Modular structure in C. elegans neural network and its response to external localized stimuli
Synchronization plays a key role in information processing in neuronal networks. Response of specific groups of neurons are triggered by external stimuli, such as visual, tactile or olfactory inputs. Neurons, however, can be divided into several categories, such as by physical location, functional r...
Saved in:
Published in | Physica A Vol. 533; p. 122051 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synchronization plays a key role in information processing in neuronal networks. Response of specific groups of neurons are triggered by external stimuli, such as visual, tactile or olfactory inputs. Neurons, however, can be divided into several categories, such as by physical location, functional role or topological clustering properties. Here we study the response of the electric junction C. elegans network to external stimuli using the partially forced Kuramoto model and applying the force to specific groups of neurons. Stimuli were applied to three topological modules, two ganglia, specified by their anatomical localization, and to the functional groups composed of all sensory and motoneurons. We found that topological modules do not contain purely anatomical groups or functional classes, corroborating previous results, and that stimulating different classes of neurons lead to very different responses, measured in terms of synchronization and phase velocity correlations. In all cases the modular structure hindered full synchronization, protecting the system from seizures. The responses to stimuli applied to topological and functional modules showed pronounced patterns of correlation or anti-correlation with other modules that were not observed when the stimulus was applied to a ganglion with mixed functional neurons.
•We probe the C. elegans neural network using the partially forced Kuramoto model.•Stimuli were applied to topological, anatomical and functional modules.•Response depends on stimulus intensity and inter-neuron connection strength.•Topological and functional sets show patterns of correlation and anti-correlation.•Modular structure hinders global synchronization. |
---|---|
AbstractList | Synchronization plays a key role in information processing in neuronal networks. Response of specific groups of neurons are triggered by external stimuli, such as visual, tactile or olfactory inputs. Neurons, however, can be divided into several categories, such as by physical location, functional role or topological clustering properties. Here we study the response of the electric junction C. elegans network to external stimuli using the partially forced Kuramoto model and applying the force to specific groups of neurons. Stimuli were applied to three topological modules, two ganglia, specified by their anatomical localization, and to the functional groups composed of all sensory and motoneurons. We found that topological modules do not contain purely anatomical groups or functional classes, corroborating previous results, and that stimulating different classes of neurons lead to very different responses, measured in terms of synchronization and phase velocity correlations. In all cases the modular structure hindered full synchronization, protecting the system from seizures. The responses to stimuli applied to topological and functional modules showed pronounced patterns of correlation or anti-correlation with other modules that were not observed when the stimulus was applied to a ganglion with mixed functional neurons.
•We probe the C. elegans neural network using the partially forced Kuramoto model.•Stimuli were applied to topological, anatomical and functional modules.•Response depends on stimulus intensity and inter-neuron connection strength.•Topological and functional sets show patterns of correlation and anti-correlation.•Modular structure hinders global synchronization. |
ArticleNumber | 122051 |
Author | de Aguiar, Marcus A.M. Moreira, Carolina A. |
Author_xml | – sequence: 1 givenname: Carolina A. surname: Moreira fullname: Moreira, Carolina A. – sequence: 2 givenname: Marcus A.M. surname: de Aguiar fullname: de Aguiar, Marcus A.M. email: aguiar@ifi.unicamp.br |
BookMark | eNqFkL1OwzAUhS1UJFrgCVj8Agl27MTxwIAq_qQiFhiR5To34OLale3w9_SklIkBhquz3O9I55uhiQ8eEDqhpKSENqercvP8kXRZESpLWlWkpntoSlvBiopSOUFTwkRbcCboAZqltCKEUMGqKXq8Dd3gdMQpx8HkIQK2Hs9LDA6etE_YwxC1GyO_hfiCte-wzQlHSJvgE-AcMLxniH58csFoZz-hG9vsenD2CO332iU4_slD9HB5cT-_LhZ3Vzfz80VhGG9zwfu2r7kRDW_HayqpSc9bXUnCoetEI7gwS06g1rJhrK-XBBhhTU2alkguDTtEbNdrYkgpQq820a51_FCUqK0htVLfhtTWkNoZGin5izI262yDz1Fb9w97tmNhnPVqIapkLHgDnY1gsuqC_ZP_AoPHhXI |
CitedBy_id | crossref_primary_10_1016_j_physrep_2020_10_003 crossref_primary_10_1103_PhysRevE_100_062210 crossref_primary_10_1103_PhysRevE_110_024217 crossref_primary_10_1016_j_chaos_2023_114431 crossref_primary_10_3389_fnsys_2021_564124 crossref_primary_10_1016_j_chaos_2021_111090 crossref_primary_10_1063_5_0108672 crossref_primary_10_1103_PhysRevE_107_044205 crossref_primary_10_1007_s13538_024_01493_z crossref_primary_10_1063_1_5141343 crossref_primary_10_1063_5_0239011 |
Cites_doi | 10.1016/j.physrep.2015.10.008 10.1016/j.ijpsycho.2015.02.008 10.1007/BF00962716 10.1152/jn.1994.71.3.1022 10.1016/S0896-6273(00)80643-1 10.1103/PhysRevE.82.036203 10.1371/journal.pcbi.1001066 10.1093/hmg/ddh209 10.1063/1.3049136 10.1038/nature24056 10.1016/j.neuron.2011.04.018 10.1113/jphysiol.2012.239590 10.1016/j.physa.2018.09.096 10.3233/JPD-171258 10.1371/journal.pcbi.1004372 10.1371/journal.pone.0012528 10.1126/science.1149639 10.1016/j.neuron.2006.09.020 10.1016/j.neuropsychologia.2013.06.027 10.1371/journal.pcbi.1002561 10.1098/rstb.2013.0529 10.1143/PTP.79.39 10.1146/annurev-psych-122414-033634 10.1146/annurev.physiol.61.1.435 10.1093/bioinformatics/bts352 10.1016/S0896-6273(00)80700-X 10.1038/35086012 10.1103/PhysRevE.74.036104 10.1016/j.tics.2013.09.012 10.1101/gr.1239303 10.1016/j.neuron.2017.11.020 10.1103/RevModPhys.77.137 10.1016/j.neunet.2017.01.010 10.1186/s12868-015-0193-z 10.1016/j.gde.2017.02.011 10.1016/S0896-6273(00)80992-7 10.1007/978-3-540-92191-2_2 10.1371/journal.pcbi.1005055 10.1371/journal.pone.0163786 10.1016/j.neuroimage.2009.10.003 10.1063/1.4939837 10.1371/journal.pone.0009240 10.1016/j.nicl.2013.10.011 10.1016/j.physrep.2009.11.002 10.1016/j.physrep.2008.09.002 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.physa.2019.122051 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2119 |
ExternalDocumentID | 10_1016_j_physa_2019_122051 S0378437119311938 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAXUO ABAOU ABMAC ABNEU ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXIXF J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 5VS 6TJ AAFFL AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AFODL AFXIZ AGCQF AGQPQ AGRNS AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNPGV BNTGB BPUDD BULVW BZJEE CITATION FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- SEW SPG SSH VOH WUQ XJT XOL YYP ZY4 |
ID | FETCH-LOGICAL-c348t-4f8f54c7648764629a0f48a2904edd76747cb40e5a9633f5b0e303650680949c3 |
IEDL.DBID | .~1 |
ISSN | 0378-4371 |
IngestDate | Tue Jul 01 01:32:14 EDT 2025 Thu Apr 24 23:10:59 EDT 2025 Fri Feb 23 02:33:04 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | C. elegans Coupled oscillators Kuramoto model Synchronization Neural networks Modularity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-4f8f54c7648764629a0f48a2904edd76747cb40e5a9633f5b0e303650680949c3 |
OpenAccessLink | http://americanae.aecid.es/americanae/es/registros/registro.do?tipoRegistro=MTD&idBib=3417702 |
ParticipantIDs | crossref_primary_10_1016_j_physa_2019_122051 crossref_citationtrail_10_1016_j_physa_2019_122051 elsevier_sciencedirect_doi_10_1016_j_physa_2019_122051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 2019-11-00 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Physica A |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gray (b8) 1994; 1 Meister, Berry (b47) 1999; 22 Bacik, Schaub, Beguerisse-Diaz, Billeh, Barahona (b4) 2016; 12 Moreira, de Aguiar (b16) 2019; 514 Childs, Strogatz (b31) 2008; 18 Jiruska, de Curtis, Jefferys, Schevon, Schiff, Schindler (b10) 2012; 591 Salinas, Sejnowski (b45) 2001; 2 Uhlhaas, Singer (b9) 2006; 52 Brivanlou, Warland, Meister (b46) 1998; 20 Rodrigues, Peron, Ji, Kurths (b26) 2016; 610 Helfrich, Mander, Jagust, Knight, Walker (b12) 2018; 97 Ott, Antonsen (b30) 2008; 18 Baptista, Kakmeni, Grebogi (b32) 2010; 82 Antonopoulos, Srivastava, Pinto, Baptista (b33) 2015; 11 A. Arenas, A. Fernández, S. Gómez, A complex network approach to the determination of functional groups in the neural system of C. elegans, in: P. Lió, E. Yoneki, J. Crowcroft, D.C. Verma (Eds.), Bio-Inspired Computing and Communication (2008), in: Bio-Inspired Computing and Communication. BIOWIRE 2007. Lecture Notes in Computer Science, vol. 5151, Springer, Berlin, Heidelberg Borges, Borges, Lameu, Batista, Iarosz, Caldas, Antonopoulos, Baptista (b34) 2017; 88 Brette (b43) 2012; 8 Schmidt, LaFleur, de Reus, van den Berg, van den Heuvel (b7) 2015; 16 . Babiloni, Lizio, Marzano, Capotosto, Soricelli, Triggiani, Cordone, Gesualdo, Del Percio (b11) 2016; 103 Joris, Carney, Smith, Yin (b49) 1994; 71 Sowińskia, Bella (b13) 2013; 51 Dinstein, Pierce, Eyler, Solso, Malach, Behrmann, Courchesne (b15) 2011; 70 Arenas, Diaz-Guilera, Kurths, Moreno, Zhou (b28) 2008; 469 Rubinov, Sporns (b2) 2010; 52 Z.F. WormAtlas, L.A. Altun, C.A. Herndon, C. Wolkow, R. Crocker, D.H. Hall Lints (Eds.), 2002–2018. Available at van den Heuvel, Sporns (b1) 2013; 17 Fortunato (b35) 2010; 486 Kovács, Palotai, Szalay, Csermely (b24) 2010; 5 Sakaguchi (b29) 1988; 79 Shannon, Markiel, Ozier, Baliga, Wang, Ramage, Amin, Schwikowski, IdekeR (b38) 2003; 3 Pan, Chatterjee, Sinha (b40) 2010; 5 Yan, Vértes, Towlson, Chew, Walker, Schafer, Barabási (b42) 2017; 550 Salmi, Roine, Glerean, Lahnakoski, Nieminen-von Wendt, Tani, Leppämäki, Nummenmaa, Jääskeläinen, S.Carlson, Rintahaka, Sams (b14) 2013; 3 Szalay-Beko, Palotai, Szappanos, Kovács, Papp, Csermely (b23) 2012; 28 Kuramoto (b25) 1975 Kim, Kaiser (b6) 2014; 369 Sporns, Betzel (b3) 2016; 67 Newman, Girvan (b36) 2004; 69 Antonopoulos (b5) 2016; 26 Gollisch, Meister (b48) 2008; 319 Williams, Locke, Braden, Caldwell, Caldwell (b17) 2004; 13 Joris, Smith, Yin (b50) 1998; 21 Newman (b37) 2006; 74 Varshney, Chen, Paniagua, Hall, Chklovskii (b41) 2011; 7 Coopera, Van Raamsdonka (b20) 2018 Risley, Kelly, Kauliang, Grill, Dawson-Scully (b18) 2016; 11 (accessed December 2018). Usrey, Reid (b44) 1999; 61 Sohn, Choi, Ahn, Lee, Jeong (b39) 2011; 7 The Open Worm Project. Available at Martinez, Caldwell, Caldwell (b19) 2017; 44 Acebrón, Bonilla, Pérez, Ritort, Spigler (b27) 2005; 77 Newman (10.1016/j.physa.2019.122051_b36) 2004; 69 Rubinov (10.1016/j.physa.2019.122051_b2) 2010; 52 Bacik (10.1016/j.physa.2019.122051_b4) 2016; 12 Coopera (10.1016/j.physa.2019.122051_b20) 2018 Sowińskia (10.1016/j.physa.2019.122051_b13) 2013; 51 Fortunato (10.1016/j.physa.2019.122051_b35) 2010; 486 Gray (10.1016/j.physa.2019.122051_b8) 1994; 1 Sohn (10.1016/j.physa.2019.122051_b39) 2011; 7 Antonopoulos (10.1016/j.physa.2019.122051_b5) 2016; 26 Gollisch (10.1016/j.physa.2019.122051_b48) 2008; 319 Martinez (10.1016/j.physa.2019.122051_b19) 2017; 44 Usrey (10.1016/j.physa.2019.122051_b44) 1999; 61 Schmidt (10.1016/j.physa.2019.122051_b7) 2015; 16 10.1016/j.physa.2019.122051_b22 10.1016/j.physa.2019.122051_b21 Risley (10.1016/j.physa.2019.122051_b18) 2016; 11 Ott (10.1016/j.physa.2019.122051_b30) 2008; 18 Williams (10.1016/j.physa.2019.122051_b17) 2004; 13 van den Heuvel (10.1016/j.physa.2019.122051_b1) 2013; 17 Uhlhaas (10.1016/j.physa.2019.122051_b9) 2006; 52 Dinstein (10.1016/j.physa.2019.122051_b15) 2011; 70 Kim (10.1016/j.physa.2019.122051_b6) 2014; 369 Pan (10.1016/j.physa.2019.122051_b40) 2010; 5 Baptista (10.1016/j.physa.2019.122051_b32) 2010; 82 Joris (10.1016/j.physa.2019.122051_b49) 1994; 71 Helfrich (10.1016/j.physa.2019.122051_b12) 2018; 97 Szalay-Beko (10.1016/j.physa.2019.122051_b23) 2012; 28 10.1016/j.physa.2019.122051_b51 Babiloni (10.1016/j.physa.2019.122051_b11) 2016; 103 Rodrigues (10.1016/j.physa.2019.122051_b26) 2016; 610 Shannon (10.1016/j.physa.2019.122051_b38) 2003; 3 Brivanlou (10.1016/j.physa.2019.122051_b46) 1998; 20 Jiruska (10.1016/j.physa.2019.122051_b10) 2012; 591 Moreira (10.1016/j.physa.2019.122051_b16) 2019; 514 Kovács (10.1016/j.physa.2019.122051_b24) 2010; 5 Antonopoulos (10.1016/j.physa.2019.122051_b33) 2015; 11 Joris (10.1016/j.physa.2019.122051_b50) 1998; 21 Brette (10.1016/j.physa.2019.122051_b43) 2012; 8 Sporns (10.1016/j.physa.2019.122051_b3) 2016; 67 Salmi (10.1016/j.physa.2019.122051_b14) 2013; 3 Arenas (10.1016/j.physa.2019.122051_b28) 2008; 469 Newman (10.1016/j.physa.2019.122051_b37) 2006; 74 Varshney (10.1016/j.physa.2019.122051_b41) 2011; 7 Childs (10.1016/j.physa.2019.122051_b31) 2008; 18 Sakaguchi (10.1016/j.physa.2019.122051_b29) 1988; 79 Kuramoto (10.1016/j.physa.2019.122051_b25) 1975 Yan (10.1016/j.physa.2019.122051_b42) 2017; 550 Salinas (10.1016/j.physa.2019.122051_b45) 2001; 2 Borges (10.1016/j.physa.2019.122051_b34) 2017; 88 Acebrón (10.1016/j.physa.2019.122051_b27) 2005; 77 Meister (10.1016/j.physa.2019.122051_b47) 1999; 22 |
References_xml | – volume: 74 start-page: 1 year: 2006 end-page: 19 ident: b37 article-title: Finding community structure in networks using the eigenvectors of matrices publication-title: Phys. Rev. E – volume: 3 start-page: 2498 year: 2003 end-page: 2504 ident: b38 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res. – volume: 71 start-page: 1022 year: 1994 end-page: 1036 ident: b49 article-title: Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency publication-title: J. Neurophysiol. – volume: 486 start-page: 75 year: 2010 end-page: 174 ident: b35 article-title: Community detection in graphs publication-title: Phys. Rep. – volume: 8 start-page: 1 year: 2012 end-page: 18 ident: b43 article-title: Computing with neural synchrony publication-title: PLoS Comput. Biol. – volume: 12 start-page: 1 year: 2016 end-page: 27 ident: b4 article-title: Flow-based network analysis of the Caenorhabditis elegans connectome publication-title: PLoS Comput. Biol. – volume: 369 start-page: 1 year: 2014 end-page: 9 ident: b6 article-title: From Caenorhabditis elegans to the human connectome: a specific modular organization increases metabolic, functional and developmental efficiency publication-title: Phil. Trans. R. Soc. Lond. B – volume: 319 start-page: 1108 year: 2008 end-page: 1111 ident: b48 article-title: Rapid neural coding in the retina with relative spike latencies publication-title: Science – volume: 61 start-page: 435 year: 1999 end-page: 456 ident: b44 article-title: Synchronous activity in the visual system publication-title: Annu. Rev. Physiol. – volume: 2 start-page: 539 year: 2001 end-page: 550 ident: b45 article-title: Correlated neuronal activity and the flow of neural information publication-title: Nat. Rev. Neurosci. – volume: 591 start-page: 787 year: 2012 end-page: 797 ident: b10 article-title: Synchronization and desynchronization in epilepsy: controversies and hypotheses publication-title: J. Physiol. – volume: 514 start-page: 487 year: 2019 end-page: 496 ident: b16 article-title: Global synchronization of partially forced Kuramoto oscillators on networks publication-title: Physica A – volume: 82 start-page: 1 year: 2010 end-page: 12 ident: b32 article-title: Combined effect of chemical and electrical synapses in Hindmarsh-Rose neural networkson synchronization and the rate of information publication-title: Phys. Rev. E – volume: 88 start-page: 58 year: 2017 end-page: 64 ident: b34 article-title: Spike timing-dependent plasticity induces non-trivial topology in the brain publication-title: Neural Netw. – volume: 26 start-page: 1 year: 2016 end-page: 9 ident: b5 article-title: Dynamic range in the C. elegans brain network publication-title: Chaos – volume: 17 start-page: 683 year: 2013 end-page: 696 ident: b1 article-title: Network hubs in the human brain publication-title: Trends Cogn. Sci. – volume: 610 start-page: 1 year: 2016 end-page: 98 ident: b26 article-title: The Kuramoto model in complex networks publication-title: Phys. Rep. – start-page: 17 year: 2018 end-page: 32 ident: b20 article-title: Modeling Parkinson’s disease in C. elegans publication-title: J. Parkinsons Dis. – reference: Z.F. WormAtlas, L.A. Altun, C.A. Herndon, C. Wolkow, R. Crocker, D.H. Hall Lints (Eds.), 2002–2018. Available at – volume: 79 start-page: 39 year: 1988 end-page: 46 ident: b29 article-title: Cooperative phenomena in coupled oscillator systems under external fields publication-title: Progr. Theoret. Phys. – volume: 21 start-page: 1235 year: 1998 end-page: 1238 ident: b50 article-title: Coincidence detection in the auditory system: 50 years after Jeffress publication-title: Neuron – reference: A. Arenas, A. Fernández, S. Gómez, A complex network approach to the determination of functional groups in the neural system of C. elegans, in: P. Lió, E. Yoneki, J. Crowcroft, D.C. Verma (Eds.), Bio-Inspired Computing and Communication (2008), in: Bio-Inspired Computing and Communication. BIOWIRE 2007. Lecture Notes in Computer Science, vol. 5151, Springer, Berlin, Heidelberg, – volume: 69 start-page: 1 year: 2004 end-page: 15 ident: b36 article-title: Finding and evaluating community structure in networks publication-title: Phys. Rev. E – volume: 77 start-page: 137 year: 2005 end-page: 185 ident: b27 article-title: The kuramoto model: A simple paradigm for synchronization phenomena publication-title: Rev. Modern Phys. – volume: 28 start-page: 2202 year: 2012 end-page: 2204 ident: b23 article-title: Moduland plug-in for Cytoscape: determination of hierarchical layers of overlapping network modules and community centrality publication-title: Bioinformatics – volume: 7 start-page: 1 year: 2011 end-page: 21 ident: b41 article-title: Structural properties of the Caenorhabditis elegans neuronal network publication-title: PLoS Comput. Biol. – volume: 3 start-page: 489 year: 2013 end-page: 497 ident: b14 article-title: The brains of high functioning autistic individuals do not synchronize with those of others publication-title: NeuroImage Clin. – volume: 11 start-page: 1 year: 2015 end-page: 29 ident: b33 article-title: Do brain networks evolve by maximizing their information flow capacity? publication-title: PLoS Comput. Biol. – reference: (accessed December 2018). – volume: 20 start-page: 527 year: 1998 end-page: 539 ident: b46 article-title: Mechanisms of concerted firing among retinal ganglion cells publication-title: Neuron – volume: 70 start-page: 1218 year: 2011 end-page: 1225 ident: b15 article-title: Disrupted neural synchronization in toddlers with autism publication-title: Neuron – volume: 13 start-page: 2043 year: 2004 end-page: 2059 ident: b17 article-title: Epileptic-like convulsions associated with LIS-1 in the cytoskeletal control of neurotransmitter signaling in Caenorhabditis elegans publication-title: Hum. Mol. Genet. – volume: 97 start-page: 221 year: 2018 end-page: 230 ident: b12 article-title: Old brains come uncoupled in sleep: Slow wave-spindle synchrony, brain atrophy, and forgetting publication-title: Neuron – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: b2 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: NeuroImage – volume: 1 start-page: 11 year: 1994 end-page: 38 ident: b8 article-title: Synchronous oscillations in neuronal systems: Mechanisms and functions publication-title: J. Comput. Neurosci. – volume: 11 start-page: 1 year: 2016 end-page: 13 ident: b18 article-title: Modulating behavior in C. elegans using electroshock and antiepileptic drugs publication-title: PLoS One – volume: 103 start-page: 88 year: 2016 end-page: 102 ident: b11 article-title: Brain neural synchronization and functional coupling in alzheimer’s disease as revealed by resting state EEG rhythms publication-title: Int. J. Psychophysiol. – volume: 469 start-page: 93 year: 2008 end-page: 153 ident: b28 article-title: Synchronization in complex networks publication-title: Phys. Rep. – volume: 550 start-page: 519 year: 2017 end-page: 523 ident: b42 article-title: Network control principles predict neuron function in the Caenorhabditis elegans connectome publication-title: Nature – volume: 67 start-page: 613 year: 2016 end-page: 640 ident: b3 article-title: Modular brain networks publication-title: Annu. Rev. Psychol. – volume: 5 start-page: 1 year: 2010 end-page: 15 ident: b40 article-title: Mesoscopic organization reveals the constraints governing Caenorhabditis elegans nervous system publication-title: PLoS One – volume: 51 start-page: 1952 year: 2013 end-page: 1963 ident: b13 article-title: Poor synchronization to the beat may result from deficient auditory-motor mapping publication-title: Neuropsychologia – volume: 16 start-page: 1 year: 2015 end-page: 13 ident: b7 article-title: Kuramoto model simulation of neural hubs and dynamic synchrony in the human cerebral connectome publication-title: BMC Neurosci. – reference: The Open Worm Project. Available at – volume: 7 start-page: 1 year: 2011 end-page: 10 ident: b39 article-title: Topological cluster analysis reveals the systemic organization of the Caenorhabditis elegans connectome publication-title: PLoS Biol. – volume: 22 start-page: 435 year: 1999 end-page: 450 ident: b47 article-title: The neural code of the retina publication-title: Neuron – reference: . – volume: 52 start-page: 155 year: 2006 end-page: 168 ident: b9 article-title: Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology publication-title: Neuron – volume: 5 start-page: 1 year: 2010 end-page: 14 ident: b24 article-title: Community landscapes: An integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics publication-title: PLoS One – volume: 44 start-page: 102 year: 2017 end-page: 109 ident: b19 article-title: C. elegans as a model system to accelerate discovery for Parkinson disease publication-title: Curr. Opin. Genet. Dev. – start-page: 420 year: 1975 end-page: 422 ident: b25 article-title: Self-entrainment of a population of coupled non-linear oscillators publication-title: International Symposium on Mathematical Problems in Theoretical Physics – volume: 18 start-page: 1 year: 2008 end-page: 9 ident: b31 article-title: Stability diagram for the forced Kuramoto model publication-title: Chaos – volume: 18 start-page: 1 year: 2008 end-page: 6 ident: b30 article-title: Low dimensional behavior of large systems of globally coupled oscillators publication-title: Chaos – volume: 610 start-page: 1 year: 2016 ident: 10.1016/j.physa.2019.122051_b26 article-title: The Kuramoto model in complex networks publication-title: Phys. Rep. doi: 10.1016/j.physrep.2015.10.008 – volume: 103 start-page: 88 year: 2016 ident: 10.1016/j.physa.2019.122051_b11 article-title: Brain neural synchronization and functional coupling in alzheimer’s disease as revealed by resting state EEG rhythms publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2015.02.008 – volume: 1 start-page: 11 year: 1994 ident: 10.1016/j.physa.2019.122051_b8 article-title: Synchronous oscillations in neuronal systems: Mechanisms and functions publication-title: J. Comput. Neurosci. doi: 10.1007/BF00962716 – volume: 71 start-page: 1022 year: 1994 ident: 10.1016/j.physa.2019.122051_b49 article-title: Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency publication-title: J. Neurophysiol. doi: 10.1152/jn.1994.71.3.1022 – volume: 21 start-page: 1235 year: 1998 ident: 10.1016/j.physa.2019.122051_b50 article-title: Coincidence detection in the auditory system: 50 years after Jeffress publication-title: Neuron doi: 10.1016/S0896-6273(00)80643-1 – volume: 82 start-page: 1 year: 2010 ident: 10.1016/j.physa.2019.122051_b32 article-title: Combined effect of chemical and electrical synapses in Hindmarsh-Rose neural networkson synchronization and the rate of information publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.82.036203 – volume: 7 start-page: 1 year: 2011 ident: 10.1016/j.physa.2019.122051_b41 article-title: Structural properties of the Caenorhabditis elegans neuronal network publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1001066 – volume: 13 start-page: 2043 year: 2004 ident: 10.1016/j.physa.2019.122051_b17 article-title: Epileptic-like convulsions associated with LIS-1 in the cytoskeletal control of neurotransmitter signaling in Caenorhabditis elegans publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddh209 – ident: 10.1016/j.physa.2019.122051_b21 – volume: 18 start-page: 1 year: 2008 ident: 10.1016/j.physa.2019.122051_b31 article-title: Stability diagram for the forced Kuramoto model publication-title: Chaos doi: 10.1063/1.3049136 – volume: 550 start-page: 519 year: 2017 ident: 10.1016/j.physa.2019.122051_b42 article-title: Network control principles predict neuron function in the Caenorhabditis elegans connectome publication-title: Nature doi: 10.1038/nature24056 – volume: 70 start-page: 1218 year: 2011 ident: 10.1016/j.physa.2019.122051_b15 article-title: Disrupted neural synchronization in toddlers with autism publication-title: Neuron doi: 10.1016/j.neuron.2011.04.018 – volume: 591 start-page: 787 year: 2012 ident: 10.1016/j.physa.2019.122051_b10 article-title: Synchronization and desynchronization in epilepsy: controversies and hypotheses publication-title: J. Physiol. doi: 10.1113/jphysiol.2012.239590 – volume: 514 start-page: 487 year: 2019 ident: 10.1016/j.physa.2019.122051_b16 article-title: Global synchronization of partially forced Kuramoto oscillators on networks publication-title: Physica A doi: 10.1016/j.physa.2018.09.096 – start-page: 17 year: 2018 ident: 10.1016/j.physa.2019.122051_b20 article-title: Modeling Parkinson’s disease in C. elegans publication-title: J. Parkinsons Dis. doi: 10.3233/JPD-171258 – volume: 11 start-page: 1 year: 2015 ident: 10.1016/j.physa.2019.122051_b33 article-title: Do brain networks evolve by maximizing their information flow capacity? publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004372 – volume: 5 start-page: 1 year: 2010 ident: 10.1016/j.physa.2019.122051_b24 article-title: Community landscapes: An integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics publication-title: PLoS One doi: 10.1371/journal.pone.0012528 – volume: 319 start-page: 1108 year: 2008 ident: 10.1016/j.physa.2019.122051_b48 article-title: Rapid neural coding in the retina with relative spike latencies publication-title: Science doi: 10.1126/science.1149639 – volume: 52 start-page: 155 year: 2006 ident: 10.1016/j.physa.2019.122051_b9 article-title: Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology publication-title: Neuron doi: 10.1016/j.neuron.2006.09.020 – volume: 69 start-page: 1 year: 2004 ident: 10.1016/j.physa.2019.122051_b36 article-title: Finding and evaluating community structure in networks publication-title: Phys. Rev. E – volume: 51 start-page: 1952 year: 2013 ident: 10.1016/j.physa.2019.122051_b13 article-title: Poor synchronization to the beat may result from deficient auditory-motor mapping publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2013.06.027 – volume: 8 start-page: 1 year: 2012 ident: 10.1016/j.physa.2019.122051_b43 article-title: Computing with neural synchrony publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002561 – volume: 369 start-page: 1 year: 2014 ident: 10.1016/j.physa.2019.122051_b6 article-title: From Caenorhabditis elegans to the human connectome: a specific modular organization increases metabolic, functional and developmental efficiency publication-title: Phil. Trans. R. Soc. Lond. B doi: 10.1098/rstb.2013.0529 – volume: 79 start-page: 39 year: 1988 ident: 10.1016/j.physa.2019.122051_b29 article-title: Cooperative phenomena in coupled oscillator systems under external fields publication-title: Progr. Theoret. Phys. doi: 10.1143/PTP.79.39 – volume: 67 start-page: 613 year: 2016 ident: 10.1016/j.physa.2019.122051_b3 article-title: Modular brain networks publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev-psych-122414-033634 – volume: 61 start-page: 435 year: 1999 ident: 10.1016/j.physa.2019.122051_b44 article-title: Synchronous activity in the visual system publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.61.1.435 – volume: 28 start-page: 2202 year: 2012 ident: 10.1016/j.physa.2019.122051_b23 article-title: Moduland plug-in for Cytoscape: determination of hierarchical layers of overlapping network modules and community centrality publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts352 – volume: 22 start-page: 435 year: 1999 ident: 10.1016/j.physa.2019.122051_b47 article-title: The neural code of the retina publication-title: Neuron doi: 10.1016/S0896-6273(00)80700-X – volume: 2 start-page: 539 year: 2001 ident: 10.1016/j.physa.2019.122051_b45 article-title: Correlated neuronal activity and the flow of neural information publication-title: Nat. Rev. Neurosci. doi: 10.1038/35086012 – volume: 74 start-page: 1 year: 2006 ident: 10.1016/j.physa.2019.122051_b37 article-title: Finding community structure in networks using the eigenvectors of matrices publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.036104 – volume: 17 start-page: 683 year: 2013 ident: 10.1016/j.physa.2019.122051_b1 article-title: Network hubs in the human brain publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2013.09.012 – volume: 3 start-page: 2498 year: 2003 ident: 10.1016/j.physa.2019.122051_b38 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 97 start-page: 221 year: 2018 ident: 10.1016/j.physa.2019.122051_b12 article-title: Old brains come uncoupled in sleep: Slow wave-spindle synchrony, brain atrophy, and forgetting publication-title: Neuron doi: 10.1016/j.neuron.2017.11.020 – start-page: 420 year: 1975 ident: 10.1016/j.physa.2019.122051_b25 article-title: Self-entrainment of a population of coupled non-linear oscillators – volume: 77 start-page: 137 year: 2005 ident: 10.1016/j.physa.2019.122051_b27 article-title: The kuramoto model: A simple paradigm for synchronization phenomena publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.77.137 – volume: 88 start-page: 58 year: 2017 ident: 10.1016/j.physa.2019.122051_b34 article-title: Spike timing-dependent plasticity induces non-trivial topology in the brain publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.01.010 – volume: 16 start-page: 1 year: 2015 ident: 10.1016/j.physa.2019.122051_b7 article-title: Kuramoto model simulation of neural hubs and dynamic synchrony in the human cerebral connectome publication-title: BMC Neurosci. doi: 10.1186/s12868-015-0193-z – volume: 44 start-page: 102 year: 2017 ident: 10.1016/j.physa.2019.122051_b19 article-title: C. elegans as a model system to accelerate discovery for Parkinson disease publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2017.02.011 – volume: 18 start-page: 1 year: 2008 ident: 10.1016/j.physa.2019.122051_b30 article-title: Low dimensional behavior of large systems of globally coupled oscillators publication-title: Chaos – volume: 20 start-page: 527 year: 1998 ident: 10.1016/j.physa.2019.122051_b46 article-title: Mechanisms of concerted firing among retinal ganglion cells publication-title: Neuron doi: 10.1016/S0896-6273(00)80992-7 – ident: 10.1016/j.physa.2019.122051_b51 doi: 10.1007/978-3-540-92191-2_2 – volume: 12 start-page: 1 year: 2016 ident: 10.1016/j.physa.2019.122051_b4 article-title: Flow-based network analysis of the Caenorhabditis elegans connectome publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005055 – volume: 11 start-page: 1 year: 2016 ident: 10.1016/j.physa.2019.122051_b18 article-title: Modulating behavior in C. elegans using electroshock and antiepileptic drugs publication-title: PLoS One doi: 10.1371/journal.pone.0163786 – volume: 7 start-page: 1 year: 2011 ident: 10.1016/j.physa.2019.122051_b39 article-title: Topological cluster analysis reveals the systemic organization of the Caenorhabditis elegans connectome publication-title: PLoS Biol. – volume: 52 start-page: 1059 year: 2010 ident: 10.1016/j.physa.2019.122051_b2 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 26 start-page: 1 year: 2016 ident: 10.1016/j.physa.2019.122051_b5 article-title: Dynamic range in the C. elegans brain network publication-title: Chaos doi: 10.1063/1.4939837 – volume: 5 start-page: 1 year: 2010 ident: 10.1016/j.physa.2019.122051_b40 article-title: Mesoscopic organization reveals the constraints governing Caenorhabditis elegans nervous system publication-title: PLoS One doi: 10.1371/journal.pone.0009240 – volume: 3 start-page: 489 year: 2013 ident: 10.1016/j.physa.2019.122051_b14 article-title: The brains of high functioning autistic individuals do not synchronize with those of others publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2013.10.011 – volume: 486 start-page: 75 year: 2010 ident: 10.1016/j.physa.2019.122051_b35 article-title: Community detection in graphs publication-title: Phys. Rep. doi: 10.1016/j.physrep.2009.11.002 – volume: 469 start-page: 93 year: 2008 ident: 10.1016/j.physa.2019.122051_b28 article-title: Synchronization in complex networks publication-title: Phys. Rep. doi: 10.1016/j.physrep.2008.09.002 – ident: 10.1016/j.physa.2019.122051_b22 |
SSID | ssj0001732 |
Score | 2.3805034 |
Snippet | Synchronization plays a key role in information processing in neuronal networks. Response of specific groups of neurons are triggered by external stimuli, such... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 122051 |
SubjectTerms | C. elegans Coupled oscillators Kuramoto model Modularity Neural networks Synchronization |
Title | Modular structure in C. elegans neural network and its response to external localized stimuli |
URI | https://dx.doi.org/10.1016/j.physa.2019.122051 |
Volume | 533 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhpdCl9EnTR9DQsU4s6WzZYwgNaUuytIEsxSiyDC7FCYm7dOhvr86y-4CSoYMHG50w5_PdSfruO0KuY7XAwzXtaR0JD7jhnhLarnkyJRX3pWIa9yEn03A8g_t5MG-RYVMLg7DK2vc7n1556_pJv9Zmf5Xn_UdfyAiEZDYFwQsLfgEkWnnv4xvmwaRwJwl2tYSjG-ahCuOFuwdIPsTiHsOKU_Z3dPoRcUYHZL9OFenAvc0haZniiOxWkE29OSbPk2WKGFLqKGDf1obmBR32KHaSsAGIIlWllS8c0JuqIqV5uaFrh4o1tFzShgOaViEtfzepnS1HxNQJmY1un4Zjr26W4GkBUelBFmUBaBnaFUgIIY-Vn0GkeOyDSVOk7JF6Ab4JlP3lRBYsfIPRK8DeGzHEWpySdrEszBmhipkwEBkzXDNgTMWgstQK22kMBxF2CG-UlOiaSRwbWrwmDWTsJak0m6BmE6fZDrn5Elo5Io3tw8NG-8kve0isq98meP5fwQuyh3euzvCStO23M1c24SgX3cqiumRncPcwnn4CLOzU4A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS-RAEC50RNzL4hNn10cf9GZm0o-8Dh5kVMbHeFHBi8SeTgcikhFnRHYP-6f2D1qVTnyAeBA85JKkmqS6qKru_uorgK1ED-lwzXjGxNJTwgpPS4NrnlxHWviR5ob2IQdnYf9SHV8FV1Pwv6mFIVhl7fudT6-8dX2nW2uze18U3XNfRrGSEccUhK64Rlae2D9PuG4b7x7t4yRvC3F4cNHre3VrAc9IFU88lcd5oEwUYr4eqlAk2s9VrEXiK5tlRHATmaHybaDRQGUeDH1Lvj6gThWJSozEcadhRqG7oLYJnX-vuBIeSXd0gcsz-ryG6qgCldF2BbEd8aTDqcSVfxwO34S4w3n4WeembM_9_gJM2XIRZiuMqBkvwfVglBFolTnO2ccHy4qS9TqMWldgxGPEjYnypUOWM11mrJiM2YOD4Vo2GbGGdJpVMbT4azMcrSCI1jJcfosKV6BVjkq7CkxzGwYy51YYrjjXidJ5hsI4jBVKhm0QjZJSU1OXUweNu7TBqN2mlWZT0mzqNNuGnRehe8fc8fnrYaP99J0BphhbPhP89VXBTZjrXwxO09Ojs5Pf8IOeuCLHNWjhPNp1zHYmw43KuhjcfLc5PwOJLw3z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modular+structure+in+C.+elegans+neural+network+and+its+response+to+external+localized+stimuli&rft.jtitle=Physica+A&rft.au=Moreira%2C+Carolina+A.&rft.au=de+Aguiar%2C+Marcus+A.M.&rft.date=2019-11-01&rft.issn=0378-4371&rft.volume=533&rft.spage=122051&rft_id=info:doi/10.1016%2Fj.physa.2019.122051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2019_122051 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |