RaptGen-UI: an integrated platform for exploring and analyzing the sequence landscape of HT-SELEX experiments
RaptGen-UI provides intuitive graphical user-interface of the system exploring and analyzing the sequence landscape of high-throughput (HT)-SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments through machine learning-driven visualization with optimization capabilities. This...
Saved in:
Published in | Bioinformatics advances Vol. 5; no. 1; p. vbaf120 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2635-0041 2635-0041 |
DOI | 10.1093/bioadv/vbaf120 |
Cover
Abstract | RaptGen-UI provides intuitive graphical user-interface of the system exploring and analyzing the sequence landscape of high-throughput (HT)-SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments through machine learning-driven visualization with optimization capabilities. This software enables wet-lab researchers to efficiently analyze HT-SELEX dataset and optimize RNA aptamers without requiring extensive computational expertise. The containerized architecture ensures secure local deployment and supports both of high-performance Graphics Processing Unit (GPU) acceleration and CPU-only environments, making it suitable for various research settings.
This software is a web-based application running locally on the user's PC. The frontend is constructed using Next.js and Plotly.js with TypeScript, while the backend is developed using FastAPI, Celery, PostgreSQL RDBMS, and Redis with Python. Each module is encapsulated within Docker containers and deployed via Docker Compose. The system supports both CUDA GPU and CPU-only environments. Source code and documentation are freely available at https://github.com/hmdlab/RaptGen-UI. |
---|---|
AbstractList | RaptGen-UI provides intuitive graphical user-interface of the system exploring and analyzing the sequence landscape of high-throughput (HT)-SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments through machine learning-driven visualization with optimization capabilities. This software enables wet-lab researchers to efficiently analyze HT-SELEX dataset and optimize RNA aptamers without requiring extensive computational expertise. The containerized architecture ensures secure local deployment and supports both of high-performance Graphics Processing Unit (GPU) acceleration and CPU-only environments, making it suitable for various research settings.
This software is a web-based application running locally on the user's PC. The frontend is constructed using Next.js and Plotly.js with TypeScript, while the backend is developed using FastAPI, Celery, PostgreSQL RDBMS, and Redis with Python. Each module is encapsulated within Docker containers and deployed via Docker Compose. The system supports both CUDA GPU and CPU-only environments. Source code and documentation are freely available at https://github.com/hmdlab/RaptGen-UI. RaptGen-UI provides intuitive graphical user-interface of the system exploring and analyzing the sequence landscape of high-throughput (HT)-SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments through machine learning-driven visualization with optimization capabilities. This software enables wet-lab researchers to efficiently analyze HT-SELEX dataset and optimize RNA aptamers without requiring extensive computational expertise. The containerized architecture ensures secure local deployment and supports both of high-performance Graphics Processing Unit (GPU) acceleration and CPU-only environments, making it suitable for various research settings.SummaryRaptGen-UI provides intuitive graphical user-interface of the system exploring and analyzing the sequence landscape of high-throughput (HT)-SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments through machine learning-driven visualization with optimization capabilities. This software enables wet-lab researchers to efficiently analyze HT-SELEX dataset and optimize RNA aptamers without requiring extensive computational expertise. The containerized architecture ensures secure local deployment and supports both of high-performance Graphics Processing Unit (GPU) acceleration and CPU-only environments, making it suitable for various research settings.This software is a web-based application running locally on the user's PC. The frontend is constructed using Next.js and Plotly.js with TypeScript, while the backend is developed using FastAPI, Celery, PostgreSQL RDBMS, and Redis with Python. Each module is encapsulated within Docker containers and deployed via Docker Compose. The system supports both CUDA GPU and CPU-only environments. Source code and documentation are freely available at https://github.com/hmdlab/RaptGen-UI.Availability and implementationThis software is a web-based application running locally on the user's PC. The frontend is constructed using Next.js and Plotly.js with TypeScript, while the backend is developed using FastAPI, Celery, PostgreSQL RDBMS, and Redis with Python. Each module is encapsulated within Docker containers and deployed via Docker Compose. The system supports both CUDA GPU and CPU-only environments. Source code and documentation are freely available at https://github.com/hmdlab/RaptGen-UI. |
Author | Iwano, Natsuki Ichinose, Akiko Nakano, Ryota Hamada, Michiaki |
Author_xml | – sequence: 1 givenname: Ryota surname: Nakano fullname: Nakano, Ryota – sequence: 2 givenname: Natsuki surname: Iwano fullname: Iwano, Natsuki – sequence: 3 givenname: Akiko surname: Ichinose fullname: Ichinose, Akiko – sequence: 4 givenname: Michiaki orcidid: 0000-0001-9466-1034 surname: Hamada fullname: Hamada, Michiaki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40642163$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUtLxDAUhYMovrcuJUs3dfJqOnUjIqMjDAg-wF1Ik9ux0iY16QzqrzfDjKKLvLhfzsnNOUDbzjtA6ISSc0pKPqoar-1ytKx0TRnZQvtM8jwjRNDtP_s9dBzjGyGEFYWkgu-iPUGkYFTyfdQ96H64BZc9311g7XDjBpgHPYDFfauH2ocOpwnDR9_60Lh5gmwauv38Wp2GV8AR3hfgDOA21aLRPWBf4-lT9jiZTV5WVyE0HbghHqGdWrcRjjfrIXq-mTxdT7PZ_e3d9dUsM1yMh0wYIfOiHFtiZCU1gZqBKSyXhWSW5DYnYHkphSgFp7XQvC6hMgUVhJtCF5Qfosu1br-oOrAmeQfdqj49Q4dP5XWj_ldc86rmfqkoYyLnZZkUzjYKwafu4qC6JhpoU4vgF1FxxkpGx7ngCT39a_br8vPJCThfAyb4GAPUvwglahWkWgepNkHybzDrk70 |
Cites_doi | 10.2174/092986711797189637 10.1126/science.2200121 10.3390/ijms21228774 10.1021/acscentsci.7b00572 10.1021/acs.biochem.3c00596 10.1007/978-1-60327-567-5_5 10.1101/gr.849004 10.1038/346818a0 10.1038/s41592-023-02148-8 10.1038/nrd.2016.199 10.1093/bioinformatics/btz897 10.1038/s43588-022-00249-6 10.1016/j.omtn.2018.04.006 10.1214/aos/1176344136 10.1093/bioinformatics/14.9.755 10.1007/978-0-387-73003-5_196 |
ContentType | Journal Article |
Copyright | The Author(s) 2025. Published by Oxford University Press. The Author(s) 2025. Published by Oxford University Press. 2025 |
Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press. – notice: The Author(s) 2025. Published by Oxford University Press. 2025 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1093/bioadv/vbaf120 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2635-0041 |
ExternalDocumentID | PMC12245399 40642163 10_1093_bioadv_vbaf120 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: JPMJCR21F1; JPMJCR23B3 |
GroupedDBID | 0R~ AAYXX ABDBF ABEJV ABGNP ABXVV AFKRA ALMA_UNASSIGNED_HOLDINGS AMNDL BBNVY BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ M7P M~E OK1 PHGZM PHGZT PIMPY PQGLB RPM TOX ZCN NPM 7X8 5PM |
ID | FETCH-LOGICAL-c348t-4c465798d0c6b6a0ef2ec7d36762d05d50ed396449431f4a3f9ebc71403c7a713 |
ISSN | 2635-0041 |
IngestDate | Thu Aug 21 18:23:35 EDT 2025 Fri Sep 05 15:41:42 EDT 2025 Sun Jul 13 01:31:10 EDT 2025 Wed Jul 16 16:41:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c348t-4c465798d0c6b6a0ef2ec7d36762d05d50ed396449431f4a3f9ebc71403c7a713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9466-1034 |
OpenAccessLink | http://dx.doi.org/10.1093/bioadv/vbaf120 |
PMID | 40642163 |
PQID | 3229218543 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12245399 proquest_miscellaneous_3229218543 pubmed_primary_40642163 crossref_primary_10_1093_bioadv_vbaf120 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics advances |
PublicationTitleAlternate | Bioinform Adv |
PublicationYear | 2025 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Wang (2025071019563159700_vbaf120-B16) 2011; 18 Sumi (2025071019563159700_vbaf120-B14) 2024; 21 Zhou (2025071019563159700_vbaf120-B17) 2017; 16 Adachi (2025071019563159700_vbaf120-B1) 2024; 63 Piliarik (2025071019563159700_vbaf120-B11) 2009 Eddy (2025071019563159700_vbaf120-B5) 1998; 14 Reynolds (2025071019563159700_vbaf120-B12) 2009 Ellington (2025071019563159700_vbaf120-B6) 1990; 346 Hoinka (2025071019563159700_vbaf120-B8) 2018; 11 Caroli (2025071019563159700_vbaf120-B3) 2020; 36 Komarova (2025071019563159700_vbaf120-B10) 2020; 21 Gómez-Bombarelli (2025071019563159700_vbaf120-B7) 2018; 4 Tuerk (2025071019563159700_vbaf120-B15) 1990; 249 Balandat (2025071019563159700_vbaf120-B2) 2020 Schwarz (2025071019563159700_vbaf120-B13) 1978; 6 Iwano (2025071019563159700_vbaf120-B9) 2022; 2 Crooks (2025071019563159700_vbaf120-B4) 2004; 14 |
References_xml | – volume: 18 start-page: 4175 year: 2011 ident: 2025071019563159700_vbaf120-B16 article-title: Aptamer-based fluorescent biosensors publication-title: Curr Med Chem doi: 10.2174/092986711797189637 – volume: 249 start-page: 505 year: 1990 ident: 2025071019563159700_vbaf120-B15 article-title: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase publication-title: Science doi: 10.1126/science.2200121 – volume: 21 start-page: 8774 year: 2020 ident: 2025071019563159700_vbaf120-B10 article-title: Implementation of high-throughput sequencing (HTS) in aptamer selection technology publication-title: Int J Mol Sci doi: 10.3390/ijms21228774 – volume: 4 start-page: 268 year: 2018 ident: 2025071019563159700_vbaf120-B7 article-title: Automatic chemical design using a data-driven continuous representation of molecules publication-title: ACS Cent Sci doi: 10.1021/acscentsci.7b00572 – volume: 63 start-page: 906 year: 2024 ident: 2025071019563159700_vbaf120-B1 article-title: RaptGen-assisted generation of an RNA/DNA hybrid aptamer against SARS-CoV-2 spike protein publication-title: Biochemistry doi: 10.1021/acs.biochem.3c00596 – start-page: 65 volume-title: Biosensors and Biodetection year: 2009 ident: 2025071019563159700_vbaf120-B11 doi: 10.1007/978-1-60327-567-5_5 – volume: 14 start-page: 1188 year: 2004 ident: 2025071019563159700_vbaf120-B4 article-title: WebLogo: a sequence logo generator publication-title: Genome Res doi: 10.1101/gr.849004 – volume: 346 start-page: 818 year: 1990 ident: 2025071019563159700_vbaf120-B6 article-title: In vitro selection of RNA molecules that bind specific ligands publication-title: Nature doi: 10.1038/346818a0 – volume: 21 start-page: 435 year: 2024 ident: 2025071019563159700_vbaf120-B14 article-title: Deep generative design of RNA family sequences publication-title: Nat Methods doi: 10.1038/s41592-023-02148-8 – volume: 16 start-page: 181 year: 2017 ident: 2025071019563159700_vbaf120-B17 article-title: Aptamers as targeted therapeutics: current potential and challenges publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2016.199 – year: 2020 ident: 2025071019563159700_vbaf120-B2 – volume: 36 start-page: 2266 year: 2020 ident: 2025071019563159700_vbaf120-B3 article-title: APTANI2: update of aptamer selection through sequence-structure analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz897 – volume: 2 start-page: 378 year: 2022 ident: 2025071019563159700_vbaf120-B9 article-title: Generative aptamer discovery using RaptGen publication-title: Nat Comput Sci doi: 10.1038/s43588-022-00249-6 – volume: 11 start-page: 515 year: 2018 ident: 2025071019563159700_vbaf120-B8 article-title: AptaSUITE: a full-featured bioinformatics framework for the comprehensive analysis of aptamers from HT-SELEX experiments publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2018.04.006 – volume: 6 start-page: 461 year: 1978 ident: 2025071019563159700_vbaf120-B13 article-title: Estimating the dimension of a model publication-title: Ann Stat doi: 10.1214/aos/1176344136 – volume: 14 start-page: 755 year: 1998 ident: 2025071019563159700_vbaf120-B5 article-title: Profile hidden Markov models publication-title: Bioinformatics doi: 10.1093/bioinformatics/14.9.755 – start-page: 659 volume-title: Encyclopedia of Biometrics year: 2009 ident: 2025071019563159700_vbaf120-B12 doi: 10.1007/978-0-387-73003-5_196 |
SSID | ssj0002776143 |
Score | 2.2779508 |
Snippet | RaptGen-UI provides intuitive graphical user-interface of the system exploring and analyzing the sequence landscape of high-throughput (HT)-SELEX (Systematic... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | vbaf120 |
SubjectTerms | Application Note |
Title | RaptGen-UI: an integrated platform for exploring and analyzing the sequence landscape of HT-SELEX experiments |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40642163 https://www.proquest.com/docview/3229218543 https://pubmed.ncbi.nlm.nih.gov/PMC12245399 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiReJu6US2UkJB6msDRxLuZtoMKGoEJVK_UtcmJbhLJkoimoe-SXc3yJm3Z9GLxYkZNYqc9X-_hcvoPQK0YDKWkReLD3BB6Ria-chNQLmM_h1BwTqdn5v4zjsxn5NI_mvd6fTtTSqsnfFFd780r-R6rQB3JVWbL_IFk3KHTANcgXWpAwtDeS8YRdNh9F5c3Odc5ytSF_4Ko8dKMUUsPp7SLtDDcr-7G-avOk2mDqY531q-KhtHF_Civt59G8UwJgueUALmvLuWp4nk0ogVPQx2zBdFHv48m6btzSf_7b9o5Zs1wtStevIjptjcfTRbmoO4Z1xlkb318y-4o1UwRRx0yhVzNFeuMpdi-z8ezps8txtIu6a4u8IcDKyxp-G1z8ypkcBv5mQ2ud-Dv7nIs-NH73MDMjZPb9W-gwSBLt6m8tPt-1YxYgq4Mv3dc67s_wxAxxYofY1m2uHVh24247isz0LjqyJxB8auB0D_VEdR_dNjVJ1w_QxQZUbzGr8AZSuIUUhgY7SMFDHDtIYYAUbiGFHaRwLXELKdyB1EM0-zCavj_zbE0OrwhJ2nikIHGU0JT7RZzHzBcyEEXCFe9fwP2IR77gIQUlm4JmKgkLJRV5oVkhi4Qlw_AROqjqSjxBmMu0EHTIBNHHBpYqO5wUuT8sIsrSvI9et7OZXRrqlWy_6ProZTvZGayOyuXFKlGvlhlsVxSU2IiEffTYTL4bi-gk7xjupFticQ8o5vXtO1X5TTOwK3e0onR-euNPfIbubP4Vz9FB83MlXoA62-QDdPhuNP46GWhz0ECj7y8-4aqE |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RaptGen-UI%3A+an+integrated+platform+for+exploring+and+analyzing+the+sequence+landscape+of+HT-SELEX+experiments&rft.jtitle=Bioinformatics+advances&rft.au=Nakano%2C+Ryota&rft.au=Iwano%2C+Natsuki&rft.au=Ichinose%2C+Akiko&rft.au=Hamada%2C+Michiaki&rft.date=2025-01-01&rft.issn=2635-0041&rft.eissn=2635-0041&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1093%2Fbioadv%2Fvbaf120&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioadv_vbaf120 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2635-0041&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2635-0041&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2635-0041&client=summon |