Implications of embedded artificial intelligence - machine learning on safety of machinery

The Artificial Intelligence (AI) and the Machine Learning (ML) is a rapidly evolving technology and up until recently has not been a subject of machinery safety. The purpose of this work is to evaluate how embedded artificial intelligence – machine learning can affect the safety of machinery and mac...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 180; pp. 338 - 343
Main Authors Anastasi, Sara, Madonna, Marianna, Monica, Luigi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Artificial Intelligence (AI) and the Machine Learning (ML) is a rapidly evolving technology and up until recently has not been a subject of machinery safety. The purpose of this work is to evaluate how embedded artificial intelligence – machine learning can affect the safety of machinery and machinery systems in the development of their applications. This work can be useful to machinery designers to develop their particular applications as it describes how the new hazards, associated with embedded AI – ML, should be considered within the framework of the risk assessment process. The proposed study underlines the new dimension of complexity linked to artificial intelligence and machine learning that could lead to a revision of European legislation in terms of the introduction and/or modification of essential health and safety requirements (EHSR) in the Machinery Directive, in order to guarantee safety levels at least equivalent to those currently achieved.
AbstractList The Artificial Intelligence (AI) and the Machine Learning (ML) is a rapidly evolving technology and up until recently has not been a subject of machinery safety. The purpose of this work is to evaluate how embedded artificial intelligence – machine learning can affect the safety of machinery and machinery systems in the development of their applications. This work can be useful to machinery designers to develop their particular applications as it describes how the new hazards, associated with embedded AI – ML, should be considered within the framework of the risk assessment process. The proposed study underlines the new dimension of complexity linked to artificial intelligence and machine learning that could lead to a revision of European legislation in terms of the introduction and/or modification of essential health and safety requirements (EHSR) in the Machinery Directive, in order to guarantee safety levels at least equivalent to those currently achieved.
Author Anastasi, Sara
Monica, Luigi
Madonna, Marianna
Author_xml – sequence: 1
  givenname: Sara
  surname: Anastasi
  fullname: Anastasi, Sara
  organization: Department of technological innovation and safety equipment, products and anthropic settlements, Italian Workers’ Compensation Authority (INAIL), Via Roberto Ferruzzi 38/40, Rome 00143, Italy
– sequence: 2
  givenname: Marianna
  surname: Madonna
  fullname: Madonna, Marianna
  organization: Operational Territorial Unit - Research, Certification and Verification Area, Italian Workers’ Compensation Authority (INAIL), Via Nuova Poggioreale, Naples 80143, Italy
– sequence: 3
  givenname: Luigi
  surname: Monica
  fullname: Monica, Luigi
  email: l.monica@inail.it
  organization: Department of technological innovation and safety equipment, products and anthropic settlements, Italian Workers’ Compensation Authority (INAIL), Via Roberto Ferruzzi 38/40, Rome 00143, Italy
BookMark eNqFkM9OwzAMhyM0JMbYE3DJC7QkabumBw5o4s-kSVzgwiVKXHd46tIpqZD29rTbDogD-GJL1veT_V2zie88MnYrRSqFXNxt033oIKZKKJkKmcpSXrCp1GWZiEJUkx_zFZvHuBVDZVpXspyyj9Vu3xLYnjofeddw3Dmsa6y5DT01BGRbTr7HtqUNekCe8J2FT_LIW7TBk9_wzvNoG-wPY8B5Gw437LKxbcT5uc_Y-9Pj2_IlWb8-r5YP6wSyXPdJ4dRC11WRF3mJWmS1c1iKwi20UpVTMtMSNAqQVQWAkIMdTtfaCdWI0inIZiw75ULoYgzYmH2gnQ0HI4UZDZmtORoyoyEjpBkMDVT1iwLqjxr6YKn9h70_sTi89UUYTAQa5dQUEHpTd_Qn_w1Ry4YI
CitedBy_id crossref_primary_10_1145_3626314
crossref_primary_10_3390_su14116885
crossref_primary_10_1088_1742_6596_2373_6_062017
crossref_primary_10_3390_app11167716
crossref_primary_10_1109_ACCESS_2022_3229233
crossref_primary_10_32725_kont_2023_038
crossref_primary_10_3390_ijfs11030115
crossref_primary_10_26634_jele_13_1_19345
crossref_primary_10_1016_j_est_2023_106688
Cites_doi 10.1016/j.promfg.2020.02.029
10.1007/978-3-319-22689-7_46
10.5120/20182-2402
10.1016/j.mfglet.2018.09.002
10.1109/COMST.2020.2988293
10.15866/iremos.v9i4.9688
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2021.01.171
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 343
ExternalDocumentID 10_1016_j_procs_2021_01_171
S1877050921002118
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c348t-5b268d954547e803dbbe705b68229b21381c8e0c199ccec4ca88988b02f07b2c3
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Tue Jul 01 02:53:42 EDT 2025
Thu Apr 24 23:11:27 EDT 2025
Wed May 17 00:09:51 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Safety of machinery
Machine Learning
Artificial Intelligence
Machinery Directive
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-5b268d954547e803dbbe705b68229b21381c8e0c199ccec4ca88988b02f07b2c3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050921002118
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_procs_2021_01_171
crossref_citationtrail_10_1016_j_procs_2021_01_171
elsevier_sciencedirect_doi_10_1016_j_procs_2021_01_171
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021
2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References EN 62061:2005 - Safety of machinery - Functional safety of safety-related electrical, electronic and programmable electronic control systems.
Sara, Luigi (bib0006) 2018; 174
Markis Alexandra, Papa Maximilian, Kaselautzke David, Rathmair Michael, Sattinger Vinzenz, Brandst Mathias. (2019) “Safety of Mobile Robot Systems in Industrial Applications.” Proceedings of the ARW & OAGM Workshop: 26–31.
European Commission. White Paper on Artificial Intelligence: a European approach to excellence and trust. COM (2020) 65 Final.
Di Nardo, Mosè, Marianna, Santillo Liberatina (bib0008) 2015; 532
Jay, Hossein, Jaskaran, Vibhor (bib0009) 2018; 18
Giovanni Paolo, Letizia, Eleonora, Francesco, Giuseppe (bib00017) 2020; 42
European Commission. Technical Report on Robustness and Explainability of Artificial Intelligence. 2020.
Sumit, Aritra, Akash, Nabamita (bib0004) 2015; 115
Alan (bib0002) 1950; 59
Darko, Ruscio Davide, Ivano, Patrizio, Ivica (bib00015) 2019; 51
Alp, Emre (bib0001) 2017
ISO/IEC 2382:2015. Information technology — Vocabulary.
ISO/TS 15066:2016 - Robots and robotic devices - Collaborative robots.
ISO 3691-4:2020 Industrial trucks — Safety requirements and verification — Part 4: Driverless industrial trucks and their systems.
ISO 18497:2018 - Agricultural machinery and tractors - Safety of highly automated agricultural machines - Principles for design.
Mohammed Ali, Amr, Abdulla Khalid, Xiaojiang, Ihsan, Mohsen (bib00010) 2020; 22
ISO/IEC 38505-1:2017 Information technology — Governance of IT — Governance of data — Part 1: Application of ISO/IEC 38500 to the governance of data.
Marianna, Luigi, Sara, Nardo Mario (bib0007) 2019; 189
ISO 13849-1:2015 - Safety of machinery - Safety-related parts of control systems - General principles for design.
Nardo Mario, Marianna, Santillo Liberatina (bib00022) 2016; 9
Darko (10.1016/j.procs.2021.01.171_bib00015) 2019; 51
Jay (10.1016/j.procs.2021.01.171_bib0009) 2018; 18
10.1016/j.procs.2021.01.171_bib0003
Sumit (10.1016/j.procs.2021.01.171_bib0004) 2015; 115
10.1016/j.procs.2021.01.171_bib0005
Mohammed Ali (10.1016/j.procs.2021.01.171_bib00010) 2020; 22
10.1016/j.procs.2021.01.171_bib00020
10.1016/j.procs.2021.01.171_bib00021
10.1016/j.procs.2021.01.171_bib00011
Marianna (10.1016/j.procs.2021.01.171_bib0007) 2019; 189
10.1016/j.procs.2021.01.171_bib00012
Nardo Mario (10.1016/j.procs.2021.01.171_bib00022) 2016; 9
Alp (10.1016/j.procs.2021.01.171_bib0001) 2017
Di Nardo (10.1016/j.procs.2021.01.171_bib0008) 2015; 532
Giovanni Paolo (10.1016/j.procs.2021.01.171_bib00017) 2020; 42
10.1016/j.procs.2021.01.171_bib00018
10.1016/j.procs.2021.01.171_bib00019
Alan (10.1016/j.procs.2021.01.171_bib0002) 1950; 59
10.1016/j.procs.2021.01.171_bib00013
10.1016/j.procs.2021.01.171_bib00014
Sara (10.1016/j.procs.2021.01.171_bib0006) 2018; 174
10.1016/j.procs.2021.01.171_bib00016
References_xml – reference: ISO/IEC 2382:2015. Information technology — Vocabulary.
– reference: EN 62061:2005 - Safety of machinery - Functional safety of safety-related electrical, electronic and programmable electronic control systems.
– volume: 174
  start-page: 163
  year: 2018
  end-page: 168
  ident: bib0006
  article-title: “Evolution of European product directives in perspective of industry 4.0”
  publication-title: WIT Transactions on Built Environment
– reference: European Commission. Technical Report on Robustness and Explainability of Artificial Intelligence. 2020.
– volume: 115
  start-page: 31
  year: 2015
  end-page: 41
  ident: bib0004
  article-title: “Applications of Artificial Intelligence in Machine Learning: Review and Prospect”
  publication-title: International Journal of Computer Applications
– reference: Markis Alexandra, Papa Maximilian, Kaselautzke David, Rathmair Michael, Sattinger Vinzenz, Brandst Mathias. (2019) “Safety of Mobile Robot Systems in Industrial Applications.” Proceedings of the ARW & OAGM Workshop: 26–31.
– volume: 189
  start-page: 13
  year: 2019
  end-page: 19
  ident: bib0007
  article-title: “Evolution of cognitive demand in the human–machine interaction integrated with industry 4.0 technologies.”
  publication-title: WIT Transactions on the Built Environment
– volume: 22
  start-page: 1646
  year: 2020
  end-page: 1685
  ident: bib00010
  article-title: “A Survey of Machine and Deep Learning Methods for Internet of Things (IoT)”
  publication-title: IEEE Communications Surveys & Tutorials
– volume: 51
  start-page: 150
  year: 2019
  end-page: 179
  ident: bib00015
  article-title: “Safety for Mobile Robotic System: A Systematic Mapping Study from a Software Engineering Perspective”
  publication-title: Journal of Systems and Software
– reference: ISO 3691-4:2020 Industrial trucks — Safety requirements and verification — Part 4: Driverless industrial trucks and their systems.
– reference: ISO 18497:2018 - Agricultural machinery and tractors - Safety of highly automated agricultural machines - Principles for design.
– volume: 532
  start-page: 598
  year: 2015
  end-page: 609
  ident: bib0008
  article-title: “A conceptual model of human behaviour in socio-technical systems”
  publication-title: Communication in Computer and Information Science
– volume: 18
  start-page: 20
  year: 2018
  end-page: 23
  ident: bib0009
  article-title: “Industrial Artificial Intelligence for Industry 4.0 – based manufacturing systems”
  publication-title: Manufacturing Letters
– volume: 42
  start-page: 542
  year: 2020
  end-page: 547
  ident: bib00017
  article-title: “Analysis and testing of an online solution to monitor and solve safety issues for industrial systems.”
  publication-title: Procedia Manufacturing
– reference: ISO/TS 15066:2016 - Robots and robotic devices - Collaborative robots.
– year: 2017
  ident: bib0001
  article-title: “Industry 4.0: managing the digital transformation”
  publication-title: Springer book
– reference: European Commission. White Paper on Artificial Intelligence: a European approach to excellence and trust. COM (2020) 65 Final.
– volume: 59
  start-page: 433
  year: 1950
  end-page: 460
  ident: bib0002
  article-title: “Computing machinery and intelligence”
  publication-title: Mind
– reference: ISO/IEC 38505-1:2017 Information technology — Governance of IT — Governance of data — Part 1: Application of ISO/IEC 38500 to the governance of data.
– reference: ISO 13849-1:2015 - Safety of machinery - Safety-related parts of control systems - General principles for design.
– volume: 9
  start-page: 256
  year: 2016
  end-page: 264
  ident: bib00022
  article-title: “A system dynamics approach to manage risks in a process plant”
  publication-title: International Review on Modelling and Simulations
– ident: 10.1016/j.procs.2021.01.171_bib0003
– ident: 10.1016/j.procs.2021.01.171_bib00014
– volume: 42
  start-page: 542
  year: 2020
  ident: 10.1016/j.procs.2021.01.171_bib00017
  article-title: “Analysis and testing of an online solution to monitor and solve safety issues for industrial systems.”
  publication-title: Procedia Manufacturing
  doi: 10.1016/j.promfg.2020.02.029
– ident: 10.1016/j.procs.2021.01.171_bib00011
– volume: 189
  start-page: 13
  year: 2019
  ident: 10.1016/j.procs.2021.01.171_bib0007
  article-title: “Evolution of cognitive demand in the human–machine interaction integrated with industry 4.0 technologies.”
  publication-title: WIT Transactions on the Built Environment
– ident: 10.1016/j.procs.2021.01.171_bib00012
– volume: 532
  start-page: 598
  year: 2015
  ident: 10.1016/j.procs.2021.01.171_bib0008
  article-title: “A conceptual model of human behaviour in socio-technical systems”
  publication-title: Communication in Computer and Information Science
  doi: 10.1007/978-3-319-22689-7_46
– ident: 10.1016/j.procs.2021.01.171_bib00013
– ident: 10.1016/j.procs.2021.01.171_bib00018
– ident: 10.1016/j.procs.2021.01.171_bib00016
– volume: 115
  start-page: 31
  year: 2015
  ident: 10.1016/j.procs.2021.01.171_bib0004
  article-title: “Applications of Artificial Intelligence in Machine Learning: Review and Prospect”
  publication-title: International Journal of Computer Applications
  doi: 10.5120/20182-2402
– volume: 18
  start-page: 20
  year: 2018
  ident: 10.1016/j.procs.2021.01.171_bib0009
  article-title: “Industrial Artificial Intelligence for Industry 4.0 – based manufacturing systems”
  publication-title: Manufacturing Letters
  doi: 10.1016/j.mfglet.2018.09.002
– volume: 174
  start-page: 163
  year: 2018
  ident: 10.1016/j.procs.2021.01.171_bib0006
  article-title: “Evolution of European product directives in perspective of industry 4.0”
  publication-title: WIT Transactions on Built Environment
– year: 2017
  ident: 10.1016/j.procs.2021.01.171_bib0001
  article-title: “Industry 4.0: managing the digital transformation”
  publication-title: Springer book
– volume: 59
  start-page: 433
  year: 1950
  ident: 10.1016/j.procs.2021.01.171_bib0002
  article-title: “Computing machinery and intelligence”
  publication-title: Mind
– ident: 10.1016/j.procs.2021.01.171_bib0005
– volume: 51
  start-page: 150
  year: 2019
  ident: 10.1016/j.procs.2021.01.171_bib00015
  article-title: “Safety for Mobile Robotic System: A Systematic Mapping Study from a Software Engineering Perspective”
  publication-title: Journal of Systems and Software
– volume: 22
  start-page: 1646
  issue: 3
  year: 2020
  ident: 10.1016/j.procs.2021.01.171_bib00010
  article-title: “A Survey of Machine and Deep Learning Methods for Internet of Things (IoT)”
  publication-title: IEEE Communications Surveys & Tutorials
  doi: 10.1109/COMST.2020.2988293
– volume: 9
  start-page: 256
  issue: 4
  year: 2016
  ident: 10.1016/j.procs.2021.01.171_bib00022
  article-title: “A system dynamics approach to manage risks in a process plant”
  publication-title: International Review on Modelling and Simulations
  doi: 10.15866/iremos.v9i4.9688
– ident: 10.1016/j.procs.2021.01.171_bib00019
– ident: 10.1016/j.procs.2021.01.171_bib00020
– ident: 10.1016/j.procs.2021.01.171_bib00021
SSID ssj0000388917
Score 2.273065
Snippet The Artificial Intelligence (AI) and the Machine Learning (ML) is a rapidly evolving technology and up until recently has not been a subject of machinery...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 338
SubjectTerms Artificial Intelligence
Machine Learning
Machinery Directive
Safety of machinery
Title Implications of embedded artificial intelligence - machine learning on safety of machinery
URI https://dx.doi.org/10.1016/j.procs.2021.01.171
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqsrDwjSgflQdGrMaJkzhjqagKFQxARcVixY6Nitq0KmHov8eXOFWRUAfGJL4ofufcs6y7dwhdZ9azSquAhEHMiGUITlIVhiSx9GbphXmpgeLkx6doMGIP43DcQL26FgbSKl3sr2J6Ga3dnY5Ds7OYTDovlMcxqJf4oCJq98k2DgeMl0V849v1OQuonSRl410YT8CgFh8q07yAJ0C226cg30lj-jdBbZBO_wDtud0i7lYfdIgaOj9C-3UnBux-zGP0fr-RGI7nBuuZ1DakZBjmUolE4MmG-iYmeFamUWrs-kZ84HmOv1KjixW8wD1drk7QqH_32hsQ1zWBKDv9goTSj3iWhKDUpbkXZFJqi5OMQNpd-tRStOLaUzRJlPUSU6kFiHPp-caLpa-CU9TM57k-Q1hRaaQKUsMTw2jGUpllhpko8lQccB21kF9DJZSTFIfOFlNR5459ihJfAfgKjwqLbwvdrI0WlaLG9uFR7QPxa2EIG_O3GZ7_1_AC7cJVdc5yiZrF8ltf2Z1HIdtopzt8fhu2yyX2A2Bd2OA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD4xYjRMncUaoqFpou9BKFYsVOzYqog-VMPTf40ucqkiIgTXOWcl39n0n6_wdQreZ9azSKiBhEDNiGYKTVIUhSSy9WXphXmrgcnJ_EHVG7GkcjmuoVd2FgbJKF_vLmF5Ea_ek6dBsLiaT5gvlcQzqJT6oiNo8eQtt22wght3ZHT-sD1pA7iQpOu-CAQGLSn2oqPMCogDdbp-CfieN6e8MtcE67QO059JFfF9-0SGq6dkR2q9aMWC3M4_Ra3ejMhzPDdZTqW1MyTD8TKkSgScb8puY4GlRR6mxaxzxhucz_Jkana9gAje6XJ2gUftx2OoQ1zaBqIDxnITSj3iWhCDVpbkXZFJqC5SMQNtd-tRytOLaUzRJlHUTU6kFiHPp-caLpa-CU1SfzWf6DGFFpZEqSA1PDKMZS2WWGWaiyFNxwHXUQH4FlVBOUxxaW3yIqnjsXRT4CsBXeFRYfBvobm20KCU1_n49qnwgfqwMYYP-X4bn_zW8QTudYb8net3B8wXahZHy0OUS1fPll76yaUgur4tl9g199tpd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implications+of+embedded+artificial+intelligence+-+machine+learning+on+safety+of+machinery&rft.jtitle=Procedia+computer+science&rft.au=Anastasi%2C+Sara&rft.au=Madonna%2C+Marianna&rft.au=Monica%2C+Luigi&rft.date=2021&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=180&rft.spage=338&rft.epage=343&rft_id=info:doi/10.1016%2Fj.procs.2021.01.171&rft.externalDocID=S1877050921002118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon