Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing

Desert sands in Iran, which usually contain small amounts of silt and sulfate, do not have significant strength, and thus, are not suitable for foundations or road construction. This paper applies the results of 90 Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR) tests on sul...

Full description

Saved in:
Bibliographic Details
Published inSoils and foundations Vol. 58; no. 1; pp. 34 - 49
Main Authors Ghorbani, Ali, Hasanzadehshooiili, Hadi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Desert sands in Iran, which usually contain small amounts of silt and sulfate, do not have significant strength, and thus, are not suitable for foundations or road construction. This paper applies the results of 90 Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR) tests on sulfate silty sand stabilized with different lime and microsilica percentages as the two main stabilizers. Based on the obtained databank from the tests, Back Propagation Artificial Neural Network (BP-ANN) and Evolutionary Polynomial Regression (EPR) models are developed to predict the UCS and CBR values. Assessing the different architectures (one- and two-hidden layer neural networks) and functions (polynomial, exponential and hyperbolic tangent functions for the EPR models), a BP-ANN model with 5-5-8-1 layers and an EPR model with a hyperbolic tangent function showing high accuracy are introduced as the best models for predicting the UCS. Through a sensitivity analysis, the most and the least influential parameters on the UCS are presented and the results are further discussed using scanning electron microscopy (SEM). The presented EPR models can be useful for practitioners when selecting the optimized percentage of stabilizers or for controlling purposes in the QC/QA phases of deep soil mixing projects. In this regard, the application of the proposed models to the design of deep soil mixing is presented and elaborated using an example. In this example, the optimum and the best practical amounts of stabilizers are obtained through the graphical optimization of the models. In addition, by applying the developed relationships to a new case, the comprehensiveness of the developed relationships is further declared and it is shown that the proposed relationships are practical and can be efficiently used in the preliminary design stage.
AbstractList Desert sands in Iran, which usually contain small amounts of silt and sulfate, do not have significant strength, and thus, are not suitable for foundations or road construction. This paper applies the results of 90 Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR) tests on sulfate silty sand stabilized with different lime and microsilica percentages as the two main stabilizers. Based on the obtained databank from the tests, Back Propagation Artificial Neural Network (BP-ANN) and Evolutionary Polynomial Regression (EPR) models are developed to predict the UCS and CBR values. Assessing the different architectures (one- and two-hidden layer neural networks) and functions (polynomial, exponential and hyperbolic tangent functions for the EPR models), a BP-ANN model with 5-5-8-1 layers and an EPR model with a hyperbolic tangent function showing high accuracy are introduced as the best models for predicting the UCS. Through a sensitivity analysis, the most and the least influential parameters on the UCS are presented and the results are further discussed using scanning electron microscopy (SEM). The presented EPR models can be useful for practitioners when selecting the optimized percentage of stabilizers or for controlling purposes in the QC/QA phases of deep soil mixing projects. In this regard, the application of the proposed models to the design of deep soil mixing is presented and elaborated using an example. In this example, the optimum and the best practical amounts of stabilizers are obtained through the graphical optimization of the models. In addition, by applying the developed relationships to a new case, the comprehensiveness of the developed relationships is further declared and it is shown that the proposed relationships are practical and can be efficiently used in the preliminary design stage.
Author Hasanzadehshooiili, Hadi
Ghorbani, Ali
Author_xml – sequence: 1
  givenname: Ali
  surname: Ghorbani
  fullname: Ghorbani, Ali
  email: ghorbani@guilan.ac.ir
– sequence: 2
  givenname: Hadi
  surname: Hasanzadehshooiili
  fullname: Hasanzadehshooiili, Hadi
  email: Hasanzadeh@phd.guilan.ac.ir, h.hasanzadeh.shooiili@gmail.com
BookMark eNqFkMtOwzAQRb0oEm3hC9j4BxLsJHUSIRYlKg-pKlWha8u1J-AqL9kuovwBf40TWLGAlTUenXs1Z4JGTdsAQheUhJRQdrkPrWhUGUaEpiGlISHRCI0JibOAZISdoom1e0KY39Mx-lwbUFo63Ta4LfG2eMKexsXNph9rLU1rdaWlCCpdA7ZO7Pz4AQrbQ1UK57905Y6478QHq5sXPF-thozFeoPrVkFlr7Douj5kqHEtdq-AFUCHbasr3_LuuTN0UorKwvnPO0Xb28VzcR8sH-8eivkykHGSuYBRmilGIU8yUBCXSaLyiOSRFFkagZyJVMW5YEyWarbLaCpYLmMxAyAqk1FO4imKv3P706yBkndG18IcOSW8N8j3fDDIe4OcUu4Neir_RUnthnucEbr6h73-Zr0KeNNguJUaGunFG5COq1b_yX8B6KWTRQ
CitedBy_id crossref_primary_10_1007_s10706_021_01805_z
crossref_primary_10_1155_2019_4257530
crossref_primary_10_3390_su15108231
crossref_primary_10_1007_s10163_023_01772_y
crossref_primary_10_1016_j_enggeo_2021_106239
crossref_primary_10_1007_s00521_022_06931_0
crossref_primary_10_1080_01694243_2021_1898857
crossref_primary_10_1007_s11629_024_8729_2
crossref_primary_10_3390_ma15134386
crossref_primary_10_7250_bjrbe_2018_13_428
crossref_primary_10_1080_19648189_2023_2276133
crossref_primary_10_1007_s12517_022_10593_6
crossref_primary_10_1016_j_sandf_2020_02_010
crossref_primary_10_1061_IJGNAI_GMENG_9203
crossref_primary_10_3390_urbansci8010004
crossref_primary_10_1007_s10064_023_03537_1
crossref_primary_10_1007_s10706_023_02416_6
crossref_primary_10_1007_s11440_021_01420_5
crossref_primary_10_1007_s12145_025_01731_1
crossref_primary_10_1088_1757_899X_736_2_022108
crossref_primary_10_1016_j_asoc_2021_107595
crossref_primary_10_1080_1064119X_2018_1550543
crossref_primary_10_1016_j_jclepro_2022_133587
crossref_primary_10_1007_s41024_024_00496_2
crossref_primary_10_1007_s41939_022_00137_6
crossref_primary_10_3390_buildings14030641
crossref_primary_10_1016_j_clay_2019_105390
crossref_primary_10_1007_s41207_022_00308_4
crossref_primary_10_1007_s42107_024_01179_6
crossref_primary_10_1007_s40098_024_01113_2
crossref_primary_10_1016_j_istruc_2024_106837
crossref_primary_10_1371_journal_pone_0301075
crossref_primary_10_1007_s12665_023_11049_0
crossref_primary_10_1016_j_compgeo_2022_105067
crossref_primary_10_1007_s13369_020_05041_0
crossref_primary_10_1007_s11440_022_01472_1
crossref_primary_10_1016_j_trgeo_2021_100520
crossref_primary_10_34220_issn_2222_7962_2024_1_7
crossref_primary_10_3390_ma15249029
crossref_primary_10_1061__ASCE_MT_1943_5533_0003845
crossref_primary_10_3390_buildings13010255
crossref_primary_10_1080_19386362_2020_1862539
crossref_primary_10_1007_s12517_020_05493_6
crossref_primary_10_1016_j_gsf_2020_02_014
crossref_primary_10_1007_s00366_021_01313_x
crossref_primary_10_1007_s12517_021_07055_w
crossref_primary_10_1017_dce_2025_5
crossref_primary_10_1007_s11668_021_01232_5
crossref_primary_10_1016_j_jtte_2021_03_005
crossref_primary_10_1007_s40098_023_00780_x
crossref_primary_10_1016_j_conbuildmat_2024_137794
crossref_primary_10_1016_j_trgeo_2024_101247
crossref_primary_10_1051_bioconf_202515104005
crossref_primary_10_3390_buildings14020352
crossref_primary_10_3390_ma16062194
crossref_primary_10_1038_s41598_024_61313_x
crossref_primary_10_1007_s41939_021_00092_8
crossref_primary_10_1007_s41939_023_00336_9
crossref_primary_10_1080_17486025_2019_1699668
crossref_primary_10_1016_j_conbuildmat_2024_138046
crossref_primary_10_1016_j_trgeo_2021_100591
crossref_primary_10_1007_s10064_023_03226_z
crossref_primary_10_1007_s41403_021_00273_4
crossref_primary_10_1007_s41062_020_00422_8
crossref_primary_10_1007_s42947_024_00489_x
crossref_primary_10_1007_s40515_024_00372_z
crossref_primary_10_1007_s12145_023_00979_9
crossref_primary_10_1016_j_heliyon_2024_e31719
crossref_primary_10_1016_j_jece_2018_09_045
crossref_primary_10_1080_17486025_2022_2040606
crossref_primary_10_3390_app8050841
crossref_primary_10_1007_s12040_024_02374_4
crossref_primary_10_3390_ma15134575
crossref_primary_10_1007_s11831_023_10024_z
crossref_primary_10_1016_j_matpr_2023_05_097
crossref_primary_10_1108_EC_10_2020_0576
crossref_primary_10_1007_s40098_022_00619_x
crossref_primary_10_1088_1757_899X_1273_1_012018
crossref_primary_10_1007_s42107_024_01023_x
crossref_primary_10_1007_s42947_022_00237_z
crossref_primary_10_1007_s11709_021_0689_9
crossref_primary_10_1080_10298436_2023_2176494
crossref_primary_10_1061__ASCE_MT_1943_5533_0002727
crossref_primary_10_3390_ma14216516
crossref_primary_10_1016_j_conbuildmat_2019_117295
crossref_primary_10_1016_j_mtcomm_2025_111627
Cites_doi 10.1016/j.conbuildmat.2012.04.063
10.3846/13923730.2016.1271010
10.1061/(ASCE)GM.1943-5622.0000370
10.1016/j.conbuildmat.2013.05.109
10.1007/s12517-013-0858-9
10.1061/(ASCE)GM.1943-5622.0000483
10.1023/A:1015066903985
10.3846/13923730.2012.724029
10.1016/j.enggeo.2015.05.007
10.1061/40663(2003)36
10.1061/(ASCE)GM.1943-5622.0000323
10.2166/hydro.2006.020b
10.1061/(ASCE)GT.1943-5606.0000502
10.1108/02644400810891526
10.1016/j.conbuildmat.2012.08.011
10.1016/j.enggeo.2015.08.020
10.1016/j.enggeo.2014.11.014
10.1016/j.coldregions.2009.03.011
10.1016/j.enggeo.2010.05.008
10.1016/j.enggeo.2013.05.016
10.1016/j.ijrmms.2004.03.095
10.1016/j.conbuildmat.2015.03.060
10.1061/(ASCE)1532-3641(2010)10:1(1)
10.1016/j.enggeo.2014.08.026
10.3846/13923730.2014.897642
10.1016/j.cageo.2012.03.002
10.1016/j.acme.2012.07.005
10.1016/j.enggeo.2014.03.001
10.1016/j.soildyn.2004.09.001
10.3846/bjrbe.2015.08
10.1061/(ASCE)1532-3641(2010)10:5(171)
10.1016/j.conbuildmat.2004.08.001
10.1007/s11771-012-1370-1
10.1016/j.soildyn.2013.12.001
10.1061/(ASCE)GT.1943-5606.0000188
10.1016/S0009-2509(03)00222-7
10.1016/j.conbuildmat.2013.01.016
10.1016/j.cageo.2011.04.015
10.1016/j.conbuildmat.2015.03.059
10.1016/j.conbuildmat.2007.01.011
10.1016/j.conbuildmat.2014.04.086
10.1016/j.enggeo.2015.03.008
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.sandf.2017.11.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 49
ExternalDocumentID 10_1016_j_sandf_2017_11_002
S0038080617301543
GroupedDBID -~X
0R~
0SF
123
2WC
4.4
457
5B4
6I.
7.U
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIKJ
AAKDD
AALRI
AAXUO
ABCQX
ABMAC
ABTAH
ABVKL
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFPKN
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IXB
JSI
JSP
L7B
M41
NCXOZ
O-L
O9-
OK1
P2P
RIG
RJT
ROL
RYR
RZJ
SSZ
TKC
WBO
Y6R
ZY4
~02
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c348t-6118d61e948ede3f44d92092ca872ec5a7d39a66cfd5b817a69c3a5ee0d8c2903
IEDL.DBID IXB
ISSN 0038-0806
IngestDate Tue Jul 01 04:17:11 EDT 2025
Thu Apr 24 23:05:43 EDT 2025
Fri Feb 23 02:45:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Microsilica-lime stabilization
Sensitivity analysis
Neural networks
Evolutionary polynomial regression
Deep soil mixing
California bearing ratio
Sulfate silty sand
Unconfined compressive strength
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-6118d61e948ede3f44d92092ca872ec5a7d39a66cfd5b817a69c3a5ee0d8c2903
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0038080617301543
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_sandf_2017_11_002
crossref_citationtrail_10_1016_j_sandf_2017_11_002
elsevier_sciencedirect_doi_10_1016_j_sandf_2017_11_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationTitle Soils and foundations
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ghorbani, Hasanzadehshooiili, Karimi, Daghigh, Medzvieckas (b0110) 2015; 10
Jha, Sivapullaiah (b0150) 2015; 198
Hasanzadehshooiili, Lakirouhani, Šapalas (b0145) 2012; 12
Moayed, Izadi, Heidari (b0210) 2012; 19
Ali, Guang, Ibrahim (b0020) 2014; 183
Wang, Man, Jin (b0275) 2016; 84
Samui, Sitharam (b0235) 2010; 10
Mirzahosseini, Najjar, Alavi, Gandomi (b0205) 2015
Hasanzadehshooiili, Lakirouhani, Medzvieckas (b0135) 2012; 18
Tastan, Edil, Benson, Aydilek (b0265) 2011; 137
Ahangar-Asr, Faramarzi, Mottaghifard, Javadi (b0010) 2011; 37
Topolnicki, M., Polska, K., Pandrea, P., 2012. Design of in-situ soil mixing. In: In Proc. of: ISSMGE - TC 211 International Symposium on Ground Improvement IS-GI Brussels.
Rezania, Javadi, Giustolisi (b0220) 2011; 25
DIN (Deutsches Institut für Normung), 2011. E DIN 4093 Entwurf und Bemessung von Bodenverfestigungen—HerstellungmitDüsenstrahl-, Deep-Mixing- oderInjektions-Verfahren, Beuth Verlag.
Ghorbani, Karimi (b0120) 2014; 30–2
Sadowski, Hoła (b0225) 2014; 20
Ghorbani, Hasanzadehshooiili (b0100) 2017; 23
Lian, Zeng, Yao, Tang (b0180) 2015; 186
Zhang, Mavroulidou, Gunn (b0295) 2015; 193
Yurdakul, Akdas (b0285) 2013; 47
Taki, O., 2003. Strength properties of soil cement produced by deep mixing. In: Proc. III Int. Conf. Grouting and Ground Treatment, ASCE Geotechnical Special Publ. No. 120, pp. 646–657.
Makki-Szymkiewicza, Hibouche, Taibi, Herrier, Lesueur, Fleureau (b0195) 2015; 191
ASTM D1883-16 (b0030) 2016
Araei (b0025) 2014
Yang, Rosenbaum (b0280) 2002; 20
Basha, Hashim, Mahmud, Muntohar (b0050) 2005; 19
Demir, Baspinar (b0080) 2008; 22
Shahin (b0245) 2014
ASTM D5102-09 (b0040) 2009
Celik, Nalbantoglu (b0065) 2013; 163
Kulatilake, Qiong, Hudaverdi, Kuzu (b0170) 2010; 114
Hasanzadehshooiili, Mahinroosta, Lakirouhani, Oshtaghi (b0140) 2014; 7
Abd El-Aziz, M., Abo-Hashema, M., El-Shourbagy, M., 2004. The effect of lime-silica fume stabilizer on engineering properties of clayey subgrade. In: Proc., 4th International Engineering Conference, Mansoura University, Egypt, paper no. 96.
Alemdag, Gurocak, Cevik, Cabalar, Gokceoglu (b0015) 2015
Shafabakhsh, Jafari Ani, Talebsafa (b0240) 2015; 85
Kohestani, Hassanlourad (b0165) 2015
Duan, Kou, Poon (b0095) 2013; 40
Kalkan (b0155) 2009; 58
Ghorbani, Jafarian, Maghsoudi (b0115) 2012; 44
Giustolisi, Savic (b0125) 2006; 8
Bahmani, Huat, Asadi, Farzadnia (b0045) 2014; 64
Building Center of Japan (BCJ), 1997. Design and Quality Control Guideline for Buildings.
Lin, Shih, Liu (b0185) 2003; 58
ASTM D2487-11 (b0035) 2011
Simpson, P.K., 1990. Artificial neural system: foundation, paradigms, applications and implementations. Influence of geological conditions on the powder factor for tunnel blasting. Int. J. Rock Mech. Min. Sci. 41, 533–538 (New York: Pergamon Press. 18. Yong-Hun, J., Chung-In, L.).
Demuth, Beal, Hagan (b0085) 1996
Golzar, Jalali-Arani, Nematollahi (b0130) 2012; 37
Karimi, M., Ghorbani, A., Daghigh, Y., Kiaalhosseini, S., Rabbani, P., 2011. Stabilization of silty sand soils with lime and microsilica admixture in presence of sulfates. In: Proc., 2011 Pan-Am CGS Geotechnical Conference, Toronto, Canada.
Madhyannapu, R.S., Puppala, A.J., Nazarian, S., Yuan, D., 2010. Quality assessment and quality control of deep soil mixing construction for stabilizing expansive subsoils. J. Geotech. Geoenviron. Eng. 136(1).
Sadrmomtazi, Sobhani, Mirgozar (b0230) 2013; 42
Chegenizadeh, Nikraz (b0070) 2012; 1
Coastal Development Institute of Technology (CDIT) (b0075) 2002
McCarthy, Csetenyi, Sachdeva, Dhir (b0200) 2014; 174
Zaman, Solanki, Ebrahimi, White (b0290) 2010; 10
Ghorbani, Hasanzadehshooiili, Ghamari, Medzvieckas (b0105) 2014; 58
Neaupane, Adhikari (b0215) 2006; 21
Baziar, Ghorbani (b0055) 2005; 25
Sherwood, P.T., 1993. Soil stabilization with cement and lime. The state of the art review. Her Majesty Stationary Office. Transport Research Laboratory (TRL). Dept. of Transportation, 153p. ISBN: 0-11-551190-3.
Lehmann, E.L., Casella, G., 1998. Theory of Point Estimation, second ed. Springer, New York. ISBN 0-387-98502-6. MR 1639875.
Sadowski (10.1016/j.sandf.2017.11.002_b0225) 2014; 20
Rezania (10.1016/j.sandf.2017.11.002_b0220) 2011; 25
Zhang (10.1016/j.sandf.2017.11.002_b0295) 2015; 193
Ali (10.1016/j.sandf.2017.11.002_b0020) 2014; 183
10.1016/j.sandf.2017.11.002_b0270
Ghorbani (10.1016/j.sandf.2017.11.002_b0110) 2015; 10
Basha (10.1016/j.sandf.2017.11.002_b0050) 2005; 19
Celik (10.1016/j.sandf.2017.11.002_b0065) 2013; 163
Sadrmomtazi (10.1016/j.sandf.2017.11.002_b0230) 2013; 42
Demuth (10.1016/j.sandf.2017.11.002_b0085) 1996
Kohestani (10.1016/j.sandf.2017.11.002_b0165) 2015
Tastan (10.1016/j.sandf.2017.11.002_b0265) 2011; 137
Ghorbani (10.1016/j.sandf.2017.11.002_b0100) 2017; 23
Wang (10.1016/j.sandf.2017.11.002_b0275) 2016; 84
Lian (10.1016/j.sandf.2017.11.002_b0180) 2015; 186
Shafabakhsh (10.1016/j.sandf.2017.11.002_b0240) 2015; 85
10.1016/j.sandf.2017.11.002_b0005
Chegenizadeh (10.1016/j.sandf.2017.11.002_b0070) 2012; 1
Kulatilake (10.1016/j.sandf.2017.11.002_b0170) 2010; 114
10.1016/j.sandf.2017.11.002_b0160
Kalkan (10.1016/j.sandf.2017.11.002_b0155) 2009; 58
ASTM D2487-11 (10.1016/j.sandf.2017.11.002_b0035) 2011
Hasanzadehshooiili (10.1016/j.sandf.2017.11.002_b0145) 2012; 12
Makki-Szymkiewicza (10.1016/j.sandf.2017.11.002_b0195) 2015; 191
10.1016/j.sandf.2017.11.002_b0090
ASTM D5102-09 (10.1016/j.sandf.2017.11.002_b0040) 2009
Hasanzadehshooiili (10.1016/j.sandf.2017.11.002_b0135) 2012; 18
Mirzahosseini (10.1016/j.sandf.2017.11.002_b0205) 2015
ASTM D1883-16 (10.1016/j.sandf.2017.11.002_b0030) 2016
Giustolisi (10.1016/j.sandf.2017.11.002_b0125) 2006; 8
Yurdakul (10.1016/j.sandf.2017.11.002_b0285) 2013; 47
Ghorbani (10.1016/j.sandf.2017.11.002_b0105) 2014; 58
10.1016/j.sandf.2017.11.002_b0250
10.1016/j.sandf.2017.11.002_b0175
Moayed (10.1016/j.sandf.2017.11.002_b0210) 2012; 19
10.1016/j.sandf.2017.11.002_b0255
Samui (10.1016/j.sandf.2017.11.002_b0235) 2010; 10
Bahmani (10.1016/j.sandf.2017.11.002_b0045) 2014; 64
Shahin (10.1016/j.sandf.2017.11.002_b0245) 2014
10.1016/j.sandf.2017.11.002_b0060
Alemdag (10.1016/j.sandf.2017.11.002_b0015) 2015
Ghorbani (10.1016/j.sandf.2017.11.002_b0115) 2012; 44
Duan (10.1016/j.sandf.2017.11.002_b0095) 2013; 40
Demir (10.1016/j.sandf.2017.11.002_b0080) 2008; 22
Ghorbani (10.1016/j.sandf.2017.11.002_b0120) 2014; 30–2
10.1016/j.sandf.2017.11.002_b0260
Coastal Development Institute of Technology (CDIT) (10.1016/j.sandf.2017.11.002_b0075) 2002
Golzar (10.1016/j.sandf.2017.11.002_b0130) 2012; 37
Neaupane (10.1016/j.sandf.2017.11.002_b0215) 2006; 21
Zaman (10.1016/j.sandf.2017.11.002_b0290) 2010; 10
McCarthy (10.1016/j.sandf.2017.11.002_b0200) 2014; 174
Lin (10.1016/j.sandf.2017.11.002_b0185) 2003; 58
10.1016/j.sandf.2017.11.002_b0190
Ahangar-Asr (10.1016/j.sandf.2017.11.002_b0010) 2011; 37
Jha (10.1016/j.sandf.2017.11.002_b0150) 2015; 198
Baziar (10.1016/j.sandf.2017.11.002_b0055) 2005; 25
Araei (10.1016/j.sandf.2017.11.002_b0025) 2014
Yang (10.1016/j.sandf.2017.11.002_b0280) 2002; 20
Hasanzadehshooiili (10.1016/j.sandf.2017.11.002_b0140) 2014; 7
References_xml – volume: 10
  start-page: 171
  year: 2010
  end-page: 180
  ident: b0235
  article-title: Site characterization model using artificial neural network and kriging
  publication-title: Int. J. Geomech.
– reference: Madhyannapu, R.S., Puppala, A.J., Nazarian, S., Yuan, D., 2010. Quality assessment and quality control of deep soil mixing construction for stabilizing expansive subsoils. J. Geotech. Geoenviron. Eng. 136(1).
– volume: 7
  start-page: 2303
  year: 2014
  end-page: 2314
  ident: b0140
  article-title: Using artificial neural network (ANN) in prediction of collapse settlements of sandy gravels
  publication-title: Arab. J. Geosci.
– year: 2015
  ident: b0015
  article-title: Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming
  publication-title: Eng. Geol.
– volume: 19
  start-page: 448
  year: 2005
  end-page: 453
  ident: b0050
  article-title: Stabilization of residual soil with rice husk ash and cement
  publication-title: Constr. Build. Mater.
– volume: 183
  start-page: 230
  year: 2014
  end-page: 240
  ident: b0020
  article-title: Empirical relations between compressive strength and microfabric properties of amphibolites using multivariate regression, fuzzy inference and neural networks: a comparative study
  publication-title: Eng. Geol.
– year: 2015
  ident: b0205
  article-title: Next-generation models for evaluation of the flow number of asphalt mixtures
  publication-title: Int. J. Geomech.
– volume: 30–2
  start-page: 77
  year: 2014
  end-page: 85
  ident: b0120
  article-title: تثبیت ماسه سیلتی مسئله دار با استفاده از میکروسیلیس و آهک جهت کاهش میزان تورم و افزایش توان باربری
  publication-title: Sharif J. Sci. Technol.-Civ. Eng.
– volume: 193
  start-page: 320
  year: 2015
  end-page: 336
  ident: b0295
  article-title: Mechanical properties and behaviour of a partially saturated lime-treated, high plasticity clay
  publication-title: Eng. Geol.
– volume: 47
  start-page: 1010
  year: 2013
  end-page: 1019
  ident: b0285
  article-title: Modeling uniaxial compressive strength of building stones using non-destructive test results as neural networks input parameters
  publication-title: Constr. Build. Mater.
– reference: Lehmann, E.L., Casella, G., 1998. Theory of Point Estimation, second ed. Springer, New York. ISBN 0-387-98502-6. MR 1639875.
– volume: 21
  start-page: 15
  year: 2006
  end-page: 159
  ident: b0215
  article-title: Prediction of tunneling-induced ground movement with the multi-layer perceptron
  publication-title: Int. J. Tunneling Undergr. Space Technol.
– volume: 40
  start-page: 1200
  year: 2013
  end-page: 1206
  ident: b0095
  article-title: Prediction of compressive strength of recycled aggregate concrete using artificial neural networks
  publication-title: Constr. Build. Mater.
– year: 2016
  ident: b0030
  article-title: Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils
– volume: 163
  start-page: 20
  year: 2013
  end-page: 25
  ident: b0065
  article-title: Effects of ground granulated blast furnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils
  publication-title: Eng. Geol.
– volume: 114
  start-page: 298
  year: 2010
  end-page: 311
  ident: b0170
  article-title: Mean particle size prediction in rock blast fragmentation using neural networks
  publication-title: Eng. Geol.
– year: 1996
  ident: b0085
  article-title: Neural Network Toolbox 5 User’s Guide
– year: 2015
  ident: b0165
  article-title: Modeling the mechanical behavior of carbonate sands using artificial neural networks and support vector machines
  publication-title: Int. J. Geomech.
– volume: 22
  start-page: 1299
  year: 2008
  end-page: 1304
  ident: b0080
  article-title: Effect of silica fume and expanded perlite addition on the technical properties of the fly ash-lime-gypsum mixture
  publication-title: Constr. Build. Mater.
– volume: 37
  start-page: 822
  year: 2012
  end-page: 831
  ident: b0130
  article-title: Statistical investigation on physical–mechanical properties of base and polymer modified bitumen using Artificial Neural Network
  publication-title: Constr. Build. Mater.
– volume: 58
  start-page: 3659
  year: 2003
  end-page: 3668
  ident: b0185
  article-title: Characteristics and reactivities of Ca(OH)
  publication-title: Chem. Eng. Sci.
– volume: 20
  start-page: 561
  year: 2014
  end-page: 569
  ident: b0225
  article-title: New nondestructive way of identifying the values of pull-off adhesion between concrete layers in floors
  publication-title: J. Civ. Eng. Manage.
– volume: 58
  start-page: 21
  year: 2014
  end-page: 36
  ident: b0105
  article-title: Comprehensive three dimensional finite element analysis, parametric study and sensitivity analysis on the seismic performance of soil-micropile-superstructure interaction
  publication-title: J. Soil Dyn. Earthq. Eng.
– volume: 186
  start-page: 91
  year: 2015
  end-page: 99
  ident: b0180
  article-title: Multiple neural networks switched prediction for landslide displacement
  publication-title: Eng. Geol.
– reference: Simpson, P.K., 1990. Artificial neural system: foundation, paradigms, applications and implementations. Influence of geological conditions on the powder factor for tunnel blasting. Int. J. Rock Mech. Min. Sci. 41, 533–538 (New York: Pergamon Press. 18. Yong-Hun, J., Chung-In, L.).
– volume: 23
  start-page: 773
  year: 2017
  end-page: 786
  ident: b0100
  article-title: A novel solution for ground reaction curve of tunnels in elastoplastic strain softening rock masses
  publication-title: J. Civ. Eng. Manage.
– volume: 198
  start-page: 53
  year: 2015
  end-page: 64
  ident: b0150
  article-title: Mechanism of improvement in the strength and volume change behavior of lime stabilized soil
  publication-title: Eng. Geol.
– reference: Abd El-Aziz, M., Abo-Hashema, M., El-Shourbagy, M., 2004. The effect of lime-silica fume stabilizer on engineering properties of clayey subgrade. In: Proc., 4th International Engineering Conference, Mansoura University, Egypt, paper no. 96.
– reference: Karimi, M., Ghorbani, A., Daghigh, Y., Kiaalhosseini, S., Rabbani, P., 2011. Stabilization of silty sand soils with lime and microsilica admixture in presence of sulfates. In: Proc., 2011 Pan-Am CGS Geotechnical Conference, Toronto, Canada.
– volume: 137
  start-page: 819
  year: 2011
  end-page: 833
  ident: b0265
  article-title: Stabilization of organic soils with fly ash
  publication-title: J. Geotech. Geoenviron. Eng., ASCE
– year: 2009
  ident: b0040
  article-title: Standard Test Method for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures
– volume: 174
  start-page: 139
  year: 2014
  end-page: 148
  ident: b0200
  article-title: Engineering and durability properties of fly ash treated lime-stabilised sulphate-bearing soils
  publication-title: Eng. Geol.
– volume: 19
  start-page: 3006
  year: 2012
  end-page: 3011
  ident: b0210
  article-title: Stabilization of saline silty sand using lime and micro silica
  publication-title: J. Cent. South Univ.
– year: 2002
  ident: b0075
  article-title: The Deep Mixing Method
– volume: 44
  start-page: 86
  year: 2012
  end-page: 94
  ident: b0115
  article-title: Estimating shear wave velocity of soil deposits using polynomial neural networks: application to liquefaction
  publication-title: Comput. Geosci.
– volume: 25
  start-page: 1
  year: 2005
  end-page: 9
  ident: b0055
  article-title: Evaluation of lateral spreading using artificial neural networks
  publication-title: Soil Dyn. Earthq. Eng.
– reference: Taki, O., 2003. Strength properties of soil cement produced by deep mixing. In: Proc. III Int. Conf. Grouting and Ground Treatment, ASCE Geotechnical Special Publ. No. 120, pp. 646–657.
– volume: 1
  start-page: 1
  year: 2012
  end-page: 9
  ident: b0070
  article-title: CBR test on fiber reinforced silty sand
  publication-title: Int. J. Struct. Civ. Eng.
– reference: Topolnicki, M., Polska, K., Pandrea, P., 2012. Design of in-situ soil mixing. In: In Proc. of: ISSMGE - TC 211 International Symposium on Ground Improvement IS-GI Brussels.
– volume: 84
  start-page: 184
  year: 2016
  end-page: 191
  ident: b0275
  article-title: Prediction of expansion behavior of self-stressing concrete by artificial neural networks and fuzzy inference systems
  publication-title: Constr. Build. Mater.
– volume: 20
  start-page: 149
  year: 2002
  end-page: 168
  ident: b0280
  article-title: The artificial neural network as a tool for assessing geotechnical properties
  publication-title: Geotech. Geol. Eng.
– volume: 85
  start-page: 136
  year: 2015
  end-page: 143
  ident: b0240
  article-title: Artificial neural network modeling (ANN) for predicting rutting performance of nano-modified hot-mix asphalt mixtures containing steel slag aggregates
  publication-title: Constr. Build. Mater.
– year: 2011
  ident: b0035
  article-title: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
– reference: Building Center of Japan (BCJ), 1997. Design and Quality Control Guideline for Buildings.
– volume: 42
  start-page: 205
  year: 2013
  end-page: 216
  ident: b0230
  article-title: Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS
  publication-title: Constr. Build. Mater.
– year: 2014
  ident: b0025
  article-title: Artificial neural networks for modeling drained monotonic behavior of rockfill materials
  publication-title: Int. J. Geomech.
– volume: 10
  start-page: 61
  year: 2015
  end-page: 70
  ident: b0110
  article-title: Stabilization of problematic silty sands using microsilica and lime
  publication-title: Baltic J. Road Bridge Eng.
– volume: 8
  start-page: 207
  year: 2006
  end-page: 222
  ident: b0125
  article-title: A symbolic data-driven technique based on evolutionary polynomial regression
  publication-title: J. Hydroinf.
– reference: DIN (Deutsches Institut für Normung), 2011. E DIN 4093 Entwurf und Bemessung von Bodenverfestigungen—HerstellungmitDüsenstrahl-, Deep-Mixing- oderInjektions-Verfahren, Beuth Verlag.
– volume: 58
  start-page: 130
  year: 2009
  end-page: 135
  ident: b0155
  article-title: Effect of silica fume on the geotechnical properties of fine-grained soils exposed to freeze and thaw
  publication-title: Cold Reg. Sci. Technol.
– volume: 18
  start-page: 655
  year: 2012
  end-page: 661
  ident: b0135
  article-title: Superiority of artificial neural networks over statistical methods in prediction of the optimal length of rock bolts
  publication-title: J. Civ. Eng. Manage.
– year: 2014
  ident: b0245
  article-title: Load-settlement modeling of axially loaded drilled shafts using CPT-based recurrent neural networks
  publication-title: Int. J. Geomech.
– volume: 10
  start-page: 1
  year: 2010
  end-page: 12
  ident: b0290
  article-title: Neural network modeling of resilient modulus using routine subgrade soil properties
  publication-title: Int. J. Geomech.
– volume: 37
  start-page: 1860
  year: 2011
  end-page: 1869
  ident: b0010
  article-title: Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression
  publication-title: Comput. Geosci.
– volume: 191
  start-page: 8
  year: 2015
  end-page: 22
  ident: b0195
  article-title: Evolution of the properties of lime-treated silty soil in a small experimental embankment
  publication-title: Eng. Geol.
– volume: 12
  start-page: 477
  year: 2012
  end-page: 484
  ident: b0145
  article-title: Neural network prediction of buckling load of steel arch-shells
  publication-title: Arch. Civ. Mech. Eng.
– volume: 25
  start-page: 500
  year: 2011
  end-page: 517
  ident: b0220
  article-title: An evolutionary-based data mining technique for assessment of civil engineering systems
  publication-title: J. Eng. Comput.
– volume: 64
  start-page: 350
  year: 2014
  end-page: 359
  ident: b0045
  article-title: Stabilization of residual soil using SiO
  publication-title: Constr. Build. Mater.
– reference: Sherwood, P.T., 1993. Soil stabilization with cement and lime. The state of the art review. Her Majesty Stationary Office. Transport Research Laboratory (TRL). Dept. of Transportation, 153p. ISBN: 0-11-551190-3.
– volume: 40
  start-page: 1200
  year: 2013
  ident: 10.1016/j.sandf.2017.11.002_b0095
  article-title: Prediction of compressive strength of recycled aggregate concrete using artificial neural networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.04.063
– volume: 23
  start-page: 773
  issue: 6
  year: 2017
  ident: 10.1016/j.sandf.2017.11.002_b0100
  article-title: A novel solution for ground reaction curve of tunnels in elastoplastic strain softening rock masses
  publication-title: J. Civ. Eng. Manage.
  doi: 10.3846/13923730.2016.1271010
– year: 2014
  ident: 10.1016/j.sandf.2017.11.002_b0245
  article-title: Load-settlement modeling of axially loaded drilled shafts using CPT-based recurrent neural networks
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)GM.1943-5622.0000370
– volume: 47
  start-page: 1010
  year: 2013
  ident: 10.1016/j.sandf.2017.11.002_b0285
  article-title: Modeling uniaxial compressive strength of building stones using non-destructive test results as neural networks input parameters
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.05.109
– volume: 7
  start-page: 2303
  issue: 6
  year: 2014
  ident: 10.1016/j.sandf.2017.11.002_b0140
  article-title: Using artificial neural network (ANN) in prediction of collapse settlements of sandy gravels
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-013-0858-9
– year: 2015
  ident: 10.1016/j.sandf.2017.11.002_b0205
  article-title: Next-generation models for evaluation of the flow number of asphalt mixtures
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)GM.1943-5622.0000483
– ident: 10.1016/j.sandf.2017.11.002_b0250
– volume: 20
  start-page: 149
  year: 2002
  ident: 10.1016/j.sandf.2017.11.002_b0280
  article-title: The artificial neural network as a tool for assessing geotechnical properties
  publication-title: Geotech. Geol. Eng.
  doi: 10.1023/A:1015066903985
– ident: 10.1016/j.sandf.2017.11.002_b0160
– volume: 30–2
  start-page: 77
  issue: 2
  year: 2014
  ident: 10.1016/j.sandf.2017.11.002_b0120
  article-title: تثبیت ماسه سیلتی مسئله دار با استفاده از میکروسیلیس و آهک جهت کاهش میزان تورم و افزایش توان باربری
  publication-title: Sharif J. Sci. Technol.-Civ. Eng.
– volume: 18
  start-page: 655
  issue: 5
  year: 2012
  ident: 10.1016/j.sandf.2017.11.002_b0135
  article-title: Superiority of artificial neural networks over statistical methods in prediction of the optimal length of rock bolts
  publication-title: J. Civ. Eng. Manage.
  doi: 10.3846/13923730.2012.724029
– volume: 193
  start-page: 320
  year: 2015
  ident: 10.1016/j.sandf.2017.11.002_b0295
  article-title: Mechanical properties and behaviour of a partially saturated lime-treated, high plasticity clay
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.05.007
– ident: 10.1016/j.sandf.2017.11.002_b0260
  doi: 10.1061/40663(2003)36
– year: 2002
  ident: 10.1016/j.sandf.2017.11.002_b0075
– ident: 10.1016/j.sandf.2017.11.002_b0060
– year: 2014
  ident: 10.1016/j.sandf.2017.11.002_b0025
  article-title: Artificial neural networks for modeling drained monotonic behavior of rockfill materials
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)GM.1943-5622.0000323
– volume: 8
  start-page: 207
  issue: 3
  year: 2006
  ident: 10.1016/j.sandf.2017.11.002_b0125
  article-title: A symbolic data-driven technique based on evolutionary polynomial regression
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2006.020b
– volume: 137
  start-page: 819
  issue: 9
  year: 2011
  ident: 10.1016/j.sandf.2017.11.002_b0265
  article-title: Stabilization of organic soils with fly ash
  publication-title: J. Geotech. Geoenviron. Eng., ASCE
  doi: 10.1061/(ASCE)GT.1943-5606.0000502
– volume: 25
  start-page: 500
  issue: 6
  year: 2011
  ident: 10.1016/j.sandf.2017.11.002_b0220
  article-title: An evolutionary-based data mining technique for assessment of civil engineering systems
  publication-title: J. Eng. Comput.
  doi: 10.1108/02644400810891526
– volume: 37
  start-page: 822
  year: 2012
  ident: 10.1016/j.sandf.2017.11.002_b0130
  article-title: Statistical investigation on physical–mechanical properties of base and polymer modified bitumen using Artificial Neural Network
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.08.011
– volume: 198
  start-page: 53
  year: 2015
  ident: 10.1016/j.sandf.2017.11.002_b0150
  article-title: Mechanism of improvement in the strength and volume change behavior of lime stabilized soil
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.08.020
– volume: 186
  start-page: 91
  year: 2015
  ident: 10.1016/j.sandf.2017.11.002_b0180
  article-title: Multiple neural networks switched prediction for landslide displacement
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2014.11.014
– volume: 58
  start-page: 130
  year: 2009
  ident: 10.1016/j.sandf.2017.11.002_b0155
  article-title: Effect of silica fume on the geotechnical properties of fine-grained soils exposed to freeze and thaw
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2009.03.011
– year: 2011
  ident: 10.1016/j.sandf.2017.11.002_b0035
– volume: 114
  start-page: 298
  issue: 3–4
  year: 2010
  ident: 10.1016/j.sandf.2017.11.002_b0170
  article-title: Mean particle size prediction in rock blast fragmentation using neural networks
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2010.05.008
– year: 2009
  ident: 10.1016/j.sandf.2017.11.002_b0040
– volume: 163
  start-page: 20
  year: 2013
  ident: 10.1016/j.sandf.2017.11.002_b0065
  article-title: Effects of ground granulated blast furnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2013.05.016
– ident: 10.1016/j.sandf.2017.11.002_b0255
  doi: 10.1016/j.ijrmms.2004.03.095
– volume: 85
  start-page: 136
  year: 2015
  ident: 10.1016/j.sandf.2017.11.002_b0240
  article-title: Artificial neural network modeling (ANN) for predicting rutting performance of nano-modified hot-mix asphalt mixtures containing steel slag aggregates
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.03.060
– volume: 21
  start-page: 15
  year: 2006
  ident: 10.1016/j.sandf.2017.11.002_b0215
  article-title: Prediction of tunneling-induced ground movement with the multi-layer perceptron
  publication-title: Int. J. Tunneling Undergr. Space Technol.
– volume: 10
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.sandf.2017.11.002_b0290
  article-title: Neural network modeling of resilient modulus using routine subgrade soil properties
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)1532-3641(2010)10:1(1)
– volume: 183
  start-page: 230
  year: 2014
  ident: 10.1016/j.sandf.2017.11.002_b0020
  article-title: Empirical relations between compressive strength and microfabric properties of amphibolites using multivariate regression, fuzzy inference and neural networks: a comparative study
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2014.08.026
– volume: 20
  start-page: 561
  issue: 4
  year: 2014
  ident: 10.1016/j.sandf.2017.11.002_b0225
  article-title: New nondestructive way of identifying the values of pull-off adhesion between concrete layers in floors
  publication-title: J. Civ. Eng. Manage.
  doi: 10.3846/13923730.2014.897642
– volume: 1
  start-page: 1
  issue: 3
  year: 2012
  ident: 10.1016/j.sandf.2017.11.002_b0070
  article-title: CBR test on fiber reinforced silty sand
  publication-title: Int. J. Struct. Civ. Eng.
– volume: 44
  start-page: 86
  year: 2012
  ident: 10.1016/j.sandf.2017.11.002_b0115
  article-title: Estimating shear wave velocity of soil deposits using polynomial neural networks: application to liquefaction
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.03.002
– volume: 12
  start-page: 477
  issue: 4
  year: 2012
  ident: 10.1016/j.sandf.2017.11.002_b0145
  article-title: Neural network prediction of buckling load of steel arch-shells
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1016/j.acme.2012.07.005
– volume: 174
  start-page: 139
  year: 2014
  ident: 10.1016/j.sandf.2017.11.002_b0200
  article-title: Engineering and durability properties of fly ash treated lime-stabilised sulphate-bearing soils
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2014.03.001
– volume: 25
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.sandf.2017.11.002_b0055
  article-title: Evaluation of lateral spreading using artificial neural networks
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2004.09.001
– volume: 10
  start-page: 61
  issue: 1
  year: 2015
  ident: 10.1016/j.sandf.2017.11.002_b0110
  article-title: Stabilization of problematic silty sands using microsilica and lime
  publication-title: Baltic J. Road Bridge Eng.
  doi: 10.3846/bjrbe.2015.08
– ident: 10.1016/j.sandf.2017.11.002_b0175
– ident: 10.1016/j.sandf.2017.11.002_b0005
– volume: 10
  start-page: 171
  issue: 5
  year: 2010
  ident: 10.1016/j.sandf.2017.11.002_b0235
  article-title: Site characterization model using artificial neural network and kriging
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)1532-3641(2010)10:5(171)
– volume: 19
  start-page: 448
  issue: 6
  year: 2005
  ident: 10.1016/j.sandf.2017.11.002_b0050
  article-title: Stabilization of residual soil with rice husk ash and cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2004.08.001
– year: 1996
  ident: 10.1016/j.sandf.2017.11.002_b0085
– year: 2016
  ident: 10.1016/j.sandf.2017.11.002_b0030
– volume: 19
  start-page: 3006
  year: 2012
  ident: 10.1016/j.sandf.2017.11.002_b0210
  article-title: Stabilization of saline silty sand using lime and micro silica
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-012-1370-1
– volume: 58
  start-page: 21
  year: 2014
  ident: 10.1016/j.sandf.2017.11.002_b0105
  article-title: Comprehensive three dimensional finite element analysis, parametric study and sensitivity analysis on the seismic performance of soil-micropile-superstructure interaction
  publication-title: J. Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2013.12.001
– ident: 10.1016/j.sandf.2017.11.002_b0190
  doi: 10.1061/(ASCE)GT.1943-5606.0000188
– volume: 58
  start-page: 3659
  year: 2003
  ident: 10.1016/j.sandf.2017.11.002_b0185
  article-title: Characteristics and reactivities of Ca(OH)2/silica fume sorbents for low-temperature flue gas desulfurization
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(03)00222-7
– volume: 42
  start-page: 205
  year: 2013
  ident: 10.1016/j.sandf.2017.11.002_b0230
  article-title: Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.01.016
– volume: 37
  start-page: 1860
  issue: 11
  year: 2011
  ident: 10.1016/j.sandf.2017.11.002_b0010
  article-title: Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.04.015
– year: 2015
  ident: 10.1016/j.sandf.2017.11.002_b0015
  article-title: Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming
  publication-title: Eng. Geol.
– ident: 10.1016/j.sandf.2017.11.002_b0270
– volume: 84
  start-page: 184
  year: 2016
  ident: 10.1016/j.sandf.2017.11.002_b0275
  article-title: Prediction of expansion behavior of self-stressing concrete by artificial neural networks and fuzzy inference systems
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.03.059
– year: 2015
  ident: 10.1016/j.sandf.2017.11.002_b0165
  article-title: Modeling the mechanical behavior of carbonate sands using artificial neural networks and support vector machines
  publication-title: Int. J. Geomech.
– ident: 10.1016/j.sandf.2017.11.002_b0090
– volume: 22
  start-page: 1299
  year: 2008
  ident: 10.1016/j.sandf.2017.11.002_b0080
  article-title: Effect of silica fume and expanded perlite addition on the technical properties of the fly ash-lime-gypsum mixture
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2007.01.011
– volume: 64
  start-page: 350
  year: 2014
  ident: 10.1016/j.sandf.2017.11.002_b0045
  article-title: Stabilization of residual soil using SiO2 nanoparticles and cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.04.086
– volume: 191
  start-page: 8
  year: 2015
  ident: 10.1016/j.sandf.2017.11.002_b0195
  article-title: Evolution of the properties of lime-treated silty soil in a small experimental embankment
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.03.008
SSID ssj0062011
Score 2.4971566
Snippet Desert sands in Iran, which usually contain small amounts of silt and sulfate, do not have significant strength, and thus, are not suitable for foundations or...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 34
SubjectTerms California bearing ratio
Deep soil mixing
Evolutionary polynomial regression
Microsilica-lime stabilization
Neural networks
Sensitivity analysis
Sulfate silty sand
Unconfined compressive strength
Title Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing
URI https://dx.doi.org/10.1016/j.sandf.2017.11.002
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ_iE9_MwaPVtE3TFE_usiKCi6gLeyvZJpHKurtsK6j_wH_tTB-yInjwVNJ0mjATZr4kky-MnXAdC6mU70mhtCcct57WPPKcMELoCGOYpgX92768HoibYTRcYt32LAylVTa-v_bplbdu3pw32jyf5Tmd8Q2JFBFDcEhAgBg_Q6GqQ3zDTuuNJQW4mpqRmJi5bJmHqhyvAmfrFY9nfEZUns3ayq_otBBxrtbZWgMV4bLuzQZbspNNtrpAILjFPu_mtNFCyoWpg0H3AbAt6HbuqfhCyXZFTsty3jh_sYBIkHJhP6yB4nXsEGYCVpfvQD0ESoF_gst-v_pH7-4eqmtyigtY2OWGcgqIGcFYO4Nimo-xlTeU22aDq95j99prLlfwMtRSiVNGXxnp20Qoa2zohDBJwJMg0yoObBbp2ISJljJzJhopP9YyyUIdWcuNyoKEhztseTKd2F0GRjiJvsDJWHOB-E2NeCgkz_BhjO_iPRa0Sk2zhnmcLsAYp22K2XNaWSIlS-CcJEVL7LHTb6FZTbzx9-eytVb6Y_ykGBr-Etz_r-ABW8GSqjO4D9lyOX-1RwhQytFxNQK_AM1j4z0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPbQcEH2pQB9z6LEpTuw4jnqC1aKlhRWiu9LeIm9so1T70iZIwD_gX3cmD7RVJQ49RYk9seWxZj7b428Y-8JNIpXWYaCkNoH03AXG8Djw0kppYvRhhjb0L4ZqMJY_JvFki_W6uzAUVtna_sam19a6_XLUjubRqijojq8gUkR0wYKAgHjGniMaSCh_w9nkpDPHijxcw81IVMxcddRDdZBXicv1msgz-UZcnu3myj_uacPlnO6x3RYrwnHTnVdsyy1es50NBsE37OFyTSctNLqw9DDu_QJsC3onV_Q6p2i7sqB9uWBWzB0gFKRg2HtnobyZecSZgMXVHVAPgWLgr-F4OKz_0b-8gjpPTvkdNo65oVoCgkawzq2gXBYzbOUW5d6y8Wl_1BsEbXaFIBdSV7hmDLVVoUuldtYJL6VNI55GudFJ5PLYJFakRqnc23iqw8SoNBcmdo5bnUcpF-_Y9mK5cO8ZWOkVGgOvEsMlAjg95UIqnuPD2tAn-yzqBjXLW-pxyoAxy7oYs99ZrYmMNIGLkgw1sc--PgqtGuaNp6urTlvZXxMoQ9_wlODB_wp-Zi8Go4vz7Pxs-POQvcQS3YRzf2Db1frGfUS0Uk0_1bPxD0H45lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+UCS+and+CBR+of+microsilica-lime+stabilized+sulfate+silty+sand+using+ANN+and+EPR+models%3B+application+to+the+deep+soil+mixing&rft.jtitle=Soils+and+foundations&rft.au=Ghorbani%2C+Ali&rft.au=Hasanzadehshooiili%2C+Hadi&rft.date=2018-02-01&rft.pub=Elsevier+B.V&rft.issn=0038-0806&rft.volume=58&rft.issue=1&rft.spage=34&rft.epage=49&rft_id=info:doi/10.1016%2Fj.sandf.2017.11.002&rft.externalDocID=S0038080617301543
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0806&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0806&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0806&client=summon