A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm

[Display omitted] •A dynamic optimization model Neural Network Algorithm (NNA) is proposed.•NNA is inspired by the structure of ANNs and biological nervous systems.•NNA is a parallel associated memory-based sequential-batch learning optimizer.•Convergence proof has been carried out for a random init...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 71; pp. 747 - 782
Main Authors Sadollah, Ali, Sayyaadi, Hassan, Yadav, Anupam
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A dynamic optimization model Neural Network Algorithm (NNA) is proposed.•NNA is inspired by the structure of ANNs and biological nervous systems.•NNA is a parallel associated memory-based sequential-batch learning optimizer.•Convergence proof has been carried out for a random initial population.•NNA outperformed reported metaheuristic methods obtaining better quality solutions. In this research, a new metaheuristic optimization algorithm, inspired by biological nervous systems and artificial neural networks (ANNs) is proposed for solving complex optimization problems. The proposed method, named as neural network algorithm (NNA), is developed based on the unique structure of ANNs. The NNA benefits from complicated structure of the ANNs and its operators in order to generate new candidate solutions. In terms of convergence proof, the relationship between improvised exploitation and each parameter under asymmetric interval is derived and an iterative convergence of NNA is proved theoretically. In this paper, the NNA with its interconnected computing unit is examined for 21 well-known unconstrained benchmarks with dimensions 50–200 for evaluating its performance compared with the state-of-the-art algorithms and recent optimization methods. Besides, several constrained engineering design problems have been investigated to validate the efficiency of NNA for searching in feasible region in constrained optimization problems. Being an algorithm without any effort for fine tuning initial parameters and statistically superior can distinguish the NNA over other reported optimizers. It can be concluded that, the ANNs and its particular structure can be successfully utilized and modeled as metaheuristic optimization method for handling optimization problems.
AbstractList [Display omitted] •A dynamic optimization model Neural Network Algorithm (NNA) is proposed.•NNA is inspired by the structure of ANNs and biological nervous systems.•NNA is a parallel associated memory-based sequential-batch learning optimizer.•Convergence proof has been carried out for a random initial population.•NNA outperformed reported metaheuristic methods obtaining better quality solutions. In this research, a new metaheuristic optimization algorithm, inspired by biological nervous systems and artificial neural networks (ANNs) is proposed for solving complex optimization problems. The proposed method, named as neural network algorithm (NNA), is developed based on the unique structure of ANNs. The NNA benefits from complicated structure of the ANNs and its operators in order to generate new candidate solutions. In terms of convergence proof, the relationship between improvised exploitation and each parameter under asymmetric interval is derived and an iterative convergence of NNA is proved theoretically. In this paper, the NNA with its interconnected computing unit is examined for 21 well-known unconstrained benchmarks with dimensions 50–200 for evaluating its performance compared with the state-of-the-art algorithms and recent optimization methods. Besides, several constrained engineering design problems have been investigated to validate the efficiency of NNA for searching in feasible region in constrained optimization problems. Being an algorithm without any effort for fine tuning initial parameters and statistically superior can distinguish the NNA over other reported optimizers. It can be concluded that, the ANNs and its particular structure can be successfully utilized and modeled as metaheuristic optimization method for handling optimization problems.
Author Sadollah, Ali
Yadav, Anupam
Sayyaadi, Hassan
Author_xml – sequence: 1
  givenname: Ali
  surname: Sadollah
  fullname: Sadollah, Ali
  organization: School of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9567, Iran
– sequence: 2
  givenname: Hassan
  orcidid: 0000-0001-5855-8881
  surname: Sayyaadi
  fullname: Sayyaadi, Hassan
  email: sayyaadi@sharif.edu
  organization: School of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9567, Iran
– sequence: 3
  givenname: Anupam
  orcidid: 0000-0002-9179-3151
  surname: Yadav
  fullname: Yadav, Anupam
  organization: Department of Sciences and Humanities, National Institute of Technology Uttarakhand Srinagar (Garhwal), 246174, India
BookMark eNp9kMtOwzAQRS1UJNrCD7DyDyQ4TmI7iE1V8ZIq2MDacpxJ6zaJK9stKl-P27JiwWoemjPSPRM0GuwACN1mJM1Ixu7WqfJWp5RkIiU8JXl1gcaZ4DSpmMhGsS-ZSIqqYFdo4v2aRKiiYow2M9wcBtUbjXsIagU7Z3yIk90G05tvFYwdcG8b6LAZ_NY4aHB9wLWxnV0arTo8gNvbncf-4AP0_h6_xSenffiyboNVt7TOhFV_jS5b1Xm4-a1T9Pn0-DF_SRbvz6_z2SLReSFCUtRccVZnmpeMM-BlUUHRcNIKyDUrCS0Z1YqWraK8FXnFqprlNSheE6JUPJoicf6rnfXeQSu1CacgwSnTyYzIozS5lkdp8ihNEi6jtIjSP-jWmV65w__QwxmCGGpvwEmvDQwammhLB9lY8x_-AypTi4c
CitedBy_id crossref_primary_10_3390_en16114353
crossref_primary_10_1002_int_22275
crossref_primary_10_1155_2021_5538296
crossref_primary_10_1002_int_22672
crossref_primary_10_1080_10407790_2024_2350690
crossref_primary_10_1007_s00366_020_01258_7
crossref_primary_10_1016_j_heliyon_2024_e35771
crossref_primary_10_1109_ACCESS_2021_3075581
crossref_primary_10_1016_j_knosys_2021_107405
crossref_primary_10_3390_app12189083
crossref_primary_10_1007_s00500_023_09398_w
crossref_primary_10_1109_ACCESS_2021_3051807
crossref_primary_10_1016_j_eswa_2020_113246
crossref_primary_10_1038_s41598_024_58918_7
crossref_primary_10_1002_er_4809
crossref_primary_10_3390_math12020280
crossref_primary_10_1016_j_asoc_2025_112854
crossref_primary_10_3390_math10111827
crossref_primary_10_32604_cmc_2023_036170
crossref_primary_10_1155_2024_8913560
crossref_primary_10_1002_qre_3220
crossref_primary_10_1007_s00521_020_05112_1
crossref_primary_10_1016_j_matpr_2022_06_153
crossref_primary_10_1109_ACCESS_2023_3318482
crossref_primary_10_1002_int_22707
crossref_primary_10_1016_j_cie_2022_108361
crossref_primary_10_1016_j_scitotenv_2024_173754
crossref_primary_10_1007_s10661_020_08726_z
crossref_primary_10_1007_s00607_024_01256_3
crossref_primary_10_1007_s40996_020_00552_0
crossref_primary_10_15388_24_INFOR548
crossref_primary_10_1109_ACCESS_2021_3134872
crossref_primary_10_1109_TNNLS_2021_3109565
crossref_primary_10_1080_03772063_2020_1838347
crossref_primary_10_23939_mmc2022_04_921
crossref_primary_10_1016_j_aej_2022_12_045
crossref_primary_10_1155_2022_6709464
crossref_primary_10_1155_2022_9946128
crossref_primary_10_1007_s40098_024_01032_2
crossref_primary_10_1016_j_jclepro_2023_139837
crossref_primary_10_1007_s12065_024_01007_5
crossref_primary_10_1007_s42417_023_01043_y
crossref_primary_10_1007_s10586_024_04605_1
crossref_primary_10_1016_j_knosys_2023_110374
crossref_primary_10_1016_j_mseb_2024_117506
crossref_primary_10_1016_j_cie_2020_107086
crossref_primary_10_1016_j_asoc_2021_107768
crossref_primary_10_1016_j_eswa_2020_113308
crossref_primary_10_1016_j_fuel_2021_121858
crossref_primary_10_1007_s00542_023_05572_0
crossref_primary_10_3390_math10234539
crossref_primary_10_1016_j_oceaneng_2024_117269
crossref_primary_10_1016_j_chaos_2023_113230
crossref_primary_10_1016_j_ins_2021_01_050
crossref_primary_10_1016_j_knosys_2019_07_007
crossref_primary_10_1016_j_jairtraman_2022_102225
crossref_primary_10_1016_j_knosys_2021_107387
crossref_primary_10_3390_eng2040041
crossref_primary_10_1016_j_enconman_2020_113266
crossref_primary_10_1007_s00366_021_01572_8
crossref_primary_10_1016_j_eswa_2021_116026
crossref_primary_10_1016_j_enconman_2020_113301
crossref_primary_10_1007_s10845_020_01723_6
crossref_primary_10_1007_s10462_022_10182_9
crossref_primary_10_3390_en12081435
crossref_primary_10_1016_j_jngse_2021_104232
crossref_primary_10_1016_j_aci_2020_02_001
crossref_primary_10_1016_j_geog_2021_12_005
crossref_primary_10_1109_ACCESS_2023_3266991
crossref_primary_10_1007_s00034_024_02600_w
crossref_primary_10_1007_s00521_019_04009_y
crossref_primary_10_1680_jstbu_22_00083
crossref_primary_10_1016_j_asoc_2024_111581
crossref_primary_10_32604_cmc_2022_019685
crossref_primary_10_17341_gazimmfd_1317413
crossref_primary_10_2139_ssrn_5078527
crossref_primary_10_1016_j_neucom_2023_126898
crossref_primary_10_1002_eng2_70028
crossref_primary_10_3390_su12052027
crossref_primary_10_1038_s41598_023_47679_4
crossref_primary_10_1186_s40537_023_00706_7
crossref_primary_10_29130_dubited_682602
crossref_primary_10_17352_tcsit_000026
crossref_primary_10_1038_s41598_022_15170_1
crossref_primary_10_3390_biomimetics8020191
crossref_primary_10_1016_j_jsv_2025_119069
crossref_primary_10_1061__ASCE_SU_1943_5428_0000368
crossref_primary_10_1177_09544070231169117
crossref_primary_10_1007_s10845_022_01921_4
crossref_primary_10_1016_j_ins_2025_121927
crossref_primary_10_1088_1742_6596_1769_1_012031
crossref_primary_10_22389_0016_7126_2019_954_12_10_19
crossref_primary_10_1016_j_csite_2024_104234
crossref_primary_10_1016_j_energy_2020_118644
crossref_primary_10_3390_biomimetics8030278
crossref_primary_10_1007_s00521_022_07565_y
crossref_primary_10_3390_app12199805
crossref_primary_10_1016_j_rineng_2024_101859
crossref_primary_10_1038_s41598_023_48784_0
crossref_primary_10_1016_j_asoc_2024_112142
crossref_primary_10_1155_2022_6078986
crossref_primary_10_1155_2021_9651957
crossref_primary_10_3390_thermo4040024
crossref_primary_10_1016_j_asoc_2019_106002
crossref_primary_10_1080_09540091_2022_2115011
crossref_primary_10_1007_s12652_021_03304_8
crossref_primary_10_1007_s10586_024_04619_9
crossref_primary_10_1016_j_measurement_2020_107963
crossref_primary_10_1007_s00521_024_09523_2
crossref_primary_10_1080_19942060_2022_2098826
crossref_primary_10_1007_s10489_022_03786_9
crossref_primary_10_1016_j_icheatmasstransfer_2024_108320
crossref_primary_10_1007_s00500_022_07283_6
crossref_primary_10_1016_j_eswa_2024_124333
crossref_primary_10_1049_tje2_12255
crossref_primary_10_1155_2021_8928182
crossref_primary_10_1016_j_geits_2022_100040
crossref_primary_10_1016_j_aej_2021_12_072
crossref_primary_10_1016_j_egyr_2021_10_090
crossref_primary_10_1080_0305215X_2020_1806256
crossref_primary_10_1016_j_trgeo_2024_101235
crossref_primary_10_1007_s10845_021_01872_2
crossref_primary_10_3390_su142215137
crossref_primary_10_1016_j_asoc_2021_107088
crossref_primary_10_1016_j_asoc_2021_107880
crossref_primary_10_3390_polym12102250
crossref_primary_10_1007_s10489_022_03429_z
crossref_primary_10_1016_j_apr_2019_11_019
crossref_primary_10_3390_act11050130
crossref_primary_10_1016_j_oceaneng_2022_112936
crossref_primary_10_1007_s12559_025_10415_3
crossref_primary_10_1016_j_robot_2023_104557
crossref_primary_10_1002_int_22576
crossref_primary_10_1016_j_advengsoft_2022_103185
crossref_primary_10_1007_s00366_020_00951_x
crossref_primary_10_1007_s10462_022_10137_0
crossref_primary_10_1007_s00521_019_04580_4
crossref_primary_10_1109_ACCESS_2022_3157400
crossref_primary_10_1007_s10462_021_10035_x
crossref_primary_10_1007_s40996_020_00578_4
crossref_primary_10_1007_s10489_021_02862_w
crossref_primary_10_1007_s00707_024_04052_4
crossref_primary_10_1007_s11831_022_09721_y
crossref_primary_10_1007_s00366_021_01552_y
crossref_primary_10_1007_s10489_022_04059_1
crossref_primary_10_1007_s12065_020_00547_w
crossref_primary_10_1016_j_scs_2022_103825
crossref_primary_10_3390_e25091255
crossref_primary_10_1007_s00500_024_09883_w
crossref_primary_10_3390_forecast3010014
crossref_primary_10_1016_j_istruc_2020_03_033
crossref_primary_10_1080_0952813X_2020_1735532
crossref_primary_10_1016_j_eswa_2022_119082
crossref_primary_10_1109_LGRS_2024_3398043
crossref_primary_10_1016_j_ast_2022_107745
crossref_primary_10_1038_s41598_024_59960_1
crossref_primary_10_3390_en14185631
crossref_primary_10_1007_s11356_023_28777_2
crossref_primary_10_1080_15376494_2023_2286501
crossref_primary_10_37394_23208_2021_18_17
crossref_primary_10_1016_j_enconman_2020_113751
crossref_primary_10_1021_acs_analchem_4c02656
crossref_primary_10_1016_j_asoc_2021_108031
crossref_primary_10_1016_j_est_2023_109234
crossref_primary_10_1016_j_mex_2023_102152
crossref_primary_10_1038_s41598_024_56995_2
crossref_primary_10_1007_s10462_022_10324_z
crossref_primary_10_1016_j_knosys_2024_112632
crossref_primary_10_3390_biomimetics8060490
crossref_primary_10_1016_j_oceaneng_2022_110859
crossref_primary_10_1007_s12652_020_02439_4
Cites_doi 10.1177/003754970107600201
10.1016/j.ins.2009.03.004
10.1016/j.swevo.2017.05.002
10.1016/j.asoc.2016.02.031
10.1287/ijoc.11.1.15
10.1007/s10589-007-9111-3
10.1016/j.asoc.2009.08.031
10.1016/j.knosys.2009.06.002
10.1016/S0950-7051(01)00171-X
10.1080/01621459.1952.10483441
10.1016/j.knosys.2017.03.001
10.1126/science.220.4598.671
10.1016/j.asoc.2016.07.029
10.1007/s10845-010-0393-4
10.1080/01621459.1937.10503522
10.1016/j.cad.2010.12.015
10.1007/s12205-015-0273-8
10.1016/S0045-7825(99)00389-8
10.1016/j.cma.2006.02.005
10.1023/A:1019972523847
10.1016/j.compstruc.2012.07.010
10.1016/S0045-7949(96)00082-X
10.1007/s10589-007-9016-1
10.1016/j.swevo.2011.05.003
10.1016/j.asoc.2016.05.034
10.1016/j.swevo.2014.06.003
10.1016/j.jocs.2016.01.004
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2018.07.039
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 782
ExternalDocumentID 10_1016_j_asoc_2018_07_039
S1568494618304277
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c348t-4b7a76b1c75676e7549e4d70f8e3c6502562ca25fa27f83969b63bea7b00aa8e3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 22:55:23 EDT 2025
Tue Jul 01 01:50:01 EDT 2025
Tue Jul 16 04:31:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Global optimization
Iterative convergence
Neural network algorithm
Metaheuristics
Artificial neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-4b7a76b1c75676e7549e4d70f8e3c6502562ca25fa27f83969b63bea7b00aa8e3
ORCID 0000-0001-5855-8881
0000-0002-9179-3151
PageCount 36
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2018_07_039
crossref_primary_10_1016_j_asoc_2018_07_039
elsevier_sciencedirect_doi_10_1016_j_asoc_2018_07_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hochberg, Tamhane (bib0195) 1987
Rao, Savsani, Vakharia (bib0170) 2011; 43
Chen, Liu, Zhang, Liang, Suganthan, Qu (bib0200) 2014
Gao, Zhang, Sadollah, Lentzakis, Su (bib0085) 2017; 37
Eskandar, Sadollah, Bahreininejad, Hamdi (bib0160) 2012; 110–111
Kennedy, Eberhart (bib0015) 1995; 4
Holland (bib0025) 1975
Price, Storn, Lampinen (bib0175) 2005
Silva, Lopes, Freitas, Guimaraes (bib0225) 2014
Navalertporn, Afzulpurkar (bib0070) 2011; 1
Topping, Bahreininejad (bib0125) 1997
Goldberg (bib0005) 1989
Kennedy, Eberhart (bib0065) 1997; 5
Li, Feng, Owen (bib0230) 2006; 195
Gao, Zhang, Sadollah, Su (bib0090) 2016; 48
Zurada (bib0115) 1992
Liu, Cai, Wang (bib0205) 2010; 10
Nolle, Goodyear, Hopgood, Picton, Braithwaite (bib0050) 2002; 15
Akay, Karaboga (bib0210) 2012; 23
Montgomery (bib0140) 2005
Topping, Khan, Bahreininejad (bib0130) 1997; 63
Qiu, Chen, Wang, Wong (bib0075) 2014; 18
Hassoun (bib0105) 1995
Tayşi, Göğüş, Özakça (bib0040) 2008; 41
Smith (bib0110) 1999; 11
Cavalieri (bib0135) 1996
Herrera, Lozano, Molina (bib0145) 2009
Yang, Deb (bib0165) 2009
Afshar, Mariño (bib0035) 2007; 37
Hansen, Ostermeier (bib0180) 1996
Naderi, Tavakkoli-Moghaddam, Khalili (bib0055) 2010; 23
Al-Betar, Awadallah, Khader, Bolaji (bib0100) 2016; 47
Friedman (bib0185) 1937; 32
Kruskal (bib0190) 1952; 47
Kirkpatrick, Gelatt, Vecchi (bib0010) 1983; 220
Lim, Yuan, Omatu (bib0030) 2002; 23
Rojas (bib0120) 1996
Yoo, Chung, Sadollah, Kim (bib0045) 2015; 19
Grobelny, Michalski (bib0060) 2017; 124
Ngo, Sadollah, Kim (bib0080) 2016; 13
Atashpaz-Gargari, Lucas (bib0150) 2007
Deb (bib0215) 2000; 186
Ho, Pepyne (bib0220) 2001
Ouaddah, Boughaci (bib0095) 2016; 46
Geem, Kim, Loganathan (bib0020) 2001; 76
Rashedi, Nezamabadi-pour, Saryazdi (bib0155) 2009; 179
Yoo (10.1016/j.asoc.2018.07.039_bib0045) 2015; 19
Nolle (10.1016/j.asoc.2018.07.039_bib0050) 2002; 15
Silva (10.1016/j.asoc.2018.07.039_bib0225) 2014
Lim (10.1016/j.asoc.2018.07.039_bib0030) 2002; 23
Friedman (10.1016/j.asoc.2018.07.039_bib0185) 1937; 32
Ho (10.1016/j.asoc.2018.07.039_bib0220) 2001
Holland (10.1016/j.asoc.2018.07.039_bib0025) 1975
Akay (10.1016/j.asoc.2018.07.039_bib0210) 2012; 23
Montgomery (10.1016/j.asoc.2018.07.039_bib0140) 2005
Yang (10.1016/j.asoc.2018.07.039_bib0165) 2009
Hansen (10.1016/j.asoc.2018.07.039_bib0180) 1996
Tayşi (10.1016/j.asoc.2018.07.039_bib0040) 2008; 41
Deb (10.1016/j.asoc.2018.07.039_bib0215) 2000; 186
Chen (10.1016/j.asoc.2018.07.039_bib0200) 2014
Kennedy (10.1016/j.asoc.2018.07.039_bib0015) 1995; 4
Topping (10.1016/j.asoc.2018.07.039_bib0125) 1997
Kirkpatrick (10.1016/j.asoc.2018.07.039_bib0010) 1983; 220
Kruskal (10.1016/j.asoc.2018.07.039_bib0190) 1952; 47
Smith (10.1016/j.asoc.2018.07.039_bib0110) 1999; 11
Qiu (10.1016/j.asoc.2018.07.039_bib0075) 2014; 18
Atashpaz-Gargari (10.1016/j.asoc.2018.07.039_bib0150) 2007
Price (10.1016/j.asoc.2018.07.039_bib0175) 2005
Cavalieri (10.1016/j.asoc.2018.07.039_bib0135) 1996
Navalertporn (10.1016/j.asoc.2018.07.039_bib0070) 2011; 1
Grobelny (10.1016/j.asoc.2018.07.039_bib0060) 2017; 124
Gao (10.1016/j.asoc.2018.07.039_bib0090) 2016; 48
Rashedi (10.1016/j.asoc.2018.07.039_bib0155) 2009; 179
Rao (10.1016/j.asoc.2018.07.039_bib0170) 2011; 43
Eskandar (10.1016/j.asoc.2018.07.039_bib0160) 2012; 110–111
Liu (10.1016/j.asoc.2018.07.039_bib0205) 2010; 10
Naderi (10.1016/j.asoc.2018.07.039_bib0055) 2010; 23
Kennedy (10.1016/j.asoc.2018.07.039_bib0065) 1997; 5
Goldberg (10.1016/j.asoc.2018.07.039_bib0005) 1989
Afshar (10.1016/j.asoc.2018.07.039_bib0035) 2007; 37
Ngo (10.1016/j.asoc.2018.07.039_bib0080) 2016; 13
Herrera (10.1016/j.asoc.2018.07.039_bib0145) 2009
Topping (10.1016/j.asoc.2018.07.039_bib0130) 1997; 63
Hochberg (10.1016/j.asoc.2018.07.039_bib0195) 1987
Zurada (10.1016/j.asoc.2018.07.039_bib0115) 1992
Al-Betar (10.1016/j.asoc.2018.07.039_bib0100) 2016; 47
Hassoun (10.1016/j.asoc.2018.07.039_bib0105) 1995
Li (10.1016/j.asoc.2018.07.039_bib0230) 2006; 195
Geem (10.1016/j.asoc.2018.07.039_bib0020) 2001; 76
Ouaddah (10.1016/j.asoc.2018.07.039_bib0095) 2016; 46
Rojas (10.1016/j.asoc.2018.07.039_bib0120) 1996
Gao (10.1016/j.asoc.2018.07.039_bib0085) 2017; 37
References_xml – start-page: 4661
  year: 2007
  end-page: 4667
  ident: bib0150
  article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition
  publication-title: IEEE CEC 2007
– start-page: 312
  year: 1996
  end-page: 317
  ident: bib0180
  article-title: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation
  publication-title: Proceedings of the 1996 IEEE CEC
– year: 1996
  ident: bib0120
  article-title: Neural Networks
– volume: 32
  start-page: 675
  year: 1937
  end-page: 701
  ident: bib0185
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: J. Am. Stat. Assoc.
– year: 2005
  ident: bib0140
  article-title: Design and Analysis of Experiments
– year: 2014
  ident: bib0200
  article-title: Problem Definition and Evaluation Criteria for CEC 2015 Special Session and Competition on Bound Constrained Single-Objective Computationally Expensive Numerical Optimization
– volume: 1
  start-page: 97
  year: 2011
  end-page: 109
  ident: bib0070
  article-title: Optimization of tile manufacturing process using particle swarm optimization
  publication-title: Swarm Evol. Comput.
– volume: 47
  start-page: 583
  year: 1952
  end-page: 621
  ident: bib0190
  article-title: Use of ranks in one-criterion variance analysis
  publication-title: J. Am. Stat. Assoc.
– start-page: 1
  year: 2014
  end-page: 8
  ident: bib0225
  article-title: A study on self-configuration in the differential evolution algorithm
  publication-title: 2014 IEEE Symposium on Differential Evolution (SDE)
– volume: 5
  start-page: 4104
  year: 1997
  end-page: 4108
  ident: bib0065
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: IEEE Syst. Man Cybern.
– volume: 18
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib0075
  article-title: Using animal instincts to design efficient biomedical studies via particle swarm optimization
  publication-title: Swarm Evol. Comput.
– volume: 110–111
  start-page: 151
  year: 2012
  end-page: 166
  ident: bib0160
  article-title: Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
– volume: 76
  start-page: 60
  year: 2001
  end-page: 68
  ident: bib0020
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Simulation
– year: 1992
  ident: bib0115
  article-title: Introduction to Artificial Neural Systems
– start-page: 559
  year: 1996
  end-page: 561
  ident: bib0135
  article-title: Enhancing Hopfield neural net capabilities in solving optimization problems
  publication-title: Proceedings of the 1996 World Congress on Neural Networks
– volume: 195
  start-page: 6560
  year: 2006
  end-page: 6576
  ident: bib0230
  article-title: Explicit solution to the stochastic system of linear algebraic equations (
  publication-title: Comput. Method Appl. Mech. Eng.
– volume: 23
  start-page: 77
  year: 2010
  end-page: 85
  ident: bib0055
  article-title: Electromagnetism-like mechanism and simulated annealing algorithms for flowshop scheduling problems minimizing the total weighted tardiness and makespan
  publication-title: Knowl.-Based Syst.
– year: 1989
  ident: bib0005
  article-title: Genetic Algorithms in Search, Optimization and Machine Learning
– volume: 23
  start-page: 47
  year: 2002
  end-page: 64
  ident: bib0030
  article-title: Extensive testing of a hybrid genetic algorithm for solving quadratic assignment problems
  publication-title: Comput. Optim. Appl.
– volume: 124
  start-page: 55
  year: 2017
  end-page: 69
  ident: bib0060
  article-title: A novel version of simulated annealing based on linguistic patterns for solving facility layout problems
  publication-title: Knowl.-Based Syst.
– volume: 13
  start-page: 68
  year: 2016
  end-page: 82
  ident: bib0080
  article-title: A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems
  publication-title: J. Comput. Sci.
– volume: 48
  start-page: 359
  year: 2016
  end-page: 372
  ident: bib0090
  article-title: Optimizing urban traffic light scheduling problem using harmony search with ensemble of local search
  publication-title: Appl. Soft Comput.
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0015
  article-title: Particle swarm optimization
  publication-title: IEEE IJCNN
– volume: 37
  start-page: 58
  year: 2017
  end-page: 72
  ident: bib0085
  article-title: Jaya, harmony search, and water cycle algorithms for solving large-scale real-life urban traffic light scheduling problem
  publication-title: Swarm Evol. Comput.
– year: 2009
  ident: bib0145
  article-title: Test Suite for the Special Issue of Soft Computing on Scalability of Evolutionary Algorithms and Other Metaheuristics for Large Scale Continuous Optimization Problems
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: bib0170
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
– volume: 23
  start-page: 1001
  year: 2012
  end-page: 1014
  ident: bib0210
  article-title: Artificial bee colony algorithm for large-scale problems and engineering design optimization
  publication-title: J. Intell. Manuf.
– year: 1987
  ident: bib0195
  article-title: Multiple Comparison Procedures
– volume: 47
  start-page: 449
  year: 2016
  end-page: 459
  ident: bib0100
  article-title: Tournament-based harmony search algorithm for non-convex economic load dispatch problem
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 15
  year: 1999
  end-page: 34
  ident: bib0110
  article-title: Neural networks for combinatorial optimization: a review on more than a decade of research
  publication-title: Informs J. Comput.
– year: 1975
  ident: bib0025
  article-title: Adaptation in Natural and Artificial Systems
– volume: 10
  start-page: 629
  year: 2010
  end-page: 640
  ident: bib0205
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl. Soft Comput.
– start-page: 210
  year: 2009
  end-page: 214
  ident: bib0165
  article-title: Cuckoo search via Lévy flights
  publication-title: IEEE World Congress on Nature & Biologically Inspired Computing (NaBIC 2009)
– volume: 19
  start-page: 2333
  year: 2015
  end-page: 2344
  ident: bib0045
  article-title: Applications of network analysis and multi-objective genetic algorithm for selecting optimal water quality sensor locations in water distribution networks
  publication-title: KSCE J. Civ. Eng.
– volume: 15
  start-page: 349
  year: 2002
  end-page: 354
  ident: bib0050
  article-title: Automated control of an actively compensated Langmuir probe system using simulated annealing
  publication-title: Knowl.-Based Syst.
– volume: 41
  start-page: 377
  year: 2008
  end-page: 394
  ident: bib0040
  article-title: Optimization of arches using genetic algorithm
  publication-title: Comput. Optim. Appl.
– volume: 63
  start-page: 693
  year: 1997
  end-page: 707
  ident: bib0130
  article-title: Parallel training of neural networks for finite element mesh decomposition
  publication-title: Comput. Struct.
– start-page: 37
  year: 2005
  end-page: 134
  ident: bib0175
  article-title: Differential Evolution: A Practical Approach to Global Optimization
– volume: 46
  start-page: 924
  year: 2016
  end-page: 935
  ident: bib0095
  article-title: Harmony search algorithm for image reconstruction from projections
  publication-title: Appl. Soft Comput.
– volume: 37
  start-page: 83
  year: 2007
  end-page: 102
  ident: bib0035
  article-title: A parameter-free self-adapting boundary genetic search for pipe network optimization
  publication-title: Comput. Optim. Appl.
– year: 1997
  ident: bib0125
  article-title: Neural Computing for Structural Mechanics
– volume: 186
  start-page: 311
  year: 2000
  end-page: 338
  ident: bib0215
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: bib0155
  article-title: GSA: a gravitational search algorithm
  publication-title: Inform. Sci.
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: bib0010
  article-title: Optimization by simulated annealing
  publication-title: Science
– year: 1995
  ident: bib0105
  article-title: Fundamentals of Artificial Neural Networks
– year: 2001
  ident: bib0220
  article-title: Simple explanation of the no free lunch theorem of optimization
  publication-title: Proceedings of the 40th IEEE Decision and Control Conference
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 10.1016/j.asoc.2018.07.039_bib0020
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– year: 2005
  ident: 10.1016/j.asoc.2018.07.039_bib0140
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.asoc.2018.07.039_bib0155
  article-title: GSA: a gravitational search algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 5
  start-page: 4104
  year: 1997
  ident: 10.1016/j.asoc.2018.07.039_bib0065
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: IEEE Syst. Man Cybern.
– volume: 37
  start-page: 58
  year: 2017
  ident: 10.1016/j.asoc.2018.07.039_bib0085
  article-title: Jaya, harmony search, and water cycle algorithms for solving large-scale real-life urban traffic light scheduling problem
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.05.002
– volume: 46
  start-page: 924
  year: 2016
  ident: 10.1016/j.asoc.2018.07.039_bib0095
  article-title: Harmony search algorithm for image reconstruction from projections
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.02.031
– year: 2009
  ident: 10.1016/j.asoc.2018.07.039_bib0145
– year: 2001
  ident: 10.1016/j.asoc.2018.07.039_bib0220
  article-title: Simple explanation of the no free lunch theorem of optimization
– year: 1996
  ident: 10.1016/j.asoc.2018.07.039_bib0120
– volume: 11
  start-page: 15
  year: 1999
  ident: 10.1016/j.asoc.2018.07.039_bib0110
  article-title: Neural networks for combinatorial optimization: a review on more than a decade of research
  publication-title: Informs J. Comput.
  doi: 10.1287/ijoc.11.1.15
– year: 1997
  ident: 10.1016/j.asoc.2018.07.039_bib0125
– volume: 41
  start-page: 377
  issue: 3
  year: 2008
  ident: 10.1016/j.asoc.2018.07.039_bib0040
  article-title: Optimization of arches using genetic algorithm
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9111-3
– year: 2014
  ident: 10.1016/j.asoc.2018.07.039_bib0200
– volume: 10
  start-page: 629
  year: 2010
  ident: 10.1016/j.asoc.2018.07.039_bib0205
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.08.031
– start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2018.07.039_bib0225
  article-title: A study on self-configuration in the differential evolution algorithm
– volume: 23
  start-page: 77
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2018.07.039_bib0055
  article-title: Electromagnetism-like mechanism and simulated annealing algorithms for flowshop scheduling problems minimizing the total weighted tardiness and makespan
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2009.06.002
– start-page: 312
  year: 1996
  ident: 10.1016/j.asoc.2018.07.039_bib0180
  article-title: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation
– volume: 15
  start-page: 349
  issue: 5–6
  year: 2002
  ident: 10.1016/j.asoc.2018.07.039_bib0050
  article-title: Automated control of an actively compensated Langmuir probe system using simulated annealing
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/S0950-7051(01)00171-X
– year: 1975
  ident: 10.1016/j.asoc.2018.07.039_bib0025
– volume: 47
  start-page: 583
  issue: 260
  year: 1952
  ident: 10.1016/j.asoc.2018.07.039_bib0190
  article-title: Use of ranks in one-criterion variance analysis
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1952.10483441
– volume: 124
  start-page: 55
  issue: 15
  year: 2017
  ident: 10.1016/j.asoc.2018.07.039_bib0060
  article-title: A novel version of simulated annealing based on linguistic patterns for solving facility layout problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.03.001
– volume: 220
  start-page: 671
  year: 1983
  ident: 10.1016/j.asoc.2018.07.039_bib0010
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– start-page: 210
  year: 2009
  ident: 10.1016/j.asoc.2018.07.039_bib0165
  article-title: Cuckoo search via Lévy flights
– year: 1995
  ident: 10.1016/j.asoc.2018.07.039_bib0105
– year: 1987
  ident: 10.1016/j.asoc.2018.07.039_bib0195
– year: 1992
  ident: 10.1016/j.asoc.2018.07.039_bib0115
– volume: 48
  start-page: 359
  year: 2016
  ident: 10.1016/j.asoc.2018.07.039_bib0090
  article-title: Optimizing urban traffic light scheduling problem using harmony search with ensemble of local search
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.07.029
– volume: 23
  start-page: 1001
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2018.07.039_bib0210
  article-title: Artificial bee colony algorithm for large-scale problems and engineering design optimization
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-010-0393-4
– volume: 32
  start-page: 675
  issue: 200
  year: 1937
  ident: 10.1016/j.asoc.2018.07.039_bib0185
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1937.10503522
– start-page: 4661
  year: 2007
  ident: 10.1016/j.asoc.2018.07.039_bib0150
  article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.asoc.2018.07.039_bib0170
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– year: 1989
  ident: 10.1016/j.asoc.2018.07.039_bib0005
– volume: 19
  start-page: 2333
  issue: 7
  year: 2015
  ident: 10.1016/j.asoc.2018.07.039_bib0045
  article-title: Applications of network analysis and multi-objective genetic algorithm for selecting optimal water quality sensor locations in water distribution networks
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-015-0273-8
– volume: 186
  start-page: 311
  year: 2000
  ident: 10.1016/j.asoc.2018.07.039_bib0215
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00389-8
– volume: 195
  start-page: 6560
  issue: 44
  year: 2006
  ident: 10.1016/j.asoc.2018.07.039_bib0230
  article-title: Explicit solution to the stochastic system of linear algebraic equations (α1 A1+ α2 A2+⋯+ αm Am) x= b
  publication-title: Comput. Method Appl. Mech. Eng.
  doi: 10.1016/j.cma.2006.02.005
– volume: 23
  start-page: 47
  issue: 1
  year: 2002
  ident: 10.1016/j.asoc.2018.07.039_bib0030
  article-title: Extensive testing of a hybrid genetic algorithm for solving quadratic assignment problems
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1019972523847
– volume: 110–111
  start-page: 151
  year: 2012
  ident: 10.1016/j.asoc.2018.07.039_bib0160
  article-title: Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.07.010
– start-page: 37
  year: 2005
  ident: 10.1016/j.asoc.2018.07.039_bib0175
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2018.07.039_bib0015
  article-title: Particle swarm optimization
– volume: 63
  start-page: 693
  issue: 4
  year: 1997
  ident: 10.1016/j.asoc.2018.07.039_bib0130
  article-title: Parallel training of neural networks for finite element mesh decomposition
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(96)00082-X
– volume: 37
  start-page: 83
  issue: 1
  year: 2007
  ident: 10.1016/j.asoc.2018.07.039_bib0035
  article-title: A parameter-free self-adapting boundary genetic search for pipe network optimization
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9016-1
– volume: 1
  start-page: 97
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2018.07.039_bib0070
  article-title: Optimization of tile manufacturing process using particle swarm optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.05.003
– volume: 47
  start-page: 449
  year: 2016
  ident: 10.1016/j.asoc.2018.07.039_bib0100
  article-title: Tournament-based harmony search algorithm for non-convex economic load dispatch problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.05.034
– start-page: 559
  year: 1996
  ident: 10.1016/j.asoc.2018.07.039_bib0135
  article-title: Enhancing Hopfield neural net capabilities in solving optimization problems
– volume: 18
  start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2018.07.039_bib0075
  article-title: Using animal instincts to design efficient biomedical studies via particle swarm optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2014.06.003
– volume: 13
  start-page: 68
  year: 2016
  ident: 10.1016/j.asoc.2018.07.039_bib0080
  article-title: A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2016.01.004
SSID ssj0016928
Score 2.5975258
Snippet [Display omitted] •A dynamic optimization model Neural Network Algorithm (NNA) is proposed.•NNA is inspired by the structure of ANNs and biological nervous...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 747
SubjectTerms Artificial neural networks
Global optimization
Iterative convergence
Metaheuristics
Neural network algorithm
Title A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm
URI https://dx.doi.org/10.1016/j.asoc.2018.07.039
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YENhebh2AlbVVGVhyoEVOoW2YlDA21StenAwm_nHDsVSKgDWaJYZyk6n8938nf3IXQZhIx73HesgAsGCUpKLBEkqUViyJ5pEsJerwCyQzoYkfuxP26gXl0Lo2CVxvdrn155azPSMdrszLOs8wKZR0BCQsEoFWGEqignhCkrv_5awzwcGlb8qkrYUtKmcEZjvDhoQMG7gqqBpyIM_-tw-nHg9PfQjokUcVf_zD5qyPwA7dYsDNhsykP00cWJppXHM1nyiVzp5su4AG8wM2WWuGK8wVmuLtZlgsUn1u2X1BrhHBxGsVpi3dZ5eYNVy45qvMKIYz59KxZZOZkdoVH_9rU3sAyFghV7JCgtIhhnVDgx8ymjkkE2KEnC7DSQXgzBGQQ8bsxdP-UuSyFWoqGgnpCcwW7kHISOUTMvcnmCMIODXnjgHmySkhCWMUjgkT53bSFS22shp9ZdFJv-4ormYhrVQLL3SOk7UvqObBaBvlvoaj1nrrtrbJT26yWJftlIBO5_w7zTf847Q9vqS0P3zlGzXKzkBYQgpWhXNtZGW93e8-OTet89DIbf9jffVg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PbCh0LRx7IStqqgKlC60UjfLThwaaNOqTQcWfjvn2KlAQgxkdM5SdPad75Tn9xC6DkImPOE3nEBIBg1KQhwZxIlDIuieaRxCrBcA2T7tDsnjyB9VULu8C6NhlTb3m5xeZGs7UrferM_TtP4CnUdAQkJhU2rBCLaBNgmEr5YxuP1c4zwaNCwEVrW1o83tzRkD8hLgAo3vCgoGT60Y_tvp9O3E6eyhHVsq4pb5mn1UUdkB2i1lGLCNykP03sKx0ZXHU5WLsVoZ9mU8g3QwtfcscSF5g9NM_1lXMZYf2PAv6UXCGWSM2WqJDa_z8g5rzo5ivACJYzF5nS3SfDw9QsPO_aDddayGghN5JMgdIplgVDYi5lNGFYN2UJGYuUmgvAiqM6h4mpFo-olosgSKJRpK6kklGISjEGB0jKrZLFMnCDM46aUH-cElCQlhHYMYHuWLpitl4no11Ch9xyNLMK51Lia8RJK9ce1vrv3NXcbB3zV0s54zN_Qaf1r75ZLwH5uEQ_7_Y97pP-ddoa3u4LnHew_9pzO0rd8YHN85quaLlbqAeiSXl8V--wIurt9P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+metaheuristic+optimization+model+inspired+by+biological+nervous+systems%3A+Neural+network+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Sadollah%2C+Ali&rft.au=Sayyaadi%2C+Hassan&rft.au=Yadav%2C+Anupam&rft.date=2018-10-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=71&rft.spage=747&rft.epage=782&rft_id=info:doi/10.1016%2Fj.asoc.2018.07.039&rft.externalDocID=S1568494618304277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon