Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing
Desert sands in Iran, which usually contain small amounts of silt and sulfate, do not have significant strength, and thus, are not suitable for foundations or road construction. This paper applies the results of 90 Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR) tests on sul...
Saved in:
Published in | Soils and foundations Vol. 58; no. 1; pp. 34 - 49 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Desert sands in Iran, which usually contain small amounts of silt and sulfate, do not have significant strength, and thus, are not suitable for foundations or road construction. This paper applies the results of 90 Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR) tests on sulfate silty sand stabilized with different lime and microsilica percentages as the two main stabilizers. Based on the obtained databank from the tests, Back Propagation Artificial Neural Network (BP-ANN) and Evolutionary Polynomial Regression (EPR) models are developed to predict the UCS and CBR values. Assessing the different architectures (one- and two-hidden layer neural networks) and functions (polynomial, exponential and hyperbolic tangent functions for the EPR models), a BP-ANN model with 5-5-8-1 layers and an EPR model with a hyperbolic tangent function showing high accuracy are introduced as the best models for predicting the UCS. Through a sensitivity analysis, the most and the least influential parameters on the UCS are presented and the results are further discussed using scanning electron microscopy (SEM). The presented EPR models can be useful for practitioners when selecting the optimized percentage of stabilizers or for controlling purposes in the QC/QA phases of deep soil mixing projects. In this regard, the application of the proposed models to the design of deep soil mixing is presented and elaborated using an example. In this example, the optimum and the best practical amounts of stabilizers are obtained through the graphical optimization of the models. In addition, by applying the developed relationships to a new case, the comprehensiveness of the developed relationships is further declared and it is shown that the proposed relationships are practical and can be efficiently used in the preliminary design stage. |
---|---|
AbstractList | Desert sands in Iran, which usually contain small amounts of silt and sulfate, do not have significant strength, and thus, are not suitable for foundations or road construction. This paper applies the results of 90 Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR) tests on sulfate silty sand stabilized with different lime and microsilica percentages as the two main stabilizers. Based on the obtained databank from the tests, Back Propagation Artificial Neural Network (BP-ANN) and Evolutionary Polynomial Regression (EPR) models are developed to predict the UCS and CBR values. Assessing the different architectures (one- and two-hidden layer neural networks) and functions (polynomial, exponential and hyperbolic tangent functions for the EPR models), a BP-ANN model with 5-5-8-1 layers and an EPR model with a hyperbolic tangent function showing high accuracy are introduced as the best models for predicting the UCS. Through a sensitivity analysis, the most and the least influential parameters on the UCS are presented and the results are further discussed using scanning electron microscopy (SEM). The presented EPR models can be useful for practitioners when selecting the optimized percentage of stabilizers or for controlling purposes in the QC/QA phases of deep soil mixing projects. In this regard, the application of the proposed models to the design of deep soil mixing is presented and elaborated using an example. In this example, the optimum and the best practical amounts of stabilizers are obtained through the graphical optimization of the models. In addition, by applying the developed relationships to a new case, the comprehensiveness of the developed relationships is further declared and it is shown that the proposed relationships are practical and can be efficiently used in the preliminary design stage. |
Author | Hasanzadehshooiili, Hadi Ghorbani, Ali |
Author_xml | – sequence: 1 givenname: Ali surname: Ghorbani fullname: Ghorbani, Ali email: ghorbani@guilan.ac.ir – sequence: 2 givenname: Hadi surname: Hasanzadehshooiili fullname: Hasanzadehshooiili, Hadi email: Hasanzadeh@phd.guilan.ac.ir, h.hasanzadeh.shooiili@gmail.com |
BookMark | eNqFkMtOwzAQRb0oEm3hC9j4BxLsJHUSIRYlKg-pKlWha8u1J-AqL9kuovwBf40TWLGAlTUenXs1Z4JGTdsAQheUhJRQdrkPrWhUGUaEpiGlISHRCI0JibOAZISdoom1e0KY39Mx-lwbUFo63Ta4LfG2eMKexsXNph9rLU1rdaWlCCpdA7ZO7Pz4AQrbQ1UK57905Y6478QHq5sXPF-thozFeoPrVkFlr7Douj5kqHEtdq-AFUCHbasr3_LuuTN0UorKwvnPO0Xb28VzcR8sH-8eivkykHGSuYBRmilGIU8yUBCXSaLyiOSRFFkagZyJVMW5YEyWarbLaCpYLmMxAyAqk1FO4imKv3P706yBkndG18IcOSW8N8j3fDDIe4OcUu4Neir_RUnthnucEbr6h73-Zr0KeNNguJUaGunFG5COq1b_yX8B6KWTRQ |
CitedBy_id | crossref_primary_10_1007_s10706_021_01805_z crossref_primary_10_1155_2019_4257530 crossref_primary_10_3390_su15108231 crossref_primary_10_1007_s10163_023_01772_y crossref_primary_10_1016_j_enggeo_2021_106239 crossref_primary_10_1007_s00521_022_06931_0 crossref_primary_10_1080_01694243_2021_1898857 crossref_primary_10_1007_s11629_024_8729_2 crossref_primary_10_3390_ma15134386 crossref_primary_10_7250_bjrbe_2018_13_428 crossref_primary_10_1080_19648189_2023_2276133 crossref_primary_10_1007_s12517_022_10593_6 crossref_primary_10_1016_j_sandf_2020_02_010 crossref_primary_10_1061_IJGNAI_GMENG_9203 crossref_primary_10_3390_urbansci8010004 crossref_primary_10_1007_s10064_023_03537_1 crossref_primary_10_1007_s10706_023_02416_6 crossref_primary_10_1007_s11440_021_01420_5 crossref_primary_10_1007_s12145_025_01731_1 crossref_primary_10_1088_1757_899X_736_2_022108 crossref_primary_10_1016_j_asoc_2021_107595 crossref_primary_10_1080_1064119X_2018_1550543 crossref_primary_10_1016_j_jclepro_2022_133587 crossref_primary_10_1007_s41024_024_00496_2 crossref_primary_10_1007_s41939_022_00137_6 crossref_primary_10_3390_buildings14030641 crossref_primary_10_1016_j_clay_2019_105390 crossref_primary_10_1007_s41207_022_00308_4 crossref_primary_10_1007_s42107_024_01179_6 crossref_primary_10_1007_s40098_024_01113_2 crossref_primary_10_1016_j_istruc_2024_106837 crossref_primary_10_1371_journal_pone_0301075 crossref_primary_10_1007_s12665_023_11049_0 crossref_primary_10_1016_j_compgeo_2022_105067 crossref_primary_10_1007_s13369_020_05041_0 crossref_primary_10_1007_s11440_022_01472_1 crossref_primary_10_1016_j_trgeo_2021_100520 crossref_primary_10_34220_issn_2222_7962_2024_1_7 crossref_primary_10_3390_ma15249029 crossref_primary_10_1061__ASCE_MT_1943_5533_0003845 crossref_primary_10_3390_buildings13010255 crossref_primary_10_1080_19386362_2020_1862539 crossref_primary_10_1007_s12517_020_05493_6 crossref_primary_10_1016_j_gsf_2020_02_014 crossref_primary_10_1007_s00366_021_01313_x crossref_primary_10_1007_s12517_021_07055_w crossref_primary_10_1017_dce_2025_5 crossref_primary_10_1007_s11668_021_01232_5 crossref_primary_10_1016_j_jtte_2021_03_005 crossref_primary_10_1007_s40098_023_00780_x crossref_primary_10_1016_j_conbuildmat_2024_137794 crossref_primary_10_1016_j_trgeo_2024_101247 crossref_primary_10_1051_bioconf_202515104005 crossref_primary_10_3390_buildings14020352 crossref_primary_10_3390_ma16062194 crossref_primary_10_1038_s41598_024_61313_x crossref_primary_10_1007_s41939_021_00092_8 crossref_primary_10_1007_s41939_023_00336_9 crossref_primary_10_1080_17486025_2019_1699668 crossref_primary_10_1016_j_conbuildmat_2024_138046 crossref_primary_10_1016_j_trgeo_2021_100591 crossref_primary_10_1007_s10064_023_03226_z crossref_primary_10_1007_s41403_021_00273_4 crossref_primary_10_1007_s41062_020_00422_8 crossref_primary_10_1007_s42947_024_00489_x crossref_primary_10_1007_s40515_024_00372_z crossref_primary_10_1007_s12145_023_00979_9 crossref_primary_10_1016_j_heliyon_2024_e31719 crossref_primary_10_1016_j_jece_2018_09_045 crossref_primary_10_1080_17486025_2022_2040606 crossref_primary_10_3390_app8050841 crossref_primary_10_1007_s12040_024_02374_4 crossref_primary_10_3390_ma15134575 crossref_primary_10_1007_s11831_023_10024_z crossref_primary_10_1016_j_matpr_2023_05_097 crossref_primary_10_1108_EC_10_2020_0576 crossref_primary_10_1007_s40098_022_00619_x crossref_primary_10_1088_1757_899X_1273_1_012018 crossref_primary_10_1007_s42107_024_01023_x crossref_primary_10_1007_s42947_022_00237_z crossref_primary_10_1007_s11709_021_0689_9 crossref_primary_10_1080_10298436_2023_2176494 crossref_primary_10_1061__ASCE_MT_1943_5533_0002727 crossref_primary_10_3390_ma14216516 crossref_primary_10_1016_j_conbuildmat_2019_117295 crossref_primary_10_1016_j_mtcomm_2025_111627 |
Cites_doi | 10.1016/j.conbuildmat.2012.04.063 10.3846/13923730.2016.1271010 10.1061/(ASCE)GM.1943-5622.0000370 10.1016/j.conbuildmat.2013.05.109 10.1007/s12517-013-0858-9 10.1061/(ASCE)GM.1943-5622.0000483 10.1023/A:1015066903985 10.3846/13923730.2012.724029 10.1016/j.enggeo.2015.05.007 10.1061/40663(2003)36 10.1061/(ASCE)GM.1943-5622.0000323 10.2166/hydro.2006.020b 10.1061/(ASCE)GT.1943-5606.0000502 10.1108/02644400810891526 10.1016/j.conbuildmat.2012.08.011 10.1016/j.enggeo.2015.08.020 10.1016/j.enggeo.2014.11.014 10.1016/j.coldregions.2009.03.011 10.1016/j.enggeo.2010.05.008 10.1016/j.enggeo.2013.05.016 10.1016/j.ijrmms.2004.03.095 10.1016/j.conbuildmat.2015.03.060 10.1061/(ASCE)1532-3641(2010)10:1(1) 10.1016/j.enggeo.2014.08.026 10.3846/13923730.2014.897642 10.1016/j.cageo.2012.03.002 10.1016/j.acme.2012.07.005 10.1016/j.enggeo.2014.03.001 10.1016/j.soildyn.2004.09.001 10.3846/bjrbe.2015.08 10.1061/(ASCE)1532-3641(2010)10:5(171) 10.1016/j.conbuildmat.2004.08.001 10.1007/s11771-012-1370-1 10.1016/j.soildyn.2013.12.001 10.1061/(ASCE)GT.1943-5606.0000188 10.1016/S0009-2509(03)00222-7 10.1016/j.conbuildmat.2013.01.016 10.1016/j.cageo.2011.04.015 10.1016/j.conbuildmat.2015.03.059 10.1016/j.conbuildmat.2007.01.011 10.1016/j.conbuildmat.2014.04.086 10.1016/j.enggeo.2015.03.008 |
ContentType | Journal Article |
Copyright | 2018 |
Copyright_xml | – notice: 2018 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.sandf.2017.11.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 49 |
ExternalDocumentID | 10_1016_j_sandf_2017_11_002 S0038080617301543 |
GroupedDBID | -~X 0R~ 0SF 123 2WC 4.4 457 5B4 6I. 7.U AACTN AAEDT AAEDW AAFTH AAFWJ AAIKJ AAKDD AALRI AAXUO ABCQX ABMAC ABTAH ABVKL ACGFS ADBBV ADEZE AENEX AEXQZ AFPKN AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB GROUPED_DOAJ HZ~ IXB JSI JSP L7B M41 NCXOZ O-L O9- OK1 P2P RIG RJT ROL RYR RZJ SSZ TKC WBO Y6R ZY4 ~02 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c348t-6118d61e948ede3f44d92092ca872ec5a7d39a66cfd5b817a69c3a5ee0d8c2903 |
IEDL.DBID | IXB |
ISSN | 0038-0806 |
IngestDate | Tue Jul 01 04:17:11 EDT 2025 Thu Apr 24 23:05:43 EDT 2025 Fri Feb 23 02:45:56 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Microsilica-lime stabilization Sensitivity analysis Neural networks Evolutionary polynomial regression Deep soil mixing California bearing ratio Sulfate silty sand Unconfined compressive strength |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-6118d61e948ede3f44d92092ca872ec5a7d39a66cfd5b817a69c3a5ee0d8c2903 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0038080617301543 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1016_j_sandf_2017_11_002 crossref_citationtrail_10_1016_j_sandf_2017_11_002 elsevier_sciencedirect_doi_10_1016_j_sandf_2017_11_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2018 2018-02-00 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
PublicationDecade | 2010 |
PublicationTitle | Soils and foundations |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ghorbani, Hasanzadehshooiili, Karimi, Daghigh, Medzvieckas (b0110) 2015; 10 Jha, Sivapullaiah (b0150) 2015; 198 Hasanzadehshooiili, Lakirouhani, Šapalas (b0145) 2012; 12 Moayed, Izadi, Heidari (b0210) 2012; 19 Ali, Guang, Ibrahim (b0020) 2014; 183 Wang, Man, Jin (b0275) 2016; 84 Samui, Sitharam (b0235) 2010; 10 Mirzahosseini, Najjar, Alavi, Gandomi (b0205) 2015 Hasanzadehshooiili, Lakirouhani, Medzvieckas (b0135) 2012; 18 Tastan, Edil, Benson, Aydilek (b0265) 2011; 137 Ahangar-Asr, Faramarzi, Mottaghifard, Javadi (b0010) 2011; 37 Topolnicki, M., Polska, K., Pandrea, P., 2012. Design of in-situ soil mixing. In: In Proc. of: ISSMGE - TC 211 International Symposium on Ground Improvement IS-GI Brussels. Rezania, Javadi, Giustolisi (b0220) 2011; 25 DIN (Deutsches Institut für Normung), 2011. E DIN 4093 Entwurf und Bemessung von Bodenverfestigungen—HerstellungmitDüsenstrahl-, Deep-Mixing- oderInjektions-Verfahren, Beuth Verlag. Ghorbani, Karimi (b0120) 2014; 30–2 Sadowski, Hoła (b0225) 2014; 20 Ghorbani, Hasanzadehshooiili (b0100) 2017; 23 Lian, Zeng, Yao, Tang (b0180) 2015; 186 Zhang, Mavroulidou, Gunn (b0295) 2015; 193 Yurdakul, Akdas (b0285) 2013; 47 Taki, O., 2003. Strength properties of soil cement produced by deep mixing. In: Proc. III Int. Conf. Grouting and Ground Treatment, ASCE Geotechnical Special Publ. No. 120, pp. 646–657. Makki-Szymkiewicza, Hibouche, Taibi, Herrier, Lesueur, Fleureau (b0195) 2015; 191 ASTM D1883-16 (b0030) 2016 Araei (b0025) 2014 Yang, Rosenbaum (b0280) 2002; 20 Basha, Hashim, Mahmud, Muntohar (b0050) 2005; 19 Demir, Baspinar (b0080) 2008; 22 Shahin (b0245) 2014 ASTM D5102-09 (b0040) 2009 Celik, Nalbantoglu (b0065) 2013; 163 Kulatilake, Qiong, Hudaverdi, Kuzu (b0170) 2010; 114 Hasanzadehshooiili, Mahinroosta, Lakirouhani, Oshtaghi (b0140) 2014; 7 Abd El-Aziz, M., Abo-Hashema, M., El-Shourbagy, M., 2004. The effect of lime-silica fume stabilizer on engineering properties of clayey subgrade. In: Proc., 4th International Engineering Conference, Mansoura University, Egypt, paper no. 96. Alemdag, Gurocak, Cevik, Cabalar, Gokceoglu (b0015) 2015 Shafabakhsh, Jafari Ani, Talebsafa (b0240) 2015; 85 Kohestani, Hassanlourad (b0165) 2015 Duan, Kou, Poon (b0095) 2013; 40 Kalkan (b0155) 2009; 58 Ghorbani, Jafarian, Maghsoudi (b0115) 2012; 44 Giustolisi, Savic (b0125) 2006; 8 Bahmani, Huat, Asadi, Farzadnia (b0045) 2014; 64 Building Center of Japan (BCJ), 1997. Design and Quality Control Guideline for Buildings. Lin, Shih, Liu (b0185) 2003; 58 ASTM D2487-11 (b0035) 2011 Simpson, P.K., 1990. Artificial neural system: foundation, paradigms, applications and implementations. Influence of geological conditions on the powder factor for tunnel blasting. Int. J. Rock Mech. Min. Sci. 41, 533–538 (New York: Pergamon Press. 18. Yong-Hun, J., Chung-In, L.). Demuth, Beal, Hagan (b0085) 1996 Golzar, Jalali-Arani, Nematollahi (b0130) 2012; 37 Karimi, M., Ghorbani, A., Daghigh, Y., Kiaalhosseini, S., Rabbani, P., 2011. Stabilization of silty sand soils with lime and microsilica admixture in presence of sulfates. In: Proc., 2011 Pan-Am CGS Geotechnical Conference, Toronto, Canada. Madhyannapu, R.S., Puppala, A.J., Nazarian, S., Yuan, D., 2010. Quality assessment and quality control of deep soil mixing construction for stabilizing expansive subsoils. J. Geotech. Geoenviron. Eng. 136(1). Sadrmomtazi, Sobhani, Mirgozar (b0230) 2013; 42 Chegenizadeh, Nikraz (b0070) 2012; 1 Coastal Development Institute of Technology (CDIT) (b0075) 2002 McCarthy, Csetenyi, Sachdeva, Dhir (b0200) 2014; 174 Zaman, Solanki, Ebrahimi, White (b0290) 2010; 10 Ghorbani, Hasanzadehshooiili, Ghamari, Medzvieckas (b0105) 2014; 58 Neaupane, Adhikari (b0215) 2006; 21 Baziar, Ghorbani (b0055) 2005; 25 Sherwood, P.T., 1993. Soil stabilization with cement and lime. The state of the art review. Her Majesty Stationary Office. Transport Research Laboratory (TRL). Dept. of Transportation, 153p. ISBN: 0-11-551190-3. Lehmann, E.L., Casella, G., 1998. Theory of Point Estimation, second ed. Springer, New York. ISBN 0-387-98502-6. MR 1639875. Sadowski (10.1016/j.sandf.2017.11.002_b0225) 2014; 20 Rezania (10.1016/j.sandf.2017.11.002_b0220) 2011; 25 Zhang (10.1016/j.sandf.2017.11.002_b0295) 2015; 193 Ali (10.1016/j.sandf.2017.11.002_b0020) 2014; 183 10.1016/j.sandf.2017.11.002_b0270 Ghorbani (10.1016/j.sandf.2017.11.002_b0110) 2015; 10 Basha (10.1016/j.sandf.2017.11.002_b0050) 2005; 19 Celik (10.1016/j.sandf.2017.11.002_b0065) 2013; 163 Sadrmomtazi (10.1016/j.sandf.2017.11.002_b0230) 2013; 42 Demuth (10.1016/j.sandf.2017.11.002_b0085) 1996 Kohestani (10.1016/j.sandf.2017.11.002_b0165) 2015 Tastan (10.1016/j.sandf.2017.11.002_b0265) 2011; 137 Ghorbani (10.1016/j.sandf.2017.11.002_b0100) 2017; 23 Wang (10.1016/j.sandf.2017.11.002_b0275) 2016; 84 Lian (10.1016/j.sandf.2017.11.002_b0180) 2015; 186 Shafabakhsh (10.1016/j.sandf.2017.11.002_b0240) 2015; 85 10.1016/j.sandf.2017.11.002_b0005 Chegenizadeh (10.1016/j.sandf.2017.11.002_b0070) 2012; 1 Kulatilake (10.1016/j.sandf.2017.11.002_b0170) 2010; 114 10.1016/j.sandf.2017.11.002_b0160 Kalkan (10.1016/j.sandf.2017.11.002_b0155) 2009; 58 ASTM D2487-11 (10.1016/j.sandf.2017.11.002_b0035) 2011 Hasanzadehshooiili (10.1016/j.sandf.2017.11.002_b0145) 2012; 12 Makki-Szymkiewicza (10.1016/j.sandf.2017.11.002_b0195) 2015; 191 10.1016/j.sandf.2017.11.002_b0090 ASTM D5102-09 (10.1016/j.sandf.2017.11.002_b0040) 2009 Hasanzadehshooiili (10.1016/j.sandf.2017.11.002_b0135) 2012; 18 Mirzahosseini (10.1016/j.sandf.2017.11.002_b0205) 2015 ASTM D1883-16 (10.1016/j.sandf.2017.11.002_b0030) 2016 Giustolisi (10.1016/j.sandf.2017.11.002_b0125) 2006; 8 Yurdakul (10.1016/j.sandf.2017.11.002_b0285) 2013; 47 Ghorbani (10.1016/j.sandf.2017.11.002_b0105) 2014; 58 10.1016/j.sandf.2017.11.002_b0250 10.1016/j.sandf.2017.11.002_b0175 Moayed (10.1016/j.sandf.2017.11.002_b0210) 2012; 19 10.1016/j.sandf.2017.11.002_b0255 Samui (10.1016/j.sandf.2017.11.002_b0235) 2010; 10 Bahmani (10.1016/j.sandf.2017.11.002_b0045) 2014; 64 Shahin (10.1016/j.sandf.2017.11.002_b0245) 2014 10.1016/j.sandf.2017.11.002_b0060 Alemdag (10.1016/j.sandf.2017.11.002_b0015) 2015 Ghorbani (10.1016/j.sandf.2017.11.002_b0115) 2012; 44 Duan (10.1016/j.sandf.2017.11.002_b0095) 2013; 40 Demir (10.1016/j.sandf.2017.11.002_b0080) 2008; 22 Ghorbani (10.1016/j.sandf.2017.11.002_b0120) 2014; 30–2 10.1016/j.sandf.2017.11.002_b0260 Coastal Development Institute of Technology (CDIT) (10.1016/j.sandf.2017.11.002_b0075) 2002 Golzar (10.1016/j.sandf.2017.11.002_b0130) 2012; 37 Neaupane (10.1016/j.sandf.2017.11.002_b0215) 2006; 21 Zaman (10.1016/j.sandf.2017.11.002_b0290) 2010; 10 McCarthy (10.1016/j.sandf.2017.11.002_b0200) 2014; 174 Lin (10.1016/j.sandf.2017.11.002_b0185) 2003; 58 10.1016/j.sandf.2017.11.002_b0190 Ahangar-Asr (10.1016/j.sandf.2017.11.002_b0010) 2011; 37 Jha (10.1016/j.sandf.2017.11.002_b0150) 2015; 198 Baziar (10.1016/j.sandf.2017.11.002_b0055) 2005; 25 Araei (10.1016/j.sandf.2017.11.002_b0025) 2014 Yang (10.1016/j.sandf.2017.11.002_b0280) 2002; 20 Hasanzadehshooiili (10.1016/j.sandf.2017.11.002_b0140) 2014; 7 |
References_xml | – volume: 10 start-page: 171 year: 2010 end-page: 180 ident: b0235 article-title: Site characterization model using artificial neural network and kriging publication-title: Int. J. Geomech. – reference: Madhyannapu, R.S., Puppala, A.J., Nazarian, S., Yuan, D., 2010. Quality assessment and quality control of deep soil mixing construction for stabilizing expansive subsoils. J. Geotech. Geoenviron. Eng. 136(1). – volume: 7 start-page: 2303 year: 2014 end-page: 2314 ident: b0140 article-title: Using artificial neural network (ANN) in prediction of collapse settlements of sandy gravels publication-title: Arab. J. Geosci. – year: 2015 ident: b0015 article-title: Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming publication-title: Eng. Geol. – volume: 19 start-page: 448 year: 2005 end-page: 453 ident: b0050 article-title: Stabilization of residual soil with rice husk ash and cement publication-title: Constr. Build. Mater. – volume: 183 start-page: 230 year: 2014 end-page: 240 ident: b0020 article-title: Empirical relations between compressive strength and microfabric properties of amphibolites using multivariate regression, fuzzy inference and neural networks: a comparative study publication-title: Eng. Geol. – year: 2015 ident: b0205 article-title: Next-generation models for evaluation of the flow number of asphalt mixtures publication-title: Int. J. Geomech. – volume: 30–2 start-page: 77 year: 2014 end-page: 85 ident: b0120 article-title: تثبیت ماسه سیلتی مسئله دار با استفاده از میکروسیلیس و آهک جهت کاهش میزان تورم و افزایش توان باربری publication-title: Sharif J. Sci. Technol.-Civ. Eng. – volume: 193 start-page: 320 year: 2015 end-page: 336 ident: b0295 article-title: Mechanical properties and behaviour of a partially saturated lime-treated, high plasticity clay publication-title: Eng. Geol. – volume: 47 start-page: 1010 year: 2013 end-page: 1019 ident: b0285 article-title: Modeling uniaxial compressive strength of building stones using non-destructive test results as neural networks input parameters publication-title: Constr. Build. Mater. – reference: Lehmann, E.L., Casella, G., 1998. Theory of Point Estimation, second ed. Springer, New York. ISBN 0-387-98502-6. MR 1639875. – volume: 21 start-page: 15 year: 2006 end-page: 159 ident: b0215 article-title: Prediction of tunneling-induced ground movement with the multi-layer perceptron publication-title: Int. J. Tunneling Undergr. Space Technol. – volume: 40 start-page: 1200 year: 2013 end-page: 1206 ident: b0095 article-title: Prediction of compressive strength of recycled aggregate concrete using artificial neural networks publication-title: Constr. Build. Mater. – year: 2016 ident: b0030 article-title: Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils – volume: 163 start-page: 20 year: 2013 end-page: 25 ident: b0065 article-title: Effects of ground granulated blast furnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils publication-title: Eng. Geol. – volume: 114 start-page: 298 year: 2010 end-page: 311 ident: b0170 article-title: Mean particle size prediction in rock blast fragmentation using neural networks publication-title: Eng. Geol. – year: 1996 ident: b0085 article-title: Neural Network Toolbox 5 User’s Guide – year: 2015 ident: b0165 article-title: Modeling the mechanical behavior of carbonate sands using artificial neural networks and support vector machines publication-title: Int. J. Geomech. – volume: 22 start-page: 1299 year: 2008 end-page: 1304 ident: b0080 article-title: Effect of silica fume and expanded perlite addition on the technical properties of the fly ash-lime-gypsum mixture publication-title: Constr. Build. Mater. – volume: 37 start-page: 822 year: 2012 end-page: 831 ident: b0130 article-title: Statistical investigation on physical–mechanical properties of base and polymer modified bitumen using Artificial Neural Network publication-title: Constr. Build. Mater. – volume: 58 start-page: 3659 year: 2003 end-page: 3668 ident: b0185 article-title: Characteristics and reactivities of Ca(OH) publication-title: Chem. Eng. Sci. – volume: 20 start-page: 561 year: 2014 end-page: 569 ident: b0225 article-title: New nondestructive way of identifying the values of pull-off adhesion between concrete layers in floors publication-title: J. Civ. Eng. Manage. – volume: 58 start-page: 21 year: 2014 end-page: 36 ident: b0105 article-title: Comprehensive three dimensional finite element analysis, parametric study and sensitivity analysis on the seismic performance of soil-micropile-superstructure interaction publication-title: J. Soil Dyn. Earthq. Eng. – volume: 186 start-page: 91 year: 2015 end-page: 99 ident: b0180 article-title: Multiple neural networks switched prediction for landslide displacement publication-title: Eng. Geol. – reference: Simpson, P.K., 1990. Artificial neural system: foundation, paradigms, applications and implementations. Influence of geological conditions on the powder factor for tunnel blasting. Int. J. Rock Mech. Min. Sci. 41, 533–538 (New York: Pergamon Press. 18. Yong-Hun, J., Chung-In, L.). – volume: 23 start-page: 773 year: 2017 end-page: 786 ident: b0100 article-title: A novel solution for ground reaction curve of tunnels in elastoplastic strain softening rock masses publication-title: J. Civ. Eng. Manage. – volume: 198 start-page: 53 year: 2015 end-page: 64 ident: b0150 article-title: Mechanism of improvement in the strength and volume change behavior of lime stabilized soil publication-title: Eng. Geol. – reference: Abd El-Aziz, M., Abo-Hashema, M., El-Shourbagy, M., 2004. The effect of lime-silica fume stabilizer on engineering properties of clayey subgrade. In: Proc., 4th International Engineering Conference, Mansoura University, Egypt, paper no. 96. – reference: Karimi, M., Ghorbani, A., Daghigh, Y., Kiaalhosseini, S., Rabbani, P., 2011. Stabilization of silty sand soils with lime and microsilica admixture in presence of sulfates. In: Proc., 2011 Pan-Am CGS Geotechnical Conference, Toronto, Canada. – volume: 137 start-page: 819 year: 2011 end-page: 833 ident: b0265 article-title: Stabilization of organic soils with fly ash publication-title: J. Geotech. Geoenviron. Eng., ASCE – year: 2009 ident: b0040 article-title: Standard Test Method for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures – volume: 174 start-page: 139 year: 2014 end-page: 148 ident: b0200 article-title: Engineering and durability properties of fly ash treated lime-stabilised sulphate-bearing soils publication-title: Eng. Geol. – volume: 19 start-page: 3006 year: 2012 end-page: 3011 ident: b0210 article-title: Stabilization of saline silty sand using lime and micro silica publication-title: J. Cent. South Univ. – year: 2002 ident: b0075 article-title: The Deep Mixing Method – volume: 44 start-page: 86 year: 2012 end-page: 94 ident: b0115 article-title: Estimating shear wave velocity of soil deposits using polynomial neural networks: application to liquefaction publication-title: Comput. Geosci. – volume: 25 start-page: 1 year: 2005 end-page: 9 ident: b0055 article-title: Evaluation of lateral spreading using artificial neural networks publication-title: Soil Dyn. Earthq. Eng. – reference: Taki, O., 2003. Strength properties of soil cement produced by deep mixing. In: Proc. III Int. Conf. Grouting and Ground Treatment, ASCE Geotechnical Special Publ. No. 120, pp. 646–657. – volume: 1 start-page: 1 year: 2012 end-page: 9 ident: b0070 article-title: CBR test on fiber reinforced silty sand publication-title: Int. J. Struct. Civ. Eng. – reference: Topolnicki, M., Polska, K., Pandrea, P., 2012. Design of in-situ soil mixing. In: In Proc. of: ISSMGE - TC 211 International Symposium on Ground Improvement IS-GI Brussels. – volume: 84 start-page: 184 year: 2016 end-page: 191 ident: b0275 article-title: Prediction of expansion behavior of self-stressing concrete by artificial neural networks and fuzzy inference systems publication-title: Constr. Build. Mater. – volume: 20 start-page: 149 year: 2002 end-page: 168 ident: b0280 article-title: The artificial neural network as a tool for assessing geotechnical properties publication-title: Geotech. Geol. Eng. – volume: 85 start-page: 136 year: 2015 end-page: 143 ident: b0240 article-title: Artificial neural network modeling (ANN) for predicting rutting performance of nano-modified hot-mix asphalt mixtures containing steel slag aggregates publication-title: Constr. Build. Mater. – year: 2011 ident: b0035 article-title: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) – reference: Building Center of Japan (BCJ), 1997. Design and Quality Control Guideline for Buildings. – volume: 42 start-page: 205 year: 2013 end-page: 216 ident: b0230 article-title: Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS publication-title: Constr. Build. Mater. – year: 2014 ident: b0025 article-title: Artificial neural networks for modeling drained monotonic behavior of rockfill materials publication-title: Int. J. Geomech. – volume: 10 start-page: 61 year: 2015 end-page: 70 ident: b0110 article-title: Stabilization of problematic silty sands using microsilica and lime publication-title: Baltic J. Road Bridge Eng. – volume: 8 start-page: 207 year: 2006 end-page: 222 ident: b0125 article-title: A symbolic data-driven technique based on evolutionary polynomial regression publication-title: J. Hydroinf. – reference: DIN (Deutsches Institut für Normung), 2011. E DIN 4093 Entwurf und Bemessung von Bodenverfestigungen—HerstellungmitDüsenstrahl-, Deep-Mixing- oderInjektions-Verfahren, Beuth Verlag. – volume: 58 start-page: 130 year: 2009 end-page: 135 ident: b0155 article-title: Effect of silica fume on the geotechnical properties of fine-grained soils exposed to freeze and thaw publication-title: Cold Reg. Sci. Technol. – volume: 18 start-page: 655 year: 2012 end-page: 661 ident: b0135 article-title: Superiority of artificial neural networks over statistical methods in prediction of the optimal length of rock bolts publication-title: J. Civ. Eng. Manage. – year: 2014 ident: b0245 article-title: Load-settlement modeling of axially loaded drilled shafts using CPT-based recurrent neural networks publication-title: Int. J. Geomech. – volume: 10 start-page: 1 year: 2010 end-page: 12 ident: b0290 article-title: Neural network modeling of resilient modulus using routine subgrade soil properties publication-title: Int. J. Geomech. – volume: 37 start-page: 1860 year: 2011 end-page: 1869 ident: b0010 article-title: Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression publication-title: Comput. Geosci. – volume: 191 start-page: 8 year: 2015 end-page: 22 ident: b0195 article-title: Evolution of the properties of lime-treated silty soil in a small experimental embankment publication-title: Eng. Geol. – volume: 12 start-page: 477 year: 2012 end-page: 484 ident: b0145 article-title: Neural network prediction of buckling load of steel arch-shells publication-title: Arch. Civ. Mech. Eng. – volume: 25 start-page: 500 year: 2011 end-page: 517 ident: b0220 article-title: An evolutionary-based data mining technique for assessment of civil engineering systems publication-title: J. Eng. Comput. – volume: 64 start-page: 350 year: 2014 end-page: 359 ident: b0045 article-title: Stabilization of residual soil using SiO publication-title: Constr. Build. Mater. – reference: Sherwood, P.T., 1993. Soil stabilization with cement and lime. The state of the art review. Her Majesty Stationary Office. Transport Research Laboratory (TRL). Dept. of Transportation, 153p. ISBN: 0-11-551190-3. – volume: 40 start-page: 1200 year: 2013 ident: 10.1016/j.sandf.2017.11.002_b0095 article-title: Prediction of compressive strength of recycled aggregate concrete using artificial neural networks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.04.063 – volume: 23 start-page: 773 issue: 6 year: 2017 ident: 10.1016/j.sandf.2017.11.002_b0100 article-title: A novel solution for ground reaction curve of tunnels in elastoplastic strain softening rock masses publication-title: J. Civ. Eng. Manage. doi: 10.3846/13923730.2016.1271010 – year: 2014 ident: 10.1016/j.sandf.2017.11.002_b0245 article-title: Load-settlement modeling of axially loaded drilled shafts using CPT-based recurrent neural networks publication-title: Int. J. Geomech. doi: 10.1061/(ASCE)GM.1943-5622.0000370 – volume: 47 start-page: 1010 year: 2013 ident: 10.1016/j.sandf.2017.11.002_b0285 article-title: Modeling uniaxial compressive strength of building stones using non-destructive test results as neural networks input parameters publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.05.109 – volume: 7 start-page: 2303 issue: 6 year: 2014 ident: 10.1016/j.sandf.2017.11.002_b0140 article-title: Using artificial neural network (ANN) in prediction of collapse settlements of sandy gravels publication-title: Arab. J. Geosci. doi: 10.1007/s12517-013-0858-9 – year: 2015 ident: 10.1016/j.sandf.2017.11.002_b0205 article-title: Next-generation models for evaluation of the flow number of asphalt mixtures publication-title: Int. J. Geomech. doi: 10.1061/(ASCE)GM.1943-5622.0000483 – ident: 10.1016/j.sandf.2017.11.002_b0250 – volume: 20 start-page: 149 year: 2002 ident: 10.1016/j.sandf.2017.11.002_b0280 article-title: The artificial neural network as a tool for assessing geotechnical properties publication-title: Geotech. Geol. Eng. doi: 10.1023/A:1015066903985 – ident: 10.1016/j.sandf.2017.11.002_b0160 – volume: 30–2 start-page: 77 issue: 2 year: 2014 ident: 10.1016/j.sandf.2017.11.002_b0120 article-title: تثبیت ماسه سیلتی مسئله دار با استفاده از میکروسیلیس و آهک جهت کاهش میزان تورم و افزایش توان باربری publication-title: Sharif J. Sci. Technol.-Civ. Eng. – volume: 18 start-page: 655 issue: 5 year: 2012 ident: 10.1016/j.sandf.2017.11.002_b0135 article-title: Superiority of artificial neural networks over statistical methods in prediction of the optimal length of rock bolts publication-title: J. Civ. Eng. Manage. doi: 10.3846/13923730.2012.724029 – volume: 193 start-page: 320 year: 2015 ident: 10.1016/j.sandf.2017.11.002_b0295 article-title: Mechanical properties and behaviour of a partially saturated lime-treated, high plasticity clay publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.05.007 – ident: 10.1016/j.sandf.2017.11.002_b0260 doi: 10.1061/40663(2003)36 – year: 2002 ident: 10.1016/j.sandf.2017.11.002_b0075 – ident: 10.1016/j.sandf.2017.11.002_b0060 – year: 2014 ident: 10.1016/j.sandf.2017.11.002_b0025 article-title: Artificial neural networks for modeling drained monotonic behavior of rockfill materials publication-title: Int. J. Geomech. doi: 10.1061/(ASCE)GM.1943-5622.0000323 – volume: 8 start-page: 207 issue: 3 year: 2006 ident: 10.1016/j.sandf.2017.11.002_b0125 article-title: A symbolic data-driven technique based on evolutionary polynomial regression publication-title: J. Hydroinf. doi: 10.2166/hydro.2006.020b – volume: 137 start-page: 819 issue: 9 year: 2011 ident: 10.1016/j.sandf.2017.11.002_b0265 article-title: Stabilization of organic soils with fly ash publication-title: J. Geotech. Geoenviron. Eng., ASCE doi: 10.1061/(ASCE)GT.1943-5606.0000502 – volume: 25 start-page: 500 issue: 6 year: 2011 ident: 10.1016/j.sandf.2017.11.002_b0220 article-title: An evolutionary-based data mining technique for assessment of civil engineering systems publication-title: J. Eng. Comput. doi: 10.1108/02644400810891526 – volume: 37 start-page: 822 year: 2012 ident: 10.1016/j.sandf.2017.11.002_b0130 article-title: Statistical investigation on physical–mechanical properties of base and polymer modified bitumen using Artificial Neural Network publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.08.011 – volume: 198 start-page: 53 year: 2015 ident: 10.1016/j.sandf.2017.11.002_b0150 article-title: Mechanism of improvement in the strength and volume change behavior of lime stabilized soil publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.08.020 – volume: 186 start-page: 91 year: 2015 ident: 10.1016/j.sandf.2017.11.002_b0180 article-title: Multiple neural networks switched prediction for landslide displacement publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2014.11.014 – volume: 58 start-page: 130 year: 2009 ident: 10.1016/j.sandf.2017.11.002_b0155 article-title: Effect of silica fume on the geotechnical properties of fine-grained soils exposed to freeze and thaw publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2009.03.011 – year: 2011 ident: 10.1016/j.sandf.2017.11.002_b0035 – volume: 114 start-page: 298 issue: 3–4 year: 2010 ident: 10.1016/j.sandf.2017.11.002_b0170 article-title: Mean particle size prediction in rock blast fragmentation using neural networks publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2010.05.008 – year: 2009 ident: 10.1016/j.sandf.2017.11.002_b0040 – volume: 163 start-page: 20 year: 2013 ident: 10.1016/j.sandf.2017.11.002_b0065 article-title: Effects of ground granulated blast furnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2013.05.016 – ident: 10.1016/j.sandf.2017.11.002_b0255 doi: 10.1016/j.ijrmms.2004.03.095 – volume: 85 start-page: 136 year: 2015 ident: 10.1016/j.sandf.2017.11.002_b0240 article-title: Artificial neural network modeling (ANN) for predicting rutting performance of nano-modified hot-mix asphalt mixtures containing steel slag aggregates publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.03.060 – volume: 21 start-page: 15 year: 2006 ident: 10.1016/j.sandf.2017.11.002_b0215 article-title: Prediction of tunneling-induced ground movement with the multi-layer perceptron publication-title: Int. J. Tunneling Undergr. Space Technol. – volume: 10 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.sandf.2017.11.002_b0290 article-title: Neural network modeling of resilient modulus using routine subgrade soil properties publication-title: Int. J. Geomech. doi: 10.1061/(ASCE)1532-3641(2010)10:1(1) – volume: 183 start-page: 230 year: 2014 ident: 10.1016/j.sandf.2017.11.002_b0020 article-title: Empirical relations between compressive strength and microfabric properties of amphibolites using multivariate regression, fuzzy inference and neural networks: a comparative study publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2014.08.026 – volume: 20 start-page: 561 issue: 4 year: 2014 ident: 10.1016/j.sandf.2017.11.002_b0225 article-title: New nondestructive way of identifying the values of pull-off adhesion between concrete layers in floors publication-title: J. Civ. Eng. Manage. doi: 10.3846/13923730.2014.897642 – volume: 1 start-page: 1 issue: 3 year: 2012 ident: 10.1016/j.sandf.2017.11.002_b0070 article-title: CBR test on fiber reinforced silty sand publication-title: Int. J. Struct. Civ. Eng. – volume: 44 start-page: 86 year: 2012 ident: 10.1016/j.sandf.2017.11.002_b0115 article-title: Estimating shear wave velocity of soil deposits using polynomial neural networks: application to liquefaction publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.03.002 – volume: 12 start-page: 477 issue: 4 year: 2012 ident: 10.1016/j.sandf.2017.11.002_b0145 article-title: Neural network prediction of buckling load of steel arch-shells publication-title: Arch. Civ. Mech. Eng. doi: 10.1016/j.acme.2012.07.005 – volume: 174 start-page: 139 year: 2014 ident: 10.1016/j.sandf.2017.11.002_b0200 article-title: Engineering and durability properties of fly ash treated lime-stabilised sulphate-bearing soils publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2014.03.001 – volume: 25 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.sandf.2017.11.002_b0055 article-title: Evaluation of lateral spreading using artificial neural networks publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2004.09.001 – volume: 10 start-page: 61 issue: 1 year: 2015 ident: 10.1016/j.sandf.2017.11.002_b0110 article-title: Stabilization of problematic silty sands using microsilica and lime publication-title: Baltic J. Road Bridge Eng. doi: 10.3846/bjrbe.2015.08 – ident: 10.1016/j.sandf.2017.11.002_b0175 – ident: 10.1016/j.sandf.2017.11.002_b0005 – volume: 10 start-page: 171 issue: 5 year: 2010 ident: 10.1016/j.sandf.2017.11.002_b0235 article-title: Site characterization model using artificial neural network and kriging publication-title: Int. J. Geomech. doi: 10.1061/(ASCE)1532-3641(2010)10:5(171) – volume: 19 start-page: 448 issue: 6 year: 2005 ident: 10.1016/j.sandf.2017.11.002_b0050 article-title: Stabilization of residual soil with rice husk ash and cement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2004.08.001 – year: 1996 ident: 10.1016/j.sandf.2017.11.002_b0085 – year: 2016 ident: 10.1016/j.sandf.2017.11.002_b0030 – volume: 19 start-page: 3006 year: 2012 ident: 10.1016/j.sandf.2017.11.002_b0210 article-title: Stabilization of saline silty sand using lime and micro silica publication-title: J. Cent. South Univ. doi: 10.1007/s11771-012-1370-1 – volume: 58 start-page: 21 year: 2014 ident: 10.1016/j.sandf.2017.11.002_b0105 article-title: Comprehensive three dimensional finite element analysis, parametric study and sensitivity analysis on the seismic performance of soil-micropile-superstructure interaction publication-title: J. Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2013.12.001 – ident: 10.1016/j.sandf.2017.11.002_b0190 doi: 10.1061/(ASCE)GT.1943-5606.0000188 – volume: 58 start-page: 3659 year: 2003 ident: 10.1016/j.sandf.2017.11.002_b0185 article-title: Characteristics and reactivities of Ca(OH)2/silica fume sorbents for low-temperature flue gas desulfurization publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(03)00222-7 – volume: 42 start-page: 205 year: 2013 ident: 10.1016/j.sandf.2017.11.002_b0230 article-title: Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.01.016 – volume: 37 start-page: 1860 issue: 11 year: 2011 ident: 10.1016/j.sandf.2017.11.002_b0010 article-title: Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2011.04.015 – year: 2015 ident: 10.1016/j.sandf.2017.11.002_b0015 article-title: Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming publication-title: Eng. Geol. – ident: 10.1016/j.sandf.2017.11.002_b0270 – volume: 84 start-page: 184 year: 2016 ident: 10.1016/j.sandf.2017.11.002_b0275 article-title: Prediction of expansion behavior of self-stressing concrete by artificial neural networks and fuzzy inference systems publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.03.059 – year: 2015 ident: 10.1016/j.sandf.2017.11.002_b0165 article-title: Modeling the mechanical behavior of carbonate sands using artificial neural networks and support vector machines publication-title: Int. J. Geomech. – ident: 10.1016/j.sandf.2017.11.002_b0090 – volume: 22 start-page: 1299 year: 2008 ident: 10.1016/j.sandf.2017.11.002_b0080 article-title: Effect of silica fume and expanded perlite addition on the technical properties of the fly ash-lime-gypsum mixture publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2007.01.011 – volume: 64 start-page: 350 year: 2014 ident: 10.1016/j.sandf.2017.11.002_b0045 article-title: Stabilization of residual soil using SiO2 nanoparticles and cement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.04.086 – volume: 191 start-page: 8 year: 2015 ident: 10.1016/j.sandf.2017.11.002_b0195 article-title: Evolution of the properties of lime-treated silty soil in a small experimental embankment publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.03.008 |
SSID | ssj0062011 |
Score | 2.4971566 |
Snippet | Desert sands in Iran, which usually contain small amounts of silt and sulfate, do not have significant strength, and thus, are not suitable for foundations or... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 34 |
SubjectTerms | California bearing ratio Deep soil mixing Evolutionary polynomial regression Microsilica-lime stabilization Neural networks Sensitivity analysis Sulfate silty sand Unconfined compressive strength |
Title | Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing |
URI | https://dx.doi.org/10.1016/j.sandf.2017.11.002 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ_iE9_MwaPVtE3TFE_usiKCi6gLeyvZJpHKurtsK6j_wH_tTB-yInjwVNJ0mjATZr4kky-MnXAdC6mU70mhtCcct57WPPKcMELoCGOYpgX92768HoibYTRcYt32LAylVTa-v_bplbdu3pw32jyf5Tmd8Q2JFBFDcEhAgBg_Q6GqQ3zDTuuNJQW4mpqRmJi5bJmHqhyvAmfrFY9nfEZUns3ayq_otBBxrtbZWgMV4bLuzQZbspNNtrpAILjFPu_mtNFCyoWpg0H3AbAt6HbuqfhCyXZFTsty3jh_sYBIkHJhP6yB4nXsEGYCVpfvQD0ESoF_gst-v_pH7-4eqmtyigtY2OWGcgqIGcFYO4Nimo-xlTeU22aDq95j99prLlfwMtRSiVNGXxnp20Qoa2zohDBJwJMg0yoObBbp2ISJljJzJhopP9YyyUIdWcuNyoKEhztseTKd2F0GRjiJvsDJWHOB-E2NeCgkz_BhjO_iPRa0Sk2zhnmcLsAYp22K2XNaWSIlS-CcJEVL7LHTb6FZTbzx9-eytVb6Y_ykGBr-Etz_r-ABW8GSqjO4D9lyOX-1RwhQytFxNQK_AM1j4z0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPbQcEH2pQB9z6LEpTuw4jnqC1aKlhRWiu9LeIm9so1T70iZIwD_gX3cmD7RVJQ49RYk9seWxZj7b428Y-8JNIpXWYaCkNoH03AXG8Djw0kppYvRhhjb0L4ZqMJY_JvFki_W6uzAUVtna_sam19a6_XLUjubRqijojq8gUkR0wYKAgHjGniMaSCh_w9nkpDPHijxcw81IVMxcddRDdZBXicv1msgz-UZcnu3myj_uacPlnO6x3RYrwnHTnVdsyy1es50NBsE37OFyTSctNLqw9DDu_QJsC3onV_Q6p2i7sqB9uWBWzB0gFKRg2HtnobyZecSZgMXVHVAPgWLgr-F4OKz_0b-8gjpPTvkdNo65oVoCgkawzq2gXBYzbOUW5d6y8Wl_1BsEbXaFIBdSV7hmDLVVoUuldtYJL6VNI55GudFJ5PLYJFakRqnc23iqw8SoNBcmdo5bnUcpF-_Y9mK5cO8ZWOkVGgOvEsMlAjg95UIqnuPD2tAn-yzqBjXLW-pxyoAxy7oYs99ZrYmMNIGLkgw1sc--PgqtGuaNp6urTlvZXxMoQ9_wlODB_wp-Zi8Go4vz7Pxs-POQvcQS3YRzf2Db1frGfUS0Uk0_1bPxD0H45lw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+UCS+and+CBR+of+microsilica-lime+stabilized+sulfate+silty+sand+using+ANN+and+EPR+models%3B+application+to+the+deep+soil+mixing&rft.jtitle=Soils+and+foundations&rft.au=Ghorbani%2C+Ali&rft.au=Hasanzadehshooiili%2C+Hadi&rft.date=2018-02-01&rft.pub=Elsevier+B.V&rft.issn=0038-0806&rft.volume=58&rft.issue=1&rft.spage=34&rft.epage=49&rft_id=info:doi/10.1016%2Fj.sandf.2017.11.002&rft.externalDocID=S0038080617301543 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0806&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0806&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0806&client=summon |