Implications of embedded artificial intelligence - machine learning on safety of machinery
The Artificial Intelligence (AI) and the Machine Learning (ML) is a rapidly evolving technology and up until recently has not been a subject of machinery safety. The purpose of this work is to evaluate how embedded artificial intelligence – machine learning can affect the safety of machinery and mac...
Saved in:
Published in | Procedia computer science Vol. 180; pp. 338 - 343 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Artificial Intelligence (AI) and the Machine Learning (ML) is a rapidly evolving technology and up until recently has not been a subject of machinery safety. The purpose of this work is to evaluate how embedded artificial intelligence – machine learning can affect the safety of machinery and machinery systems in the development of their applications. This work can be useful to machinery designers to develop their particular applications as it describes how the new hazards, associated with embedded AI – ML, should be considered within the framework of the risk assessment process. The proposed study underlines the new dimension of complexity linked to artificial intelligence and machine learning that could lead to a revision of European legislation in terms of the introduction and/or modification of essential health and safety requirements (EHSR) in the Machinery Directive, in order to guarantee safety levels at least equivalent to those currently achieved. |
---|---|
AbstractList | The Artificial Intelligence (AI) and the Machine Learning (ML) is a rapidly evolving technology and up until recently has not been a subject of machinery safety. The purpose of this work is to evaluate how embedded artificial intelligence – machine learning can affect the safety of machinery and machinery systems in the development of their applications. This work can be useful to machinery designers to develop their particular applications as it describes how the new hazards, associated with embedded AI – ML, should be considered within the framework of the risk assessment process. The proposed study underlines the new dimension of complexity linked to artificial intelligence and machine learning that could lead to a revision of European legislation in terms of the introduction and/or modification of essential health and safety requirements (EHSR) in the Machinery Directive, in order to guarantee safety levels at least equivalent to those currently achieved. |
Author | Anastasi, Sara Monica, Luigi Madonna, Marianna |
Author_xml | – sequence: 1 givenname: Sara surname: Anastasi fullname: Anastasi, Sara organization: Department of technological innovation and safety equipment, products and anthropic settlements, Italian Workers’ Compensation Authority (INAIL), Via Roberto Ferruzzi 38/40, Rome 00143, Italy – sequence: 2 givenname: Marianna surname: Madonna fullname: Madonna, Marianna organization: Operational Territorial Unit - Research, Certification and Verification Area, Italian Workers’ Compensation Authority (INAIL), Via Nuova Poggioreale, Naples 80143, Italy – sequence: 3 givenname: Luigi surname: Monica fullname: Monica, Luigi email: l.monica@inail.it organization: Department of technological innovation and safety equipment, products and anthropic settlements, Italian Workers’ Compensation Authority (INAIL), Via Roberto Ferruzzi 38/40, Rome 00143, Italy |
BookMark | eNqFkM9OwzAMhyM0JMbYE3DJC7QkabumBw5o4s-kSVzgwiVKXHd46tIpqZD29rTbDogD-GJL1veT_V2zie88MnYrRSqFXNxt033oIKZKKJkKmcpSXrCp1GWZiEJUkx_zFZvHuBVDZVpXspyyj9Vu3xLYnjofeddw3Dmsa6y5DT01BGRbTr7HtqUNekCe8J2FT_LIW7TBk9_wzvNoG-wPY8B5Gw437LKxbcT5uc_Y-9Pj2_IlWb8-r5YP6wSyXPdJ4dRC11WRF3mJWmS1c1iKwi20UpVTMtMSNAqQVQWAkIMdTtfaCdWI0inIZiw75ULoYgzYmH2gnQ0HI4UZDZmtORoyoyEjpBkMDVT1iwLqjxr6YKn9h70_sTi89UUYTAQa5dQUEHpTd_Qn_w1Ry4YI |
CitedBy_id | crossref_primary_10_1145_3626314 crossref_primary_10_3390_su14116885 crossref_primary_10_1088_1742_6596_2373_6_062017 crossref_primary_10_3390_app11167716 crossref_primary_10_1109_ACCESS_2022_3229233 crossref_primary_10_32725_kont_2023_038 crossref_primary_10_3390_ijfs11030115 crossref_primary_10_26634_jele_13_1_19345 crossref_primary_10_1016_j_est_2023_106688 |
Cites_doi | 10.1016/j.promfg.2020.02.029 10.1007/978-3-319-22689-7_46 10.5120/20182-2402 10.1016/j.mfglet.2018.09.002 10.1109/COMST.2020.2988293 10.15866/iremos.v9i4.9688 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2021.01.171 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 343 |
ExternalDocumentID | 10_1016_j_procs_2021_01_171 S1877050921002118 |
GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c348t-5b268d954547e803dbbe705b68229b21381c8e0c199ccec4ca88988b02f07b2c3 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Tue Jul 01 02:53:42 EDT 2025 Thu Apr 24 23:11:27 EDT 2025 Wed May 17 00:09:51 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Safety of machinery Machine Learning Artificial Intelligence Machinery Directive |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-5b268d954547e803dbbe705b68229b21381c8e0c199ccec4ca88988b02f07b2c3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050921002118 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2021_01_171 crossref_citationtrail_10_1016_j_procs_2021_01_171 elsevier_sciencedirect_doi_10_1016_j_procs_2021_01_171 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationTitle | Procedia computer science |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | EN 62061:2005 - Safety of machinery - Functional safety of safety-related electrical, electronic and programmable electronic control systems. Sara, Luigi (bib0006) 2018; 174 Markis Alexandra, Papa Maximilian, Kaselautzke David, Rathmair Michael, Sattinger Vinzenz, Brandst Mathias. (2019) “Safety of Mobile Robot Systems in Industrial Applications.” Proceedings of the ARW & OAGM Workshop: 26–31. European Commission. White Paper on Artificial Intelligence: a European approach to excellence and trust. COM (2020) 65 Final. Di Nardo, Mosè, Marianna, Santillo Liberatina (bib0008) 2015; 532 Jay, Hossein, Jaskaran, Vibhor (bib0009) 2018; 18 Giovanni Paolo, Letizia, Eleonora, Francesco, Giuseppe (bib00017) 2020; 42 European Commission. Technical Report on Robustness and Explainability of Artificial Intelligence. 2020. Sumit, Aritra, Akash, Nabamita (bib0004) 2015; 115 Alan (bib0002) 1950; 59 Darko, Ruscio Davide, Ivano, Patrizio, Ivica (bib00015) 2019; 51 Alp, Emre (bib0001) 2017 ISO/IEC 2382:2015. Information technology — Vocabulary. ISO/TS 15066:2016 - Robots and robotic devices - Collaborative robots. ISO 3691-4:2020 Industrial trucks — Safety requirements and verification — Part 4: Driverless industrial trucks and their systems. ISO 18497:2018 - Agricultural machinery and tractors - Safety of highly automated agricultural machines - Principles for design. Mohammed Ali, Amr, Abdulla Khalid, Xiaojiang, Ihsan, Mohsen (bib00010) 2020; 22 ISO/IEC 38505-1:2017 Information technology — Governance of IT — Governance of data — Part 1: Application of ISO/IEC 38500 to the governance of data. Marianna, Luigi, Sara, Nardo Mario (bib0007) 2019; 189 ISO 13849-1:2015 - Safety of machinery - Safety-related parts of control systems - General principles for design. Nardo Mario, Marianna, Santillo Liberatina (bib00022) 2016; 9 Darko (10.1016/j.procs.2021.01.171_bib00015) 2019; 51 Jay (10.1016/j.procs.2021.01.171_bib0009) 2018; 18 10.1016/j.procs.2021.01.171_bib0003 Sumit (10.1016/j.procs.2021.01.171_bib0004) 2015; 115 10.1016/j.procs.2021.01.171_bib0005 Mohammed Ali (10.1016/j.procs.2021.01.171_bib00010) 2020; 22 10.1016/j.procs.2021.01.171_bib00020 10.1016/j.procs.2021.01.171_bib00021 10.1016/j.procs.2021.01.171_bib00011 Marianna (10.1016/j.procs.2021.01.171_bib0007) 2019; 189 10.1016/j.procs.2021.01.171_bib00012 Nardo Mario (10.1016/j.procs.2021.01.171_bib00022) 2016; 9 Alp (10.1016/j.procs.2021.01.171_bib0001) 2017 Di Nardo (10.1016/j.procs.2021.01.171_bib0008) 2015; 532 Giovanni Paolo (10.1016/j.procs.2021.01.171_bib00017) 2020; 42 10.1016/j.procs.2021.01.171_bib00018 10.1016/j.procs.2021.01.171_bib00019 Alan (10.1016/j.procs.2021.01.171_bib0002) 1950; 59 10.1016/j.procs.2021.01.171_bib00013 10.1016/j.procs.2021.01.171_bib00014 Sara (10.1016/j.procs.2021.01.171_bib0006) 2018; 174 10.1016/j.procs.2021.01.171_bib00016 |
References_xml | – reference: ISO/IEC 2382:2015. Information technology — Vocabulary. – reference: EN 62061:2005 - Safety of machinery - Functional safety of safety-related electrical, electronic and programmable electronic control systems. – volume: 174 start-page: 163 year: 2018 end-page: 168 ident: bib0006 article-title: “Evolution of European product directives in perspective of industry 4.0” publication-title: WIT Transactions on Built Environment – reference: European Commission. Technical Report on Robustness and Explainability of Artificial Intelligence. 2020. – volume: 115 start-page: 31 year: 2015 end-page: 41 ident: bib0004 article-title: “Applications of Artificial Intelligence in Machine Learning: Review and Prospect” publication-title: International Journal of Computer Applications – reference: Markis Alexandra, Papa Maximilian, Kaselautzke David, Rathmair Michael, Sattinger Vinzenz, Brandst Mathias. (2019) “Safety of Mobile Robot Systems in Industrial Applications.” Proceedings of the ARW & OAGM Workshop: 26–31. – volume: 189 start-page: 13 year: 2019 end-page: 19 ident: bib0007 article-title: “Evolution of cognitive demand in the human–machine interaction integrated with industry 4.0 technologies.” publication-title: WIT Transactions on the Built Environment – volume: 22 start-page: 1646 year: 2020 end-page: 1685 ident: bib00010 article-title: “A Survey of Machine and Deep Learning Methods for Internet of Things (IoT)” publication-title: IEEE Communications Surveys & Tutorials – volume: 51 start-page: 150 year: 2019 end-page: 179 ident: bib00015 article-title: “Safety for Mobile Robotic System: A Systematic Mapping Study from a Software Engineering Perspective” publication-title: Journal of Systems and Software – reference: ISO 3691-4:2020 Industrial trucks — Safety requirements and verification — Part 4: Driverless industrial trucks and their systems. – reference: ISO 18497:2018 - Agricultural machinery and tractors - Safety of highly automated agricultural machines - Principles for design. – volume: 532 start-page: 598 year: 2015 end-page: 609 ident: bib0008 article-title: “A conceptual model of human behaviour in socio-technical systems” publication-title: Communication in Computer and Information Science – volume: 18 start-page: 20 year: 2018 end-page: 23 ident: bib0009 article-title: “Industrial Artificial Intelligence for Industry 4.0 – based manufacturing systems” publication-title: Manufacturing Letters – volume: 42 start-page: 542 year: 2020 end-page: 547 ident: bib00017 article-title: “Analysis and testing of an online solution to monitor and solve safety issues for industrial systems.” publication-title: Procedia Manufacturing – reference: ISO/TS 15066:2016 - Robots and robotic devices - Collaborative robots. – year: 2017 ident: bib0001 article-title: “Industry 4.0: managing the digital transformation” publication-title: Springer book – reference: European Commission. White Paper on Artificial Intelligence: a European approach to excellence and trust. COM (2020) 65 Final. – volume: 59 start-page: 433 year: 1950 end-page: 460 ident: bib0002 article-title: “Computing machinery and intelligence” publication-title: Mind – reference: ISO/IEC 38505-1:2017 Information technology — Governance of IT — Governance of data — Part 1: Application of ISO/IEC 38500 to the governance of data. – reference: ISO 13849-1:2015 - Safety of machinery - Safety-related parts of control systems - General principles for design. – volume: 9 start-page: 256 year: 2016 end-page: 264 ident: bib00022 article-title: “A system dynamics approach to manage risks in a process plant” publication-title: International Review on Modelling and Simulations – ident: 10.1016/j.procs.2021.01.171_bib0003 – ident: 10.1016/j.procs.2021.01.171_bib00014 – volume: 42 start-page: 542 year: 2020 ident: 10.1016/j.procs.2021.01.171_bib00017 article-title: “Analysis and testing of an online solution to monitor and solve safety issues for industrial systems.” publication-title: Procedia Manufacturing doi: 10.1016/j.promfg.2020.02.029 – ident: 10.1016/j.procs.2021.01.171_bib00011 – volume: 189 start-page: 13 year: 2019 ident: 10.1016/j.procs.2021.01.171_bib0007 article-title: “Evolution of cognitive demand in the human–machine interaction integrated with industry 4.0 technologies.” publication-title: WIT Transactions on the Built Environment – ident: 10.1016/j.procs.2021.01.171_bib00012 – volume: 532 start-page: 598 year: 2015 ident: 10.1016/j.procs.2021.01.171_bib0008 article-title: “A conceptual model of human behaviour in socio-technical systems” publication-title: Communication in Computer and Information Science doi: 10.1007/978-3-319-22689-7_46 – ident: 10.1016/j.procs.2021.01.171_bib00013 – ident: 10.1016/j.procs.2021.01.171_bib00018 – ident: 10.1016/j.procs.2021.01.171_bib00016 – volume: 115 start-page: 31 year: 2015 ident: 10.1016/j.procs.2021.01.171_bib0004 article-title: “Applications of Artificial Intelligence in Machine Learning: Review and Prospect” publication-title: International Journal of Computer Applications doi: 10.5120/20182-2402 – volume: 18 start-page: 20 year: 2018 ident: 10.1016/j.procs.2021.01.171_bib0009 article-title: “Industrial Artificial Intelligence for Industry 4.0 – based manufacturing systems” publication-title: Manufacturing Letters doi: 10.1016/j.mfglet.2018.09.002 – volume: 174 start-page: 163 year: 2018 ident: 10.1016/j.procs.2021.01.171_bib0006 article-title: “Evolution of European product directives in perspective of industry 4.0” publication-title: WIT Transactions on Built Environment – year: 2017 ident: 10.1016/j.procs.2021.01.171_bib0001 article-title: “Industry 4.0: managing the digital transformation” publication-title: Springer book – volume: 59 start-page: 433 year: 1950 ident: 10.1016/j.procs.2021.01.171_bib0002 article-title: “Computing machinery and intelligence” publication-title: Mind – ident: 10.1016/j.procs.2021.01.171_bib0005 – volume: 51 start-page: 150 year: 2019 ident: 10.1016/j.procs.2021.01.171_bib00015 article-title: “Safety for Mobile Robotic System: A Systematic Mapping Study from a Software Engineering Perspective” publication-title: Journal of Systems and Software – volume: 22 start-page: 1646 issue: 3 year: 2020 ident: 10.1016/j.procs.2021.01.171_bib00010 article-title: “A Survey of Machine and Deep Learning Methods for Internet of Things (IoT)” publication-title: IEEE Communications Surveys & Tutorials doi: 10.1109/COMST.2020.2988293 – volume: 9 start-page: 256 issue: 4 year: 2016 ident: 10.1016/j.procs.2021.01.171_bib00022 article-title: “A system dynamics approach to manage risks in a process plant” publication-title: International Review on Modelling and Simulations doi: 10.15866/iremos.v9i4.9688 – ident: 10.1016/j.procs.2021.01.171_bib00019 – ident: 10.1016/j.procs.2021.01.171_bib00020 – ident: 10.1016/j.procs.2021.01.171_bib00021 |
SSID | ssj0000388917 |
Score | 2.273065 |
Snippet | The Artificial Intelligence (AI) and the Machine Learning (ML) is a rapidly evolving technology and up until recently has not been a subject of machinery... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 338 |
SubjectTerms | Artificial Intelligence Machine Learning Machinery Directive Safety of machinery |
Title | Implications of embedded artificial intelligence - machine learning on safety of machinery |
URI | https://dx.doi.org/10.1016/j.procs.2021.01.171 |
Volume | 180 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqsrDwjSgflQdGrMaJkzhjqagKFQxARcVixY6Nitq0KmHov8eXOFWRUAfGJL4ofufcs6y7dwhdZ9azSquAhEHMiGUITlIVhiSx9GbphXmpgeLkx6doMGIP43DcQL26FgbSKl3sr2J6Ga3dnY5Ds7OYTDovlMcxqJf4oCJq98k2DgeMl0V849v1OQuonSRl410YT8CgFh8q07yAJ0C226cg30lj-jdBbZBO_wDtud0i7lYfdIgaOj9C-3UnBux-zGP0fr-RGI7nBuuZ1DakZBjmUolE4MmG-iYmeFamUWrs-kZ84HmOv1KjixW8wD1drk7QqH_32hsQ1zWBKDv9goTSj3iWhKDUpbkXZFJqi5OMQNpd-tRStOLaUzRJlPUSU6kFiHPp-caLpa-CU9TM57k-Q1hRaaQKUsMTw2jGUpllhpko8lQccB21kF9DJZSTFIfOFlNR5459ihJfAfgKjwqLbwvdrI0WlaLG9uFR7QPxa2EIG_O3GZ7_1_AC7cJVdc5yiZrF8ltf2Z1HIdtopzt8fhu2yyX2A2Bd2OA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD4xYjRMncUaoqFpou9BKFYsVOzYqog-VMPTf40ucqkiIgTXOWcl39n0n6_wdQreZ9azSKiBhEDNiGYKTVIUhSSy9WXphXmrgcnJ_EHVG7GkcjmuoVd2FgbJKF_vLmF5Ea_ek6dBsLiaT5gvlcQzqJT6oiNo8eQtt22wght3ZHT-sD1pA7iQpOu-CAQGLSn2oqPMCogDdbp-CfieN6e8MtcE67QO059JFfF9-0SGq6dkR2q9aMWC3M4_Ra3ejMhzPDdZTqW1MyTD8TKkSgScb8puY4GlRR6mxaxzxhucz_Jkana9gAje6XJ2gUftx2OoQ1zaBqIDxnITSj3iWhCDVpbkXZFJqC5SMQNtd-tRytOLaUzRJlHUTU6kFiHPp-caLpa-CU1SfzWf6DGFFpZEqSA1PDKMZS2WWGWaiyFNxwHXUQH4FlVBOUxxaW3yIqnjsXRT4CsBXeFRYfBvobm20KCU1_n49qnwgfqwMYYP-X4bn_zW8QTudYb8net3B8wXahZHy0OUS1fPll76yaUgur4tl9g199tpd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implications+of+embedded+artificial+intelligence+-+machine+learning+on+safety+of+machinery&rft.jtitle=Procedia+computer+science&rft.au=Anastasi%2C+Sara&rft.au=Madonna%2C+Marianna&rft.au=Monica%2C+Luigi&rft.date=2021&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=180&rft.spage=338&rft.epage=343&rft_id=info:doi/10.1016%2Fj.procs.2021.01.171&rft.externalDocID=S1877050921002118 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |