β- d-Glucosidase reaction kinetics from isothermal titration microcalorimetry

The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations were previously generated using random mutagenesis and identified by high-temperature screening as imparting improved thermal stability to th...

Full description

Saved in:
Bibliographic Details
Published inAnalytical biochemistry Vol. 347; no. 2; pp. 244 - 253
Main Authors Jeoh, Tina, Baker, John O., Ali, Mursheda K., Himmel, Michael E., Adney, William S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.12.2005
Subjects
Online AccessGet full text
ISSN0003-2697
1096-0309
DOI10.1016/j.ab.2005.09.031

Cover

Loading…
Abstract The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations were previously generated using random mutagenesis and identified by high-temperature screening as imparting improved thermal stability to the β- d-glucosidase enzyme. Analysis of the substrate–saturation curves obtained by ITC for the wild-type enzyme and the nine thermally stabilized mutants revealed that the wild type and all the mutants were subject to binding of a second substrate molecule. Furthermore, the “inhibited” enzyme–substrate complexes were shown to retain catalytic activity. In the case of three of the BglC mutants (N178I, N317Y/L444F, and N317Y/L444F/A433V), binding of a second substrate molecule resulted in improved cellobiose turnover rates at lower substrate concentrations. No correlation between denaturation temperatures of the mutants and activity on cellobiose at 25 °C was evident. However, one particular mutant, BglC S319C, was significantly improved in both thermal tolerance and cellobiase activity with respect to those of the wild-type BglC. The triple mutant, N317Y/L444F/A433V, had a 5 °C increase in denaturation temperature while maintaining activity levels similar to that of the wild type at higher substrate concentrations. ITC provided a highly sensitive and nondestructive means to continuously monitor the reaction of BglC with cellobiose, resulting in abundant data sets that could be rigorously analyzed by fitting to known enzyme kinetics models. One distinct advantage of using data from the ITC was the empirical validation of the pseudo steady state assumption, a necessary condition for obtaining solutions to the proposed mechanisms.
AbstractList The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations were previously generated using random mutagenesis and identified by high-temperature screening as imparting improved thermal stability to the beta-D-glucosidase enzyme. Analysis of the substrate-saturation curves obtained by ITC for the wild-type enzyme and the nine thermally stabilized mutants revealed that the wild type and all the mutants were subject to binding of a second substrate molecule. Furthermore, the "inhibited" enzyme-substrate complexes were shown to retain catalytic activity. In the case of three of the BglC mutants (N178I, N317Y/L444F, and N317Y/L444F/A433V), binding of a second substrate molecule resulted in improved cellobiose turnover rates at lower substrate concentrations. No correlation between denaturation temperatures of the mutants and activity on cellobiose at 25 degrees C was evident. However, one particular mutant, BglC S319C, was significantly improved in both thermal tolerance and cellobiase activity with respect to those of the wild-type BglC. The triple mutant, N317Y/L444F/A433V, had a 5 degrees C increase in denaturation temperature while maintaining activity levels similar to that of the wild type at higher substrate concentrations. ITC provided a highly sensitive and nondestructive means to continuously monitor the reaction of BglC with cellobiose, resulting in abundant data sets that could be rigorously analyzed by fitting to known enzyme kinetics models. One distinct advantage of using data from the ITC was the empirical validation of the pseudo steady state assumption, a necessary condition for obtaining solutions to the proposed mechanisms.The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations were previously generated using random mutagenesis and identified by high-temperature screening as imparting improved thermal stability to the beta-D-glucosidase enzyme. Analysis of the substrate-saturation curves obtained by ITC for the wild-type enzyme and the nine thermally stabilized mutants revealed that the wild type and all the mutants were subject to binding of a second substrate molecule. Furthermore, the "inhibited" enzyme-substrate complexes were shown to retain catalytic activity. In the case of three of the BglC mutants (N178I, N317Y/L444F, and N317Y/L444F/A433V), binding of a second substrate molecule resulted in improved cellobiose turnover rates at lower substrate concentrations. No correlation between denaturation temperatures of the mutants and activity on cellobiose at 25 degrees C was evident. However, one particular mutant, BglC S319C, was significantly improved in both thermal tolerance and cellobiase activity with respect to those of the wild-type BglC. The triple mutant, N317Y/L444F/A433V, had a 5 degrees C increase in denaturation temperature while maintaining activity levels similar to that of the wild type at higher substrate concentrations. ITC provided a highly sensitive and nondestructive means to continuously monitor the reaction of BglC with cellobiose, resulting in abundant data sets that could be rigorously analyzed by fitting to known enzyme kinetics models. One distinct advantage of using data from the ITC was the empirical validation of the pseudo steady state assumption, a necessary condition for obtaining solutions to the proposed mechanisms.
The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations were previously generated using random mutagenesis and identified by high-temperature screening as imparting improved thermal stability to the beta-D-glucosidase enzyme. Analysis of the substrate-saturation curves obtained by ITC for the wild-type enzyme and the nine thermally stabilized mutants revealed that the wild type and all the mutants were subject to binding of a second substrate molecule. Furthermore, the "inhibited" enzyme-substrate complexes were shown to retain catalytic activity. In the case of three of the BglC mutants (N178I, N317Y/L444F, and N317Y/L444F/A433V), binding of a second substrate molecule resulted in improved cellobiose turnover rates at lower substrate concentrations. No correlation between denaturation temperatures of the mutants and activity on cellobiose at 25 degrees C was evident. However, one particular mutant, BglC S319C, was significantly improved in both thermal tolerance and cellobiase activity with respect to those of the wild-type BglC. The triple mutant, N317Y/L444F/A433V, had a 5 degrees C increase in denaturation temperature while maintaining activity levels similar to that of the wild type at higher substrate concentrations. ITC provided a highly sensitive and nondestructive means to continuously monitor the reaction of BglC with cellobiose, resulting in abundant data sets that could be rigorously analyzed by fitting to known enzyme kinetics models. One distinct advantage of using data from the ITC was the empirical validation of the pseudo steady state assumption, a necessary condition for obtaining solutions to the proposed mechanisms.
The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations were previously generated using random mutagenesis and identified by high-temperature screening as imparting improved thermal stability to the β- d-glucosidase enzyme. Analysis of the substrate–saturation curves obtained by ITC for the wild-type enzyme and the nine thermally stabilized mutants revealed that the wild type and all the mutants were subject to binding of a second substrate molecule. Furthermore, the “inhibited” enzyme–substrate complexes were shown to retain catalytic activity. In the case of three of the BglC mutants (N178I, N317Y/L444F, and N317Y/L444F/A433V), binding of a second substrate molecule resulted in improved cellobiose turnover rates at lower substrate concentrations. No correlation between denaturation temperatures of the mutants and activity on cellobiose at 25 °C was evident. However, one particular mutant, BglC S319C, was significantly improved in both thermal tolerance and cellobiase activity with respect to those of the wild-type BglC. The triple mutant, N317Y/L444F/A433V, had a 5 °C increase in denaturation temperature while maintaining activity levels similar to that of the wild type at higher substrate concentrations. ITC provided a highly sensitive and nondestructive means to continuously monitor the reaction of BglC with cellobiose, resulting in abundant data sets that could be rigorously analyzed by fitting to known enzyme kinetics models. One distinct advantage of using data from the ITC was the empirical validation of the pseudo steady state assumption, a necessary condition for obtaining solutions to the proposed mechanisms.
Author Ali, Mursheda K.
Baker, John O.
Himmel, Michael E.
Jeoh, Tina
Adney, William S.
Author_xml – sequence: 1
  givenname: Tina
  surname: Jeoh
  fullname: Jeoh, Tina
  email: tina_jeoh@nrel.gov
– sequence: 2
  givenname: John O.
  surname: Baker
  fullname: Baker, John O.
– sequence: 3
  givenname: Mursheda K.
  surname: Ali
  fullname: Ali, Mursheda K.
– sequence: 4
  givenname: Michael E.
  surname: Himmel
  fullname: Himmel, Michael E.
– sequence: 5
  givenname: William S.
  surname: Adney
  fullname: Adney, William S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16269126$$D View this record in MEDLINE/PubMed
BookMark eNp1kMFO3DAQhq2KqizQO6cqJ25Jx3HiJNwQottKCC7lbNmTieolibe2F2lfiwfpM9W7S3tA2tNIo-8bzf-fsZPZzcTYJYeCA5dfV4U2RQlQF9AVIPgHtuDQyRwEdCdsAQAiL2XXnLKzEFYAnFe1_MROuUxbXsoFe_jzmmd9vhw36ILtdaDMk8Zo3Zw925mixZAN3k2ZDS7-Ij_pMYs2er1HJoveoR6dtxNFv71gHwc9Bvr8Ns_Z07e7n7ff8_vH5Y_bm_scRdXGvEaUmpqhN6aVSBwkmWGA2vDBtLwXJcqmr9uqxEFAJTCBkhsugTfC1FUjztnV4e7au98bClFNNiCNo57JbYKSbSsqIXbglzdwYybq1To9qv1W_WsgAfIApCAheBoU2rgPlzLaUXFQu6rVSmmjdlUr6FSqOonwTvx_-7hyfVAoVfNiyauAlmak3nrCqHpnj8t_ARNBlsQ
CitedBy_id crossref_primary_10_1016_j_ab_2018_11_006
crossref_primary_10_1186_1754_6834_4_39
crossref_primary_10_1016_j_copbio_2014_01_009
crossref_primary_10_1002_ps_5170
crossref_primary_10_1089_ind_2016_29040_vfr
crossref_primary_10_1007_s00253_012_3875_9
crossref_primary_10_1039_C5RA28017F
crossref_primary_10_1016_j_ab_2010_04_020
crossref_primary_10_1016_j_biortech_2012_12_098
crossref_primary_10_1128_AEM_01786_10
crossref_primary_10_1007_s10529_010_0500_9
crossref_primary_10_1002_bit_22885
crossref_primary_10_1111_1744_7917_13145
crossref_primary_10_1016_j_bcab_2015_12_005
crossref_primary_10_1007_s11255_019_02186_2
crossref_primary_10_1016_j_ab_2011_03_003
crossref_primary_10_1016_j_carbpol_2012_07_039
crossref_primary_10_1007_s12010_010_9068_z
crossref_primary_10_1016_j_ijbiomac_2020_02_117
crossref_primary_10_1007_s00449_016_1728_0
crossref_primary_10_1016_j_colsurfa_2019_124314
crossref_primary_10_1007_s00253_011_3631_6
crossref_primary_10_3109_14756366_2016_1161619
crossref_primary_10_3389_fmolb_2020_583826
crossref_primary_10_1074_jbc_M111_276485
crossref_primary_10_3390_catal2020244
crossref_primary_10_1016_j_carres_2019_03_014
crossref_primary_10_1002_jmr_803
crossref_primary_10_1039_C5RA19014B
crossref_primary_10_1002_elan_201400387
crossref_primary_10_1016_j_ab_2008_04_011
crossref_primary_10_1016_j_enzmictec_2009_09_009
crossref_primary_10_1128_AEM_02416_06
crossref_primary_10_1007_s12010_013_0336_6
crossref_primary_10_1016_j_procbio_2012_09_015
Cites_doi 10.1016/j.pep.2004.08.006
10.1385/ABAB:79:1-3:789
10.1016/S0167-4838(00)00296-X
10.1002/bit.260270411
10.1016/S0308-8146(03)00104-3
10.1016/S0167-7799(97)01138-4
10.1093/oxfordjournals.jbchem.a022343
10.1007/s002840110220
10.1002/bit.260231212
10.1016/j.tca.2003.09.001
10.1016/0141-0229(82)90075-8
10.1016/S0141-0229(00)00136-8
10.1006/abio.2001.5218
10.1038/nbt0102-37
10.1016/S0021-9258(19)84947-5
10.1021/bi00098a030
10.1002/bit.260410903
10.1016/S0960-8524(03)00097-X
10.1177/000456326900600108
10.1385/ABAB:115:1-3:0951
10.1039/a802370k
ContentType Journal Article
Copyright 2005
Copyright_xml – notice: 2005
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ab.2005.09.031
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1096-0309
EndPage 253
ExternalDocumentID 16269126
10_1016_j_ab_2005_09_031
S0003269705006950
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
85S
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABFRF
ABGSF
ABMAC
ABOCM
ABTAH
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACKIV
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADFGL
ADIYS
ADMUD
ADRHT
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DOVZS
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLW
HVGLF
HZ~
H~9
IHE
J1W
J5H
K-O
KOM
L7B
LG5
LX2
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBG
SCB
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSU
SSZ
T5K
VH1
WH7
WUQ
X7M
XFK
XOL
XPP
Y6R
YYP
ZA5
ZGI
ZKB
ZMT
ZY4
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c348t-5cc6ae7fdbb86ce106ebff05b1fb81d32c67d5842cf3043cfdb61b160173b5473
IEDL.DBID AIKHN
ISSN 0003-2697
IngestDate Fri Jul 11 15:42:46 EDT 2025
Wed Feb 19 01:43:06 EST 2025
Tue Jul 01 03:42:55 EDT 2025
Thu Apr 24 23:09:21 EDT 2025
Fri Feb 23 02:13:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Substrate inhibition
β-Glucosidase
Isothermal titration microcalorimetry
Enzyme kinetics
Cellobiase
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-5cc6ae7fdbb86ce106ebff05b1fb81d32c67d5842cf3043cfdb61b160173b5473
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 16269126
PQID 68834337
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_68834337
pubmed_primary_16269126
crossref_citationtrail_10_1016_j_ab_2005_09_031
crossref_primary_10_1016_j_ab_2005_09_031
elsevier_sciencedirect_doi_10_1016_j_ab_2005_09_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-12-15
PublicationDateYYYYMMDD 2005-12-15
PublicationDate_xml – month: 12
  year: 2005
  text: 2005-12-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Analytical biochemistry
PublicationTitleAlternate Anal Biochem
PublicationYear 2005
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Teymouri, Laureano-Perez, Alizadeh, Dale (bib1) 2004; 113
Philippidis, Smith, Wyman (bib24) 1993; 41
Wolosowska, Synowiecki (bib4) 2004; 85
Murray, Aro, Collins, Grassick, Penttila, Saloheimo, Tuohy (bib5) 2004; 38
Kim, Kim, Sunwoo, Lee (bib2) 2003; 90
Michaelis, Menten (bib14) 1913; 49
E.E. Jarvis, W.S. Adney, S.R. Decker, J.O. Baker, M.E. Himmel, in: W.P.M. Van Swaaij, T. Fjallstrom, P. Helm, A. Grassi (Eds.), Second World Biomass Conference: Biomass for Energy, Industry and Climate Protection, Rome, Italy, 2004, pp. 1512–1516.
Ghosh, Pamment, Martin (bib23) 1982; 4
Calsavara, De Moraes, Zanin (bib26) 1999; 77
Burton, Cowan, Woodley (bib7) 2002; 20
Trinder (bib17) 1969; 6
Tewari, Goldberg (bib19) 1989; 264
Karim, Kidokoro (bib13) 2004; 412
Spiridonov, Wilson (bib8) 2001; 42
Takashima, Nakamura, Hidaka, Masaki, Uozumi (bib3) 1999; 125
Hong, Ladisch, Gong, Wankat, Tsao (bib20) 1981; 23
Shuler, Kargi (bib15) 1992
Grous, Converse, Grethlein, Lynd (bib25) 1985; 27
Morin, Freire (bib10) 1991; 30
Todd, Gomez (bib11) 2001; 296
Blandamer, Cullis, Engberts (bib9) 1998; 94
Gasteiger, Hoogland, Gattiker, Duvaud, Wilkins, Appel, Bairoch (bib16) 2005
Lonhienne, Baise, Feller, Bouriotis, Gerday (bib12) 2001; 1545
Bevington, Robinson (bib22) 1992
(bib18) 1999
Bravo, Paez, Reyes (bib21) 2000; 26
Kuchner, Arnold (bib27) 1997; 15
Wolosowska (10.1016/j.ab.2005.09.031_bib4) 2004; 85
Teymouri (10.1016/j.ab.2005.09.031_bib1) 2004; 113
Takashima (10.1016/j.ab.2005.09.031_bib3) 1999; 125
Todd (10.1016/j.ab.2005.09.031_bib11) 2001; 296
10.1016/j.ab.2005.09.031_bib6
Kim (10.1016/j.ab.2005.09.031_bib2) 2003; 90
Tewari (10.1016/j.ab.2005.09.031_bib19) 1989; 264
Bravo (10.1016/j.ab.2005.09.031_bib21) 2000; 26
Spiridonov (10.1016/j.ab.2005.09.031_bib8) 2001; 42
Philippidis (10.1016/j.ab.2005.09.031_bib24) 1993; 41
Blandamer (10.1016/j.ab.2005.09.031_bib9) 1998; 94
Ghosh (10.1016/j.ab.2005.09.031_bib23) 1982; 4
Calsavara (10.1016/j.ab.2005.09.031_bib26) 1999; 77
Lonhienne (10.1016/j.ab.2005.09.031_bib12) 2001; 1545
Gasteiger (10.1016/j.ab.2005.09.031_bib16) 2005
(10.1016/j.ab.2005.09.031_bib18) 1999
Karim (10.1016/j.ab.2005.09.031_bib13) 2004; 412
Murray (10.1016/j.ab.2005.09.031_bib5) 2004; 38
Morin (10.1016/j.ab.2005.09.031_bib10) 1991; 30
Hong (10.1016/j.ab.2005.09.031_bib20) 1981; 23
Bevington (10.1016/j.ab.2005.09.031_bib22) 1992
Kuchner (10.1016/j.ab.2005.09.031_bib27) 1997; 15
Trinder (10.1016/j.ab.2005.09.031_bib17) 1969; 6
Grous (10.1016/j.ab.2005.09.031_bib25) 1985; 27
Burton (10.1016/j.ab.2005.09.031_bib7) 2002; 20
Michaelis (10.1016/j.ab.2005.09.031_bib14) 1913; 49
Shuler (10.1016/j.ab.2005.09.031_bib15) 1992
References_xml – volume: 20
  start-page: 37
  year: 2002
  end-page: 45
  ident: bib7
  article-title: The search for the ideal biocatalyst
  publication-title: Nat. Biotechnol.
– volume: 6
  start-page: 24
  year: 1969
  ident: bib17
  article-title: Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor
  publication-title: Ann. Clin. Biochem.
– volume: 38
  start-page: 248
  year: 2004
  end-page: 257
  ident: bib5
  article-title: Expression in
  publication-title: Protein Expr. Purif.
– year: 1992
  ident: bib22
  article-title: Data Reduction and Error Analysis for the Physical Sciences
– year: 1992
  ident: bib15
  article-title: Bioprocess Engineering: Basic Concepts
– volume: 264
  start-page: 3966
  year: 1989
  end-page: 3971
  ident: bib19
  article-title: Thermodynamics of hydrolysis of disaccharides—cellobiose, gentiobiose, isomaltose, and maltose
  publication-title: J. Biol. Chem.
– volume: 296
  start-page: 179
  year: 2001
  end-page: 187
  ident: bib11
  article-title: Enzyme kinetics determined using calorimetry: a general assay for enzyme activity?
  publication-title: Anal. Biochem.
– volume: 90
  start-page: 39
  year: 2003
  end-page: 47
  ident: bib2
  article-title: Pretreatment of corn stover by aqueous ammonia
  publication-title: Bioresource Technol.
– year: 2005
  ident: bib16
  publication-title: The Proteomics Protocols Handbook
– reference: E.E. Jarvis, W.S. Adney, S.R. Decker, J.O. Baker, M.E. Himmel, in: W.P.M. Van Swaaij, T. Fjallstrom, P. Helm, A. Grassi (Eds.), Second World Biomass Conference: Biomass for Energy, Industry and Climate Protection, Rome, Italy, 2004, pp. 1512–1516.
– volume: 41
  start-page: 846
  year: 1993
  end-page: 853
  ident: bib24
  article-title: Study of the enzymatic-hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process
  publication-title: Biotechnol. Bioeng.
– volume: 27
  start-page: 463
  year: 1985
  end-page: 470
  ident: bib25
  article-title: Kinetics of cellobiose hydrolysis using cellobiase composites from
  publication-title: Biotechnol. Bioeng.
– volume: 30
  start-page: 8494
  year: 1991
  end-page: 8500
  ident: bib10
  article-title: Direct calorimetric analysis of the enzymatic activity of yeast cytochrome
  publication-title: Biochemistry
– volume: 4
  start-page: 425
  year: 1982
  end-page: 430
  ident: bib23
  article-title: simultaneous saccharification and fermentation of cellulose-effect of beta-
  publication-title: Enzyme Microb. Technol.
– volume: 125
  start-page: 728
  year: 1999
  end-page: 736
  ident: bib3
  article-title: Molecular cloning and expression of the novel fungal beta-glucosidase genes from
  publication-title: J. Biochem.
– volume: 1545
  start-page: 349
  year: 2001
  end-page: 356
  ident: bib12
  article-title: Enzyme activity determination on macromolecular substrates by isothermal titration calorimetry: application to mesophilic and psychrophilic chitinases
  publication-title: Biochim. Biophys. Acta
– volume: 94
  start-page: 2261
  year: 1998
  end-page: 2267
  ident: bib9
  article-title: Titration microcalorimetry
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 23
  start-page: 2779
  year: 1981
  end-page: 2788
  ident: bib20
  article-title: Combined product and substrate-inhibition equation for cellobiase
  publication-title: Biotechnol. Bioeng.
– volume: 26
  start-page: 614
  year: 2000
  end-page: 620
  ident: bib21
  article-title: The influence of temperature upon the hydrolysis of cellobiose by beta-1,4-glucosidases from
  publication-title: Enzyme Microb. Technol.
– year: 1999
  ident: bib18
  publication-title: Lange’s Handbook of Chemistry
– volume: 113
  start-page: 951
  year: 2004
  end-page: 963
  ident: bib1
  article-title: Ammonia fiber explosion treatment of corn stover
  publication-title: Appl. Biochem. Biotechnol.
– volume: 412
  start-page: 91
  year: 2004
  end-page: 96
  ident: bib13
  article-title: Precise and continuous observation of cellulase-catalyzed hydrolysis of cello-oligosaccharides using isothermal titration microcalorimetry
  publication-title: Thermochim. Acta
– volume: 49
  start-page: 333
  year: 1913
  end-page: 369
  ident: bib14
  publication-title: Biochem. Z.
– volume: 42
  start-page: 295
  year: 2001
  end-page: 301
  ident: bib8
  article-title: Cloning and biochemical characterization of BglC, a beta-glucosidase from the cellulolytic actinomycete
  publication-title: Curr. Microbiol.
– volume: 77
  start-page: 789
  year: 1999
  end-page: 806
  ident: bib26
  article-title: Modeling cellobiose hydrolysis with integrated kinetic models
  publication-title: Appl. Biochem. Biotechnol.
– volume: 15
  start-page: 523
  year: 1997
  end-page: 530
  ident: bib27
  article-title: Directed evolution of enzyme catalysts
  publication-title: Trends Biotechnol.
– volume: 85
  start-page: 181
  year: 2004
  end-page: 187
  ident: bib4
  article-title: Thermostable beta-glucosidase with a broad substrate specifity suitable for processing of lactose-containing products
  publication-title: Food Chem.
– year: 2005
  ident: 10.1016/j.ab.2005.09.031_bib16
– volume: 38
  start-page: 248
  year: 2004
  ident: 10.1016/j.ab.2005.09.031_bib5
  article-title: Expression in Trichoderma reesei and characterisation of a thermostable family 3 beta-glucosidase from the moderately thermophilic fungus Talaromyces emersonii
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2004.08.006
– year: 1992
  ident: 10.1016/j.ab.2005.09.031_bib15
– year: 1999
  ident: 10.1016/j.ab.2005.09.031_bib18
– volume: 77
  start-page: 789
  issue: 9
  year: 1999
  ident: 10.1016/j.ab.2005.09.031_bib26
  article-title: Modeling cellobiose hydrolysis with integrated kinetic models
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1385/ABAB:79:1-3:789
– volume: 1545
  start-page: 349
  year: 2001
  ident: 10.1016/j.ab.2005.09.031_bib12
  article-title: Enzyme activity determination on macromolecular substrates by isothermal titration calorimetry: application to mesophilic and psychrophilic chitinases
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0167-4838(00)00296-X
– volume: 49
  start-page: 333
  year: 1913
  ident: 10.1016/j.ab.2005.09.031_bib14
  publication-title: Biochem. Z.
– volume: 27
  start-page: 463
  year: 1985
  ident: 10.1016/j.ab.2005.09.031_bib25
  article-title: Kinetics of cellobiose hydrolysis using cellobiase composites from Trichoderma reesei and Aspergillus niger
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260270411
– volume: 85
  start-page: 181
  year: 2004
  ident: 10.1016/j.ab.2005.09.031_bib4
  article-title: Thermostable beta-glucosidase with a broad substrate specifity suitable for processing of lactose-containing products
  publication-title: Food Chem.
  doi: 10.1016/S0308-8146(03)00104-3
– ident: 10.1016/j.ab.2005.09.031_bib6
– volume: 15
  start-page: 523
  year: 1997
  ident: 10.1016/j.ab.2005.09.031_bib27
  article-title: Directed evolution of enzyme catalysts
  publication-title: Trends Biotechnol.
  doi: 10.1016/S0167-7799(97)01138-4
– volume: 125
  start-page: 728
  year: 1999
  ident: 10.1016/j.ab.2005.09.031_bib3
  article-title: Molecular cloning and expression of the novel fungal beta-glucosidase genes from Humicola grisea and Trichoderma reesei
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a022343
– volume: 42
  start-page: 295
  year: 2001
  ident: 10.1016/j.ab.2005.09.031_bib8
  article-title: Cloning and biochemical characterization of BglC, a beta-glucosidase from the cellulolytic actinomycete Thermobifida fusca
  publication-title: Curr. Microbiol.
  doi: 10.1007/s002840110220
– volume: 23
  start-page: 2779
  year: 1981
  ident: 10.1016/j.ab.2005.09.031_bib20
  article-title: Combined product and substrate-inhibition equation for cellobiase
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260231212
– volume: 412
  start-page: 91
  year: 2004
  ident: 10.1016/j.ab.2005.09.031_bib13
  article-title: Precise and continuous observation of cellulase-catalyzed hydrolysis of cello-oligosaccharides using isothermal titration microcalorimetry
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2003.09.001
– volume: 4
  start-page: 425
  year: 1982
  ident: 10.1016/j.ab.2005.09.031_bib23
  article-title: simultaneous saccharification and fermentation of cellulose-effect of beta-d-glucosidase activity and ethanol inhibition of cellulases
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/0141-0229(82)90075-8
– volume: 26
  start-page: 614
  year: 2000
  ident: 10.1016/j.ab.2005.09.031_bib21
  article-title: The influence of temperature upon the hydrolysis of cellobiose by beta-1,4-glucosidases from Aspergillus niger
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/S0141-0229(00)00136-8
– volume: 296
  start-page: 179
  year: 2001
  ident: 10.1016/j.ab.2005.09.031_bib11
  article-title: Enzyme kinetics determined using calorimetry: a general assay for enzyme activity?
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2001.5218
– volume: 20
  start-page: 37
  year: 2002
  ident: 10.1016/j.ab.2005.09.031_bib7
  article-title: The search for the ideal biocatalyst
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0102-37
– year: 1992
  ident: 10.1016/j.ab.2005.09.031_bib22
– volume: 264
  start-page: 3966
  year: 1989
  ident: 10.1016/j.ab.2005.09.031_bib19
  article-title: Thermodynamics of hydrolysis of disaccharides—cellobiose, gentiobiose, isomaltose, and maltose
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)84947-5
– volume: 30
  start-page: 8494
  year: 1991
  ident: 10.1016/j.ab.2005.09.031_bib10
  article-title: Direct calorimetric analysis of the enzymatic activity of yeast cytochrome c oxidase
  publication-title: Biochemistry
  doi: 10.1021/bi00098a030
– volume: 41
  start-page: 846
  year: 1993
  ident: 10.1016/j.ab.2005.09.031_bib24
  article-title: Study of the enzymatic-hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260410903
– volume: 90
  start-page: 39
  year: 2003
  ident: 10.1016/j.ab.2005.09.031_bib2
  article-title: Pretreatment of corn stover by aqueous ammonia
  publication-title: Bioresource Technol.
  doi: 10.1016/S0960-8524(03)00097-X
– volume: 6
  start-page: 24
  year: 1969
  ident: 10.1016/j.ab.2005.09.031_bib17
  article-title: Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor
  publication-title: Ann. Clin. Biochem.
  doi: 10.1177/000456326900600108
– volume: 113
  start-page: 951
  issue: 16
  year: 2004
  ident: 10.1016/j.ab.2005.09.031_bib1
  article-title: Ammonia fiber explosion treatment of corn stover
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1385/ABAB:115:1-3:0951
– volume: 94
  start-page: 2261
  year: 1998
  ident: 10.1016/j.ab.2005.09.031_bib9
  article-title: Titration microcalorimetry
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/a802370k
SSID ssj0011456
Score 1.9854441
Snippet The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations...
The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 244
SubjectTerms Actinomycetales - enzymology
Actinomycetales - genetics
beta-Glucosidase - analysis
beta-Glucosidase - antagonists & inhibitors
beta-Glucosidase - genetics
beta-Glucosidase - metabolism
Calorimetry - methods
Cellobiase
Chemistry Techniques, Analytical
Enzyme kinetics
Enzyme Stability - genetics
Hydrolysis
Isothermal titration microcalorimetry
Kinetics
Mutation
Recombinant Proteins - analysis
Recombinant Proteins - antagonists & inhibitors
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Substrate inhibition
Thermodynamics
β-Glucosidase
Title β- d-Glucosidase reaction kinetics from isothermal titration microcalorimetry
URI https://dx.doi.org/10.1016/j.ab.2005.09.031
https://www.ncbi.nlm.nih.gov/pubmed/16269126
https://www.proquest.com/docview/68834337
Volume 347
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QEuqLQ8ti3FB4TEwWwSJ05yXK1aFlbaA6KiN8tPaYHNVnR76IUfxQ_hNzHjOEUc2gOnSIkdWzOjmW_seQC89iK0spYlR1vs0EEJJTfBBq7xg7aaiorFap9LOT8vP15UFzswG3JhKKwy6f5ep0dtnd5MEjUnl6sV5fhmiD3aOquo3C757buFaGUzgt3ph8V8eXuZkJexiSuN5zQh3Vb2YV7apIMVKnaa32Wd7kKf0Qqd7cHjBB_ZtN_hE9jx3T4cTDt0ndc37A2LAZ3xpHwfHs6GZm4HsPz9izPH38cA9ZVD08UQLcacBvYNgSYVa2aUasJWVzEna42roCD18sHWFLaH3NxQMwD84VM4Pzv9PJvz1EqBW1E2W15ZK7WvgzOmkdajH-hNCFll8mAQsYrCytohFilsEFkpLA6UucnRW6uFofbEz2DUbTr_AliROV9m2jpdoQJAh8kZ9EkcMhjBWZO1Y5gMJFQ21Rmndhff1RBQ9lVpQ-0vK5W1Cok-hre3My77Ghv3jBUDV9Q_cqLQBNwz69XAQIWEpzsR3fnN9ZWSTSNKIeoxPO_5-ncH6Oq1eSEP_2vFI3jUF3kteF4dw2j749q_RPiyNSfw4N3P_CQJKT0Xn74s_gBF2_Ch
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h5UAvFY8-lkfxoarUg7VJ7DjJcbUClkL3BBI3y09pWzaLYDnwt_gh_CbGjkPFAQ69JnYczYw839gz3wB8d8w3ohKcoi-2GKB4TrU3nip8oYwKpGKR7XMmppf811V5tQaTvhYmpFWmvb_b0-NunZ6MkjRHN_N5qPHNEHs0VVYGut0Qt68Hdio-gPXx6dl09nKZkPPYxDWMp2FCuq3s0ryUTgcrgew0f8s7vYU-oxc63oSPCT6ScfeHW7Dm2m3YGbcYOi8eyA8SEzrjSfk2bEz6Zm47MHt6pMTSk5igPrfougiixVjTQP4i0AxkzSSUmpD5XazJWuAqaEidfZBFSNtDbS5DMwD84Ce4PD66mExpaqVADeP1ipbGCOUqb7WuhXEYBzrtfVbq3GtErKwworKIRQrjWcaZwYEi1zlGaxXToT3xZxi0y9Z9BVJk1vFMGatK3AAwYLIaYxKLCkZwVmfNEEa9CKVJPOOh3cW17BPK_kilQ_vLUmaNRKEP4efLjJuOY-OdsazXinxlJxJdwDuzDnsFShR8uBNRrVve30lR14wzVg3hS6fXf3-AoV6TF2L3v1Y8hI3pxe9zeX46O9uDDx3ha0Hzch8Gq9t7d4BQZqW_JVN9BnBb8OY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beta-D-glucosidase+reaction+kinetics+from+isothermal+titration+microcalorimetry&rft.jtitle=Analytical+biochemistry&rft.au=Jeoh%2C+Tina&rft.au=Baker%2C+John+O&rft.au=Ali%2C+Mursheda+K&rft.au=Himmel%2C+Michael+E&rft.date=2005-12-15&rft.issn=0003-2697&rft.volume=347&rft.issue=2&rft.spage=244&rft_id=info:doi/10.1016%2Fj.ab.2005.09.031&rft_id=info%3Apmid%2F16269126&rft.externalDocID=16269126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2697&client=summon