRBR5SGxqQ5IJb0sJRDJG3zu-n8jpqfh6NjpbYUdDLgyFVfa2v7PprbXuW_b72dyfVxXl-I61Jq7DvK3ARH67EIq0_NOf-zAPVbQF5lreTOr9IMYL6iu4mbtIQZV5TjVvUwo4fHqHemSr2w3oeIO97JEjP-xebpOtQL3FXnyOiO5ut9j25D5jDXv1S3b5iv2d1CF2TKz8_DYs6JwvL2dlFYCfxwuIiA-X1ZLjsRgCZmfAEcxyBId8qKDigVc1j23ZH8-7FBPexBlQZY72XnMdORF5VFfoLPNY8p_Vr9ryBbEfNPCanR5PfhxNk776QuILoZtE-lwS_Zu3Njh0HFOvUostzotSImiAIGGM7oYlBsKRSkfaaZ8pwJ62oBT7bbZaxxp2GJcu9-NQoheugpBeOufAgtaucKnFgbtMDjNufE9NThUyZmaIQftt7kRlSFSmE9UuS-8Gzjt2jueHHAwiNQ8UzeAe8vzgD4MSGFyG9G_F1oACNLkioJwJpd_8zwPesnW66uJl3rHVZnEJ7xH1NG6vVes9tnb45dv05B9b9waE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2FgEQuEQSihLWR4GjipaftQeLAMtGELKcE5db0UiZGE_do7Cxz4ZoPyg9S5SVREFIOKJIPltttW13tqmr71XuMvY3yyJpUmMAJyAKRxC7QoXZBJKzOJRDJGH3v2N2T4wPx7XBwuMAu-1oYglV2vr_16Y237o5sdKO5MS0KqvEdZhlxHcaNAlPYISu3YX6G67bq49ZXNPK7ON4c7X8ZB520QGATkdWBtLEkbjOrtTO4KgptGmo8YqzIJUZEcBKGmEtrotcbpOEgM5mNUsAzdUL143jde-y-QHdBsgnvf1_jStKkUbRriDrp8W6AyqA8hfOp8YTijGMS2Q0J4fjvkPhXcGgi3uYjttylqvxTOxqP2QKUK-zBZ4_p5HyFrY6uS-TwrM5HVE_Yxah0vqV-5UdzN6N9Xp1M8sIBP_LH4DEhrYqK4zbrEboT4Jg9c8xGeS_ZYoEXJfeNzpDlbU0Lr_0ESAqkaavPPCfmkOIUV-fc5_x78bPUfEZ0CzU8ZQd3YpNVtlj6EtYYlya2Q5fjsj91QlppjAENWWYSE2rsuM5kP-LKdlzoJMkxUT3o7Ze6MpUiU6nWVOssvOo4belAbu_yoTepujGzFQat2zu_6SeBwveefuboEtCAKk4pM49Emj37nxu8Zg_H-7s7amdrb_s5W6KWFqzzgi3WsxN4iSlXbV41U5yzH3f9Tv0BfHM_1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endogenous+hydrogen+sulfide+homeostasis+is+responsible+for+the+difference+in+osmotic+stress+tolerance+in+two+cultivars+of+Vigna+radiate&rft.jtitle=Environmental+and+experimental+botany&rft.au=Ge%2C+Zhenglin&rft.au=Cao%2C+Jiaqi&rft.au=Zhang%2C+Hejia&rft.au=Hu%2C+Huixin&rft.date=2022-12-01&rft.issn=0098-8472&rft.volume=204+p.105075-&rft_id=info:doi/10.1016%2Fj.envexpbot.2022.105075&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8472&client=summon |