A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm
[Display omitted] •A dynamic optimization model Neural Network Algorithm (NNA) is proposed.•NNA is inspired by the structure of ANNs and biological nervous systems.•NNA is a parallel associated memory-based sequential-batch learning optimizer.•Convergence proof has been carried out for a random init...
Saved in:
Published in | Applied soft computing Vol. 71; pp. 747 - 782 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A dynamic optimization model Neural Network Algorithm (NNA) is proposed.•NNA is inspired by the structure of ANNs and biological nervous systems.•NNA is a parallel associated memory-based sequential-batch learning optimizer.•Convergence proof has been carried out for a random initial population.•NNA outperformed reported metaheuristic methods obtaining better quality solutions.
In this research, a new metaheuristic optimization algorithm, inspired by biological nervous systems and artificial neural networks (ANNs) is proposed for solving complex optimization problems. The proposed method, named as neural network algorithm (NNA), is developed based on the unique structure of ANNs. The NNA benefits from complicated structure of the ANNs and its operators in order to generate new candidate solutions. In terms of convergence proof, the relationship between improvised exploitation and each parameter under asymmetric interval is derived and an iterative convergence of NNA is proved theoretically. In this paper, the NNA with its interconnected computing unit is examined for 21 well-known unconstrained benchmarks with dimensions 50–200 for evaluating its performance compared with the state-of-the-art algorithms and recent optimization methods. Besides, several constrained engineering design problems have been investigated to validate the efficiency of NNA for searching in feasible region in constrained optimization problems. Being an algorithm without any effort for fine tuning initial parameters and statistically superior can distinguish the NNA over other reported optimizers. It can be concluded that, the ANNs and its particular structure can be successfully utilized and modeled as metaheuristic optimization method for handling optimization problems. |
---|---|
AbstractList | [Display omitted]
•A dynamic optimization model Neural Network Algorithm (NNA) is proposed.•NNA is inspired by the structure of ANNs and biological nervous systems.•NNA is a parallel associated memory-based sequential-batch learning optimizer.•Convergence proof has been carried out for a random initial population.•NNA outperformed reported metaheuristic methods obtaining better quality solutions.
In this research, a new metaheuristic optimization algorithm, inspired by biological nervous systems and artificial neural networks (ANNs) is proposed for solving complex optimization problems. The proposed method, named as neural network algorithm (NNA), is developed based on the unique structure of ANNs. The NNA benefits from complicated structure of the ANNs and its operators in order to generate new candidate solutions. In terms of convergence proof, the relationship between improvised exploitation and each parameter under asymmetric interval is derived and an iterative convergence of NNA is proved theoretically. In this paper, the NNA with its interconnected computing unit is examined for 21 well-known unconstrained benchmarks with dimensions 50–200 for evaluating its performance compared with the state-of-the-art algorithms and recent optimization methods. Besides, several constrained engineering design problems have been investigated to validate the efficiency of NNA for searching in feasible region in constrained optimization problems. Being an algorithm without any effort for fine tuning initial parameters and statistically superior can distinguish the NNA over other reported optimizers. It can be concluded that, the ANNs and its particular structure can be successfully utilized and modeled as metaheuristic optimization method for handling optimization problems. |
Author | Sadollah, Ali Yadav, Anupam Sayyaadi, Hassan |
Author_xml | – sequence: 1 givenname: Ali surname: Sadollah fullname: Sadollah, Ali organization: School of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9567, Iran – sequence: 2 givenname: Hassan orcidid: 0000-0001-5855-8881 surname: Sayyaadi fullname: Sayyaadi, Hassan email: sayyaadi@sharif.edu organization: School of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9567, Iran – sequence: 3 givenname: Anupam orcidid: 0000-0002-9179-3151 surname: Yadav fullname: Yadav, Anupam organization: Department of Sciences and Humanities, National Institute of Technology Uttarakhand Srinagar (Garhwal), 246174, India |
BookMark | eNp9kMtOwzAQRS1UJNrCD7DyDyQ4TmI7iE1V8ZIq2MDacpxJ6zaJK9stKl-P27JiwWoemjPSPRM0GuwACN1mJM1Ixu7WqfJWp5RkIiU8JXl1gcaZ4DSpmMhGsS-ZSIqqYFdo4v2aRKiiYow2M9wcBtUbjXsIagU7Z3yIk90G05tvFYwdcG8b6LAZ_NY4aHB9wLWxnV0arTo8gNvbncf-4AP0_h6_xSenffiyboNVt7TOhFV_jS5b1Xm4-a1T9Pn0-DF_SRbvz6_z2SLReSFCUtRccVZnmpeMM-BlUUHRcNIKyDUrCS0Z1YqWraK8FXnFqprlNSheE6JUPJoicf6rnfXeQSu1CacgwSnTyYzIozS5lkdp8ihNEi6jtIjSP-jWmV65w__QwxmCGGpvwEmvDQwammhLB9lY8x_-AypTi4c |
CitedBy_id | crossref_primary_10_3390_en16114353 crossref_primary_10_1002_int_22275 crossref_primary_10_1155_2021_5538296 crossref_primary_10_1002_int_22672 crossref_primary_10_1080_10407790_2024_2350690 crossref_primary_10_1007_s00366_020_01258_7 crossref_primary_10_1016_j_heliyon_2024_e35771 crossref_primary_10_1109_ACCESS_2021_3075581 crossref_primary_10_1016_j_knosys_2021_107405 crossref_primary_10_3390_app12189083 crossref_primary_10_1007_s00500_023_09398_w crossref_primary_10_1109_ACCESS_2021_3051807 crossref_primary_10_1016_j_eswa_2020_113246 crossref_primary_10_1038_s41598_024_58918_7 crossref_primary_10_1002_er_4809 crossref_primary_10_3390_math12020280 crossref_primary_10_1016_j_asoc_2025_112854 crossref_primary_10_3390_math10111827 crossref_primary_10_32604_cmc_2023_036170 crossref_primary_10_1155_2024_8913560 crossref_primary_10_1002_qre_3220 crossref_primary_10_1007_s00521_020_05112_1 crossref_primary_10_1016_j_matpr_2022_06_153 crossref_primary_10_1109_ACCESS_2023_3318482 crossref_primary_10_1002_int_22707 crossref_primary_10_1016_j_cie_2022_108361 crossref_primary_10_1016_j_scitotenv_2024_173754 crossref_primary_10_1007_s10661_020_08726_z crossref_primary_10_1007_s00607_024_01256_3 crossref_primary_10_1007_s40996_020_00552_0 crossref_primary_10_15388_24_INFOR548 crossref_primary_10_1109_ACCESS_2021_3134872 crossref_primary_10_1109_TNNLS_2021_3109565 crossref_primary_10_1080_03772063_2020_1838347 crossref_primary_10_23939_mmc2022_04_921 crossref_primary_10_1016_j_aej_2022_12_045 crossref_primary_10_1155_2022_6709464 crossref_primary_10_1155_2022_9946128 crossref_primary_10_1007_s40098_024_01032_2 crossref_primary_10_1016_j_jclepro_2023_139837 crossref_primary_10_1007_s12065_024_01007_5 crossref_primary_10_1007_s42417_023_01043_y crossref_primary_10_1007_s10586_024_04605_1 crossref_primary_10_1016_j_knosys_2023_110374 crossref_primary_10_1016_j_mseb_2024_117506 crossref_primary_10_1016_j_cie_2020_107086 crossref_primary_10_1016_j_asoc_2021_107768 crossref_primary_10_1016_j_eswa_2020_113308 crossref_primary_10_1016_j_fuel_2021_121858 crossref_primary_10_1007_s00542_023_05572_0 crossref_primary_10_3390_math10234539 crossref_primary_10_1016_j_oceaneng_2024_117269 crossref_primary_10_1016_j_chaos_2023_113230 crossref_primary_10_1016_j_ins_2021_01_050 crossref_primary_10_1016_j_knosys_2019_07_007 crossref_primary_10_1016_j_jairtraman_2022_102225 crossref_primary_10_1016_j_knosys_2021_107387 crossref_primary_10_3390_eng2040041 crossref_primary_10_1016_j_enconman_2020_113266 crossref_primary_10_1007_s00366_021_01572_8 crossref_primary_10_1016_j_eswa_2021_116026 crossref_primary_10_1016_j_enconman_2020_113301 crossref_primary_10_1007_s10845_020_01723_6 crossref_primary_10_1007_s10462_022_10182_9 crossref_primary_10_3390_en12081435 crossref_primary_10_1016_j_jngse_2021_104232 crossref_primary_10_1016_j_aci_2020_02_001 crossref_primary_10_1016_j_geog_2021_12_005 crossref_primary_10_1109_ACCESS_2023_3266991 crossref_primary_10_1007_s00034_024_02600_w crossref_primary_10_1007_s00521_019_04009_y crossref_primary_10_1680_jstbu_22_00083 crossref_primary_10_1016_j_asoc_2024_111581 crossref_primary_10_32604_cmc_2022_019685 crossref_primary_10_17341_gazimmfd_1317413 crossref_primary_10_2139_ssrn_5078527 crossref_primary_10_1016_j_neucom_2023_126898 crossref_primary_10_1002_eng2_70028 crossref_primary_10_3390_su12052027 crossref_primary_10_1038_s41598_023_47679_4 crossref_primary_10_1186_s40537_023_00706_7 crossref_primary_10_29130_dubited_682602 crossref_primary_10_17352_tcsit_000026 crossref_primary_10_1038_s41598_022_15170_1 crossref_primary_10_3390_biomimetics8020191 crossref_primary_10_1016_j_jsv_2025_119069 crossref_primary_10_1061__ASCE_SU_1943_5428_0000368 crossref_primary_10_1177_09544070231169117 crossref_primary_10_1007_s10845_022_01921_4 crossref_primary_10_1016_j_ins_2025_121927 crossref_primary_10_1088_1742_6596_1769_1_012031 