Polar magneto-optical Kerr effect spectroscopy with a microscope arrangement for studies on 2D materials

We describe a setup for magneto-optical Kerr effect (MOKE) spectroscopy suitable for Kerr rotation (ϕ) and ellipticity (η) measurement on microscopic samples, such as flakes of two-dimensional materials. A spatial resolution of ∼25 μm, limited by the demagnified monochromator exit slit image, was ac...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 95; no. 8
Main Authors Das, Dibyasankar, Ghosh, Sandip
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We describe a setup for magneto-optical Kerr effect (MOKE) spectroscopy suitable for Kerr rotation (ϕ) and ellipticity (η) measurement on microscopic samples, such as flakes of two-dimensional materials. A spatial resolution of ∼25 μm, limited by the demagnified monochromator exit slit image, was achieved. The use of mirrors allows for measurement in polar MOKE geometry with a conventional electro-magnet, without requiring holes in the magnet pole pieces. The microscope-like optics also has a 90° twisted periscope arrangement of two mirrors that helps transport light without change in its circular polarization state. A Jones matrix analysis of the setup brings out the influence of the beam-splitter on the measured signals. Its correction requires the ellipsometry parameters of the beam-splitter in transmission mode, which were measured separately. The working of the setup is tested by measuring the ϕ and η spectra of 2H-WS2 flakes at low temperature, verifying them using Kramers–Kronig analysis and extracting the Landé g-factor of the ground state exciton from them.
AbstractList We describe a setup for magneto-optical Kerr effect (MOKE) spectroscopy suitable for Kerr rotation (ϕ) and ellipticity (η) measurement on microscopic samples, such as flakes of two-dimensional materials. A spatial resolution of ∼25μm, limited by the demagnified monochromator exit slit image, was achieved. The use of mirrors allows for measurement in polar MOKE geometry with a conventional electro-magnet, without requiring holes in the magnet pole pieces. The microscope-like optics also has a 90° twisted periscope arrangement of two mirrors that helps transport light without change in its circular polarization state. A Jones matrix analysis of the setup brings out the influence of the beam-splitter on the measured signals. Its correction requires the ellipsometry parameters of the beam-splitter in transmission mode, which were measured separately. The working of the setup is tested by measuring the ϕ and η spectra of 2H-WS2 flakes at low temperature, verifying them using Kramers-Kronig analysis and extracting the Landé g-factor of the ground state exciton from them.We describe a setup for magneto-optical Kerr effect (MOKE) spectroscopy suitable for Kerr rotation (ϕ) and ellipticity (η) measurement on microscopic samples, such as flakes of two-dimensional materials. A spatial resolution of ∼25μm, limited by the demagnified monochromator exit slit image, was achieved. The use of mirrors allows for measurement in polar MOKE geometry with a conventional electro-magnet, without requiring holes in the magnet pole pieces. The microscope-like optics also has a 90° twisted periscope arrangement of two mirrors that helps transport light without change in its circular polarization state. A Jones matrix analysis of the setup brings out the influence of the beam-splitter on the measured signals. Its correction requires the ellipsometry parameters of the beam-splitter in transmission mode, which were measured separately. The working of the setup is tested by measuring the ϕ and η spectra of 2H-WS2 flakes at low temperature, verifying them using Kramers-Kronig analysis and extracting the Landé g-factor of the ground state exciton from them.
We describe a setup for magneto-optical Kerr effect (MOKE) spectroscopy suitable for Kerr rotation (ϕ) and ellipticity (η) measurement on microscopic samples, such as flakes of two-dimensional materials. A spatial resolution of ∼25μm, limited by the demagnified monochromator exit slit image, was achieved. The use of mirrors allows for measurement in polar MOKE geometry with a conventional electro-magnet, without requiring holes in the magnet pole pieces. The microscope-like optics also has a 90° twisted periscope arrangement of two mirrors that helps transport light without change in its circular polarization state. A Jones matrix analysis of the setup brings out the influence of the beam-splitter on the measured signals. Its correction requires the ellipsometry parameters of the beam-splitter in transmission mode, which were measured separately. The working of the setup is tested by measuring the ϕ and η spectra of 2H-WS2 flakes at low temperature, verifying them using Kramers-Kronig analysis and extracting the Landé g-factor of the ground state exciton from them.
We describe a setup for magneto-optical Kerr effect (MOKE) spectroscopy suitable for Kerr rotation (ϕ) and ellipticity (η) measurement on microscopic samples, such as flakes of two-dimensional materials. A spatial resolution of ∼25 μm, limited by the demagnified monochromator exit slit image, was achieved. The use of mirrors allows for measurement in polar MOKE geometry with a conventional electro-magnet, without requiring holes in the magnet pole pieces. The microscope-like optics also has a 90° twisted periscope arrangement of two mirrors that helps transport light without change in its circular polarization state. A Jones matrix analysis of the setup brings out the influence of the beam-splitter on the measured signals. Its correction requires the ellipsometry parameters of the beam-splitter in transmission mode, which were measured separately. The working of the setup is tested by measuring the ϕ and η spectra of 2H-WS2 flakes at low temperature, verifying them using Kramers–Kronig analysis and extracting the Landé g-factor of the ground state exciton from them.
Author Ghosh, Sandip
Das, Dibyasankar
Author_xml – sequence: 1
  givenname: Dibyasankar
  surname: Das
  fullname: Das, Dibyasankar
  organization: Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
– sequence: 2
  givenname: Sandip
  surname: Ghosh
  fullname: Ghosh, Sandip
  organization: Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39145695$$D View this record in MEDLINE/PubMed
BookMark eNp90c9LHDEUB_BQlLpue-g_IIFeVJg1yZvMj2PZ2ioK7cH7kMm-aGQmmSYZiv-92e7ag4g55EH4vC_hvWNy4LxDQr5wtuKsggu5YoK1IOADWXDWtEVdCTggC8agLKq6bI7IcYyPLB_J-UdyBC0vZdXKBXn47QcV6KjuHSZf-ClZrQZ6gyFQNAZ1onHKd_BR--mJ_rXpgSo6Wr17QapCUO4eR3SJGh9oTPPGYqTeUfE9BycMVg3xEzk0ueDnfV2Sux-Xd-ur4vbXz-v1t9tCQ9mkoqwNghEghTC90rqRJdeas1KJXuq2lwC8ESB6qJhU3Kie9bCpDCL0DathSU53sVPwf2aMqRtt1DgMyqGfYwd5TryWUshMv76ij34OLn_unxLZtNvAk72a-xE33RTsqMJT9zLCDM52YDuRGND8J5x12_V0stuvJ9uLV1bbpJL1LgVlhzc7zncd8UW-E_8MrtKdkQ
CODEN RSINAK
CitedBy_id crossref_primary_10_1103_PhysRevB_110_115201
Cites_doi 10.1063/1.1618012
10.1134/s0020441223040036
10.1103/physrevb.97.045211
10.1143/jjap.20.2403
10.1063/1.1729738
10.1002/smtd.202200885
10.1063/1.1310169
10.3389/fphy.2022.946515
10.1088/0022-3727/48/33/333001
10.1063/1.3518949
10.1063/1.344600
10.1063/1.4808302
10.1364/josab.11.000854
10.1038/s41598-018-23951-w
10.1088/1361-648x/ac5c20
10.1063/1.2245213
10.1063/5.0088610
10.1364/ao.10.002499
10.1063/1.4729572
10.1063/1.3669782
10.1063/1.4770126
10.1103/physrevlett.121.057402
ContentType Journal Article
Copyright Author(s)
2024 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/5.0209323
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1089-7623
ExternalDocumentID 39145695
10_1063_5_0209323
rsi
Genre Journal Article
GrantInformation_xml – fundername: Department of Atomic Energy, Government of India
  grantid: RTI 4003
  funderid: https://doi.org/10.13039/501100001502
GroupedDBID ---
-DZ
-~X
.DC
123
2-P
29P
4.4
53G
5RE
5VS
85S
A9.
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABFTF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CS3
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
L7B
M43
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TAE
TN5
VQA
WH7
XSW
YNT
YZZ
~02
AAGWI
AAYXX
ABJGX
CITATION
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c348t-47fe3f23522fbacc8541cc104a2b5c9b53318232b3605a1fab0b3d6fee3b8073
ISSN 0034-6748
1089-7623
IngestDate Fri Jul 11 07:07:55 EDT 2025
Mon Jun 30 17:00:41 EDT 2025
Mon Jul 21 06:06:27 EDT 2025
Thu Apr 24 23:04:54 EDT 2025
Tue Jul 01 02:58:17 EDT 2025
Sat Aug 17 03:54:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Published under an exclusive license by AIP Publishing.
2024 Author(s). Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-47fe3f23522fbacc8541cc104a2b5c9b53318232b3605a1fab0b3d6fee3b8073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3338-6945
0009-0001-3687-1989
PMID 39145695
PQID 3093252597
PQPubID 2050675
PageCount 6
ParticipantIDs proquest_miscellaneous_3093175525
crossref_primary_10_1063_5_0209323
pubmed_primary_39145695
proquest_journals_3093252597
crossref_citationtrail_10_1063_5_0209323
scitation_primary_10_1063_5_0209323
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240801
2024-08-01
2024-Aug-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 20240801
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle Review of scientific instruments
PublicationTitleAlternate Rev Sci Instrum
PublicationYear 2024
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Legare, Chardonnet, Bermúdez Macias, Hennes, Delaunay, Lassonde, Légaré, Lambert, Jal, Vodungbo (c8) 2022; 93
Vavassori (c11) 2000; 77
Fymat (c17) 1971; 10
Will, Ding, Xua (c3) 2012; 83
Jindal, Bhuyan, Deilmann, Ghosh (c20) 2018; 97
Tsai, Chen, Wu, Chan, Pai (c7) 2018; 8
Kielar (c22) 1994; 11
Hajjar, Zhou, Mansuripur (c10) 1990; 67
Dove (c18) 1963; 34
Sato, Ishibashi (c1) 2022; 10
Arora, Mandal, Chakrabarti, Ghosh (c4) 2013; 113
Formisano, Dubrovin, Pisarev, Kalashnikova, Kimel (c19) 2022; 34
Arora, Ghosh (c14) 2010; 81
Zhu, Zhao, Zhou, Xia, You, Zhang, Li, Wang, Ni, Chen (c6) 2003; 74
Arora, Ghosh, Sugunakar (c13) 2011; 82
McCord (c5) 2015; 48
Henn, Kiessling, Ossau, Molenkamp, Biermann, Santos (c12) 2013; 83
Markin, Kun’kova (c21) 2023; 66
Nagler, Ballottin, Mitioglu, Durnev, Taniguchi, Watanabe, Chernikov, Schüller, Glazov, Christianen, Korn (c24) 2018; 121
Sato (c2) 1981; 20
Chen, Ye, Xu, Wang, Yang (c23) 2006; 89
Carey, Wessling, Steeger, Klusmann, Schneider, Fix, Schmidt, Albrecht, de Vasconcellos, Bratschitsch, Arora (c9) 2022; 101
(2024081512370294800_c13) 2011; 82
(2024081512370294800_c2) 1981; 20
(2024081512370294800_c25) 2005
(2024081512370294800_c23) 2006; 89
(2024081512370294800_c12) 2013; 83
(2024081512370294800_c17) 1971; 10
(2024081512370294800_c3) 2012; 83
(2024081512370294800_c15) 1998
(2024081512370294800_c5) 2015; 48
(2024081512370294800_c19) 2022; 34
(2024081512370294800_c6) 2003; 74
(2024081512370294800_c18) 1963; 34
(2024081512370294800_c20) 2018; 97
(2024081512370294800_c16) 1977
(2024081512370294800_c24) 2018; 121
(2024081512370294800_c4) 2013; 113
(2024081512370294800_c14) 2010; 81
(2024081512370294800_c9) 2022; 101
(2024081512370294800_c11) 2000; 77
(2024081512370294800_c7) 2018; 8
(2024081512370294800_c22) 1994; 11
(2024081512370294800_c21) 2023; 66
(2024081512370294800_c8) 2022; 93
(2024081512370294800_c1) 2022; 10
(2024081512370294800_c10) 1990; 67
References_xml – volume: 67
  start-page: 5328
  year: 1990
  ident: c10
  publication-title: J. Appl. Phys.
– volume: 34
  start-page: 2067
  year: 1963
  ident: c18
  publication-title: J. Appl. Phys.
– volume: 34
  start-page: 225801
  year: 2022
  ident: c19
  publication-title: J. Phys.: Condens.Matter
– volume: 66
  start-page: 961
  year: 2023
  ident: c21
  publication-title: Instrum. Exp. Tech.
– volume: 101
  start-page: 2200885
  year: 2022
  ident: c9
  publication-title: Small Method.
– volume: 83
  start-page: 123903
  year: 2013
  ident: c12
  publication-title: Rev. Sci. Instrum.
– volume: 48
  start-page: 333001
  year: 2015
  ident: c5
  publication-title: J. Phys. D: Appl. Phys.
– volume: 89
  start-page: 051903
  year: 2006
  ident: c23
  publication-title: Appl. Phys. Lett.
– volume: 113
  start-page: 213505
  year: 2013
  ident: c4
  publication-title: J. Appl. Phys.
– volume: 82
  start-page: 123903
  year: 2011
  ident: c13
  publication-title: Rev. Sci. Instrum.
– volume: 74
  start-page: 4718
  year: 2003
  ident: c6
  publication-title: Rev. Sci. Instrum.
– volume: 97
  start-page: 045211
  year: 2018
  ident: c20
  publication-title: Phys. Rev. B
– volume: 121
  start-page: 057402
  year: 2018
  ident: c24
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 854
  year: 1994
  ident: c22
  publication-title: J. Opt. Soc. Am. B
– volume: 20
  start-page: 2403
  year: 1981
  ident: c2
  publication-title: Jpn. J. Appl. Phys.
– volume: 93
  start-page: 073001
  year: 2022
  ident: c8
  publication-title: Rev. Sci. Instrum.
– volume: 81
  start-page: 123102
  year: 2010
  ident: c14
  publication-title: Rev. Sci. Instrum.
– volume: 77
  start-page: 1605
  year: 2000
  ident: c11
  publication-title: Appl. Phys. Lett.
– volume: 83
  start-page: 064707
  year: 2012
  ident: c3
  publication-title: Rev. Sci. Instrum.
– volume: 8
  start-page: 5613
  year: 2018
  ident: c7
  publication-title: Sci. Rep.
– volume: 10
  start-page: 2499
  year: 1971
  ident: c17
  publication-title: Appl. Opt.
– volume: 10
  start-page: 946515
  year: 2022
  ident: c1
  publication-title: Front. Phys.
– volume: 74
  start-page: 4718
  year: 2003
  ident: 2024081512370294800_c6
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1618012
– volume-title: Optics
  year: 1998
  ident: 2024081512370294800_c15
– volume: 66
  start-page: 961
  year: 2023
  ident: 2024081512370294800_c21
  publication-title: Instrum. Exp. Tech.
  doi: 10.1134/s0020441223040036
– volume: 97
  start-page: 045211
  year: 2018
  ident: 2024081512370294800_c20
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.97.045211
– volume: 20
  start-page: 2403
  year: 1981
  ident: 2024081512370294800_c2
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/jjap.20.2403
– volume: 34
  start-page: 2067
  year: 1963
  ident: 2024081512370294800_c18
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1729738
– volume-title: Semiconductor Optics
  year: 2005
  ident: 2024081512370294800_c25
– volume: 101
  start-page: 2200885
  year: 2022
  ident: 2024081512370294800_c9
  publication-title: Small Method.
  doi: 10.1002/smtd.202200885
– volume: 77
  start-page: 1605
  year: 2000
  ident: 2024081512370294800_c11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1310169
– volume-title: Ellipsometry and Polarized Light
  year: 1977
  ident: 2024081512370294800_c16
– volume: 10
  start-page: 946515
  year: 2022
  ident: 2024081512370294800_c1
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2022.946515
– volume: 48
  start-page: 333001
  year: 2015
  ident: 2024081512370294800_c5
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/48/33/333001
– volume: 81
  start-page: 123102
  year: 2010
  ident: 2024081512370294800_c14
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3518949
– volume: 67
  start-page: 5328
  year: 1990
  ident: 2024081512370294800_c10
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.344600
– volume: 113
  start-page: 213505
  year: 2013
  ident: 2024081512370294800_c4
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4808302
– volume: 11
  start-page: 854
  year: 1994
  ident: 2024081512370294800_c22
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/josab.11.000854
– volume: 8
  start-page: 5613
  year: 2018
  ident: 2024081512370294800_c7
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-23951-w
– volume: 34
  start-page: 225801
  year: 2022
  ident: 2024081512370294800_c19
  publication-title: J. Phys.: Condens.Matter
  doi: 10.1088/1361-648x/ac5c20
– volume: 89
  start-page: 051903
  year: 2006
  ident: 2024081512370294800_c23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2245213
– volume: 93
  start-page: 073001
  year: 2022
  ident: 2024081512370294800_c8
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/5.0088610
– volume: 10
  start-page: 2499
  year: 1971
  ident: 2024081512370294800_c17
  publication-title: Appl. Opt.
  doi: 10.1364/ao.10.002499
– volume: 83
  start-page: 064707
  year: 2012
  ident: 2024081512370294800_c3
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4729572
– volume: 82
  start-page: 123903
  year: 2011
  ident: 2024081512370294800_c13
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3669782
– volume: 83
  start-page: 123903
  year: 2013
  ident: 2024081512370294800_c12
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4770126
– volume: 121
  start-page: 057402
  year: 2018
  ident: 2024081512370294800_c24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.121.057402
SSID ssj0000511
Score 2.450347
Snippet We describe a setup for magneto-optical Kerr effect (MOKE) spectroscopy suitable for Kerr rotation (ϕ) and ellipticity (η) measurement on microscopic samples,...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Circular polarization
Ellipsometry
Ellipticity
Excitons
Flakes
Kerr magnetooptical effect
Low temperature
Matrix methods
Spatial resolution
Spectrum analysis
Two dimensional materials
Title Polar magneto-optical Kerr effect spectroscopy with a microscope arrangement for studies on 2D materials
URI http://dx.doi.org/10.1063/5.0209323
https://www.ncbi.nlm.nih.gov/pubmed/39145695
https://www.proquest.com/docview/3093252597
https://www.proquest.com/docview/3093175525
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAcEOW5UJB5HIpWKY3t7CbHigUqoAjBIvUW2YnDImiy2oRD-fXMxI4T2kUqXKJV4s3D83k8nz0PgGdaUVKtAkkOJW6VYaKCRHITRDPFNQ4uE7bJdI4-TA-_yLfH0XFfbbSNLmn0XvZrY1zJ_0gVz6FcKUr2HyTrb4on8DfKF48oYTxeSMYfiZdOTtTX0jRVUK3suvQ7s147P41JG0hJCSur1amLY5uckA9eG40yUes1BRe0DgHkb1hbr0LaQeBzvHFjv2JowX7ysS42lpJcjcijvaEsDC4vlF36tgb6N32qalV-V94L-M2yqpd2NbrMrQt1t-7Apfd687pUyIBKldiZxKrP_TgJUL2KoX61RTQdjuKNahvtJOzraA9tV7QnRT83dfvxZ6Ys70jYbqFPRRql7q-XYYsjYeAj2DqYH73_3M_KUWirJ7q37rJMTcUL_9w_bZNzhOMaXMGetR4SAyNkcQOuO_bADiwUtuGSKW_CttPPNdt1ScSf34Jliw12BhuMsMEsNtgQG4ywwRTrscEG2GCIDeawwaqS8Tnz2LgNi9evFi8PA1dVI8iEjJtAzgojCk6Gd6FVlsWRDLMMWTkOzihLNNr_yDkF1wKZrgoLpfe1yKeFMULHOCHcgVFZleYesFhr7E1kZyanNJNC50kuM4kW8ox4rxrDbtedaddvVPjkR3pObGN44puubJqVTY12OpmkbhTWKe3k8whJ_GwMj_1l1JG08aVKU_20bdBMxlZjuGtl6Z8ikhA5RIJXnnrh_v0V7l_kPR_A1X7A7MAIB6B5iKZrox85VP4G2L6YZg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polar+magneto-optical+Kerr+effect+spectroscopy+with+a+microscope+arrangement+for+studies+on+2D+materials&rft.jtitle=Review+of+scientific+instruments&rft.au=Das%2C+Dibyasankar&rft.au=Ghosh%2C+Sandip&rft.date=2024-08-01&rft.issn=0034-6748&rft.eissn=1089-7623&rft.volume=95&rft.issue=8&rft_id=info:doi/10.1063%2F5.0209323&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0209323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon