β- d-Glucosidase reaction kinetics from isothermal titration microcalorimetry
The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations were previously generated using random mutagenesis and identified by high-temperature screening as imparting improved thermal stability to th...
Saved in:
Published in | Analytical biochemistry Vol. 347; no. 2; pp. 244 - 253 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.12.2005
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-2697 1096-0309 |
DOI | 10.1016/j.ab.2005.09.031 |
Cover
Loading…
Abstract | The cellobiase activities of nine thermal stable mutants of
Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations were previously generated using random mutagenesis and identified by high-temperature screening as imparting improved thermal stability to the β-
d-glucosidase enzyme. Analysis of the substrate–saturation curves obtained by ITC for the wild-type enzyme and the nine thermally stabilized mutants revealed that the wild type and all the mutants were subject to binding of a second substrate molecule. Furthermore, the “inhibited” enzyme–substrate complexes were shown to retain catalytic activity. In the case of three of the BglC mutants (N178I, N317Y/L444F, and N317Y/L444F/A433V), binding of a second substrate molecule resulted in improved cellobiose turnover rates at lower substrate concentrations. No correlation between denaturation temperatures of the mutants and activity on cellobiose at 25
°C was evident. However, one particular mutant, BglC S319C, was significantly improved in both thermal tolerance and cellobiase activity with respect to those of the wild-type BglC. The triple mutant, N317Y/L444F/A433V, had a 5
°C increase in denaturation temperature while maintaining activity levels similar to that of the wild type at higher substrate concentrations. ITC provided a highly sensitive and nondestructive means to continuously monitor the reaction of BglC with cellobiose, resulting in abundant data sets that could be rigorously analyzed by fitting to known enzyme kinetics models. One distinct advantage of using data from the ITC was the empirical validation of the pseudo steady state assumption, a necessary condition for obtaining solutions to the proposed mechanisms. |
---|---|
AbstractList | The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations were previously generated using random mutagenesis and identified by high-temperature screening as imparting improved thermal stability to the beta-D-glucosidase enzyme. Analysis of the substrate-saturation curves obtained by ITC for the wild-type enzyme and the nine thermally stabilized mutants revealed that the wild type and all the mutants were subject to binding of a second substrate molecule. Furthermore, the "inhibited" enzyme-substrate complexes were shown to retain catalytic activity. In the case of three of the BglC mutants (N178I, N317Y/L444F, and N317Y/L444F/A433V), binding of a second substrate molecule resulted in improved cellobiose turnover rates at lower substrate concentrations. No correlation between denaturation temperatures of the mutants and activity on cellobiose at 25 degrees C was evident. However, one particular mutant, BglC S319C, was significantly improved in both thermal tolerance and cellobiase activity with respect to those of the wild-type BglC. The triple mutant, N317Y/L444F/A433V, had a 5 degrees C increase in denaturation temperature while maintaining activity levels similar to that of the wild type at higher substrate concentrations. ITC provided a highly sensitive and nondestructive means to continuously monitor the reaction of BglC with cellobiose, resulting in abundant data sets that could be rigorously analyzed by fitting to known enzyme kinetics models. One distinct advantage of using data from the ITC was the empirical validation of the pseudo steady state assumption, a necessary condition for obtaining solutions to the proposed mechanisms.The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations were previously generated using random mutagenesis and identified by high-temperature screening as imparting improved thermal stability to the beta-D-glucosidase enzyme. Analysis of the substrate-saturation curves obtained by ITC for the wild-type enzyme and the nine thermally stabilized mutants revealed that the wild type and all the mutants were subject to binding of a second substrate molecule. Furthermore, the "inhibited" enzyme-substrate complexes were shown to retain catalytic activity. In the case of three of the BglC mutants (N178I, N317Y/L444F, and N317Y/L444F/A433V), binding of a second substrate molecule resulted in improved cellobiose turnover rates at lower substrate concentrations. No correlation between denaturation temperatures of the mutants and activity on cellobiose at 25 degrees C was evident. However, one particular mutant, BglC S319C, was significantly improved in both thermal tolerance and cellobiase activity with respect to those of the wild-type BglC. The triple mutant, N317Y/L444F/A433V, had a 5 degrees C increase in denaturation temperature while maintaining activity levels similar to that of the wild type at higher substrate concentrations. ITC provided a highly sensitive and nondestructive means to continuously monitor the reaction of BglC with cellobiose, resulting in abundant data sets that could be rigorously analyzed by fitting to known enzyme kinetics models. One distinct advantage of using data from the ITC was the empirical validation of the pseudo steady state assumption, a necessary condition for obtaining solutions to the proposed mechanisms. The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations were previously generated using random mutagenesis and identified by high-temperature screening as imparting improved thermal stability to the beta-D-glucosidase enzyme. Analysis of the substrate-saturation curves obtained by ITC for the wild-type enzyme and the nine thermally stabilized mutants revealed that the wild type and all the mutants were subject to binding of a second substrate molecule. Furthermore, the "inhibited" enzyme-substrate complexes were shown to retain catalytic activity. In the case of three of the BglC mutants (N178I, N317Y/L444F, and N317Y/L444F/A433V), binding of a second substrate molecule resulted in improved cellobiose turnover rates at lower substrate concentrations. No correlation between denaturation temperatures of the mutants and activity on cellobiose at 25 degrees C was evident. However, one particular mutant, BglC S319C, was significantly improved in both thermal tolerance and cellobiase activity with respect to those of the wild-type BglC. The triple mutant, N317Y/L444F/A433V, had a 5 degrees C increase in denaturation temperature while maintaining activity levels similar to that of the wild type at higher substrate concentrations. ITC provided a highly sensitive and nondestructive means to continuously monitor the reaction of BglC with cellobiose, resulting in abundant data sets that could be rigorously analyzed by fitting to known enzyme kinetics models. One distinct advantage of using data from the ITC was the empirical validation of the pseudo steady state assumption, a necessary condition for obtaining solutions to the proposed mechanisms. The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations were previously generated using random mutagenesis and identified by high-temperature screening as imparting improved thermal stability to the β- d-glucosidase enzyme. Analysis of the substrate–saturation curves obtained by ITC for the wild-type enzyme and the nine thermally stabilized mutants revealed that the wild type and all the mutants were subject to binding of a second substrate molecule. Furthermore, the “inhibited” enzyme–substrate complexes were shown to retain catalytic activity. In the case of three of the BglC mutants (N178I, N317Y/L444F, and N317Y/L444F/A433V), binding of a second substrate molecule resulted in improved cellobiose turnover rates at lower substrate concentrations. No correlation between denaturation temperatures of the mutants and activity on cellobiose at 25 °C was evident. However, one particular mutant, BglC S319C, was significantly improved in both thermal tolerance and cellobiase activity with respect to those of the wild-type BglC. The triple mutant, N317Y/L444F/A433V, had a 5 °C increase in denaturation temperature while maintaining activity levels similar to that of the wild type at higher substrate concentrations. ITC provided a highly sensitive and nondestructive means to continuously monitor the reaction of BglC with cellobiose, resulting in abundant data sets that could be rigorously analyzed by fitting to known enzyme kinetics models. One distinct advantage of using data from the ITC was the empirical validation of the pseudo steady state assumption, a necessary condition for obtaining solutions to the proposed mechanisms. |
Author | Ali, Mursheda K. Baker, John O. Himmel, Michael E. Jeoh, Tina Adney, William S. |
Author_xml | – sequence: 1 givenname: Tina surname: Jeoh fullname: Jeoh, Tina email: tina_jeoh@nrel.gov – sequence: 2 givenname: John O. surname: Baker fullname: Baker, John O. – sequence: 3 givenname: Mursheda K. surname: Ali fullname: Ali, Mursheda K. – sequence: 4 givenname: Michael E. surname: Himmel fullname: Himmel, Michael E. – sequence: 5 givenname: William S. surname: Adney fullname: Adney, William S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16269126$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMFO3DAQhq2KqizQO6cqJ25Jx3HiJNwQottKCC7lbNmTieolibe2F2lfiwfpM9W7S3tA2tNIo-8bzf-fsZPZzcTYJYeCA5dfV4U2RQlQF9AVIPgHtuDQyRwEdCdsAQAiL2XXnLKzEFYAnFe1_MROuUxbXsoFe_jzmmd9vhw36ILtdaDMk8Zo3Zw925mixZAN3k2ZDS7-Ij_pMYs2er1HJoveoR6dtxNFv71gHwc9Bvr8Ns_Z07e7n7ff8_vH5Y_bm_scRdXGvEaUmpqhN6aVSBwkmWGA2vDBtLwXJcqmr9uqxEFAJTCBkhsugTfC1FUjztnV4e7au98bClFNNiCNo57JbYKSbSsqIXbglzdwYybq1To9qv1W_WsgAfIApCAheBoU2rgPlzLaUXFQu6rVSmmjdlUr6FSqOonwTvx_-7hyfVAoVfNiyauAlmak3nrCqHpnj8t_ARNBlsQ |
CitedBy_id | crossref_primary_10_1016_j_ab_2018_11_006 crossref_primary_10_1186_1754_6834_4_39 crossref_primary_10_1016_j_copbio_2014_01_009 crossref_primary_10_1002_ps_5170 crossref_primary_10_1089_ind_2016_29040_vfr crossref_primary_10_1007_s00253_012_3875_9 crossref_primary_10_1039_C5RA28017F crossref_primary_10_1016_j_ab_2010_04_020 crossref_primary_10_1016_j_biortech_2012_12_098 crossref_primary_10_1128_AEM_01786_10 crossref_primary_10_1007_s10529_010_0500_9 crossref_primary_10_1002_bit_22885 crossref_primary_10_1111_1744_7917_13145 crossref_primary_10_1016_j_bcab_2015_12_005 crossref_primary_10_1007_s11255_019_02186_2 crossref_primary_10_1016_j_ab_2011_03_003 crossref_primary_10_1016_j_carbpol_2012_07_039 crossref_primary_10_1007_s12010_010_9068_z crossref_primary_10_1016_j_ijbiomac_2020_02_117 crossref_primary_10_1007_s00449_016_1728_0 crossref_primary_10_1016_j_colsurfa_2019_124314 crossref_primary_10_1007_s00253_011_3631_6 crossref_primary_10_3109_14756366_2016_1161619 crossref_primary_10_3389_fmolb_2020_583826 crossref_primary_10_1074_jbc_M111_276485 crossref_primary_10_3390_catal2020244 crossref_primary_10_1016_j_carres_2019_03_014 crossref_primary_10_1002_jmr_803 crossref_primary_10_1039_C5RA19014B crossref_primary_10_1002_elan_201400387 crossref_primary_10_1016_j_ab_2008_04_011 crossref_primary_10_1016_j_enzmictec_2009_09_009 crossref_primary_10_1128_AEM_02416_06 crossref_primary_10_1007_s12010_013_0336_6 crossref_primary_10_1016_j_procbio_2012_09_015 |
Cites_doi | 10.1016/j.pep.2004.08.006 10.1385/ABAB:79:1-3:789 10.1016/S0167-4838(00)00296-X 10.1002/bit.260270411 10.1016/S0308-8146(03)00104-3 10.1016/S0167-7799(97)01138-4 10.1093/oxfordjournals.jbchem.a022343 10.1007/s002840110220 10.1002/bit.260231212 10.1016/j.tca.2003.09.001 10.1016/0141-0229(82)90075-8 10.1016/S0141-0229(00)00136-8 10.1006/abio.2001.5218 10.1038/nbt0102-37 10.1016/S0021-9258(19)84947-5 10.1021/bi00098a030 10.1002/bit.260410903 10.1016/S0960-8524(03)00097-X 10.1177/000456326900600108 10.1385/ABAB:115:1-3:0951 10.1039/a802370k |
ContentType | Journal Article |
Copyright | 2005 |
Copyright_xml | – notice: 2005 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.ab.2005.09.031 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1096-0309 |
EndPage | 253 |
ExternalDocumentID | 16269126 10_1016_j_ab_2005_09_031 S0003269705006950 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Comparative Study |
GroupedDBID | --- --K --M -~X .55 .GJ .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 85S 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABFRF ABGSF ABMAC ABOCM ABTAH ABUDA ABXDB ABYKQ ACDAQ ACGFO ACKIV ACNCT ACNNM ACRLP ADBBV ADECG ADEZE ADFGL ADIYS ADMUD ADRHT ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHPSJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DOVZS EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLW HVGLF HZ~ H~9 IHE J1W J5H K-O KOM L7B LG5 LX2 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBG SCB SCC SDF SDG SDP SES SEW SPC SPCBC SSK SSU SSZ T5K VH1 WH7 WUQ X7M XFK XOL XPP Y6R YYP ZA5 ZGI ZKB ZMT ZY4 AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN 7X8 |
ID | FETCH-LOGICAL-c348t-5cc6ae7fdbb86ce106ebff05b1fb81d32c67d5842cf3043cfdb61b160173b5473 |
IEDL.DBID | AIKHN |
ISSN | 0003-2697 |
IngestDate | Fri Jul 11 15:42:46 EDT 2025 Wed Feb 19 01:43:06 EST 2025 Tue Jul 01 03:42:55 EDT 2025 Thu Apr 24 23:09:21 EDT 2025 Fri Feb 23 02:13:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Substrate inhibition β-Glucosidase Isothermal titration microcalorimetry Enzyme kinetics Cellobiase |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-5cc6ae7fdbb86ce106ebff05b1fb81d32c67d5842cf3043cfdb61b160173b5473 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 16269126 |
PQID | 68834337 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_68834337 pubmed_primary_16269126 crossref_citationtrail_10_1016_j_ab_2005_09_031 crossref_primary_10_1016_j_ab_2005_09_031 elsevier_sciencedirect_doi_10_1016_j_ab_2005_09_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-12-15 |
PublicationDateYYYYMMDD | 2005-12-15 |
PublicationDate_xml | – month: 12 year: 2005 text: 2005-12-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Analytical biochemistry |
PublicationTitleAlternate | Anal Biochem |
PublicationYear | 2005 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Teymouri, Laureano-Perez, Alizadeh, Dale (bib1) 2004; 113 Philippidis, Smith, Wyman (bib24) 1993; 41 Wolosowska, Synowiecki (bib4) 2004; 85 Murray, Aro, Collins, Grassick, Penttila, Saloheimo, Tuohy (bib5) 2004; 38 Kim, Kim, Sunwoo, Lee (bib2) 2003; 90 Michaelis, Menten (bib14) 1913; 49 E.E. Jarvis, W.S. Adney, S.R. Decker, J.O. Baker, M.E. Himmel, in: W.P.M. Van Swaaij, T. Fjallstrom, P. Helm, A. Grassi (Eds.), Second World Biomass Conference: Biomass for Energy, Industry and Climate Protection, Rome, Italy, 2004, pp. 1512–1516. Ghosh, Pamment, Martin (bib23) 1982; 4 Calsavara, De Moraes, Zanin (bib26) 1999; 77 Burton, Cowan, Woodley (bib7) 2002; 20 Trinder (bib17) 1969; 6 Tewari, Goldberg (bib19) 1989; 264 Karim, Kidokoro (bib13) 2004; 412 Spiridonov, Wilson (bib8) 2001; 42 Takashima, Nakamura, Hidaka, Masaki, Uozumi (bib3) 1999; 125 Hong, Ladisch, Gong, Wankat, Tsao (bib20) 1981; 23 Shuler, Kargi (bib15) 1992 Grous, Converse, Grethlein, Lynd (bib25) 1985; 27 Morin, Freire (bib10) 1991; 30 Todd, Gomez (bib11) 2001; 296 Blandamer, Cullis, Engberts (bib9) 1998; 94 Gasteiger, Hoogland, Gattiker, Duvaud, Wilkins, Appel, Bairoch (bib16) 2005 Lonhienne, Baise, Feller, Bouriotis, Gerday (bib12) 2001; 1545 Bevington, Robinson (bib22) 1992 (bib18) 1999 Bravo, Paez, Reyes (bib21) 2000; 26 Kuchner, Arnold (bib27) 1997; 15 Wolosowska (10.1016/j.ab.2005.09.031_bib4) 2004; 85 Teymouri (10.1016/j.ab.2005.09.031_bib1) 2004; 113 Takashima (10.1016/j.ab.2005.09.031_bib3) 1999; 125 Todd (10.1016/j.ab.2005.09.031_bib11) 2001; 296 10.1016/j.ab.2005.09.031_bib6 Kim (10.1016/j.ab.2005.09.031_bib2) 2003; 90 Tewari (10.1016/j.ab.2005.09.031_bib19) 1989; 264 Bravo (10.1016/j.ab.2005.09.031_bib21) 2000; 26 Spiridonov (10.1016/j.ab.2005.09.031_bib8) 2001; 42 Philippidis (10.1016/j.ab.2005.09.031_bib24) 1993; 41 Blandamer (10.1016/j.ab.2005.09.031_bib9) 1998; 94 Ghosh (10.1016/j.ab.2005.09.031_bib23) 1982; 4 Calsavara (10.1016/j.ab.2005.09.031_bib26) 1999; 77 Lonhienne (10.1016/j.ab.2005.09.031_bib12) 2001; 1545 Gasteiger (10.1016/j.ab.2005.09.031_bib16) 2005 (10.1016/j.ab.2005.09.031_bib18) 1999 Karim (10.1016/j.ab.2005.09.031_bib13) 2004; 412 Murray (10.1016/j.ab.2005.09.031_bib5) 2004; 38 Morin (10.1016/j.ab.2005.09.031_bib10) 1991; 30 Hong (10.1016/j.ab.2005.09.031_bib20) 1981; 23 Bevington (10.1016/j.ab.2005.09.031_bib22) 1992 Kuchner (10.1016/j.ab.2005.09.031_bib27) 1997; 15 Trinder (10.1016/j.ab.2005.09.031_bib17) 1969; 6 Grous (10.1016/j.ab.2005.09.031_bib25) 1985; 27 Burton (10.1016/j.ab.2005.09.031_bib7) 2002; 20 Michaelis (10.1016/j.ab.2005.09.031_bib14) 1913; 49 Shuler (10.1016/j.ab.2005.09.031_bib15) 1992 |
References_xml | – volume: 20 start-page: 37 year: 2002 end-page: 45 ident: bib7 article-title: The search for the ideal biocatalyst publication-title: Nat. Biotechnol. – volume: 6 start-page: 24 year: 1969 ident: bib17 article-title: Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor publication-title: Ann. Clin. Biochem. – volume: 38 start-page: 248 year: 2004 end-page: 257 ident: bib5 article-title: Expression in publication-title: Protein Expr. Purif. – year: 1992 ident: bib22 article-title: Data Reduction and Error Analysis for the Physical Sciences – year: 1992 ident: bib15 article-title: Bioprocess Engineering: Basic Concepts – volume: 264 start-page: 3966 year: 1989 end-page: 3971 ident: bib19 article-title: Thermodynamics of hydrolysis of disaccharides—cellobiose, gentiobiose, isomaltose, and maltose publication-title: J. Biol. Chem. – volume: 296 start-page: 179 year: 2001 end-page: 187 ident: bib11 article-title: Enzyme kinetics determined using calorimetry: a general assay for enzyme activity? publication-title: Anal. Biochem. – volume: 90 start-page: 39 year: 2003 end-page: 47 ident: bib2 article-title: Pretreatment of corn stover by aqueous ammonia publication-title: Bioresource Technol. – year: 2005 ident: bib16 publication-title: The Proteomics Protocols Handbook – reference: E.E. Jarvis, W.S. Adney, S.R. Decker, J.O. Baker, M.E. Himmel, in: W.P.M. Van Swaaij, T. Fjallstrom, P. Helm, A. Grassi (Eds.), Second World Biomass Conference: Biomass for Energy, Industry and Climate Protection, Rome, Italy, 2004, pp. 1512–1516. – volume: 41 start-page: 846 year: 1993 end-page: 853 ident: bib24 article-title: Study of the enzymatic-hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process publication-title: Biotechnol. Bioeng. – volume: 27 start-page: 463 year: 1985 end-page: 470 ident: bib25 article-title: Kinetics of cellobiose hydrolysis using cellobiase composites from publication-title: Biotechnol. Bioeng. – volume: 30 start-page: 8494 year: 1991 end-page: 8500 ident: bib10 article-title: Direct calorimetric analysis of the enzymatic activity of yeast cytochrome publication-title: Biochemistry – volume: 4 start-page: 425 year: 1982 end-page: 430 ident: bib23 article-title: simultaneous saccharification and fermentation of cellulose-effect of beta- publication-title: Enzyme Microb. Technol. – volume: 125 start-page: 728 year: 1999 end-page: 736 ident: bib3 article-title: Molecular cloning and expression of the novel fungal beta-glucosidase genes from publication-title: J. Biochem. – volume: 1545 start-page: 349 year: 2001 end-page: 356 ident: bib12 article-title: Enzyme activity determination on macromolecular substrates by isothermal titration calorimetry: application to mesophilic and psychrophilic chitinases publication-title: Biochim. Biophys. Acta – volume: 94 start-page: 2261 year: 1998 end-page: 2267 ident: bib9 article-title: Titration microcalorimetry publication-title: J. Chem. Soc. Faraday Trans. – volume: 23 start-page: 2779 year: 1981 end-page: 2788 ident: bib20 article-title: Combined product and substrate-inhibition equation for cellobiase publication-title: Biotechnol. Bioeng. – volume: 26 start-page: 614 year: 2000 end-page: 620 ident: bib21 article-title: The influence of temperature upon the hydrolysis of cellobiose by beta-1,4-glucosidases from publication-title: Enzyme Microb. Technol. – year: 1999 ident: bib18 publication-title: Lange’s Handbook of Chemistry – volume: 113 start-page: 951 year: 2004 end-page: 963 ident: bib1 article-title: Ammonia fiber explosion treatment of corn stover publication-title: Appl. Biochem. Biotechnol. – volume: 412 start-page: 91 year: 2004 end-page: 96 ident: bib13 article-title: Precise and continuous observation of cellulase-catalyzed hydrolysis of cello-oligosaccharides using isothermal titration microcalorimetry publication-title: Thermochim. Acta – volume: 49 start-page: 333 year: 1913 end-page: 369 ident: bib14 publication-title: Biochem. Z. – volume: 42 start-page: 295 year: 2001 end-page: 301 ident: bib8 article-title: Cloning and biochemical characterization of BglC, a beta-glucosidase from the cellulolytic actinomycete publication-title: Curr. Microbiol. – volume: 77 start-page: 789 year: 1999 end-page: 806 ident: bib26 article-title: Modeling cellobiose hydrolysis with integrated kinetic models publication-title: Appl. Biochem. Biotechnol. – volume: 15 start-page: 523 year: 1997 end-page: 530 ident: bib27 article-title: Directed evolution of enzyme catalysts publication-title: Trends Biotechnol. – volume: 85 start-page: 181 year: 2004 end-page: 187 ident: bib4 article-title: Thermostable beta-glucosidase with a broad substrate specifity suitable for processing of lactose-containing products publication-title: Food Chem. – year: 2005 ident: 10.1016/j.ab.2005.09.031_bib16 – volume: 38 start-page: 248 year: 2004 ident: 10.1016/j.ab.2005.09.031_bib5 article-title: Expression in Trichoderma reesei and characterisation of a thermostable family 3 beta-glucosidase from the moderately thermophilic fungus Talaromyces emersonii publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2004.08.006 – year: 1992 ident: 10.1016/j.ab.2005.09.031_bib15 – year: 1999 ident: 10.1016/j.ab.2005.09.031_bib18 – volume: 77 start-page: 789 issue: 9 year: 1999 ident: 10.1016/j.ab.2005.09.031_bib26 article-title: Modeling cellobiose hydrolysis with integrated kinetic models publication-title: Appl. Biochem. Biotechnol. doi: 10.1385/ABAB:79:1-3:789 – volume: 1545 start-page: 349 year: 2001 ident: 10.1016/j.ab.2005.09.031_bib12 article-title: Enzyme activity determination on macromolecular substrates by isothermal titration calorimetry: application to mesophilic and psychrophilic chitinases publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4838(00)00296-X – volume: 49 start-page: 333 year: 1913 ident: 10.1016/j.ab.2005.09.031_bib14 publication-title: Biochem. Z. – volume: 27 start-page: 463 year: 1985 ident: 10.1016/j.ab.2005.09.031_bib25 article-title: Kinetics of cellobiose hydrolysis using cellobiase composites from Trichoderma reesei and Aspergillus niger publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260270411 – volume: 85 start-page: 181 year: 2004 ident: 10.1016/j.ab.2005.09.031_bib4 article-title: Thermostable beta-glucosidase with a broad substrate specifity suitable for processing of lactose-containing products publication-title: Food Chem. doi: 10.1016/S0308-8146(03)00104-3 – ident: 10.1016/j.ab.2005.09.031_bib6 – volume: 15 start-page: 523 year: 1997 ident: 10.1016/j.ab.2005.09.031_bib27 article-title: Directed evolution of enzyme catalysts publication-title: Trends Biotechnol. doi: 10.1016/S0167-7799(97)01138-4 – volume: 125 start-page: 728 year: 1999 ident: 10.1016/j.ab.2005.09.031_bib3 article-title: Molecular cloning and expression of the novel fungal beta-glucosidase genes from Humicola grisea and Trichoderma reesei publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a022343 – volume: 42 start-page: 295 year: 2001 ident: 10.1016/j.ab.2005.09.031_bib8 article-title: Cloning and biochemical characterization of BglC, a beta-glucosidase from the cellulolytic actinomycete Thermobifida fusca publication-title: Curr. Microbiol. doi: 10.1007/s002840110220 – volume: 23 start-page: 2779 year: 1981 ident: 10.1016/j.ab.2005.09.031_bib20 article-title: Combined product and substrate-inhibition equation for cellobiase publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260231212 – volume: 412 start-page: 91 year: 2004 ident: 10.1016/j.ab.2005.09.031_bib13 article-title: Precise and continuous observation of cellulase-catalyzed hydrolysis of cello-oligosaccharides using isothermal titration microcalorimetry publication-title: Thermochim. Acta doi: 10.1016/j.tca.2003.09.001 – volume: 4 start-page: 425 year: 1982 ident: 10.1016/j.ab.2005.09.031_bib23 article-title: simultaneous saccharification and fermentation of cellulose-effect of beta-d-glucosidase activity and ethanol inhibition of cellulases publication-title: Enzyme Microb. Technol. doi: 10.1016/0141-0229(82)90075-8 – volume: 26 start-page: 614 year: 2000 ident: 10.1016/j.ab.2005.09.031_bib21 article-title: The influence of temperature upon the hydrolysis of cellobiose by beta-1,4-glucosidases from Aspergillus niger publication-title: Enzyme Microb. Technol. doi: 10.1016/S0141-0229(00)00136-8 – volume: 296 start-page: 179 year: 2001 ident: 10.1016/j.ab.2005.09.031_bib11 article-title: Enzyme kinetics determined using calorimetry: a general assay for enzyme activity? publication-title: Anal. Biochem. doi: 10.1006/abio.2001.5218 – volume: 20 start-page: 37 year: 2002 ident: 10.1016/j.ab.2005.09.031_bib7 article-title: The search for the ideal biocatalyst publication-title: Nat. Biotechnol. doi: 10.1038/nbt0102-37 – year: 1992 ident: 10.1016/j.ab.2005.09.031_bib22 – volume: 264 start-page: 3966 year: 1989 ident: 10.1016/j.ab.2005.09.031_bib19 article-title: Thermodynamics of hydrolysis of disaccharides—cellobiose, gentiobiose, isomaltose, and maltose publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)84947-5 – volume: 30 start-page: 8494 year: 1991 ident: 10.1016/j.ab.2005.09.031_bib10 article-title: Direct calorimetric analysis of the enzymatic activity of yeast cytochrome c oxidase publication-title: Biochemistry doi: 10.1021/bi00098a030 – volume: 41 start-page: 846 year: 1993 ident: 10.1016/j.ab.2005.09.031_bib24 article-title: Study of the enzymatic-hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260410903 – volume: 90 start-page: 39 year: 2003 ident: 10.1016/j.ab.2005.09.031_bib2 article-title: Pretreatment of corn stover by aqueous ammonia publication-title: Bioresource Technol. doi: 10.1016/S0960-8524(03)00097-X – volume: 6 start-page: 24 year: 1969 ident: 10.1016/j.ab.2005.09.031_bib17 article-title: Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor publication-title: Ann. Clin. Biochem. doi: 10.1177/000456326900600108 – volume: 113 start-page: 951 issue: 16 year: 2004 ident: 10.1016/j.ab.2005.09.031_bib1 article-title: Ammonia fiber explosion treatment of corn stover publication-title: Appl. Biochem. Biotechnol. doi: 10.1385/ABAB:115:1-3:0951 – volume: 94 start-page: 2261 year: 1998 ident: 10.1016/j.ab.2005.09.031_bib9 article-title: Titration microcalorimetry publication-title: J. Chem. Soc. Faraday Trans. doi: 10.1039/a802370k |
SSID | ssj0011456 |
Score | 1.9854441 |
Snippet | The cellobiase activities of nine thermal stable mutants of
Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations... The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 244 |
SubjectTerms | Actinomycetales - enzymology Actinomycetales - genetics beta-Glucosidase - analysis beta-Glucosidase - antagonists & inhibitors beta-Glucosidase - genetics beta-Glucosidase - metabolism Calorimetry - methods Cellobiase Chemistry Techniques, Analytical Enzyme kinetics Enzyme Stability - genetics Hydrolysis Isothermal titration microcalorimetry Kinetics Mutation Recombinant Proteins - analysis Recombinant Proteins - antagonists & inhibitors Recombinant Proteins - genetics Recombinant Proteins - metabolism Substrate inhibition Thermodynamics β-Glucosidase |
Title | β- d-Glucosidase reaction kinetics from isothermal titration microcalorimetry |
URI | https://dx.doi.org/10.1016/j.ab.2005.09.031 https://www.ncbi.nlm.nih.gov/pubmed/16269126 https://www.proquest.com/docview/68834337 |
Volume | 347 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QEuqLQ8ti3FB4TEwWwSJ05yXK1aFlbaA6KiN8tPaYHNVnR76IUfxQ_hNzHjOEUc2gOnSIkdWzOjmW_seQC89iK0spYlR1vs0EEJJTfBBq7xg7aaiorFap9LOT8vP15UFzswG3JhKKwy6f5ep0dtnd5MEjUnl6sV5fhmiD3aOquo3C757buFaGUzgt3ph8V8eXuZkJexiSuN5zQh3Vb2YV7apIMVKnaa32Wd7kKf0Qqd7cHjBB_ZtN_hE9jx3T4cTDt0ndc37A2LAZ3xpHwfHs6GZm4HsPz9izPH38cA9ZVD08UQLcacBvYNgSYVa2aUasJWVzEna42roCD18sHWFLaH3NxQMwD84VM4Pzv9PJvz1EqBW1E2W15ZK7WvgzOmkdajH-hNCFll8mAQsYrCytohFilsEFkpLA6UucnRW6uFofbEz2DUbTr_AliROV9m2jpdoQJAh8kZ9EkcMhjBWZO1Y5gMJFQ21Rmndhff1RBQ9lVpQ-0vK5W1Cok-hre3My77Ghv3jBUDV9Q_cqLQBNwz69XAQIWEpzsR3fnN9ZWSTSNKIeoxPO_5-ncH6Oq1eSEP_2vFI3jUF3kteF4dw2j749q_RPiyNSfw4N3P_CQJKT0Xn74s_gBF2_Ch |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h5UAvFY8-lkfxoarUg7VJ7DjJcbUClkL3BBI3y09pWzaLYDnwt_gh_CbGjkPFAQ69JnYczYw839gz3wB8d8w3ohKcoi-2GKB4TrU3nip8oYwKpGKR7XMmppf811V5tQaTvhYmpFWmvb_b0-NunZ6MkjRHN_N5qPHNEHs0VVYGut0Qt68Hdio-gPXx6dl09nKZkPPYxDWMp2FCuq3s0ryUTgcrgew0f8s7vYU-oxc63oSPCT6ScfeHW7Dm2m3YGbcYOi8eyA8SEzrjSfk2bEz6Zm47MHt6pMTSk5igPrfougiixVjTQP4i0AxkzSSUmpD5XazJWuAqaEidfZBFSNtDbS5DMwD84Ce4PD66mExpaqVADeP1ipbGCOUqb7WuhXEYBzrtfVbq3GtErKwworKIRQrjWcaZwYEi1zlGaxXToT3xZxi0y9Z9BVJk1vFMGatK3AAwYLIaYxKLCkZwVmfNEEa9CKVJPOOh3cW17BPK_kilQ_vLUmaNRKEP4efLjJuOY-OdsazXinxlJxJdwDuzDnsFShR8uBNRrVve30lR14wzVg3hS6fXf3-AoV6TF2L3v1Y8hI3pxe9zeX46O9uDDx3ha0Hzch8Gq9t7d4BQZqW_JVN9BnBb8OY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beta-D-glucosidase+reaction+kinetics+from+isothermal+titration+microcalorimetry&rft.jtitle=Analytical+biochemistry&rft.au=Jeoh%2C+Tina&rft.au=Baker%2C+John+O&rft.au=Ali%2C+Mursheda+K&rft.au=Himmel%2C+Michael+E&rft.date=2005-12-15&rft.issn=0003-2697&rft.volume=347&rft.issue=2&rft.spage=244&rft_id=info:doi/10.1016%2Fj.ab.2005.09.031&rft_id=info%3Apmid%2F16269126&rft.externalDocID=16269126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2697&client=summon |