Fast and Calibrationless Low-Rank Parallel Imaging Reconstruction Through Unrolled Deep Learning Estimation of Multi-Channel Spatial Support Maps

Low-rank technique has emerged as a powerful calibrationless alternative for parallel magnetic resonance (MR) imaging. Calibrationless low-rank reconstruction, such as low-rank modeling of local k-space neighborhoods (LORAKS), implicitly exploits both coil sensitivity modulations and the finite spat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 42; no. 6; pp. 1644 - 1655
Main Authors Yi, Zheyuan, Hu, Jiahao, Zhao, Yujiao, Xiao, Linfang, Liu, Yilong, Leong, Alex T. L., Chen, Fei, Wu, Ed X.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2023.3234968

Cover

Loading…
Abstract Low-rank technique has emerged as a powerful calibrationless alternative for parallel magnetic resonance (MR) imaging. Calibrationless low-rank reconstruction, such as low-rank modeling of local k-space neighborhoods (LORAKS), implicitly exploits both coil sensitivity modulations and the finite spatial support constraint of MR images through an iterative low-rank matrix recovery process. Although powerful, this slow iteration process is computationally demanding and reconstruction requires empirical rank optimization, hampering its robust applications for high-resolution volume imaging. This paper proposes a fast and calibrationless low-rank reconstruction of undersampled multi-slice MR brain data, based on the finite spatial support constraint reformulation with a direct deep learning estimation of spatial support maps. The iteration process of low-rank reconstruction is unrolled into a complex-valued network by training on fully-sampled multi-slice axial brain datasets acquired from the same MR coil system. To utilize coil-subject geometric parameters available for datasets, the model minimizes a hybrid loss on two sets of spatial support maps, corresponding to brain data at the original slice locations as actually acquired and nearby locations within the standard reference coordinate. This deep learning framework was integrated with LORAKS reconstruction and was evaluated with publically available gradient-echo T1-weighted brain datasets. It directly produced high-quality multi-channel spatial support maps from undersampled data, enabling rapid reconstruction without iteration. Moreover, it led to effective reductions of artifacts and noise amplification at high acceleration. In summary, our proposed deep learning framework offers a new strategy to advance the existing calibrationless low-rank reconstruction, rendering it computationally efficient, simple, and robust in practice.
AbstractList Low-rank technique has emerged as a powerful calibrationless alternative for parallel magnetic resonance (MR) imaging. Calibrationless low-rank reconstruction, such as low-rank modeling of local k-space neighborhoods (LORAKS), implicitly exploits both coil sensitivity modulations and the finite spatial support constraint of MR images through an iterative low-rank matrix recovery process. Although powerful, this slow iteration process is computationally demanding and reconstruction requires empirical rank optimization, hampering its robust applications for high-resolution volume imaging. This paper proposes a fast and calibrationless low-rank reconstruction of undersampled multi-slice MR brain data, based on the finite spatial support constraint reformulation with a direct deep learning estimation of spatial support maps. The iteration process of low-rank reconstruction is unrolled into a complex-valued network by training on fully-sampled multi-slice axial brain datasets acquired from the same MR coil system. To utilize coil-subject geometric parameters available for datasets, the model minimizes a hybrid loss on two sets of spatial support maps, corresponding to brain data at the original slice locations as actually acquired and nearby locations within the standard reference coordinate. This deep learning framework was integrated with LORAKS reconstruction and was evaluated with publically available gradient-echo T1-weighted brain datasets. It directly produced high-quality multi-channel spatial support maps from undersampled data, enabling rapid reconstruction without iteration. Moreover, it led to effective reductions of artifacts and noise amplification at high acceleration. In summary, our proposed deep learning framework offers a new strategy to advance the existing calibrationless low-rank reconstruction, rendering it computationally efficient, simple, and robust in practice.
Low-rank technique has emerged as a powerful calibrationless alternative for parallel magnetic resonance (MR) imaging. Calibrationless low-rank reconstruction, such as low-rank modeling of local k-space neighborhoods (LORAKS), implicitly exploits both coil sensitivity modulations and the finite spatial support constraint of MR images through an iterative low-rank matrix recovery process. Although powerful, this slow iteration process is computationally demanding and reconstruction requires empirical rank optimization, hampering its robust applications for high-resolution volume imaging. This paper proposes a fast and calibrationless low-rank reconstruction of undersampled multi-slice MR brain data, based on the finite spatial support constraint reformulation with a direct deep learning estimation of spatial support maps. The iteration process of low-rank reconstruction is unrolled into a complex-valued network by training on fully-sampled multi-slice axial brain datasets acquired from the same MR coil system. To utilize coil-subject geometric parameters available for datasets, the model minimizes a hybrid loss on two sets of spatial support maps, corresponding to brain data at the original slice locations as actually acquired and nearby locations within the standard reference coordinate. This deep learning framework was integrated with LORAKS reconstruction and was evaluated with publically available gradient-echo T1-weighted brain datasets. It directly produced high-quality multi-channel spatial support maps from undersampled data, enabling rapid reconstruction without iteration. Moreover, it led to effective reductions of artifacts and noise amplification at high acceleration. In summary, our proposed deep learning framework offers a new strategy to advance the existing calibrationless low-rank reconstruction, rendering it computationally efficient, simple, and robust in practice.Low-rank technique has emerged as a powerful calibrationless alternative for parallel magnetic resonance (MR) imaging. Calibrationless low-rank reconstruction, such as low-rank modeling of local k-space neighborhoods (LORAKS), implicitly exploits both coil sensitivity modulations and the finite spatial support constraint of MR images through an iterative low-rank matrix recovery process. Although powerful, this slow iteration process is computationally demanding and reconstruction requires empirical rank optimization, hampering its robust applications for high-resolution volume imaging. This paper proposes a fast and calibrationless low-rank reconstruction of undersampled multi-slice MR brain data, based on the finite spatial support constraint reformulation with a direct deep learning estimation of spatial support maps. The iteration process of low-rank reconstruction is unrolled into a complex-valued network by training on fully-sampled multi-slice axial brain datasets acquired from the same MR coil system. To utilize coil-subject geometric parameters available for datasets, the model minimizes a hybrid loss on two sets of spatial support maps, corresponding to brain data at the original slice locations as actually acquired and nearby locations within the standard reference coordinate. This deep learning framework was integrated with LORAKS reconstruction and was evaluated with publically available gradient-echo T1-weighted brain datasets. It directly produced high-quality multi-channel spatial support maps from undersampled data, enabling rapid reconstruction without iteration. Moreover, it led to effective reductions of artifacts and noise amplification at high acceleration. In summary, our proposed deep learning framework offers a new strategy to advance the existing calibrationless low-rank reconstruction, rendering it computationally efficient, simple, and robust in practice.
Author Hu, Jiahao
Zhao, Yujiao
Xiao, Linfang
Chen, Fei
Yi, Zheyuan
Wu, Ed X.
Liu, Yilong
Leong, Alex T. L.
Author_xml – sequence: 1
  givenname: Zheyuan
  orcidid: 0000-0002-4833-4419
  surname: Yi
  fullname: Yi, Zheyuan
  email: xiaoyaoqing1@gmail.com
  organization: Laboratory of Biomedical Imaging and Signal Processing and Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
– sequence: 2
  givenname: Jiahao
  surname: Hu
  fullname: Hu, Jiahao
  email: hujh0919@gmail.com
  organization: Laboratory of Biomedical Imaging and Signal Processing and Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
– sequence: 3
  givenname: Yujiao
  orcidid: 0000-0001-8063-887X
  surname: Zhao
  fullname: Zhao, Yujiao
  email: zhaoyj024@gmail.com
  organization: Laboratory of Biomedical Imaging and Signal Processing and Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
– sequence: 4
  givenname: Linfang
  surname: Xiao
  fullname: Xiao, Linfang
  email: xiaolinfang92@gmail.com
  organization: Laboratory of Biomedical Imaging and Signal Processing and Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
– sequence: 5
  givenname: Yilong
  orcidid: 0000-0001-9295-7982
  surname: Liu
  fullname: Liu, Yilong
  email: loyalliu2008@gmail.com
  organization: Laboratory of Biomedical Imaging and Signal Processing and Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
– sequence: 6
  givenname: Alex T. L.
  surname: Leong
  fullname: Leong, Alex T. L.
  email: alexleong31@gmail.com
  organization: Laboratory of Biomedical Imaging and Signal Processing and Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
– sequence: 7
  givenname: Fei
  orcidid: 0000-0002-6988-492X
  surname: Chen
  fullname: Chen, Fei
  email: fchen@sustech.edu.cn
  organization: Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 8
  givenname: Ed X.
  orcidid: 0000-0001-5581-1546
  surname: Wu
  fullname: Wu, Ed X.
  email: ewu@eee.hku.hk
  organization: Laboratory of Biomedical Imaging and Signal Processing and Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37018640$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1uEzEUhS1URNPCngVCltiwmeC_sWeWKLQQKRGopBI7yzO5k0xx7KntEeIxeGM8TSqhLlhdyf7Oke85vkBnzjtA6DUlc0pJ_WGzXs4ZYXzOGRe1rJ6hGS3LqmCl-HGGZoSpqiBEsnN0EeMdIVSUpH6BzrkitJKCzNCfaxMTNm6LF8b2TTCp985CjHjlfxU3xv3E30ww1oLFy4PZ9W6Hb6D1LqYwthOMN_vgx90e37rgM7fFnwAGvAIT3ERfxdQfHmyx7_B6tKkvFnvjXHb8PuQLk-c4DD4kvDZDfImed8ZGeHWal-j2-mqz-FKsvn5eLj6uipaLKhUlqJqXQBqoialYK0GqDloBtKoV2XIutpTTfMIJaXIOvGxE3XQ1sLKTUnT8Er0_-g7B348Qkz70sQVrjQM_Rs1UrahQTNKMvnuC3vkxuPw6zSpGFVWMTNTbEzU2B9jqIeS9w2_9GHYG5BFog48xQKfbPj0kk4LpraZET63q3KqeWtWnVrOQPBE-ev9H8uYo6QHgHzx_AakE_wtKL61_
CODEN ITMID4
CitedBy_id crossref_primary_10_1002_mrm_29968
crossref_primary_10_1002_mrm_29658
crossref_primary_10_1109_JBHI_2024_3446839
crossref_primary_10_1002_mrm_30105
crossref_primary_10_1016_j_aej_2024_01_075
Cites_doi 10.1038/nature25988
10.1109/TMI.2013.2293974
10.1109/TMI.2019.2927101
10.1002/mrm.21391
10.1109/MSP.2020.3016905
10.1109/MSP.2019.2950557
10.1038/272686a0
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.3.CO;2-J
10.1002/mrm.26081
10.1002/mrm.24997
10.1002/mrm.28674
10.1002/mrm.22428
10.1109/42.414614
10.1002/nbm.4695
10.1002/mrm.10171
10.1002/mrm.27827
10.1109/TMI.2022.3203312
10.1109/TMI.2018.2865356
10.1002/mrm.27201
10.1002/jmri.27078
10.1002/mrm.21237
10.1109/MSP.2019.2949570
10.1016/j.mri.2020.02.002
10.1002/mrm.28638
10.1145/355984.355989
10.1002/mrm.28733
10.1002/mrm.27120
10.1002/mrm.29085
10.1002/mrm.26182
10.1002/mrm.26191
10.1016/j.media.2020.101687
10.1109/TMI.2018.2887072
10.1002/mrm.27511
10.1073/pnas.1907377117
10.1109/TMI.2022.3164472
10.1109/ISBI.2015.7164018
10.1002/mrm.22899
10.1002/mrm.26977
10.1002/mrm.28828
10.1109/TMI.2020.3014581
10.1002/mrm.27921
10.1109/TCI.2017.2721819
10.1109/ISBI.2015.7164100
10.1002/mrm.24751
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2023.3234968
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1655
ExternalDocumentID 37018640
10_1109_TMI_2023_3234968
10014674
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Guangdong Key Technologies for Alzheimer’s Disease Diagnosis and Treatment
  grantid: 2018B030336001
– fundername: Guangdong Key Technologies for Treatment of Brain Disorders
  grantid: 2018B030332001
– fundername: Hong Kong Research Grant Council
  grantid: HKU17103819; HKU17104020; HKU17127021
  funderid: 10.13039/501100002920
– fundername: Hong Kong Research Grant Council
  grantid: R7003-19; HKU17127121; HKU17112120
  funderid: 10.13039/501100002920
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c348t-5e7935e0be90a82c6e67fec4e18970d334d131fec300b27835b49bf9e25f664f3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Jul 10 23:44:14 EDT 2025
Sun Jun 29 16:35:22 EDT 2025
Wed Feb 19 02:24:23 EST 2025
Thu Apr 24 23:02:13 EDT 2025
Tue Jul 01 03:16:06 EDT 2025
Wed Aug 27 02:25:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-5e7935e0be90a82c6e67fec4e18970d334d131fec300b27835b49bf9e25f664f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9295-7982
0000-0002-6988-492X
0000-0002-4833-4419
0000-0001-5581-1546
0000-0001-8063-887X
PMID 37018640
PQID 2821717201
PQPubID 85460
PageCount 12
ParticipantIDs pubmed_primary_37018640
ieee_primary_10014674
proquest_miscellaneous_2797147261
crossref_citationtrail_10_1109_TMI_2023_3234968
crossref_primary_10_1109_TMI_2023_3234968
proquest_journals_2821717201
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref53
ref52
ref11
ref55
ref10
ref54
xiao (ref23) 2021; 87
ref17
ref16
ref19
ref18
bigdeli (ref28) 2017
ref51
ref50
ref46
ref45
ref47
ref44
ref49
kim (ref14) 2018
ref8
ref7
ref9
ref4
ref3
ref6
ref5
kim (ref22) 2019
ref40
ref35
ref34
ref36
huang (ref48) 2021
ref31
ref30
ref33
yi (ref15) 2021
ref2
dosovitskiy (ref42) 2019
ref1
ref39
ref38
ruder (ref41) 2017
ref24
ref26
ref25
ref20
ronneberger (ref43) 2015
ref21
haldar (ref32) 2015; 9597
ref27
ref29
haldar (ref37) 2015; 9597
References_xml – ident: ref20
  doi: 10.1038/nature25988
– ident: ref5
  doi: 10.1109/TMI.2013.2293974
– ident: ref21
  doi: 10.1109/TMI.2019.2927101
– ident: ref27
  doi: 10.1002/mrm.21391
– ident: ref39
  doi: 10.1109/MSP.2020.3016905
– ident: ref40
  doi: 10.1109/MSP.2019.2950557
– ident: ref1
  doi: 10.1038/272686a0
– ident: ref3
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.3.CO;2-J
– ident: ref7
  doi: 10.1002/mrm.26081
– ident: ref6
  doi: 10.1002/mrm.24997
– ident: ref29
  doi: 10.1002/mrm.28674
– ident: ref30
  doi: 10.1002/mrm.22428
– year: 2017
  ident: ref41
  article-title: An overview of multi-task learning in deep neural networks
  publication-title: ArXiv 1706 05098
– ident: ref8
  doi: 10.1109/42.414614
– volume: 9597
  year: 2015
  ident: ref32
  article-title: Low-rank modeling of local k-space neighborhoods: From phase and support constraints to structured sparsity
  publication-title: Proc SPIE
– ident: ref36
  doi: 10.1002/nbm.4695
– start-page: 1
  year: 2019
  ident: ref42
  article-title: You only train once: Loss-conditional training of deep networks
  publication-title: Proc Int 8th Conf Learn Represent
– year: 2021
  ident: ref48
  article-title: Exponential signal reconstruction with deep Hankel matrix factorization
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 87
  start-page: 1
  year: 2021
  ident: ref23
  article-title: Partial Fourier reconstruction of complex MR images using complex-valued convolutional neural networks
  publication-title: Magn Reson Med
– ident: ref4
  doi: 10.1002/mrm.10171
– ident: ref53
  doi: 10.1002/mrm.27827
– ident: ref50
  doi: 10.1109/TMI.2022.3203312
– ident: ref17
  doi: 10.1109/TMI.2018.2865356
– year: 2017
  ident: ref28
  article-title: Image restoration using autoencoding priors
  publication-title: arXiv 1703 09964
– ident: ref19
  doi: 10.1002/mrm.27201
– ident: ref18
  doi: 10.1002/jmri.27078
– ident: ref46
  doi: 10.1002/mrm.21237
– ident: ref31
  doi: 10.1109/MSP.2019.2949570
– ident: ref44
  doi: 10.1016/j.mri.2020.02.002
– ident: ref12
  doi: 10.1002/mrm.28638
– ident: ref47
  doi: 10.1145/355984.355989
– ident: ref45
  doi: 10.1002/mrm.28733
– ident: ref55
  doi: 10.1002/mrm.27120
– ident: ref54
  doi: 10.1002/mrm.29085
– ident: ref9
  doi: 10.1002/mrm.26182
– ident: ref35
  doi: 10.1002/mrm.26191
– ident: ref51
  doi: 10.1016/j.media.2020.101687
– ident: ref25
  doi: 10.1109/TMI.2018.2887072
– ident: ref10
  doi: 10.1002/mrm.27511
– start-page: 234
  year: 2015
  ident: ref43
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– ident: ref2
  doi: 10.1073/pnas.1907377117
– ident: ref52
  doi: 10.1109/TMI.2022.3164472
– ident: ref11
  doi: 10.1109/ISBI.2015.7164018
– volume: 9597
  year: 2015
  ident: ref37
  article-title: Low-rank modeling of local k-space neighborhoods: From phase and support constraints to structured sparsity
  publication-title: Proc SPIE
– year: 2019
  ident: ref22
  article-title: LORAKI: Autocalibrated recurrent neural networks for autoregressive MRI reconstruction in k-space
  publication-title: arXiv 1904 09390
– ident: ref38
  doi: 10.1002/mrm.22899
– ident: ref16
  doi: 10.1002/mrm.26977
– year: 2018
  ident: ref14
  article-title: LORAKS software version 2.0: Faster implementation and enhanced capabilities
– ident: ref24
  doi: 10.1002/mrm.28828
– ident: ref49
  doi: 10.1109/TMI.2020.3014581
– ident: ref26
  doi: 10.1002/mrm.27921
– ident: ref13
  doi: 10.1109/TCI.2017.2721819
– ident: ref33
  doi: 10.1109/ISBI.2015.7164100
– ident: ref34
  doi: 10.1002/mrm.24751
– start-page: 67
  year: 2021
  ident: ref15
  article-title: Fast calibrationless image-space reconstruction by structured low-rank tensor estimation of coil sensitivity and spatial support
  publication-title: Proc 29th Annu Meeting ISMRM
SSID ssj0014509
Score 2.4434106
Snippet Low-rank technique has emerged as a powerful calibrationless alternative for parallel magnetic resonance (MR) imaging. Calibrationless low-rank reconstruction,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1644
SubjectTerms Algorithms
Brain
Brain - diagnostic imaging
Brain mapping
Brain slice preparation
Calibration
Coils
complex-valued network
Convolution
Datasets
Deep Learning
Estimation
Fast calibrationless reconstruction
High acceleration
Image Processing, Computer-Assisted - methods
Image reconstruction
Image resolution
Imaging
Iterative methods
low-rank parallel imaging
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Neuroimaging
Optimization
Robustness (mathematics)
Sensitivity
Spatial discrimination learning
spatial support maps
Title Fast and Calibrationless Low-Rank Parallel Imaging Reconstruction Through Unrolled Deep Learning Estimation of Multi-Channel Spatial Support Maps
URI https://ieeexplore.ieee.org/document/10014674
https://www.ncbi.nlm.nih.gov/pubmed/37018640
https://www.proquest.com/docview/2821717201
https://www.proquest.com/docview/2797147261
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB3RHhAcCpQCgYKMxIVDsk7iOMkRQVctYiuEdqXeIieecOiSrLq7qsRf8MfM2MmyQiriFiVO4shv4hmP5z2Ad03RSg7_w9hoFdIMlYYGTRZKZWWrsVHWUebPLvX5Qn2-yq6GYnVXC4OIbvMZRnzocvm2b7a8VDZhviBWxziAA4rcfLHWLmWgMr-fI2HKWKmTMScpy8l8dhGxTHiUJsyPzhp9aS7jQvOSx9505PRV7nY13ZQzfQSXY2f9TpPraLupo-bnXzyO__01j-FocD7FB4-WJ3APu2N4uEdJeAz3Z0Oy_Sn8mpr1RpjOCi7gqj1UlvRnFF_62_Cb6a7FV3PDWixLcfHDqR0Jjmb_cNKKuVcBEovuhhcorPiEuBIDp-t3cUb_F186KfpWuFrgkMsdOnoiayWTbQiWHaUQQczMan0Ci-nZ_ON5OCg4hE2qik2YIZl_hrLGUpoiaTTqvCUAYFyUubRpqmycxnQmlbJmzY-sVmXdlphkrdaqTZ_BYdd3-AJEhiZvTVJIazlzmNRxUdi80exQxnmhA5iMA1k1A705q2wsKxfmyLIiFFSMgmpAQQDvd3esPLXHP9qe8ADutfNjF8DpCJZqMP51RVFsTFEyuVYBvN1dJrPlXIzpsN9Sm7zMY5VT_BrAcw-y3cNHbL6846Wv4AH3zW9YO4VDGlR8Ta7Rpn7jTOI3X1wHKw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB3BIvFx4GNZlsACRuLCIamTOE5yRLBVC02FUCvtLXLiCYctSbVttRL_gn-Mx05KhbSIW5Q4jiM_2zMez3sA7-qs4eT--6GSwjcrVOwrVInPheaNxFpoS5lfzOVkKT5fJBd9srrNhUFEe_gMA7q0sXzd1TvaKhsRXxCpY9yGOwll47p0rX3QQCTuREdEpLFcRkNUkuejRTENSCg8iCNiSCeVvjjlYSZp0-NgQbIKKzcbm3bRGT-C-dBcd9bkMthtq6D--ReT43__z2N42Juf7IPDyxO4he0xPDggJTyGu0Ufbn8Kv8Zqs2Wq1YxSuCoHlpWZG9msu_a_qfaSfVVXpMayYtMfVu-IkT_7h5WWLZwOEFu2V7RFodknxDXrWV2_s3Mzw7jkSdY1zGYD-5Tw0JoaSS3ZjA5GwqPGSWCFWm9OYDk-X3yc-L2Gg1_HItv6CZoJIEFeYc5VFtUSZdoYCGCY5SnXcSx0GIfmTsx5RaofSSXyqskxShopRRM_g6O2a_E5sARV2qgo41pT7DCqwizTaS3JpAzTTHowGjqyrHuCc9LZWJXW0eF5aVBQEgrKHgUevN-_sXbkHv8oe0IdeFDO9Z0HZwNYyn74b0rjx4bGTzbGlQdv94_NwKVojGqx25kyaZ6GIjUerAenDmT7ygdsvrjho2_g3mRRzMrZdP7lJdyndrrja2dwZDoYXxlDaVu9tsPjNzeLCnM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Calibrationless+Low-Rank+Parallel+Imaging+Reconstruction+Through+Unrolled+Deep+Learning+Estimation+of+Multi-Channel+Spatial+Support+Maps&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Yi%2C+Zheyuan&rft.au=Hu%2C+Jiahao&rft.au=Zhao%2C+Yujiao&rft.au=Xiao%2C+Linfang&rft.date=2023-06-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=42&rft.issue=6&rft.spage=1644&rft.epage=1655&rft_id=info:doi/10.1109%2FTMI.2023.3234968&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2023_3234968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon