RaptGen-UI: an integrated platform for exploring and analyzing the sequence landscape of HT-SELEX experiments

RaptGen-UI provides intuitive graphical user-interface of the system exploring and analyzing the sequence landscape of high-throughput (HT)-SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments through machine learning-driven visualization with optimization capabilities. This...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics advances Vol. 5; no. 1; p. vbaf120
Main Authors Nakano, Ryota, Iwano, Natsuki, Ichinose, Akiko, Hamada, Michiaki
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.01.2025
Subjects
Online AccessGet full text
ISSN2635-0041
2635-0041
DOI10.1093/bioadv/vbaf120

Cover

Abstract RaptGen-UI provides intuitive graphical user-interface of the system exploring and analyzing the sequence landscape of high-throughput (HT)-SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments through machine learning-driven visualization with optimization capabilities. This software enables wet-lab researchers to efficiently analyze HT-SELEX dataset and optimize RNA aptamers without requiring extensive computational expertise. The containerized architecture ensures secure local deployment and supports both of high-performance Graphics Processing Unit (GPU) acceleration and CPU-only environments, making it suitable for various research settings. This software is a web-based application running locally on the user's PC. The frontend is constructed using Next.js and Plotly.js with TypeScript, while the backend is developed using FastAPI, Celery, PostgreSQL RDBMS, and Redis with Python. Each module is encapsulated within Docker containers and deployed via Docker Compose. The system supports both CUDA GPU and CPU-only environments. Source code and documentation are freely available at https://github.com/hmdlab/RaptGen-UI.
AbstractList RaptGen-UI provides intuitive graphical user-interface of the system exploring and analyzing the sequence landscape of high-throughput (HT)-SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments through machine learning-driven visualization with optimization capabilities. This software enables wet-lab researchers to efficiently analyze HT-SELEX dataset and optimize RNA aptamers without requiring extensive computational expertise. The containerized architecture ensures secure local deployment and supports both of high-performance Graphics Processing Unit (GPU) acceleration and CPU-only environments, making it suitable for various research settings. This software is a web-based application running locally on the user's PC. The frontend is constructed using Next.js and Plotly.js with TypeScript, while the backend is developed using FastAPI, Celery, PostgreSQL RDBMS, and Redis with Python. Each module is encapsulated within Docker containers and deployed via Docker Compose. The system supports both CUDA GPU and CPU-only environments. Source code and documentation are freely available at https://github.com/hmdlab/RaptGen-UI.
RaptGen-UI provides intuitive graphical user-interface of the system exploring and analyzing the sequence landscape of high-throughput (HT)-SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments through machine learning-driven visualization with optimization capabilities. This software enables wet-lab researchers to efficiently analyze HT-SELEX dataset and optimize RNA aptamers without requiring extensive computational expertise. The containerized architecture ensures secure local deployment and supports both of high-performance Graphics Processing Unit (GPU) acceleration and CPU-only environments, making it suitable for various research settings.SummaryRaptGen-UI provides intuitive graphical user-interface of the system exploring and analyzing the sequence landscape of high-throughput (HT)-SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments through machine learning-driven visualization with optimization capabilities. This software enables wet-lab researchers to efficiently analyze HT-SELEX dataset and optimize RNA aptamers without requiring extensive computational expertise. The containerized architecture ensures secure local deployment and supports both of high-performance Graphics Processing Unit (GPU) acceleration and CPU-only environments, making it suitable for various research settings.This software is a web-based application running locally on the user's PC. The frontend is constructed using Next.js and Plotly.js with TypeScript, while the backend is developed using FastAPI, Celery, PostgreSQL RDBMS, and Redis with Python. Each module is encapsulated within Docker containers and deployed via Docker Compose. The system supports both CUDA GPU and CPU-only environments. Source code and documentation are freely available at https://github.com/hmdlab/RaptGen-UI.Availability and implementationThis software is a web-based application running locally on the user's PC. The frontend is constructed using Next.js and Plotly.js with TypeScript, while the backend is developed using FastAPI, Celery, PostgreSQL RDBMS, and Redis with Python. Each module is encapsulated within Docker containers and deployed via Docker Compose. The system supports both CUDA GPU and CPU-only environments. Source code and documentation are freely available at https://github.com/hmdlab/RaptGen-UI.
Author Iwano, Natsuki
Ichinose, Akiko
Nakano, Ryota
Hamada, Michiaki
Author_xml – sequence: 1
  givenname: Ryota
  surname: Nakano
  fullname: Nakano, Ryota
– sequence: 2
  givenname: Natsuki
  surname: Iwano
  fullname: Iwano, Natsuki
– sequence: 3
  givenname: Akiko
  surname: Ichinose
  fullname: Ichinose, Akiko
– sequence: 4
  givenname: Michiaki
  orcidid: 0000-0001-9466-1034
  surname: Hamada
  fullname: Hamada, Michiaki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40642163$$D View this record in MEDLINE/PubMed
BookMark eNpVkUtLxDAUhYMovrcuJUs3dfJqOnUjIqMjDAg-wF1Ik9ux0iY16QzqrzfDjKKLvLhfzsnNOUDbzjtA6ISSc0pKPqoar-1ytKx0TRnZQvtM8jwjRNDtP_s9dBzjGyGEFYWkgu-iPUGkYFTyfdQ96H64BZc9311g7XDjBpgHPYDFfauH2ocOpwnDR9_60Lh5gmwauv38Wp2GV8AR3hfgDOA21aLRPWBf4-lT9jiZTV5WVyE0HbghHqGdWrcRjjfrIXq-mTxdT7PZ_e3d9dUsM1yMh0wYIfOiHFtiZCU1gZqBKSyXhWSW5DYnYHkphSgFp7XQvC6hMgUVhJtCF5Qfosu1br-oOrAmeQfdqj49Q4dP5XWj_ldc86rmfqkoYyLnZZkUzjYKwafu4qC6JhpoU4vgF1FxxkpGx7ngCT39a_br8vPJCThfAyb4GAPUvwglahWkWgepNkHybzDrk70
Cites_doi 10.2174/092986711797189637
10.1126/science.2200121
10.3390/ijms21228774
10.1021/acscentsci.7b00572
10.1021/acs.biochem.3c00596
10.1007/978-1-60327-567-5_5
10.1101/gr.849004
10.1038/346818a0
10.1038/s41592-023-02148-8
10.1038/nrd.2016.199
10.1093/bioinformatics/btz897
10.1038/s43588-022-00249-6
10.1016/j.omtn.2018.04.006
10.1214/aos/1176344136
10.1093/bioinformatics/14.9.755
10.1007/978-0-387-73003-5_196
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press.
The Author(s) 2025. Published by Oxford University Press. 2025
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press.
– notice: The Author(s) 2025. Published by Oxford University Press. 2025
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1093/bioadv/vbaf120
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2635-0041
ExternalDocumentID PMC12245399
40642163
10_1093_bioadv_vbaf120
Genre Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: JPMJCR21F1; JPMJCR23B3
GroupedDBID 0R~
AAYXX
ABDBF
ABEJV
ABGNP
ABXVV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AMNDL
BBNVY
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
RPM
TOX
ZCN
NPM
7X8
5PM
ID FETCH-LOGICAL-c348t-4c465798d0c6b6a0ef2ec7d36762d05d50ed396449431f4a3f9ebc71403c7a713
ISSN 2635-0041
IngestDate Thu Aug 21 18:23:35 EDT 2025
Fri Sep 05 15:41:42 EDT 2025
Sun Jul 13 01:31:10 EDT 2025
Wed Jul 16 16:41:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-4c465798d0c6b6a0ef2ec7d36762d05d50ed396449431f4a3f9ebc71403c7a713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9466-1034
OpenAccessLink http://dx.doi.org/10.1093/bioadv/vbaf120
PMID 40642163
PQID 3229218543
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12245399
proquest_miscellaneous_3229218543
pubmed_primary_40642163
crossref_primary_10_1093_bioadv_vbaf120
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics advances
PublicationTitleAlternate Bioinform Adv
PublicationYear 2025
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Wang (2025071019563159700_vbaf120-B16) 2011; 18
Sumi (2025071019563159700_vbaf120-B14) 2024; 21
Zhou (2025071019563159700_vbaf120-B17) 2017; 16
Adachi (2025071019563159700_vbaf120-B1) 2024; 63
Piliarik (2025071019563159700_vbaf120-B11) 2009
Eddy (2025071019563159700_vbaf120-B5) 1998; 14
Reynolds (2025071019563159700_vbaf120-B12) 2009
Ellington (2025071019563159700_vbaf120-B6) 1990; 346
Hoinka (2025071019563159700_vbaf120-B8) 2018; 11
Caroli (2025071019563159700_vbaf120-B3) 2020; 36
Komarova (2025071019563159700_vbaf120-B10) 2020; 21
Gómez-Bombarelli (2025071019563159700_vbaf120-B7) 2018; 4
Tuerk (2025071019563159700_vbaf120-B15) 1990; 249
Balandat (2025071019563159700_vbaf120-B2) 2020
Schwarz (2025071019563159700_vbaf120-B13) 1978; 6
Iwano (2025071019563159700_vbaf120-B9) 2022; 2
Crooks (2025071019563159700_vbaf120-B4) 2004; 14
References_xml – volume: 18
  start-page: 4175
  year: 2011
  ident: 2025071019563159700_vbaf120-B16
  article-title: Aptamer-based fluorescent biosensors
  publication-title: Curr Med Chem
  doi: 10.2174/092986711797189637
– volume: 249
  start-page: 505
  year: 1990
  ident: 2025071019563159700_vbaf120-B15
  article-title: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase
  publication-title: Science
  doi: 10.1126/science.2200121
– volume: 21
  start-page: 8774
  year: 2020
  ident: 2025071019563159700_vbaf120-B10
  article-title: Implementation of high-throughput sequencing (HTS) in aptamer selection technology
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21228774
– volume: 4
  start-page: 268
  year: 2018
  ident: 2025071019563159700_vbaf120-B7
  article-title: Automatic chemical design using a data-driven continuous representation of molecules
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.7b00572
– volume: 63
  start-page: 906
  year: 2024
  ident: 2025071019563159700_vbaf120-B1
  article-title: RaptGen-assisted generation of an RNA/DNA hybrid aptamer against SARS-CoV-2 spike protein
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.3c00596
– start-page: 65
  volume-title: Biosensors and Biodetection
  year: 2009
  ident: 2025071019563159700_vbaf120-B11
  doi: 10.1007/978-1-60327-567-5_5
– volume: 14
  start-page: 1188
  year: 2004
  ident: 2025071019563159700_vbaf120-B4
  article-title: WebLogo: a sequence logo generator
  publication-title: Genome Res
  doi: 10.1101/gr.849004
– volume: 346
  start-page: 818
  year: 1990
  ident: 2025071019563159700_vbaf120-B6
  article-title: In vitro selection of RNA molecules that bind specific ligands
  publication-title: Nature
  doi: 10.1038/346818a0
– volume: 21
  start-page: 435
  year: 2024
  ident: 2025071019563159700_vbaf120-B14
  article-title: Deep generative design of RNA family sequences
  publication-title: Nat Methods
  doi: 10.1038/s41592-023-02148-8
– volume: 16
  start-page: 181
  year: 2017
  ident: 2025071019563159700_vbaf120-B17
  article-title: Aptamers as targeted therapeutics: current potential and challenges
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2016.199
– year: 2020
  ident: 2025071019563159700_vbaf120-B2
– volume: 36
  start-page: 2266
  year: 2020
  ident: 2025071019563159700_vbaf120-B3
  article-title: APTANI2: update of aptamer selection through sequence-structure analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz897
– volume: 2
  start-page: 378
  year: 2022
  ident: 2025071019563159700_vbaf120-B9
  article-title: Generative aptamer discovery using RaptGen
  publication-title: Nat Comput Sci
  doi: 10.1038/s43588-022-00249-6
– volume: 11
  start-page: 515
  year: 2018
  ident: 2025071019563159700_vbaf120-B8
  article-title: AptaSUITE: a full-featured bioinformatics framework for the comprehensive analysis of aptamers from HT-SELEX experiments
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2018.04.006
– volume: 6
  start-page: 461
  year: 1978
  ident: 2025071019563159700_vbaf120-B13
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344136
– volume: 14
  start-page: 755
  year: 1998
  ident: 2025071019563159700_vbaf120-B5
  article-title: Profile hidden Markov models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.9.755
– start-page: 659
  volume-title: Encyclopedia of Biometrics
  year: 2009
  ident: 2025071019563159700_vbaf120-B12
  doi: 10.1007/978-0-387-73003-5_196
SSID ssj0002776143
Score 2.2779508
Snippet RaptGen-UI provides intuitive graphical user-interface of the system exploring and analyzing the sequence landscape of high-throughput (HT)-SELEX (Systematic...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage vbaf120
SubjectTerms Application Note
Title RaptGen-UI: an integrated platform for exploring and analyzing the sequence landscape of HT-SELEX experiments
URI https://www.ncbi.nlm.nih.gov/pubmed/40642163
https://www.proquest.com/docview/3229218543
https://pubmed.ncbi.nlm.nih.gov/PMC12245399
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiReJu6US2UkJB6msDRxLuZtoMKGoEJVK_UtcmJbhLJkoimoe-SXc3yJm3Z9GLxYkZNYqc9X-_hcvoPQK0YDKWkReLD3BB6Ria-chNQLmM_h1BwTqdn5v4zjsxn5NI_mvd6fTtTSqsnfFFd780r-R6rQB3JVWbL_IFk3KHTANcgXWpAwtDeS8YRdNh9F5c3Odc5ytSF_4Ko8dKMUUsPp7SLtDDcr-7G-avOk2mDqY531q-KhtHF_Civt59G8UwJgueUALmvLuWp4nk0ogVPQx2zBdFHv48m6btzSf_7b9o5Zs1wtStevIjptjcfTRbmoO4Z1xlkb318y-4o1UwRRx0yhVzNFeuMpdi-z8ezps8txtIu6a4u8IcDKyxp-G1z8ypkcBv5mQ2ud-Dv7nIs-NH73MDMjZPb9W-gwSBLt6m8tPt-1YxYgq4Mv3dc67s_wxAxxYofY1m2uHVh24247isz0LjqyJxB8auB0D_VEdR_dNjVJ1w_QxQZUbzGr8AZSuIUUhgY7SMFDHDtIYYAUbiGFHaRwLXELKdyB1EM0-zCavj_zbE0OrwhJ2nikIHGU0JT7RZzHzBcyEEXCFe9fwP2IR77gIQUlm4JmKgkLJRV5oVkhi4Qlw_AROqjqSjxBmMu0EHTIBNHHBpYqO5wUuT8sIsrSvI9et7OZXRrqlWy_6ProZTvZGayOyuXFKlGvlhlsVxSU2IiEffTYTL4bi-gk7xjupFticQ8o5vXtO1X5TTOwK3e0onR-euNPfIbubP4Vz9FB83MlXoA62-QDdPhuNP46GWhz0ECj7y8-4aqE
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RaptGen-UI%3A+an+integrated+platform+for+exploring+and+analyzing+the+sequence+landscape+of+HT-SELEX+experiments&rft.jtitle=Bioinformatics+advances&rft.au=Nakano%2C+Ryota&rft.au=Iwano%2C+Natsuki&rft.au=Ichinose%2C+Akiko&rft.au=Hamada%2C+Michiaki&rft.date=2025-01-01&rft.issn=2635-0041&rft.eissn=2635-0041&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1093%2Fbioadv%2Fvbaf120&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioadv_vbaf120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2635-0041&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2635-0041&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2635-0041&client=summon