crossref_primary_10_22389_0016_7126_2019_954_12_10_19 crossref_primary_10_1016_j_csite_2024_104234 crossref_primary_10_1016_j_energy_2020_118644 crossref_primary_10_3390_biomimetics8030278 crossref_primary_10_1007_s00521_022_07565_y crossref_primary_10_3390_app12199805 crossref_primary_10_1016_j_rineng_2024_101859 crossref_primary_10_1038_s41598_023_48784_0 crossref_primary_10_1016_j_asoc_2024_112142 crossref_primary_10_1155_2022_6078986 crossref_primary_10_1155_2021_9651957 crossref_primary_10_3390_thermo4040024 crossref_primary_10_1016_j_asoc_2019_106002 crossref_primary_10_1080_09540091_2022_2115011 crossref_primary_10_1007_s12652_021_03304_8 crossref_primary_10_1007_s10586_024_04619_9 crossref_primary_10_1016_j_measurement_2020_107963 crossref_primary_10_1007_s00521_024_09523_2 crossref_primary_10_1080_19942060_2022_2098826 crossref_primary_10_1007_s10489_022_03786_9 crossref_primary_10_1016_j_icheatmasstransfer_2024_108320 crossref_primary_10_1007_s00500_022_07283_6 crossref_primary_10_1016_j_eswa_2024_124333 crossref_primary_10_1049_tje2_12255 crossref_primary_10_1155_2021_8928182 crossref_primary_10_1016_j_geits_2022_100040 crossref_primary_10_1016_j_aej_2021_12_072 crossref_primary_10_1016_j_egyr_2021_10_090 crossref_primary_10_1080_0305215X_2020_1806256 crossref_primary_10_1016_j_trgeo_2024_101235 crossref_primary_10_1007_s10845_021_01872_2 crossref_primary_10_3390_su142215137 crossref_primary_10_1016_j_asoc_2021_107088 crossref_primary_10_1016_j_asoc_2021_107880 crossref_primary_10_3390_polym12102250 crossref_primary_10_1007_s10489_022_03429_z crossref_primary_10_1016_j_apr_2019_11_019 crossref_primary_10_3390_act11050130 crossref_primary_10_1016_j_oceaneng_2022_112936 crossref_primary_10_1007_s12559_025_10415_3 crossref_primary_10_1016_j_robot_2023_104557 crossref_primary_10_1002_int_22576 crossref_primary_10_1016_j_advengsoft_2022_103185 crossref_primary_10_1007_s00366_020_00951_x crossref_primary_10_1007_s10462_022_10137_0 crossref_primary_10_1007_s00521_019_04580_4 crossref_primary_10_1109_ACCESS_2022_3157400 crossref_primary_10_1007_s10462_021_10035_x crossref_primary_10_1007_s40996_020_00578_4 crossref_primary_10_1007_s10489_021_02862_w crossref_primary_10_1007_s00707_024_04052_4 crossref_primary_10_1007_s11831_022_09721_y crossref_primary_10_1007_s00366_021_01552_y crossref_primary_10_1007_s10489_022_04059_1 crossref_primary_10_1007_s12065_020_00547_w crossref_primary_10_1016_j_scs_2022_103825 crossref_primary_10_3390_e25091255 crossref_primary_10_1007_s00500_024_09883_w crossref_primary_10_3390_forecast3010014 crossref_primary_10_1016_j_istruc_2020_03_033 crossref_primary_10_1080_0952813X_2020_1735532 crossref_primary_10_1016_j_eswa_2022_119082 crossref_primary_10_1109_LGRS_2024_3398043 crossref_primary_10_1016_j_ast_2022_107745 crossref_primary_10_1038_s41598_024_59960_1 crossref_primary_10_3390_en14185631 crossref_primary_10_1007_s11356_023_28777_2 crossref_primary_10_1080_15376494_2023_2286501 crossref_primary_10_37394_23208_2021_18_17 crossref_primary_10_1016_j_enconman_2020_113751 crossref_primary_10_1021_acs_analchem_4c02656 crossref_primary_10_1016_j_asoc_2021_108031 crossref_primary_10_1016_j_est_2023_109234 crossref_primary_10_1016_j_mex_2023_102152 crossref_primary_10_1038_s41598_024_56995_2 crossref_primary_10_1007_s10462_022_10324_z crossref_primary_10_1016_j_knosys_2024_112632 crossref_primary_10_3390_biomimetics8060490 crossref_primary_10_1016_j_oceaneng_2022_110859 crossref_primary_10_1007_s12652_020_02439_4 |
Cites_doi | 10.1177/003754970107600201 10.1016/j.ins.2009.03.004 10.1016/j.swevo.2017.05.002 10.1016/j.asoc.2016.02.031 10.1287/ijoc.11.1.15 10.1007/s10589-007-9111-3 10.1016/j.asoc.2009.08.031 10.1016/j.knosys.2009.06.002 10.1016/S0950-7051(01)00171-X 10.1080/01621459.1952.10483441 10.1016/j.knosys.2017.03.001 10.1126/science.220.4598.671 10.1016/j.asoc.2016.07.029 10.1007/s10845-010-0393-4 10.1080/01621459.1937.10503522 10.1016/j.cad.2010.12.015 10.1007/s12205-015-0273-8 10.1016/S0045-7825(99)00389-8 10.1016/j.cma.2006.02.005 10.1023/A:1019972523847 10.1016/j.compstruc.2012.07.010 10.1016/S0045-7949(96)00082-X 10.1007/s10589-007-9016-1 10.1016/j.swevo.2011.05.003 10.1016/j.asoc.2016.05.034 10.1016/j.swevo.2014.06.003 10.1016/j.jocs.2016.01.004 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2018.07.039 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 782 |
ExternalDocumentID | 10_1016_j_asoc_2018_07_039 S1568494618304277 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c348t-4b7a76b1c75676e7549e4d70f8e3c6502562ca25fa27f83969b63bea7b00aa8e3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 22:55:23 EDT 2025 Tue Jul 01 01:50:01 EDT 2025 Tue Jul 16 04:31:09 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Global optimization Iterative convergence Neural network algorithm Metaheuristics Artificial neural networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-4b7a76b1c75676e7549e4d70f8e3c6502562ca25fa27f83969b63bea7b00aa8e3 |
ORCID | 0000-0001-5855-8881 0000-0002-9179-3151 |
PageCount | 36 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2018_07_039 crossref_primary_10_1016_j_asoc_2018_07_039 elsevier_sciencedirect_doi_10_1016_j_asoc_2018_07_039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hochberg, Tamhane (bib0195) 1987 Rao, Savsani, Vakharia (bib0170) 2011; 43 Chen, Liu, Zhang, Liang, Suganthan, Qu (bib0200) 2014 Gao, Zhang, Sadollah, Lentzakis, Su (bib0085) 2017; 37 Eskandar, Sadollah, Bahreininejad, Hamdi (bib0160) 2012; 110–111 Kennedy, Eberhart (bib0015) 1995; 4 Holland (bib0025) 1975 Price, Storn, Lampinen (bib0175) 2005 Silva, Lopes, Freitas, Guimaraes (bib0225) 2014 Navalertporn, Afzulpurkar (bib0070) 2011; 1 Topping, Bahreininejad (bib0125) 1997 Goldberg (bib0005) 1989 Kennedy, Eberhart (bib0065) 1997; 5 Li, Feng, Owen (bib0230) 2006; 195 Gao, Zhang, Sadollah, Su (bib0090) 2016; 48 Zurada (bib0115) 1992 Liu, Cai, Wang (bib0205) 2010; 10 Nolle, Goodyear, Hopgood, Picton, Braithwaite (bib0050) 2002; 15 Akay, Karaboga (bib0210) 2012; 23 Montgomery (bib0140) 2005 Topping, Khan, Bahreininejad (bib0130) 1997; 63 Qiu, Chen, Wang, Wong (bib0075) 2014; 18 Hassoun (bib0105) 1995 Tayşi, Göğüş, Özakça (bib0040) 2008; 41 Smith (bib0110) 1999; 11 Cavalieri (bib0135) 1996 Herrera, Lozano, Molina (bib0145) 2009 Yang, Deb (bib0165) 2009 Afshar, Mariño (bib0035) 2007; 37 Hansen, Ostermeier (bib0180) 1996 Naderi, Tavakkoli-Moghaddam, Khalili (bib0055) 2010; 23 Al-Betar, Awadallah, Khader, Bolaji (bib0100) 2016; 47 Friedman (bib0185) 1937; 32 Kruskal (bib0190) 1952; 47 Kirkpatrick, Gelatt, Vecchi (bib0010) 1983; 220 Lim, Yuan, Omatu (bib0030) 2002; 23 Rojas (bib0120) 1996 Yoo, Chung, Sadollah, Kim (bib0045) 2015; 19 Grobelny, Michalski (bib0060) 2017; 124 Ngo, Sadollah, Kim (bib0080) 2016; 13 Atashpaz-Gargari, Lucas (bib0150) 2007 Deb (bib0215) 2000; 186 Ho, Pepyne (bib0220) 2001 Ouaddah, Boughaci (bib0095) 2016; 46 Geem, Kim, Loganathan (bib0020) 2001; 76 Rashedi, Nezamabadi-pour, Saryazdi (bib0155) 2009; 179 Yoo (10.1016/j.asoc.2018.07.039_bib0045) 2015; 19 Nolle (10.1016/j.asoc.2018.07.039_bib0050) 2002; 15 Silva (10.1016/j.asoc.2018.07.039_bib0225) 2014 Lim (10.1016/j.asoc.2018.07.039_bib0030) 2002; 23 Friedman (10.1016/j.asoc.2018.07.039_bib0185) 1937; 32 Ho (10.1016/j.asoc.2018.07.039_bib0220) 2001 Holland (10.1016/j.asoc.2018.07.039_bib0025) 1975 Akay (10.1016/j.asoc.2018.07.039_bib0210) 2012; 23 Montgomery (10.1016/j.asoc.2018.07.039_bib0140) 2005 Yang (10.1016/j.asoc.2018.07.039_bib0165) 2009 Hansen (10.1016/j.asoc.2018.07.039_bib0180) 1996 Tayşi (10.1016/j.asoc.2018.07.039_bib0040) 2008; 41 Deb (10.1016/j.asoc.2018.07.039_bib0215) 2000; 186 Chen (10.1016/j.asoc.2018.07.039_bib0200) 2014 Kennedy (10.1016/j.asoc.2018.07.039_bib0015) 1995; 4 Topping (10.1016/j.asoc.2018.07.039_bib0125) 1997 Kirkpatrick (10.1016/j.asoc.2018.07.039_bib0010) 1983; 220 Kruskal (10.1016/j.asoc.2018.07.039_bib0190) 1952; 47 Smith (10.1016/j.asoc.2018.07.039_bib0110) 1999; 11 Qiu (10.1016/j.asoc.2018.07.039_bib0075) 2014; 18 Atashpaz-Gargari (10.1016/j.asoc.2018.07.039_bib0150) 2007 Price (10.1016/j.asoc.2018.07.039_bib0175) 2005 Cavalieri (10.1016/j.asoc.2018.07.039_bib0135) 1996 Navalertporn (10.1016/j.asoc.2018.07.039_bib0070) 2011; 1 Grobelny (10.1016/j.asoc.2018.07.039_bib0060) 2017; 124 Gao (10.1016/j.asoc.2018.07.039_bib0090) 2016; 48 Rashedi (10.1016/j.asoc.2018.07.039_bib0155) 2009; 179 Rao (10.1016/j.asoc.2018.07.039_bib0170) 2011; 43 Eskandar (10.1016/j.asoc.2018.07.039_bib0160) 2012; 110–111 Liu (10.1016/j.asoc.2018.07.039_bib0205) 2010; 10 Naderi (10.1016/j.asoc.2018.07.039_bib0055) 2010; 23 Kennedy (10.1016/j.asoc.2018.07.039_bib0065) 1997; 5 Goldberg (10.1016/j.asoc.2018.07.039_bib0005) 1989 Afshar (10.1016/j.asoc.2018.07.039_bib0035) 2007; 37 Ngo (10.1016/j.asoc.2018.07.039_bib0080) 2016; 13 Herrera (10.1016/j.asoc.2018.07.039_bib0145) 2009 Topping (10.1016/j.asoc.2018.07.039_bib0130) 1997; 63 Hochberg (10.1016/j.asoc.2018.07.039_bib0195) 1987 Zurada (10.1016/j.asoc.2018.07.039_bib0115) 1992 Al-Betar (10.1016/j.asoc.2018.07.039_bib0100) 2016; 47 Hassoun (10.1016/j.asoc.2018.07.039_bib0105) 1995 Li (10.1016/j.asoc.2018.07.039_bib0230) 2006; 195 Geem (10.1016/j.asoc.2018.07.039_bib0020) 2001; 76 Ouaddah (10.1016/j.asoc.2018.07.039_bib0095) 2016; 46 Rojas (10.1016/j.asoc.2018.07.039_bib0120) 1996 Gao (10.1016/j.asoc.2018.07.039_bib0085) 2017; 37 |
References_xml | – start-page: 4661 year: 2007 end-page: 4667 ident: bib0150 article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition publication-title: IEEE CEC 2007 – start-page: 312 year: 1996 end-page: 317 ident: bib0180 article-title: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation publication-title: Proceedings of the 1996 IEEE CEC – year: 1996 ident: bib0120 article-title: Neural Networks – volume: 32 start-page: 675 year: 1937 end-page: 701 ident: bib0185 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: J. Am. Stat. Assoc. – year: 2005 ident: bib0140 article-title: Design and Analysis of Experiments – year: 2014 ident: bib0200 article-title: Problem Definition and Evaluation Criteria for CEC 2015 Special Session and Competition on Bound Constrained Single-Objective Computationally Expensive Numerical Optimization – volume: 1 start-page: 97 year: 2011 end-page: 109 ident: bib0070 article-title: Optimization of tile manufacturing process using particle swarm optimization publication-title: Swarm Evol. Comput. – volume: 47 start-page: 583 year: 1952 end-page: 621 ident: bib0190 article-title: Use of ranks in one-criterion variance analysis publication-title: J. Am. Stat. Assoc. – start-page: 1 year: 2014 end-page: 8 ident: bib0225 article-title: A study on self-configuration in the differential evolution algorithm publication-title: 2014 IEEE Symposium on Differential Evolution (SDE) – volume: 5 start-page: 4104 year: 1997 end-page: 4108 ident: bib0065 article-title: A discrete binary version of the particle swarm algorithm publication-title: IEEE Syst. Man Cybern. – volume: 18 start-page: 1 year: 2014 end-page: 10 ident: bib0075 article-title: Using animal instincts to design efficient biomedical studies via particle swarm optimization publication-title: Swarm Evol. Comput. – volume: 110–111 start-page: 151 year: 2012 end-page: 166 ident: bib0160 article-title: Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. – volume: 76 start-page: 60 year: 2001 end-page: 68 ident: bib0020 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simulation – year: 1992 ident: bib0115 article-title: Introduction to Artificial Neural Systems – start-page: 559 year: 1996 end-page: 561 ident: bib0135 article-title: Enhancing Hopfield neural net capabilities in solving optimization problems publication-title: Proceedings of the 1996 World Congress on Neural Networks – volume: 195 start-page: 6560 year: 2006 end-page: 6576 ident: bib0230 article-title: Explicit solution to the stochastic system of linear algebraic equations ( publication-title: Comput. Method Appl. Mech. Eng. – volume: 23 start-page: 77 year: 2010 end-page: 85 ident: bib0055 article-title: Electromagnetism-like mechanism and simulated annealing algorithms for flowshop scheduling problems minimizing the total weighted tardiness and makespan publication-title: Knowl.-Based Syst. – year: 1989 ident: bib0005 article-title: Genetic Algorithms in Search, Optimization and Machine Learning – volume: 23 start-page: 47 year: 2002 end-page: 64 ident: bib0030 article-title: Extensive testing of a hybrid genetic algorithm for solving quadratic assignment problems publication-title: Comput. Optim. Appl. – volume: 124 start-page: 55 year: 2017 end-page: 69 ident: bib0060 article-title: A novel version of simulated annealing based on linguistic patterns for solving facility layout problems publication-title: Knowl.-Based Syst. – volume: 13 start-page: 68 year: 2016 end-page: 82 ident: bib0080 article-title: A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems publication-title: J. Comput. Sci. – volume: 48 start-page: 359 year: 2016 end-page: 372 ident: bib0090 article-title: Optimizing urban traffic light scheduling problem using harmony search with ensemble of local search publication-title: Appl. Soft Comput. – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: bib0015 article-title: Particle swarm optimization publication-title: IEEE IJCNN – volume: 37 start-page: 58 year: 2017 end-page: 72 ident: bib0085 article-title: Jaya, harmony search, and water cycle algorithms for solving large-scale real-life urban traffic light scheduling problem publication-title: Swarm Evol. Comput. – year: 2009 ident: bib0145 article-title: Test Suite for the Special Issue of Soft Computing on Scalability of Evolutionary Algorithms and Other Metaheuristics for Large Scale Continuous Optimization Problems – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: bib0170 article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. – volume: 23 start-page: 1001 year: 2012 end-page: 1014 ident: bib0210 article-title: Artificial bee colony algorithm for large-scale problems and engineering design optimization publication-title: J. Intell. Manuf. – year: 1987 ident: bib0195 article-title: Multiple Comparison Procedures – volume: 47 start-page: 449 year: 2016 end-page: 459 ident: bib0100 article-title: Tournament-based harmony search algorithm for non-convex economic load dispatch problem publication-title: Appl. Soft Comput. – volume: 11 start-page: 15 year: 1999 end-page: 34 ident: bib0110 article-title: Neural networks for combinatorial optimization: a review on more than a decade of research publication-title: Informs J. Comput. – year: 1975 ident: bib0025 article-title: Adaptation in Natural and Artificial Systems – volume: 10 start-page: 629 year: 2010 end-page: 640 ident: bib0205 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Appl. Soft Comput. – start-page: 210 year: 2009 end-page: 214 ident: bib0165 article-title: Cuckoo search via Lévy flights publication-title: IEEE World Congress on Nature & Biologically Inspired Computing (NaBIC 2009) – volume: 19 start-page: 2333 year: 2015 end-page: 2344 ident: bib0045 article-title: Applications of network analysis and multi-objective genetic algorithm for selecting optimal water quality sensor locations in water distribution networks publication-title: KSCE J. Civ. Eng. – volume: 15 start-page: 349 year: 2002 end-page: 354 ident: bib0050 article-title: Automated control of an actively compensated Langmuir probe system using simulated annealing publication-title: Knowl.-Based Syst. – volume: 41 start-page: 377 year: 2008 end-page: 394 ident: bib0040 article-title: Optimization of arches using genetic algorithm publication-title: Comput. Optim. Appl. – volume: 63 start-page: 693 year: 1997 end-page: 707 ident: bib0130 article-title: Parallel training of neural networks for finite element mesh decomposition publication-title: Comput. Struct. – start-page: 37 year: 2005 end-page: 134 ident: bib0175 article-title: Differential Evolution: A Practical Approach to Global Optimization – volume: 46 start-page: 924 year: 2016 end-page: 935 ident: bib0095 article-title: Harmony search algorithm for image reconstruction from projections publication-title: Appl. Soft Comput. – volume: 37 start-page: 83 year: 2007 end-page: 102 ident: bib0035 article-title: A parameter-free self-adapting boundary genetic search for pipe network optimization publication-title: Comput. Optim. Appl. – year: 1997 ident: bib0125 article-title: Neural Computing for Structural Mechanics – volume: 186 start-page: 311 year: 2000 end-page: 338 ident: bib0215 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Eng. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: bib0155 article-title: GSA: a gravitational search algorithm publication-title: Inform. Sci. – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: bib0010 article-title: Optimization by simulated annealing publication-title: Science – year: 1995 ident: bib0105 article-title: Fundamentals of Artificial Neural Networks – year: 2001 ident: bib0220 article-title: Simple explanation of the no free lunch theorem of optimization publication-title: Proceedings of the 40th IEEE Decision and Control Conference – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 10.1016/j.asoc.2018.07.039_bib0020 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simulation doi: 10.1177/003754970107600201 – year: 2005 ident: 10.1016/j.asoc.2018.07.039_bib0140 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.asoc.2018.07.039_bib0155 article-title: GSA: a gravitational search algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 5 start-page: 4104 year: 1997 ident: 10.1016/j.asoc.2018.07.039_bib0065 article-title: A discrete binary version of the particle swarm algorithm publication-title: IEEE Syst. Man Cybern. – volume: 37 start-page: 58 year: 2017 ident: 10.1016/j.asoc.2018.07.039_bib0085 article-title: Jaya, harmony search, and water cycle algorithms for solving large-scale real-life urban traffic light scheduling problem publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.05.002 – volume: 46 start-page: 924 year: 2016 ident: 10.1016/j.asoc.2018.07.039_bib0095 article-title: Harmony search algorithm for image reconstruction from projections publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.02.031 – year: 2009 ident: 10.1016/j.asoc.2018.07.039_bib0145 – year: 2001 ident: 10.1016/j.asoc.2018.07.039_bib0220 article-title: Simple explanation of the no free lunch theorem of optimization – year: 1996 ident: 10.1016/j.asoc.2018.07.039_bib0120 – volume: 11 start-page: 15 year: 1999 ident: 10.1016/j.asoc.2018.07.039_bib0110 article-title: Neural networks for combinatorial optimization: a review on more than a decade of research publication-title: Informs J. Comput. doi: 10.1287/ijoc.11.1.15 – year: 1997 ident: 10.1016/j.asoc.2018.07.039_bib0125 – volume: 41 start-page: 377 issue: 3 year: 2008 ident: 10.1016/j.asoc.2018.07.039_bib0040 article-title: Optimization of arches using genetic algorithm publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-007-9111-3 – year: 2014 ident: 10.1016/j.asoc.2018.07.039_bib0200 – volume: 10 start-page: 629 year: 2010 ident: 10.1016/j.asoc.2018.07.039_bib0205 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.08.031 – start-page: 1 year: 2014 ident: 10.1016/j.asoc.2018.07.039_bib0225 article-title: A study on self-configuration in the differential evolution algorithm – volume: 23 start-page: 77 issue: 2 year: 2010 ident: 10.1016/j.asoc.2018.07.039_bib0055 article-title: Electromagnetism-like mechanism and simulated annealing algorithms for flowshop scheduling problems minimizing the total weighted tardiness and makespan publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2009.06.002 – start-page: 312 year: 1996 ident: 10.1016/j.asoc.2018.07.039_bib0180 article-title: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation – volume: 15 start-page: 349 issue: 5–6 year: 2002 ident: 10.1016/j.asoc.2018.07.039_bib0050 article-title: Automated control of an actively compensated Langmuir probe system using simulated annealing publication-title: Knowl.-Based Syst. doi: 10.1016/S0950-7051(01)00171-X – year: 1975 ident: 10.1016/j.asoc.2018.07.039_bib0025 – volume: 47 start-page: 583 issue: 260 year: 1952 ident: 10.1016/j.asoc.2018.07.039_bib0190 article-title: Use of ranks in one-criterion variance analysis publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1952.10483441 – volume: 124 start-page: 55 issue: 15 year: 2017 ident: 10.1016/j.asoc.2018.07.039_bib0060 article-title: A novel version of simulated annealing based on linguistic patterns for solving facility layout problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.03.001 – volume: 220 start-page: 671 year: 1983 ident: 10.1016/j.asoc.2018.07.039_bib0010 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – start-page: 210 year: 2009 ident: 10.1016/j.asoc.2018.07.039_bib0165 article-title: Cuckoo search via Lévy flights – year: 1995 ident: 10.1016/j.asoc.2018.07.039_bib0105 – year: 1987 ident: 10.1016/j.asoc.2018.07.039_bib0195 – year: 1992 ident: 10.1016/j.asoc.2018.07.039_bib0115 – volume: 48 start-page: 359 year: 2016 ident: 10.1016/j.asoc.2018.07.039_bib0090 article-title: Optimizing urban traffic light scheduling problem using harmony search with ensemble of local search publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.07.029 – volume: 23 start-page: 1001 issue: 4 year: 2012 ident: 10.1016/j.asoc.2018.07.039_bib0210 article-title: Artificial bee colony algorithm for large-scale problems and engineering design optimization publication-title: J. Intell. Manuf. doi: 10.1007/s10845-010-0393-4 – volume: 32 start-page: 675 issue: 200 year: 1937 ident: 10.1016/j.asoc.2018.07.039_bib0185 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1937.10503522 – start-page: 4661 year: 2007 ident: 10.1016/j.asoc.2018.07.039_bib0150 article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 10.1016/j.asoc.2018.07.039_bib0170 article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – year: 1989 ident: 10.1016/j.asoc.2018.07.039_bib0005 – volume: 19 start-page: 2333 issue: 7 year: 2015 ident: 10.1016/j.asoc.2018.07.039_bib0045 article-title: Applications of network analysis and multi-objective genetic algorithm for selecting optimal water quality sensor locations in water distribution networks publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-015-0273-8 – volume: 186 start-page: 311 year: 2000 ident: 10.1016/j.asoc.2018.07.039_bib0215 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00389-8 – volume: 195 start-page: 6560 issue: 44 year: 2006 ident: 10.1016/j.asoc.2018.07.039_bib0230 article-title: Explicit solution to the stochastic system of linear algebraic equations (α1 A1+ α2 A2+⋯+ αm Am) x= b publication-title: Comput. Method Appl. Mech. Eng. doi: 10.1016/j.cma.2006.02.005 – volume: 23 start-page: 47 issue: 1 year: 2002 ident: 10.1016/j.asoc.2018.07.039_bib0030 article-title: Extensive testing of a hybrid genetic algorithm for solving quadratic assignment problems publication-title: Comput. Optim. Appl. doi: 10.1023/A:1019972523847 – volume: 110–111 start-page: 151 year: 2012 ident: 10.1016/j.asoc.2018.07.039_bib0160 article-title: Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.07.010 – start-page: 37 year: 2005 ident: 10.1016/j.asoc.2018.07.039_bib0175 – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.asoc.2018.07.039_bib0015 article-title: Particle swarm optimization – volume: 63 start-page: 693 issue: 4 year: 1997 ident: 10.1016/j.asoc.2018.07.039_bib0130 article-title: Parallel training of neural networks for finite element mesh decomposition publication-title: Comput. Struct. doi: 10.1016/S0045-7949(96)00082-X – volume: 37 start-page: 83 issue: 1 year: 2007 ident: 10.1016/j.asoc.2018.07.039_bib0035 article-title: A parameter-free self-adapting boundary genetic search for pipe network optimization publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-007-9016-1 – volume: 1 start-page: 97 issue: 2 year: 2011 ident: 10.1016/j.asoc.2018.07.039_bib0070 article-title: Optimization of tile manufacturing process using particle swarm optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.05.003 – volume: 47 start-page: 449 year: 2016 ident: 10.1016/j.asoc.2018.07.039_bib0100 article-title: Tournament-based harmony search algorithm for non-convex economic load dispatch problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.05.034 – start-page: 559 year: 1996 ident: 10.1016/j.asoc.2018.07.039_bib0135 article-title: Enhancing Hopfield neural net capabilities in solving optimization problems – volume: 18 start-page: 1 year: 2014 ident: 10.1016/j.asoc.2018.07.039_bib0075 article-title: Using animal instincts to design efficient biomedical studies via particle swarm optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2014.06.003 – volume: 13 start-page: 68 year: 2016 ident: 10.1016/j.asoc.2018.07.039_bib0080 article-title: A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2016.01.004 |
SSID | ssj0016928 |
Score | 2.5975258 |
Snippet | [Display omitted]
•A dynamic optimization model Neural Network Algorithm (NNA) is proposed.•NNA is inspired by the structure of ANNs and biological nervous... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 747 |
SubjectTerms | Artificial neural networks Global optimization Iterative convergence Metaheuristics Neural network algorithm |
Title | A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm |
URI | https://dx.doi.org/10.1016/j.asoc.2018.07.039 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YENhebh2AlbVVGVhyoEVOoW2YlDA21StenAwm_nHDsVSKgDWaJYZyk6n8938nf3IXQZhIx73HesgAsGCUpKLBEkqUViyJ5pEsJerwCyQzoYkfuxP26gXl0Lo2CVxvdrn155azPSMdrszLOs8wKZR0BCQsEoFWGEqignhCkrv_5awzwcGlb8qkrYUtKmcEZjvDhoQMG7gqqBpyIM_-tw-nHg9PfQjokUcVf_zD5qyPwA7dYsDNhsykP00cWJppXHM1nyiVzp5su4AG8wM2WWuGK8wVmuLtZlgsUn1u2X1BrhHBxGsVpi3dZ5eYNVy45qvMKIYz59KxZZOZkdoVH_9rU3sAyFghV7JCgtIhhnVDgx8ymjkkE2KEnC7DSQXgzBGQQ8bsxdP-UuSyFWoqGgnpCcwW7kHISOUTMvcnmCMIODXnjgHmySkhCWMUjgkT53bSFS22shp9ZdFJv-4ormYhrVQLL3SOk7UvqObBaBvlvoaj1nrrtrbJT26yWJftlIBO5_w7zTf847Q9vqS0P3zlGzXKzkBYQgpWhXNtZGW93e8-OTet89DIbf9jffVg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PbCh0LRx7IStqqgKlC60UjfLThwaaNOqTQcWfjvn2KlAQgxkdM5SdPad75Tn9xC6DkImPOE3nEBIBg1KQhwZxIlDIuieaRxCrBcA2T7tDsnjyB9VULu8C6NhlTb3m5xeZGs7UrferM_TtP4CnUdAQkJhU2rBCLaBNgmEr5YxuP1c4zwaNCwEVrW1o83tzRkD8hLgAo3vCgoGT60Y_tvp9O3E6eyhHVsq4pb5mn1UUdkB2i1lGLCNykP03sKx0ZXHU5WLsVoZ9mU8g3QwtfcscSF5g9NM_1lXMZYf2PAv6UXCGWSM2WqJDa_z8g5rzo5ivACJYzF5nS3SfDw9QsPO_aDddayGghN5JMgdIplgVDYi5lNGFYN2UJGYuUmgvAiqM6h4mpFo-olosgSKJRpK6kklGISjEGB0jKrZLFMnCDM46aUH-cElCQlhHYMYHuWLpitl4no11Ch9xyNLMK51Lia8RJK9ce1vrv3NXcbB3zV0s54zN_Qaf1r75ZLwH5uEQ_7_Y97pP-ddoa3u4LnHew_9pzO0rd8YHN85quaLlbqAeiSXl8V--wIurt9P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+metaheuristic+optimization+model+inspired+by+biological+nervous+systems%3A+Neural+network+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Sadollah%2C+Ali&rft.au=Sayyaadi%2C+Hassan&rft.au=Yadav%2C+Anupam&rft.date=2018-10-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=71&rft.spage=747&rft.epage=782&rft_id=info:doi/10.1016%2Fj.asoc.2018.07.039&rft.externalDocID=S1568494618304277 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |