Interpretable artificial intelligence model for accurate identification of medical conditions using immune repertoire

Abstract Underlying medical conditions, such as cancer, kidney disease and heart failure, are associated with a higher risk for severe COVID-19. Accurate classification of COVID-19 patients with underlying medical conditions is critical for personalized treatment decision and prognosis estimation. I...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 24; no. 1
Main Authors Zhao, Yu, He, Bing, Xu, Zhimeng, Zhang, Yidan, Zhao, Xuan, Huang, Zhi-An, Yang, Fan, Wang, Liang, Duan, Lei, Song, Jiangning, Yao, Jianhua
Format Journal Article
LanguageEnglish
Published England Oxford University Press 19.01.2023
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Underlying medical conditions, such as cancer, kidney disease and heart failure, are associated with a higher risk for severe COVID-19. Accurate classification of COVID-19 patients with underlying medical conditions is critical for personalized treatment decision and prognosis estimation. In this study, we propose an interpretable artificial intelligence model termed VDJMiner to mine the underlying medical conditions and predict the prognosis of COVID-19 patients according to their immune repertoires. In a cohort of more than 1400 COVID-19 patients, VDJMiner accurately identifies multiple underlying medical conditions, including cancers, chronic kidney disease, autoimmune disease, diabetes, congestive heart failure, coronary artery disease, asthma and chronic obstructive pulmonary disease, with an average area under the receiver operating characteristic curve (AUC) of 0.961. Meanwhile, in this same cohort, VDJMiner achieves an AUC of 0.922 in predicting severe COVID-19. Moreover, VDJMiner achieves an accuracy of 0.857 in predicting the response of COVID-19 patients to tocilizumab treatment on the leave-one-out test. Additionally, VDJMiner interpretively mines and scores V(D)J gene segments of the T-cell receptors that are associated with the disease. The identified associations between single-cell V(D)J gene segments and COVID-19 are highly consistent with previous studies. The source code of VDJMiner is publicly accessible at https://github.com/TencentAILabHealthcare/VDJMiner. The web server of VDJMiner is available at https://gene.ai.tencent.com/VDJMiner/.
AbstractList Underlying medical conditions, such as cancer, kidney disease and heart failure, are associated with a higher risk for severe COVID-19. Accurate classification of COVID-19 patients with underlying medical conditions is critical for personalized treatment decision and prognosis estimation. In this study, we propose an interpretable artificial intelligence model termed VDJMiner to mine the underlying medical conditions and predict the prognosis of COVID-19 patients according to their immune repertoires. In a cohort of more than 1400 COVID-19 patients, VDJMiner accurately identifies multiple underlying medical conditions, including cancers, chronic kidney disease, autoimmune disease, diabetes, congestive heart failure, coronary artery disease, asthma and chronic obstructive pulmonary disease, with an average area under the receiver operating characteristic curve (AUC) of 0.961. Meanwhile, in this same cohort, VDJMiner achieves an AUC of 0.922 in predicting severe COVID-19. Moreover, VDJMiner achieves an accuracy of 0.857 in predicting the response of COVID-19 patients to tocilizumab treatment on the leave-one-out test. Additionally, VDJMiner interpretively mines and scores V(D)J gene segments of the T-cell receptors that are associated with the disease. The identified associations between single-cell V(D)J gene segments and COVID-19 are highly consistent with previous studies. The source code of VDJMiner is publicly accessible at https://github.com/TencentAILabHealthcare/VDJMiner. The web server of VDJMiner is available at https://gene.ai.tencent.com/VDJMiner/.
Underlying medical conditions, such as cancer, kidney disease and heart failure, are associated with a higher risk for severe COVID-19. Accurate classification of COVID-19 patients with underlying medical conditions is critical for personalized treatment decision and prognosis estimation. In this study, we propose an interpretable artificial intelligence model termed VDJMiner to mine the underlying medical conditions and predict the prognosis of COVID-19 patients according to their immune repertoires. In a cohort of more than 1400 COVID-19 patients, VDJMiner accurately identifies multiple underlying medical conditions, including cancers, chronic kidney disease, autoimmune disease, diabetes, congestive heart failure, coronary artery disease, asthma and chronic obstructive pulmonary disease, with an average area under the receiver operating characteristic curve (AUC) of 0.961. Meanwhile, in this same cohort, VDJMiner achieves an AUC of 0.922 in predicting severe COVID-19. Moreover, VDJMiner achieves an accuracy of 0.857 in predicting the response of COVID-19 patients to tocilizumab treatment on the leave-one-out test. Additionally, VDJMiner interpretively mines and scores V(D)J gene segments of the T-cell receptors that are associated with the disease. The identified associations between single-cell V(D)J gene segments and COVID-19 are highly consistent with previous studies. The source code of VDJMiner is publicly accessible at https://github.com/TencentAILabHealthcare/VDJMiner. The web server of VDJMiner is available at https://gene.ai.tencent.com/VDJMiner/.Underlying medical conditions, such as cancer, kidney disease and heart failure, are associated with a higher risk for severe COVID-19. Accurate classification of COVID-19 patients with underlying medical conditions is critical for personalized treatment decision and prognosis estimation. In this study, we propose an interpretable artificial intelligence model termed VDJMiner to mine the underlying medical conditions and predict the prognosis of COVID-19 patients according to their immune repertoires. In a cohort of more than 1400 COVID-19 patients, VDJMiner accurately identifies multiple underlying medical conditions, including cancers, chronic kidney disease, autoimmune disease, diabetes, congestive heart failure, coronary artery disease, asthma and chronic obstructive pulmonary disease, with an average area under the receiver operating characteristic curve (AUC) of 0.961. Meanwhile, in this same cohort, VDJMiner achieves an AUC of 0.922 in predicting severe COVID-19. Moreover, VDJMiner achieves an accuracy of 0.857 in predicting the response of COVID-19 patients to tocilizumab treatment on the leave-one-out test. Additionally, VDJMiner interpretively mines and scores V(D)J gene segments of the T-cell receptors that are associated with the disease. The identified associations between single-cell V(D)J gene segments and COVID-19 are highly consistent with previous studies. The source code of VDJMiner is publicly accessible at https://github.com/TencentAILabHealthcare/VDJMiner. The web server of VDJMiner is available at https://gene.ai.tencent.com/VDJMiner/.
Abstract Underlying medical conditions, such as cancer, kidney disease and heart failure, are associated with a higher risk for severe COVID-19. Accurate classification of COVID-19 patients with underlying medical conditions is critical for personalized treatment decision and prognosis estimation. In this study, we propose an interpretable artificial intelligence model termed VDJMiner to mine the underlying medical conditions and predict the prognosis of COVID-19 patients according to their immune repertoires. In a cohort of more than 1400 COVID-19 patients, VDJMiner accurately identifies multiple underlying medical conditions, including cancers, chronic kidney disease, autoimmune disease, diabetes, congestive heart failure, coronary artery disease, asthma and chronic obstructive pulmonary disease, with an average area under the receiver operating characteristic curve (AUC) of 0.961. Meanwhile, in this same cohort, VDJMiner achieves an AUC of 0.922 in predicting severe COVID-19. Moreover, VDJMiner achieves an accuracy of 0.857 in predicting the response of COVID-19 patients to tocilizumab treatment on the leave-one-out test. Additionally, VDJMiner interpretively mines and scores V(D)J gene segments of the T-cell receptors that are associated with the disease. The identified associations between single-cell V(D)J gene segments and COVID-19 are highly consistent with previous studies. The source code of VDJMiner is publicly accessible at https://github.com/TencentAILabHealthcare/VDJMiner. The web server of VDJMiner is available at https://gene.ai.tencent.com/VDJMiner/.
Author He, Bing
Xu, Zhimeng
Huang, Zhi-An
Yao, Jianhua
Song, Jiangning
Zhao, Yu
Yang, Fan
Zhang, Yidan
Duan, Lei
Zhao, Xuan
Wang, Liang
Author_xml – sequence: 1
  givenname: Yu
  surname: Zhao
  fullname: Zhao, Yu
  email: louisyuzhao@tencent.com
– sequence: 2
  givenname: Bing
  orcidid: 0000-0003-1719-9290
  surname: He
  fullname: He, Bing
  email: hebinghb@gmail.com
– sequence: 3
  givenname: Zhimeng
  surname: Xu
  fullname: Xu, Zhimeng
  email: chandlerxu@tencent.com
– sequence: 4
  givenname: Yidan
  surname: Zhang
  fullname: Zhang, Yidan
  email: zhangyidan@stu.scu.edu.cn
– sequence: 5
  givenname: Xuan
  surname: Zhao
  fullname: Zhao, Xuan
  email: 980791755@qq.com
– sequence: 6
  givenname: Zhi-An
  surname: Huang
  fullname: Huang, Zhi-An
  email: huang_za@outlook.com
– sequence: 7
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  email: fionafyang@tencent.com
– sequence: 8
  givenname: Liang
  surname: Wang
  fullname: Wang, Liang
  email: leonlwang@tencent.com
– sequence: 9
  givenname: Lei
  surname: Duan
  fullname: Duan, Lei
  email: leiduan@scu.edu.cn
– sequence: 10
  givenname: Jiangning
  orcidid: 0000-0001-8031-9086
  surname: Song
  fullname: Song, Jiangning
  email: jiangning.song@monash.edu
– sequence: 11
  givenname: Jianhua
  surname: Yao
  fullname: Yao, Jianhua
  email: jianhua.yao@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36567255$$D View this record in MEDLINE/PubMed
BookMark eNp9kctrFTEUxoNU7ENX7iUgiCBj887cZSlaCwU3ug6Z5ExJmUnGPBb-983tvd0UcZXk5Hc-zne-c3QSUwSE3lPylZIdv5zCdDlN1kkpX6EzKrQeBJHiZH9XepBC8VN0XsoDIYzokb5Bp1xJpZmUZ6jdxgp5y1DttAC2uYY5uGAXHPrHsoR7iA7wmjwseE4ZW-dathVw8BCfYFtDijjNeAXfXwt2KfqwLxbcSoj3OKxri4AzbJBrChneotezXQq8O54X6Pf3b7-ufwx3P29ur6_uBsfFWAcltNWeeskkZ-CIncadHK0CypyiO91Nd9uMutlTqZjm3BLgVk0jaO-85Rfo80F3y-lPg1LNGorrtmyE1IphWo5cCs14Rz--QB9Sy7FPZzilXChGlOjUhyPVpm7XbDmsNv81zwvtAD0ALqdSMszGhfq0oZptWAwlZh-a6aGZY2i958uLnmfZf9OfDnRq23_BR5kzqMo
CitedBy_id crossref_primary_10_1002_pro_4841
Cites_doi 10.1093/bib/bbab206
10.1038/s41587-021-00989-2
10.1186/gm502
10.1001/jama.2018.17163
10.1101/gr.115428.110
10.1136/postgradmedj-2020-138386
10.1080/14787210.2021.1863146
10.1093/bioinformatics/btaa611
10.1038/s42256-019-0138-9
10.18632/aging.203834
10.1038/s41574-021-00575-1
10.1016/j.ygeno.2020.12.036
10.1007/s00330-021-08049-8
10.1016/j.immuni.2020.06.024
10.1016/j.trecan.2020.12.005
10.1001/jamanetworkopen.2021.11182
10.1371/journal.pcbi.1006874
10.1016/j.arcmed.2020.12.002
10.1109/TCBB.2019.2911071
10.1109/5254.708428
10.1038/s42256-021-00413-z
10.1038/nature14539
10.3389/fimmu.2018.02729
10.3389/fimmu.2018.02291
10.1186/s10033-021-00570-7
10.1002/iid3.358
10.12688/f1000research.22139.1
10.1038/s41577-020-00433-7
10.1016/j.it.2015.09.006
10.1016/j.canlet.2019.12.007
10.1590/s1678-9946202062045
10.18632/oncotarget.235
10.1182/blood-2009-04-217604
10.1002/rmv.2146
10.1016/S2214-109X(20)30264-3
10.1038/bcj.2013.10
10.1186/ar1703
10.1038/s41467-021-21879-w
10.1371/journal.pcbi.1004503
10.1016/j.jaip.2021.07.030
10.1111/jgs.17299
10.5888/pcd18.210123
10.1038/s41467-020-18786-x
10.1002/cti2.1340
10.1101/206540
10.1016/j.ejca.2021.03.035
10.1016/j.omtn.2020.08.022
10.1080/17476348.2021.1866547
10.1007/s13238-014-0060-1
10.1093/bioinformatics/btv359
10.1038/nature22383
10.3389/fgene.2019.01077
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbac555
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 36567255
10_1093_bib_bbac555
10.1093/bib/bbac555
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61972268
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
AHGBF
CITATION
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
ROX
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c348t-647a7d1d52532ec0ab8958a6e12c6197bacac521cfd1562733a0e3a6b8e7dcda3
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 07:25:34 EDT 2025
Mon Jun 30 11:00:02 EDT 2025
Wed Feb 19 02:25:07 EST 2025
Tue Jul 01 03:39:45 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Wed Apr 02 06:58:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords COVID-19
diagnosis
prognosis
artificial intelligence
TCR repertoire
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-647a7d1d52532ec0ab8958a6e12c6197bacac521cfd1562733a0e3a6b8e7dcda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1719-9290
0000-0001-8031-9086
PMID 36567255
PQID 3113462064
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2758354723
proquest_journals_3113462064
pubmed_primary_36567255
crossref_citationtrail_10_1093_bib_bbac555
crossref_primary_10_1093_bib_bbac555
oup_primary_10_1093_bib_bbac555
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-19
PublicationDateYYYYMMDD 2023-01-19
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2023
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Lundberg (2023011917075230300_ref40) 2020; 2
Kompaniyets (2023011917075230300_ref3) 2021; 18
LeCun (2023011917075230300_ref38) 2015; 521
Sidhom (2023011917075230300_ref32) 2021; 12
Levantovsky (2023011917075230300_ref9) 2020; 20
Robins (2023011917075230300_ref15) 2009; 114
Warren (2023011917075230300_ref16) 2011; 21
Greiff (2023011917075230300_ref13) 2015; 36
SantaCruz-Calvo (2023011917075230300_ref8) 2022; 18
Huang (2023011917075230300_ref25) 2020; 471
Wang (2023011917075230300_ref36) 2021; 113
Skapenko (2023011917075230300_ref7) 2005; 7
George (2023011917075230300_ref6) 2021; 7
Nolan (2023011917075230300_ref20) 2020; 10
Feng (2023011917075230300_ref29) 2020; 11
Imran (2023011917075230300_ref5) 2021; 67
Dash (2023011917075230300_ref34) 2017; 547
Chen (2023011917075230300_ref37) 2016
Gupta (2023011917075230300_ref21) 2015; 31
Simnica (2023011917075230300_ref68) 2021; 10
Sturm (2023011917075230300_ref18) 2020; 36
McInnes (2023011917075230300_ref39)
He (2023011917075230300_ref67) 2011; 2
Adil (2023011917075230300_ref1) 2021; 97
Gallo Marin (2023011917075230300_ref60) 2021; 31
Hearst (2023011917075230300_ref43) 1998; 13
Liu (2023011917075230300_ref12) 2014; 5
Rodríguez-Pinilla (2023011917075230300_ref62) 2013; 3
Dumitrascu (2023011917075230300_ref27) 2021; 69
Wang (2023011917075230300_ref28) 2022; 32
Shortliffe (2023011917075230300_ref57) 2018; 320
Li (2023011917075230300_ref54) 2019; 10
Pinato (2023011917075230300_ref45) 2021; 150
Rabbani (2023011917075230300_ref49) 2021; 15
Dupic (2023011917075230300_ref14) 2019; 15
Fichtner (2023011917075230300_ref53) 2020; 9
Tsang (2023011917075230300_ref4) 2021; 19
Borcherding (2023011917075230300_ref24) 2020; 9
Cui (2023011917075230300_ref61) 2018; 9
Lundberg (2023011917075230300_ref58)
Pachiega (2023011917075230300_ref48) 2020; 62
Tomita (2023011917075230300_ref10) 2020; 8
Bohr (2023011917075230300_ref31) 2020; 2
Zhao (2023011917075230300_ref26) 2021; 34
Arik (2023011917075230300_ref42) 2019
Peng (2023011917075230300_ref41) 2022; 14
Clark (2023011917075230300_ref2) 2020; 8
Onder (2023011917075230300_ref46) 2020; 323
Kompaniyets (2023011917075230300_ref44) 2021; 4
JE la (2023011917075230300_ref51) 2021; 52
Hernández (2023011917075230300_ref63) 2018; 9
Huang (2023011917075230300_ref50) 2021; 9
Bi (2023011917075230300_ref56) 2020; 22
Jurtz (2023011917075230300_ref33)
Chen (2023011917075230300_ref30) 2021; 22
Zhang (2023011917075230300_ref35) 2021; 7
Schultheiß (2023011917075230300_ref11) 2020; 53
Woodsworth (2023011917075230300_ref52) 2013; 5
Li (2023011917075230300_ref59) 2021; 21
Shugay (2023011917075230300_ref22) 2015; 11
Popov (2023011917075230300_ref19) 2022
Schattgen (2023011917075230300_ref23) 2022; 40
Parra-Bracamonte (2023011917075230300_ref47) 2021; 26
Ogunleye (2023011917075230300_ref55) 2020; 17
Pavlović (2023011917075230300_ref17) 2021; 3
References_xml – volume: 22
  year: 2021
  ident: 2023011917075230300_ref30
  article-title: A predictive paradigm for COVID-19 prognosis based on the longitudinal measure of biomarkers
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab206
– volume: 67
  year: 2021
  ident: 2023011917075230300_ref5
  article-title: Prediction models for covid-19 integrating age groups, gender, and underlying conditions
  publication-title: Comput Secur
– volume: 40
  start-page: 54
  year: 2022
  ident: 2023011917075230300_ref23
  article-title: Integrating T cell receptor sequences and transcriptional profiles by clonotype neighbor graph analysis (CoNGA)
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-021-00989-2
– volume: 5
  start-page: 98
  year: 2013
  ident: 2023011917075230300_ref52
  article-title: Sequence analysis of T-cell repertoires in health and disease
  publication-title: Genome Med
  doi: 10.1186/gm502
– volume: 320
  start-page: 2199
  year: 2018
  ident: 2023011917075230300_ref57
  article-title: Clinical decision support in the era of artificial intelligence
  publication-title: JAMA
  doi: 10.1001/jama.2018.17163
– volume: 21
  start-page: 790
  year: 2011
  ident: 2023011917075230300_ref16
  article-title: Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes
  publication-title: Genome Res
  doi: 10.1101/gr.115428.110
– volume: 97
  year: 2021
  ident: 2023011917075230300_ref1
  article-title: SARS-CoV-2 and the pandemic of COVID-19
  publication-title: Postgrad Med J
  doi: 10.1136/postgradmedj-2020-138386
– volume: 19
  start-page: 877
  year: 2021
  ident: 2023011917075230300_ref4
  article-title: An update on COVID-19 pandemic: the epidemiology, pathogenesis, prevention and treatment strategies
  publication-title: Expert Rev Anti Infect Ther
  doi: 10.1080/14787210.2021.1863146
– volume: 36
  start-page: 4817
  year: 2020
  ident: 2023011917075230300_ref18
  article-title: Scirpy: a Scanpy extension for analyzing single-cell T-cell receptor-sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa611
– volume: 2
  start-page: 56
  year: 2020
  ident: 2023011917075230300_ref40
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0138-9
– volume: 14
  start-page: 557
  year: 2022
  ident: 2023011917075230300_ref41
  article-title: Association between tocilizumab treatment and clinical outcomes of COVID-19 patients: a systematic review and meta-analysis
  publication-title: Aging
  doi: 10.18632/aging.203834
– volume: 18
  start-page: 23
  year: 2022
  ident: 2023011917075230300_ref8
  article-title: Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/s41574-021-00575-1
– volume: 113
  start-page: 456
  year: 2021
  ident: 2023011917075230300_ref36
  article-title: Comprehensive analysis of TCR repertoire in COVID-19 using single cell sequencing
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.12.036
– volume: 32
  start-page: 205
  year: 2022
  ident: 2023011917075230300_ref28
  article-title: Artificial intelligence for prediction of COVID-19 progression using CT imaging and clinical data
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08049-8
– volume: 53
  start-page: 442
  year: 2020
  ident: 2023011917075230300_ref11
  article-title: Next-generation sequencing of T and B cell receptor repertoires from COVID-19 patients showed signatures associated with severity of disease
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.06.024
– volume: 7
  start-page: 373
  year: 2021
  ident: 2023011917075230300_ref6
  article-title: Implications of tumor–immune coevolution on cancer evasion and optimized immunotherapy
  publication-title: Trends Cancer Res
  doi: 10.1016/j.trecan.2020.12.005
– volume: 4
  start-page: e2111182
  year: 2021
  ident: 2023011917075230300_ref44
  article-title: Underlying medical conditions associated with severe COVID-19 illness among children
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2021.11182
– volume: 15
  start-page: e1006874
  year: 2019
  ident: 2023011917075230300_ref14
  article-title: Genesis of the αβ T-cell receptor
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006874
– volume: 52
  start-page: 443
  year: 2021
  ident: 2023011917075230300_ref51
  article-title: Hypertension, Diabetes and obesity, major risk factors for death in patients with COVID-19 in Mexico
  publication-title: Arch Med Res
  doi: 10.1016/j.arcmed.2020.12.002
– volume: 17
  start-page: 2131
  year: 2020
  ident: 2023011917075230300_ref55
  article-title: XGBoost model for chronic kidney disease diagnosis
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2019.2911071
– volume: 9
  year: 2020
  ident: 2023011917075230300_ref53
  article-title: Human γδ TCR repertoires in health and disease
  publication-title: Cell
– volume: 26
  start-page: 248
  year: 2021
  ident: 2023011917075230300_ref47
  article-title: Chronic kidney disease is a very significant comorbidity for high risk of death in patients with COVID-19 in Mexico
  publication-title: Nephrol Ther
– volume: 13
  start-page: 18
  year: 1998
  ident: 2023011917075230300_ref43
  article-title: Support vector machines
  publication-title: IEEE Intell Syst Appl
  doi: 10.1109/5254.708428
– volume: 3
  start-page: 936
  year: 2021
  ident: 2023011917075230300_ref17
  article-title: The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-021-00413-z
– volume: 521
  start-page: 436
  year: 2015
  ident: 2023011917075230300_ref38
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume-title: Journal of Open Source Software
  ident: 2023011917075230300_ref39
  article-title: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
– volume: 9
  start-page: 2729
  year: 2018
  ident: 2023011917075230300_ref61
  article-title: TCR repertoire as a novel indicator for immune monitoring and prognosis assessment of patients with cervical cancer
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.02729
– volume: 9
  start-page: 2291
  year: 2018
  ident: 2023011917075230300_ref63
  article-title: Loss of T-cell multifunctionality and TCR-Vβ repertoire against Epstein-Barr virus is associated with worse prognosis and clinical parameters in HIV+ patients
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.02291
– volume: 34
  year: 2021
  ident: 2023011917075230300_ref26
  article-title: Challenges and opportunities of AI-enabled monitoring, diagnosis & prognosis: a review
  publication-title: Chin J Mech Eng
  doi: 10.1186/s10033-021-00570-7
– volume-title: BioRxiv
  ident: 2023011917075230300_ref33
  article-title: et al
– volume: 8
  start-page: 684
  year: 2020
  ident: 2023011917075230300_ref10
  article-title: Association between HLA gene polymorphisms and mortality of COVID-19: an in silico analysis
  publication-title: Immun Inflamm Dis
  doi: 10.1002/iid3.358
– volume: 9
  start-page: 47
  year: 2020
  ident: 2023011917075230300_ref24
  article-title: scRepertoire: An R-based toolkit for single-cell immune receptor analysis
  publication-title: F1000Res
  doi: 10.12688/f1000research.22139.1
– volume: 20
  start-page: 591
  year: 2020
  ident: 2023011917075230300_ref9
  article-title: Shared CD8+ T cell receptors for SARS-CoV-2
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-020-00433-7
– volume: 36
  start-page: 738
  year: 2015
  ident: 2023011917075230300_ref13
  article-title: Bioinformatic and statistical analysis of adaptive immune repertoires
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2015.09.006
– volume: 471
  start-page: 61
  year: 2020
  ident: 2023011917075230300_ref25
  article-title: Artificial intelligence in cancer diagnosis and prognosis: opportunities and challenges
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2019.12.007
– volume: 62
  start-page: e45
  year: 2020
  ident: 2023011917075230300_ref48
  article-title: Chronic heart diseases as the most prevalent comorbidities among deaths by COVID-19 in Brazil
  publication-title: Rev Inst Med Trop Sao Paulo
  doi: 10.1590/s1678-9946202062045
– volume: 2
  start-page: 178
  year: 2011
  ident: 2023011917075230300_ref67
  article-title: IgH gene rearrangements as plasma biomarkers in non-Hodgkin’s lymphoma patients
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.235
– volume: 7
  year: 2021
  ident: 2023011917075230300_ref35
  article-title: A framework for highly multiplexed dextramer mapping and prediction of T cell receptor sequences to antigen specificity
  publication-title: Sci Adv
– volume: 114
  start-page: 4099
  year: 2009
  ident: 2023011917075230300_ref15
  article-title: Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells
  publication-title: Blood
  doi: 10.1182/blood-2009-04-217604
– volume: 31
  start-page: 1
  year: 2021
  ident: 2023011917075230300_ref60
  article-title: Predictors of COVID-19 severity: a literature review
  publication-title: Rev Med Virol
  doi: 10.1002/rmv.2146
– year: 2022
  ident: 2023011917075230300_ref19
  article-title: immunomind/immunarch: Immunarch 0.7.0
– volume: 8
  start-page: e1003
  year: 2020
  ident: 2023011917075230300_ref2
  article-title: Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study
  publication-title: Lancet Glob Health
  doi: 10.1016/S2214-109X(20)30264-3
– volume: 21
  start-page: 3
  year: 2021
  ident: 2023011917075230300_ref59
  article-title: Treatment and prognosis of COVID-19: current scenario and prospects (Review)
  publication-title: Exp Ther Med
– volume: 10
  year: 2020
  ident: 2023011917075230300_ref20
  article-title: A large-scale database of T-cell receptor beta (TCRβ) sequences and binding associations from natural and synthetic exposure to SARS-CoV-2
  publication-title: Res Sq
– volume: 3
  start-page: e111
  year: 2013
  ident: 2023011917075230300_ref62
  article-title: Loss of TCR-beta F1 and/or EZRIN expression is associated with unfavorable prognosis in nodal peripheral T-cell lymphomas
  publication-title: Blood Cancer J
  doi: 10.1038/bcj.2013.10
– volume: 7
  start-page: S4
  issue: Suppl 2
  year: 2005
  ident: 2023011917075230300_ref7
  article-title: The role of the T cell in autoimmune inflammation
  publication-title: Arthritis Res Ther
  doi: 10.1186/ar1703
– volume: 12
  start-page: 1605
  year: 2021
  ident: 2023011917075230300_ref32
  article-title: DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21879-w
– volume: 11
  start-page: e1004503
  year: 2015
  ident: 2023011917075230300_ref22
  article-title: VDJtools: Unifying post-analysis of T cell receptor repertoires
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004503
– volume-title: arXiv
  year: 2016
  ident: 2023011917075230300_ref37
– volume: 9
  start-page: 3621
  year: 2021
  ident: 2023011917075230300_ref50
  article-title: Asthma disease status, COPD, and COVID-19 severity in a large multiethnic population
  publication-title: J Allergy Clin Immunol Pract
  doi: 10.1016/j.jaip.2021.07.030
– volume: 69
  start-page: 2419
  year: 2021
  ident: 2023011917075230300_ref27
  article-title: Association of frailty with outcomes in individuals with COVID-19: a living review and meta-analysis
  publication-title: J Am Geriatr Soc
  doi: 10.1111/jgs.17299
– volume: 18
  start-page: E66
  year: 2021
  ident: 2023011917075230300_ref3
  article-title: Underlying medical conditions and severe illness among 540,667 adults hospitalized with COVID-19, March 2020-March 2021
  publication-title: Prev Chronic Dis
  doi: 10.5888/pcd18.210123
– year: 2019
  ident: 2023011917075230300_ref42
  article-title: TabNet: Attentive Interpretable Tabular Learning
– volume: 11
  start-page: 4968
  year: 2020
  ident: 2023011917075230300_ref29
  article-title: Early prediction of disease progression in COVID-19 pneumonia patients with chest CT and clinical characteristics
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18786-x
– volume: 10
  start-page: e1340
  year: 2021
  ident: 2023011917075230300_ref68
  article-title: Landscape of T-cell repertoires with public COVID-19-associated T-cell receptors in pre-pandemic risk cohorts
  publication-title: Clin Transl Immunol
  doi: 10.1002/cti2.1340
– volume-title: Nat Biomed Eng
  ident: 2023011917075230300_ref58
  article-title: Explainable machine learning predictions to help anesthesiologists prevent hypoxemia during surgery
  doi: 10.1101/206540
– volume: 150
  start-page: 190
  year: 2021
  ident: 2023011917075230300_ref45
  article-title: Determinants of enhanced vulnerability to coronavirus disease 2019 in UK patients with cancer: a European study
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2021.03.035
– volume: 22
  start-page: 362
  year: 2020
  ident: 2023011917075230300_ref56
  article-title: An interpretable prediction model for identifying N7-methylguanosine sites based on XGBoost and SHAP
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2020.08.022
– volume: 15
  start-page: 705
  year: 2021
  ident: 2023011917075230300_ref49
  article-title: Pre-existing COPD is associated with an increased risk of mortality and severity in COVID-19: a rapid systematic review and meta-analysis
  publication-title: Expert Rev Respir Med
  doi: 10.1080/17476348.2021.1866547
– volume: 5
  start-page: 603
  year: 2014
  ident: 2023011917075230300_ref12
  article-title: Characterization of human αβTCR repertoire and discovery of D-D fusion in TCRβ chains
  publication-title: Protein Cell
  doi: 10.1007/s13238-014-0060-1
– volume: 31
  start-page: 3356
  year: 2015
  ident: 2023011917075230300_ref21
  article-title: Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv359
– volume: 547
  start-page: 89
  year: 2017
  ident: 2023011917075230300_ref34
  article-title: Quantifiable predictive features define epitope-specific T cell receptor repertoires
  publication-title: Nature
  doi: 10.1038/nature22383
– volume: 10
  start-page: 1077
  year: 2019
  ident: 2023011917075230300_ref54
  article-title: Gene expression value prediction based on XGBoost algorithm
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.01077
– volume: 2
  start-page: 25
  year: 2020
  ident: 2023011917075230300_ref31
  article-title: The rise of artificial intelligence in healthcare applications
  publication-title: Artif Intell Med
– volume: 323
  start-page: 1775
  year: 2020
  ident: 2023011917075230300_ref46
  article-title: Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy
  publication-title: JAMA
SSID ssj0020781
Score 2.3739018
Snippet Abstract Underlying medical conditions, such as cancer, kidney disease and heart failure, are associated with a higher risk for severe COVID-19. Accurate...
Underlying medical conditions, such as cancer, kidney disease and heart failure, are associated with a higher risk for severe COVID-19. Accurate classification...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Artificial Intelligence
Asthma
Autoimmune diseases
Cancer
Cardiovascular disease
Chronic obstructive pulmonary disease
Congestive heart failure
Coronary artery disease
COVID-19
Diabetes mellitus
Health services
Heart failure
Humans
J gene
Kidney diseases
Kidneys
Lung diseases
Lymphocytes T
Monoclonal antibodies
Patients
Prognosis
Pulmonary artery
Renal failure
ROC Curve
Segments
Software
Source code
Title Interpretable artificial intelligence model for accurate identification of medical conditions using immune repertoire
URI https://www.ncbi.nlm.nih.gov/pubmed/36567255
https://www.proquest.com/docview/3113462064
https://www.proquest.com/docview/2758354723
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA5SELyIb6tVI3gSFrt5bo4iFhHUi0JvSx5TKWhb2u7Bf-9ks61P9LxZAt9sdr7JzHxDyJkbFM5YUJlCf5MJyVlmjGQZA6GNNgF4feF2d69unsRtX_abAtnZLyl8wy_c0F04Z72UsZcc3W-UyH986C_jqqhXk5qIdBbV3Zs2vG_vfnE8X5rZfnDK2rf0Nsh6QwrpZbLiJlmB0RZZTWMi37ZJ9VEZ6F6ARmMn3Qc6_CSoSeuhNhRJKLXeV1ECgg5DUwxU40_HA_qaEjMUw-CQqrVoLH1_psPYKAJ0ChOYzsf4I9whT73rx6ubrBmXkHkuinmmhLY65EEyRBx817rCyMIqyJnHMEkjDAgEy_0gYNCGtIXbLnCrXAE6-GD5LmmNxiPYJ9Q4fFMqYyAokYM3wZhBjs7OI6FxQbTJ-QLL0jda4nGkxUuZctq8RODLBvg2OVsuniQJjd-XnaBR_l7RWRisbE7arOR5zoViyKza5HT5GM9ITHzYEYyrWckwKOJSaMbbZC8ZerkPR0KrMa46-Hf7Q7IWZ83H-5fcdEhrPq3gCBnJ3B3X3-M73NTf4w
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+artificial+intelligence+model+for+accurate+identification+of+medical+conditions+using+immune+repertoire&rft.jtitle=Briefings+in+bioinformatics&rft.au=Zhao%2C+Yu&rft.au=He%2C+Bing&rft.au=Xu%2C+Zhimeng&rft.au=Zhang%2C+Yidan&rft.date=2023-01-19&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbac555&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbac555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon