Motor imagery classification using geodesic filtering common spatial pattern and filter-bank feature weighted support vector machine

In recent years, Brain Computer Interface (BCI) based on motor imagery has been widely used in the fields of medicine, active safe systems for automobiles, entertainment, and so on. Motor imagery relevant electroencephalogram (EEG) signals are weak, nonlinear, and susceptible to interference. As a f...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 91; no. 3; pp. 034106 - 34115
Main Authors Wang, Fei, Xu, Zongfeng, Zhang, Weiwei, Wu, Shichao, Zhang, Yahui, Ping, Jingyu, Wu, Chengdong
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 01.03.2020
Subjects
Online AccessGet full text
ISSN0034-6748
1089-7623
1089-7623
DOI10.1063/1.5142343

Cover

Loading…
Abstract In recent years, Brain Computer Interface (BCI) based on motor imagery has been widely used in the fields of medicine, active safe systems for automobiles, entertainment, and so on. Motor imagery relevant electroencephalogram (EEG) signals are weak, nonlinear, and susceptible to interference. As a feature extraction method for motor imagery, Common Spatial Pattern (CSP) has been proven to be very effective. However, its effectiveness depends heavily on the choice of frequency bands, and Euclidean space cannot effectively describe the inner relationship. To solve these problems, a classification approach for motor imagery using the Geodesic Filtering Common Spatial Pattern (GFCSP) and filter-bank Feature Weighted Support Vector Machine (FWSVM) is presented. First, GFCSP based on the Riemannian manifold is proposed, in which the extracted covariance features are spatially filtered in Riemannian tangent space, and the average covariance matrix is replaced by Riemannian mean in CSP. Second, filter-bank FWSVM with a feature weighted matrix is proposed. EEG signals are filtered into 8–12 Hz, 12–16 Hz, 18–22 Hz, 22–26 Hz, and a wide band of 8–24 Hz, and GFCSP features of these filtered signals are extracted. A feature weighted matrix is calculated using mutual information and the Pearson correlation coefficient from these features and class information. Then, the Support Vector Machine (SVM) is used for classification with the feature weighted matrix. Finally, the proposed method is validated on the dataset IVa in BCI competition III. Classification accuracies of the five subjects are 92.31%, 99.03%, 80.36%, 96.30%, and 97.67%, which demonstrate the effectiveness of our proposed method.
AbstractList In recent years, Brain Computer Interface (BCI) based on motor imagery has been widely used in the fields of medicine, active safe systems for automobiles, entertainment, and so on. Motor imagery relevant electroencephalogram (EEG) signals are weak, nonlinear, and susceptible to interference. As a feature extraction method for motor imagery, Common Spatial Pattern (CSP) has been proven to be very effective. However, its effectiveness depends heavily on the choice of frequency bands, and Euclidean space cannot effectively describe the inner relationship. To solve these problems, a classification approach for motor imagery using the Geodesic Filtering Common Spatial Pattern (GFCSP) and filter-bank Feature Weighted Support Vector Machine (FWSVM) is presented. First, GFCSP based on the Riemannian manifold is proposed, in which the extracted covariance features are spatially filtered in Riemannian tangent space, and the average covariance matrix is replaced by Riemannian mean in CSP. Second, filter-bank FWSVM with a feature weighted matrix is proposed. EEG signals are filtered into 8-12 Hz, 12-16 Hz, 18-22 Hz, 22-26 Hz, and a wide band of 8-24 Hz, and GFCSP features of these filtered signals are extracted. A feature weighted matrix is calculated using mutual information and the Pearson correlation coefficient from these features and class information. Then, the Support Vector Machine (SVM) is used for classification with the feature weighted matrix. Finally, the proposed method is validated on the dataset IVa in BCI competition III. Classification accuracies of the five subjects are 92.31%, 99.03%, 80.36%, 96.30%, and 97.67%, which demonstrate the effectiveness of our proposed method.
In recent years, Brain Computer Interface (BCI) based on motor imagery has been widely used in the fields of medicine, active safe systems for automobiles, entertainment, and so on. Motor imagery relevant electroencephalogram (EEG) signals are weak, nonlinear, and susceptible to interference. As a feature extraction method for motor imagery, Common Spatial Pattern (CSP) has been proven to be very effective. However, its effectiveness depends heavily on the choice of frequency bands, and Euclidean space cannot effectively describe the inner relationship. To solve these problems, a classification approach for motor imagery using the Geodesic Filtering Common Spatial Pattern (GFCSP) and filter-bank Feature Weighted Support Vector Machine (FWSVM) is presented. First, GFCSP based on the Riemannian manifold is proposed, in which the extracted covariance features are spatially filtered in Riemannian tangent space, and the average covariance matrix is replaced by Riemannian mean in CSP. Second, filter-bank FWSVM with a feature weighted matrix is proposed. EEG signals are filtered into 8-12 Hz, 12-16 Hz, 18-22 Hz, 22-26 Hz, and a wide band of 8-24 Hz, and GFCSP features of these filtered signals are extracted. A feature weighted matrix is calculated using mutual information and the Pearson correlation coefficient from these features and class information. Then, the Support Vector Machine (SVM) is used for classification with the feature weighted matrix. Finally, the proposed method is validated on the dataset IVa in BCI competition III. Classification accuracies of the five subjects are 92.31%, 99.03%, 80.36%, 96.30%, and 97.67%, which demonstrate the effectiveness of our proposed method.In recent years, Brain Computer Interface (BCI) based on motor imagery has been widely used in the fields of medicine, active safe systems for automobiles, entertainment, and so on. Motor imagery relevant electroencephalogram (EEG) signals are weak, nonlinear, and susceptible to interference. As a feature extraction method for motor imagery, Common Spatial Pattern (CSP) has been proven to be very effective. However, its effectiveness depends heavily on the choice of frequency bands, and Euclidean space cannot effectively describe the inner relationship. To solve these problems, a classification approach for motor imagery using the Geodesic Filtering Common Spatial Pattern (GFCSP) and filter-bank Feature Weighted Support Vector Machine (FWSVM) is presented. First, GFCSP based on the Riemannian manifold is proposed, in which the extracted covariance features are spatially filtered in Riemannian tangent space, and the average covariance matrix is replaced by Riemannian mean in CSP. Second, filter-bank FWSVM with a feature weighted matrix is proposed. EEG signals are filtered into 8-12 Hz, 12-16 Hz, 18-22 Hz, 22-26 Hz, and a wide band of 8-24 Hz, and GFCSP features of these filtered signals are extracted. A feature weighted matrix is calculated using mutual information and the Pearson correlation coefficient from these features and class information. Then, the Support Vector Machine (SVM) is used for classification with the feature weighted matrix. Finally, the proposed method is validated on the dataset IVa in BCI competition III. Classification accuracies of the five subjects are 92.31%, 99.03%, 80.36%, 96.30%, and 97.67%, which demonstrate the effectiveness of our proposed method.
Author Wu, Shichao
Wang, Fei
Xu, Zongfeng
Zhang, Yahui
Wu, Chengdong
Zhang, Weiwei
Ping, Jingyu
Author_xml – sequence: 1
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
  organization: Faculty of Robot Science and Engineering, Northeastern University
– sequence: 2
  givenname: Zongfeng
  surname: Xu
  fullname: Xu, Zongfeng
  organization: College of Information Science and Engineering, Northeastern University
– sequence: 3
  givenname: Weiwei
  surname: Zhang
  fullname: Zhang, Weiwei
  organization: Faculty of Robot Science and Engineering, Northeastern University
– sequence: 4
  givenname: Shichao
  surname: Wu
  fullname: Wu, Shichao
  organization: Faculty of Robot Science and Engineering, Northeastern University
– sequence: 5
  givenname: Yahui
  surname: Zhang
  fullname: Zhang, Yahui
  organization: College of Information Science and Engineering, Northeastern University
– sequence: 6
  givenname: Jingyu
  surname: Ping
  fullname: Ping, Jingyu
  organization: Faculty of Robot Science and Engineering, Northeastern University
– sequence: 7
  givenname: Chengdong
  surname: Wu
  fullname: Wu, Chengdong
  organization: Faculty of Robot Science and Engineering, Northeastern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32259927$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLcLB_4AssQFkNL6I3acI6r4koq4wNlynPHWJbGD7YB654fjZXcvFWIuI808887onQt0FmIAhJ5TckmJ5Ff0UtCW8ZY_QhtKVN90kvEztCGEt43sWnWOLnK-IzUEpU_QOWdM9D3rNuj351hiwn42O0j32E4mZ--8NcXHgNfsww7vII6QvcXOTwXSvmTjPNd-XipnJlxTbQRswniEmsGE79iBKWsC_Av87rbAiPO6LDEV_BPsfu1s7K0P8BQ9dmbK8OyYt-jb-3dfrz82N18-fLp-e9NY3qrSiEEyCUo4au3ogDEOrKPKgnBSgjMtUYYIS3vRsrFtlRPD2BFwQghK-sHyLXp10F1S_LFCLnr22cI0mQBxzZpx1UlJZXVvi14-QO_imkK9bk8x1REmRKVeHKl1mGHUS6pGpnt98rcCVwfApphzAqetL3-9Lcn4SVOi9x_UVB8_WCdeP5g4if6LfXNg80n1P_AfWWaphw
CODEN RSINAK
CitedBy_id crossref_primary_10_1088_1741_2552_ac74e0
crossref_primary_10_1109_ACCESS_2025_3531979
crossref_primary_10_1016_j_bspc_2020_102172
crossref_primary_10_56936_18290825_2023_17_2_78
crossref_primary_10_1088_1741_2552_ac8b37
crossref_primary_10_1007_s13042_025_02556_6
crossref_primary_10_1063_5_0110827
crossref_primary_10_1109_ACCESS_2025_3542390
Cites_doi 10.1109/tnsre.2016.2587939
10.1063/1.5006511
10.1016/j.neucom.2015.05.133
10.1109/tcyb.2018.2841847
10.1109/tbme.2011.2177523
10.1016/j.patrec.2019.04.019
10.1002/ana.410050402
10.1109/tnn.2002.806647
10.1155/2019/1261398
10.1109/tbme.2013.2248153
10.1186/s12859-017-1964-6
10.1109/msp.2008.4408441
10.1016/j.neucom.2019.08.037
10.1016/j.bspc.2015.12.005
10.1109/tbme.2004.827088
10.1109/tnsre.2017.2757519
10.1109/tbme.2006.883649
10.1109/72.298224
10.1109/access.2019.2944273
10.1109/tmag.2010.2072775
10.1109/tnsre.2016.2646763
10.1109/tasl.2008.919072
10.1109/tbme.2005.851521
10.1109/tbme.2009.2026181
10.1109/tpami.2005.159
10.1142/s0129065716500325
10.1016/j.patcog.2018.10.009
10.1016/j.eswa.2017.11.007
10.1063/1.4959983
10.1088/1741-2552/aab2f2
10.1109/tbme.2011.2172210
ContentType Journal Article
Copyright Author(s)
2020 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2020 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/1.5142343
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Technology Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1089-7623
ExternalDocumentID 32259927
10_1063_1_5142343
rsi
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of China
– fundername: The Fundamental Research Funds for the Central Universities of China
  grantid: 61973065; N172608005; N182612002; N2026002
– fundername: Natural Science Foundation of Liaoning Province
  grantid: 20180520007
  funderid: http://dx.doi.org/10.13039/501100005047
GroupedDBID ---
-DZ
-~X
.DC
123
1UP
2-P
29P
4.4
53G
5RE
5VS
85S
A9.
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABFTF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADIYS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
L7B
M43
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TAE
TN5
VQA
WH7
XSW
YNT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c348t-5b626e85f1ccdfe223e2718ce5f66efa408a05c19542d448f5bd70ef555109bc3
ISSN 0034-6748
1089-7623
IngestDate Fri Sep 05 04:40:26 EDT 2025
Mon Jun 30 05:15:34 EDT 2025
Wed Feb 19 02:30:00 EST 2025
Thu Apr 24 23:04:45 EDT 2025
Tue Jul 01 03:22:36 EDT 2025
Fri Jun 21 00:14:08 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 0034-6748/2020/91(3)/034106/10/$30.00
Published under license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-5b626e85f1ccdfe223e2718ce5f66efa408a05c19542d448f5bd70ef555109bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3129-6305
0000-0002-6871-7927
0000000268717927
0000000231296305
PMID 32259927
PQID 2382870255
PQPubID 2050675
PageCount 10
ParticipantIDs proquest_miscellaneous_2387661662
pubmed_primary_32259927
scitation_primary_10_1063_1_5142343
crossref_citationtrail_10_1063_1_5142343
proquest_journals_2382870255
crossref_primary_10_1063_1_5142343
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200301
2020-03-01
2020-Mar-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 20200301
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle Review of scientific instruments
PublicationTitleAlternate Rev Sci Instrum
PublicationYear 2020
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Dornhege, Blankertz, Krauledat, Losch, Curio, Muller (c9) 2006; 53
Peng, Long, Ding (c29) 2005; 27
Park, Lee, Lee (c32) 2017; 26
Thomas, Guan, Lau, Vinod, Ang (c12) 2009; 56
Li, Lu, Wang (c18) 2016; 26
Wang, Hu, Song (c26) 2019; 7
Barachant, Bonnet, Congedo, Jutten (c15) 2011; 59
Sreeja, Samanta (c1) 2019; 368
Liu, Ma, Niu (c22); 2019
Robinson, Vinod, Ang, Tee, Guan (c33) 2013; 60
Wang, Tang, Zheng (c17) 2011; 59
Lu, Plataniotis, Venetsanopoulos (c24) 2003; 14
Xie, Yu, Gu, Li (c21) 2019; 87
Gao, Cheng, Zhang, Wang (c5) 2016; 87
Xie, Yu, Lu, Gu, Li (c20) 2016; 25
Zhang, Nam, Zhou, Jin, Wang, Cichocki (c7) 2018; 49
Guo, Wu, Zhao, Cao, Yan, Shen (c37) 2010; 47
Gaur, Pachori, Wang, Prasad (c23) 2018; 95
Zhang, Wang, Jin, Wang (c27) 2017; 27
He, Liu, Hu, Wen, Wan, Long (c3) 2016; 188
Battiti (c25) 1994; 5
Duffy, Burchfiel, Lombroso (c34) 1979; 5
Kumar, Sharma, Tsunoda (c13) 2017; 18
Ang, Guan (c4) 2016; 25
Dornhege, Blankertz, Curio, Muller (c31) 2004; 51
Dai, Zhang, Chen, Xu (c6) 2018; 89
Benesty, Chen, Huang (c30) 2008; 16
Lotte, Bougrain, Cichocki, Clerc, Congedo, Rakotomamonjy, Yger (c2) 2018; 15
Lemm, Blankertz, Curio, Muller (c8) 2005; 52
Blankertz, Tomioka, Lemm, Kawanabe, Muller (c19) 2007; 25
(2023080706051133800_c34) 1979; 5
(2023080706051133800_c12) 2009; 56
(2023080706051133800_c28) 1997
(2023080706051133800_c36) 2006
(2023080706051133800_c19) 2007; 25
(2023080706051133800_c26) 2019; 7
(2023080706051133800_c25) 1994; 5
(2023080706051133800_c31) 2004; 51
(2023080706051133800_c8) 2005; 52
(2023080706051133800_c3) 2016; 188
(2023080706051133800_c9) 2006; 53
(2023080706051133800_c11) 2008
(2023080706051133800_c4) 2016; 25
(2023080706051133800_c21) 2019; 87
(2023080706051133800_c33) 2013; 60
(2023080706051133800_c22); 2019
(2023080706051133800_c35) 2016
(2023080706051133800_c17) 2011; 59
(2023080706051133800_c27) 2017; 27
(2023080706051133800_c20) 2016; 25
(2023080706051133800_c2) 2018; 15
(2023080706051133800_c13) 2017; 18
(2023080706051133800_c18) 2016; 26
(2023080706051133800_c15) 2011; 59
(2023080706051133800_c37) 2010; 47
(2023080706051133800_c30) 2008; 16
(2023080706051133800_c6) 2018; 89
(2023080706051133800_c24) 2003; 14
(2023080706051133800_c5) 2016; 87
(2023080706051133800_c7) 2018; 49
(2023080706051133800_c14) 2010
(2023080706051133800_c1) 2019; 368
(2023080706051133800_c16) 2010
(2023080706051133800_c29) 2005; 27
(2023080706051133800_c23) 2018; 95
(2023080706051133800_c10) 2007
(2023080706051133800_c32) 2017; 26
References_xml – volume: 53
  start-page: 2274
  year: 2006
  ident: c9
  article-title: Combined optimization of spatial and temporal filters for improving brain-computer interfacing
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 87
  start-page: 94
  year: 2019
  ident: c21
  article-title: Classification of symmetric positive definite matrices based on bilinear isometric Riemannian embedding
  publication-title: Pattern Recognit.
– volume: 47
  start-page: 866
  year: 2010
  ident: c37
  article-title: Classification of mental task from EEG signals using immune feature weighted support vector machines
  publication-title: IEEE Trans. Magn.
– volume: 25
  start-page: 41
  year: 2007
  ident: c19
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process. Mag.
– volume: 5
  start-page: 309
  year: 1979
  ident: c34
  article-title: Brain electrical activity mapping (BEAM): A method for extending the clinical utility of EEG and evoked potential data
  publication-title: Ann. Neurol.
– volume: 188
  start-page: 217
  year: 2016
  ident: c3
  article-title: Motor imagery EEG signals analysis based on Bayesian network with Gaussian distribution
  publication-title: Neurocomputing
– volume: 60
  start-page: 2123
  year: 2013
  ident: c33
  article-title: EEG-based classification of fast and slow hand movements using wavelet-CSP algorithm
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 52
  start-page: 1541
  year: 2005
  ident: c8
  article-title: Spatio-spectral filters for improving the classification of single trial EEG
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 95
  start-page: 201
  year: 2018
  ident: c23
  article-title: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry
  publication-title: Expert Syst. Appl.
– volume: 49
  start-page: 3322
  year: 2018
  ident: c7
  article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI
  publication-title: IEEE Trans. Cybern.
– volume: 87
  start-page: 085110
  year: 2016
  ident: c5
  article-title: EEG classification for motor imagery and resting state in BCI applications using multi-class adaboost extreme learning machine
  publication-title: Rev. Sci. Instrum.
– volume: 59
  start-page: 920
  year: 2011
  ident: c15
  article-title: Multiclass brain–computer interface classification by Riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 51
  start-page: 993
  year: 2004
  ident: c31
  article-title: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 15
  start-page: 031005
  year: 2018
  ident: c2
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update
  publication-title: J. Neural Eng.
– volume: 14
  start-page: 195
  year: 2003
  ident: c24
  article-title: Face recognition using lda-based algorithms
  publication-title: IEEE Trans. Neural Networks
– volume: 25
  start-page: 392
  year: 2016
  ident: c4
  article-title: EEG-based strategies to detect motor imagery for control and rehabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 56
  start-page: 2730
  year: 2009
  ident: c12
  article-title: A new discriminative common spatial pattern method for motor imagery brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 7
  start-page: 143303
  year: 2019
  ident: c26
  article-title: Channel selection method for eeg emotion recognition using normalized mutual information
  publication-title: IEEE Access
– volume: 27
  start-page: 1650032
  year: 2017
  ident: c27
  article-title: Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification
  publication-title: Int. J. Neural Syst.
– volume: 26
  start-page: 52
  year: 2016
  ident: c18
  article-title: Robust common spatial patterns with sparsity
  publication-title: Biomed. Signal Process. Control
– volume: 2019
  start-page: 1261398
  ident: c22
  article-title: Mixed region covariance discriminative learning for image classification on Riemannian manifolds
  publication-title: Math. Probl. Eng.
– volume: 27
  start-page: 1226
  year: 2005
  ident: c29
  article-title: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 16
  start-page: 757
  year: 2008
  ident: c30
  article-title: On the importance of the Pearson correlation coefficient in noise reduction
  publication-title: IEEE Trans. Audio, Speech, Language Process.
– volume: 368
  start-page: 133
  year: 2019
  ident: c1
  article-title: Classification of multiclass motor imagery EEG signal using sparsity approach
  publication-title: Neurocomputing
– volume: 18
  start-page: 545
  year: 2017
  ident: c13
  article-title: An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information
  publication-title: BMC Bioinf.
– volume: 59
  start-page: 653
  year: 2011
  ident: c17
  article-title: L1-norm-based common spatial patterns
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 89
  start-page: 074302
  year: 2018
  ident: c6
  article-title: Classification of electroencephalogram signals using wavelet-CSP and projection extreme learning machine
  publication-title: Rev. Sci. Instrum.
– volume: 5
  start-page: 537
  year: 1994
  ident: c25
  article-title: Using mutual information for selecting features in supervised neural net learning
  publication-title: IEEE Trans. Neural Networks
– volume: 25
  start-page: 504
  year: 2016
  ident: c20
  article-title: Motor imagery classification based on bilinear sub-manifold learning of symmetric positive-definite matrices
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 26
  start-page: 498
  year: 2017
  ident: c32
  article-title: Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 25
  start-page: 504
  year: 2016
  ident: 2023080706051133800_c20
  article-title: Motor imagery classification based on bilinear sub-manifold learning of symmetric positive-definite matrices
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/tnsre.2016.2587939
– volume: 89
  start-page: 074302
  year: 2018
  ident: 2023080706051133800_c6
  article-title: Classification of electroencephalogram signals using wavelet-CSP and projection extreme learning machine
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5006511
– start-page: 472
  year: 2010
  ident: 2023080706051133800_c14
  article-title: Common spatial pattern revisited by Riemannian geometry
– volume: 188
  start-page: 217
  year: 2016
  ident: 2023080706051133800_c3
  article-title: Motor imagery EEG signals analysis based on Bayesian network with Gaussian distribution
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.133
– volume: 49
  start-page: 3322
  year: 2018
  ident: 2023080706051133800_c7
  article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/tcyb.2018.2841847
– volume: 59
  start-page: 653
  year: 2011
  ident: 2023080706051133800_c17
  article-title: L1-norm-based common spatial patterns
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/tbme.2011.2177523
– start-page: 281
  year: 1997
  ident: 2023080706051133800_c28
  article-title: Support vector method for function approximation, regression estimation and signal processing
  doi: 10.1016/j.patrec.2019.04.019
– volume: 5
  start-page: 309
  year: 1979
  ident: 2023080706051133800_c34
  article-title: Brain electrical activity mapping (BEAM): A method for extending the clinical utility of EEG and evoked potential data
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410050402
– start-page: 204
  year: 2007
  ident: 2023080706051133800_c10
  article-title: Sub-band common spatial pattern (SBCSP) for brain-computer interface
– volume: 14
  start-page: 195
  year: 2003
  ident: 2023080706051133800_c24
  article-title: Face recognition using lda-based algorithms
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/tnn.2002.806647
– start-page: 629
  year: 2010
  ident: 2023080706051133800_c16
  article-title: Riemannian geometry applied to BCI classification
– volume: 2019
  start-page: 1261398
  ident: 2023080706051133800_c22
  article-title: Mixed region covariance discriminative learning for image classification on Riemannian manifolds
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2019/1261398
– volume: 60
  start-page: 2123
  year: 2013
  ident: 2023080706051133800_c33
  article-title: EEG-based classification of fast and slow hand movements using wavelet-CSP algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/tbme.2013.2248153
– volume: 18
  start-page: 545
  year: 2017
  ident: 2023080706051133800_c13
  article-title: An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-017-1964-6
– volume: 25
  start-page: 41
  year: 2007
  ident: 2023080706051133800_c19
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/msp.2008.4408441
– volume: 368
  start-page: 133
  year: 2019
  ident: 2023080706051133800_c1
  article-title: Classification of multiclass motor imagery EEG signal using sparsity approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.037
– start-page: 2090
  year: 2016
  ident: 2023080706051133800_c35
  article-title: Decimation filter with common spatial pattern and Fishers discriminant analysis for motor imagery classification
– volume: 26
  start-page: 52
  year: 2016
  ident: 2023080706051133800_c18
  article-title: Robust common spatial patterns with sparsity
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.12.005
– volume: 51
  start-page: 993
  year: 2004
  ident: 2023080706051133800_c31
  article-title: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/tbme.2004.827088
– volume: 26
  start-page: 498
  year: 2017
  ident: 2023080706051133800_c32
  article-title: Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/tnsre.2017.2757519
– volume: 53
  start-page: 2274
  year: 2006
  ident: 2023080706051133800_c9
  article-title: Combined optimization of spatial and temporal filters for improving brain-computer interfacing
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/tbme.2006.883649
– volume: 5
  start-page: 537
  year: 1994
  ident: 2023080706051133800_c25
  article-title: Using mutual information for selecting features in supervised neural net learning
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.298224
– volume: 7
  start-page: 143303
  year: 2019
  ident: 2023080706051133800_c26
  article-title: Channel selection method for eeg emotion recognition using normalized mutual information
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2944273
– volume: 47
  start-page: 866
  year: 2010
  ident: 2023080706051133800_c37
  article-title: Classification of mental task from EEG signals using immune feature weighted support vector machines
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/tmag.2010.2072775
– volume: 25
  start-page: 392
  year: 2016
  ident: 2023080706051133800_c4
  article-title: EEG-based strategies to detect motor imagery for control and rehabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/tnsre.2016.2646763
– volume: 16
  start-page: 757
  year: 2008
  ident: 2023080706051133800_c30
  article-title: On the importance of the Pearson correlation coefficient in noise reduction
  publication-title: IEEE Trans. Audio, Speech, Language Process.
  doi: 10.1109/tasl.2008.919072
– volume: 52
  start-page: 1541
  year: 2005
  ident: 2023080706051133800_c8
  article-title: Spatio-spectral filters for improving the classification of single trial EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/tbme.2005.851521
– volume: 56
  start-page: 2730
  year: 2009
  ident: 2023080706051133800_c12
  article-title: A new discriminative common spatial pattern method for motor imagery brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/tbme.2009.2026181
– volume: 27
  start-page: 1226
  year: 2005
  ident: 2023080706051133800_c29
  article-title: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2005.159
– volume: 27
  start-page: 1650032
  year: 2017
  ident: 2023080706051133800_c27
  article-title: Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/s0129065716500325
– start-page: 7064
  year: 2006
  ident: 2023080706051133800_c36
  article-title: Salient EEG channel selection in brain computer interfaces by mutual information maximization,
– volume: 87
  start-page: 94
  year: 2019
  ident: 2023080706051133800_c21
  article-title: Classification of symmetric positive definite matrices based on bilinear isometric Riemannian embedding
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.10.009
– volume: 95
  start-page: 201
  year: 2018
  ident: 2023080706051133800_c23
  article-title: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.11.007
– volume: 87
  start-page: 085110
  year: 2016
  ident: 2023080706051133800_c5
  article-title: EEG classification for motor imagery and resting state in BCI applications using multi-class adaboost extreme learning machine
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4959983
– start-page: 2390
  year: 2008
  ident: 2023080706051133800_c11
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
– volume: 15
  start-page: 031005
  year: 2018
  ident: 2023080706051133800_c2
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab2f2
– volume: 59
  start-page: 920
  year: 2011
  ident: 2023080706051133800_c15
  article-title: Multiclass brain–computer interface classification by Riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/tbme.2011.2172210
SSID ssj0000511
Score 2.3849063
Snippet In recent years, Brain Computer Interface (BCI) based on motor imagery has been widely used in the fields of medicine, active safe systems for automobiles,...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 034106
SubjectTerms Brain-Computer Interfaces
Classification
Correlation coefficients
Covariance matrix
Electroencephalography
Euclidean geometry
Euclidean space
Feature extraction
Filter banks
Frequencies
Human-computer interface
Humans
Image classification
Mathematical analysis
Matrix methods
Riemann manifold
Scientific apparatus & instruments
Signal Processing, Computer-Assisted
Support Vector Machine
Support vector machines
Title Motor imagery classification using geodesic filtering common spatial pattern and filter-bank feature weighted support vector machine
URI http://dx.doi.org/10.1063/1.5142343
https://www.ncbi.nlm.nih.gov/pubmed/32259927
https://www.proquest.com/docview/2382870255
https://www.proquest.com/docview/2387661662
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gA9IMqrgYLM41AUpeT9OFZAVSGWA23VvUWJMy4VNKm0CRWcOfCzmbGdbJYuUuESrbLejeX5MjMef_7M2MtUQFbFtOwuIXNCkKmThhA6pedWSVgIGSkB0-nH-OA4fD-LZpPJrxFrqWvLXfFj5b6S_7Eq3kO70i7Zf7Ds8Kd4Az-jffGKFsbrtWw8bVqik5-TDsV3W1AiTMwfbdNOVQFOoakALUECTK2SHSQWOfbQnhOXmvZhKYVNzUnWjZyyqL_YEpTmp32piqeYl867C0rW7W-q0G-fKxrmEpPo07APRu-zpM4Q270lhQajGaWr99rD7MNZf2vWqWWSpj6VYILpuJx9AmeXi8YnqvHhZ6L8N-O6BU5SB-JW74uD0KGjTnQk0u7XTTMH3XMw9s-ZN8JhsNLtY55FFYhdzP78QMs-LUtr_xHyBiKiWoKPg9zLzU9vsHU_SWjBf33v7fTD4SKqR54-fdH0ulepioPXw3OXc5srE5YNdhNHXzMsRknM0R1228w--J6G0iabQH2XbRr_Puc7RoT81T32U2GLG2zxZWxxhS3eY4sP2OIaW9xgixtsccQWH2GLG2zxHlvcYItrbHGDrfvseP_d0ZsDx5zY4YggTFsnKnF-DGkkPSEqCZh6go_Jj4BIxjHIInTTwo0EqQz6VRimMiqrxAV0CBgaslIED9ha3dSwxbiUaYHRFAI3wywSisIXaZIJDyoRl4nvWWynH-u8H1Q6VeVrfsWmFns-NL3QGi6rGm33BsvNKz7PMZ8lIgBOuy32bPgaHTCtqhU1NJ1qk2CSG8e-xR5qQw9PoWiZZX5isReD5f_ehUfX6edjdmvxNm2zNXyD4QnmxW351ED2N1RYvZM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motor+imagery+classification+using+geodesic+filtering+common+spatial+pattern+and+filter-bank+feature+weighted+support+vector+machine&rft.jtitle=Review+of+scientific+instruments&rft.au=Wang%2C+Fei&rft.au=Xu%2C+Zongfeng&rft.au=Zhang%2C+Weiwei&rft.au=Wu%2C+Shichao&rft.date=2020-03-01&rft.issn=0034-6748&rft.eissn=1089-7623&rft.volume=91&rft.issue=3&rft_id=info:doi/10.1063%2F1.5142343&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_5142343
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon