A graph-matching approach for cross-view registration of over-view and street-view based point clouds
Wide-area 3D data generation for complex urban environments often needs to leverage a mixed use of data collected from both air and ground platforms, such as from aerial surveys, satellite, and mobile vehicles. On one hand, such kind of data with information from drastically different views (ca. 90°...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 185; pp. 2 - 15 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wide-area 3D data generation for complex urban environments often needs to leverage a mixed use of data collected from both air and ground platforms, such as from aerial surveys, satellite, and mobile vehicles. On one hand, such kind of data with information from drastically different views (ca. 90° and more) forming cross-view data, which due to very limited overlapping region caused by the drastically different line of sight of the sensors, is difficult to be registered without significant manual efforts. On the other hand, the registration of such data often suffers from non-rigid distortion of the street-view data (e.g., non-rigid trajectory drift), which cannot be simply rectified by a similarity transformation. In this paper, based on the assumption that the object boundaries (e.g., buildings) from the over-view data should coincide with footprints of façade 3D points generated from street-view photogrammetric images, we aim to address this problem by proposing a fully automated geo-registration method for cross-view data, which utilizes semantically segmented object boundaries as view-invariant features under a global optimization framework through graph-matching: taking the over-view point clouds generated from stereo/multi-stereo satellite images and the street-view point clouds generated from monocular video images as the inputs, the proposed method models segments of buildings as nodes of graphs, both detected from the satellite-based and street-view based point clouds, thus to form the registration as a graph-matching problem to allow non-rigid matches; to enable a robust solution and fully utilize the topological relations between these segments, we propose to address the graph-matching problem on its conjugate graph solved through a belief-propagation algorithm. The matched nodes will be subject to a further optimization to allow precise-registration, followed by a constrained bundle adjustment on the street-view image to keep 2D-3D consistencies, which yields well-registered street-view images and point clouds to the satellite point clouds. Our proposed method assumes no or little prior pose information (e.g. very sparse locations from consumer-grade GPS (global positioning system)) for the street-view data and has been applied to a large cross-view dataset with significant scale difference containing 0.5 m GSD (Ground Sampling Distance) satellite data and 0.005 m GSD street-view data, 1.5 km in length involving 12 GB of data. The experiment shows that the proposed method has achieved promising results (1.27 m accuracy in 3D), evaluated using collected LiDAR point clouds. Furthermore, we included additional experiments to demonstrate that this method can be generalized to process different types of over-view and street-view data sources, e.g., the open street view maps and the semantic labeling maps. Codes will be made available through Github Repository.1https://github.com/GDAOSU/graph-matching-based-crossview-registration.1 |
---|---|
AbstractList | Wide-area 3D data generation for complex urban environments often needs to leverage a mixed use of data collected from both air and ground platforms, such as from aerial surveys, satellite, and mobile vehicles. On one hand, such kind of data with information from drastically different views (ca. 90° and more) forming cross-view data, which due to very limited overlapping region caused by the drastically different line of sight of the sensors, is difficult to be registered without significant manual efforts. On the other hand, the registration of such data often suffers from non-rigid distortion of the street-view data (e.g., non-rigid trajectory drift), which cannot be simply rectified by a similarity transformation. In this paper, based on the assumption that the object boundaries (e.g., buildings) from the over-view data should coincide with footprints of façade 3D points generated from street-view photogrammetric images, we aim to address this problem by proposing a fully automated geo-registration method for cross-view data, which utilizes semantically segmented object boundaries as view-invariant features under a global optimization framework through graph-matching: taking the over-view point clouds generated from stereo/multi-stereo satellite images and the street-view point clouds generated from monocular video images as the inputs, the proposed method models segments of buildings as nodes of graphs, both detected from the satellite-based and street-view based point clouds, thus to form the registration as a graph-matching problem to allow non-rigid matches; to enable a robust solution and fully utilize the topological relations between these segments, we propose to address the graph-matching problem on its conjugate graph solved through a belief-propagation algorithm. The matched nodes will be subject to a further optimization to allow precise-registration, followed by a constrained bundle adjustment on the street-view image to keep 2D-3D consistencies, which yields well-registered street-view images and point clouds to the satellite point clouds. Our proposed method assumes no or little prior pose information (e.g. very sparse locations from consumer-grade GPS (global positioning system)) for the street-view data and has been applied to a large cross-view dataset with significant scale difference containing 0.5 m GSD (Ground Sampling Distance) satellite data and 0.005 m GSD street-view data, 1.5 km in length involving 12 GB of data. The experiment shows that the proposed method has achieved promising results (1.27 m accuracy in 3D), evaluated using collected LiDAR point clouds. Furthermore, we included additional experiments to demonstrate that this method can be generalized to process different types of over-view and street-view data sources, e.g., the open street view maps and the semantic labeling maps. Codes will be made available through Github Repository.1https://github.com/GDAOSU/graph-matching-based-crossview-registration. Wide-area 3D data generation for complex urban environments often needs to leverage a mixed use of data collected from both air and ground platforms, such as from aerial surveys, satellite, and mobile vehicles. On one hand, such kind of data with information from drastically different views (ca. 90° and more) forming cross-view data, which due to very limited overlapping region caused by the drastically different line of sight of the sensors, is difficult to be registered without significant manual efforts. On the other hand, the registration of such data often suffers from non-rigid distortion of the street-view data (e.g., non-rigid trajectory drift), which cannot be simply rectified by a similarity transformation. In this paper, based on the assumption that the object boundaries (e.g., buildings) from the over-view data should coincide with footprints of façade 3D points generated from street-view photogrammetric images, we aim to address this problem by proposing a fully automated geo-registration method for cross-view data, which utilizes semantically segmented object boundaries as view-invariant features under a global optimization framework through graph-matching: taking the over-view point clouds generated from stereo/multi-stereo satellite images and the street-view point clouds generated from monocular video images as the inputs, the proposed method models segments of buildings as nodes of graphs, both detected from the satellite-based and street-view based point clouds, thus to form the registration as a graph-matching problem to allow non-rigid matches; to enable a robust solution and fully utilize the topological relations between these segments, we propose to address the graph-matching problem on its conjugate graph solved through a belief-propagation algorithm. The matched nodes will be subject to a further optimization to allow precise-registration, followed by a constrained bundle adjustment on the street-view image to keep 2D-3D consistencies, which yields well-registered street-view images and point clouds to the satellite point clouds. Our proposed method assumes no or little prior pose information (e.g. very sparse locations from consumer-grade GPS (global positioning system)) for the street-view data and has been applied to a large cross-view dataset with significant scale difference containing 0.5 m GSD (Ground Sampling Distance) satellite data and 0.005 m GSD street-view data, 1.5 km in length involving 12 GB of data. The experiment shows that the proposed method has achieved promising results (1.27 m accuracy in 3D), evaluated using collected LiDAR point clouds. Furthermore, we included additional experiments to demonstrate that this method can be generalized to process different types of over-view and street-view data sources, e.g., the open street view maps and the semantic labeling maps. Codes will be made available through Github Repository.1https://github.com/GDAOSU/graph-matching-based-crossview-registration.1 |
Author | Qin, Rongjun Ling, Xiao |
Author_xml | – sequence: 1 givenname: Xiao surname: Ling fullname: Ling, Xiao organization: Geospatial Data Analytics Laboratory, The Ohio State University, 218B Bolz Hall, 2036 Neil Avenue, Columbus, OH 43210, USA – sequence: 2 givenname: Rongjun surname: Qin fullname: Qin, Rongjun email: qin.324@osu.edu organization: Geospatial Data Analytics Laboratory, The Ohio State University, 218B Bolz Hall, 2036 Neil Avenue, Columbus, OH 43210, USA |
BookMark | eNqNkE1LxDAQhoOs4O7qbzBHL635aNP24GFZ_IIFL95Dmk52s3SbmmQV_73RigcvyjAMw8z7wvss0GxwAyB0SUlOCRXX-9yG0Yd96pwRRnPKckL5CZrTumJZzXg5Q3PSsCJjFRVnaBHCnhBCS1HPEazw1qtxlx1U1Ds7bLEaR--U3mHjPNbehZC9WnjDHrY2RK-idQN2BrtX8NNFDR1OF4A47a0K0OHR2SFi3btjF87RqVF9gIvvuUTPd7fP64ds83T_uF5tMs2LOmYFU41oCaTimpatqSsNwnSClaShXUEqboioCZim4Iq0JdWNbpkh0DENnC_R1WSbErwcIUR5sEFD36sB3DFIJrgoG16WIr3eTK9fCT0YqW38ypYi2l5SIj_pyr38oSs_6UrKZKKb9NUv_ejtQfn3fyhXkxISiMTLy6AtDBo660FH2Tn7p8cHwuue1Q |
CitedBy_id | crossref_primary_10_1016_j_isprsjprs_2022_03_018 crossref_primary_10_1016_j_inffus_2024_102601 crossref_primary_10_1016_j_jag_2022_103081 crossref_primary_10_1111_phor_12455 crossref_primary_10_21833_ijaas_2023_11_022 crossref_primary_10_1016_j_srs_2024_100194 crossref_primary_10_3390_rs15225302 crossref_primary_10_1016_j_neucom_2023_126383 crossref_primary_10_1002_adfm_202212455 crossref_primary_10_1016_j_isprsjprs_2022_08_010 |
Cites_doi | 10.3390/s18051641 10.1109/CVPR.2014.11 10.1109/CVPR46437.2021.00642 10.1109/ICCVW.2009.5457506 10.1109/CVPR.2017.440 10.1016/j.isprsjprs.2014.07.007 10.1109/TRO.2017.2705103 10.1109/CVPR42600.2020.00094 10.1016/S0034-4257(97)00104-1 10.1016/S1077-3142(03)00026-2 10.1109/ICCV.2019.00905 10.5194/isprsannals-III-1-77-2016 10.3390/rs12091400 10.1023/B:VISI.0000029664.99615.94 10.1111/cgf.13751 10.1145/1322432.1322434 10.1109/TIP.2010.2044963 10.1109/34.765655 10.1016/j.isprsjprs.2015.08.006 10.1111/j.1467-8659.2011.02023.x 10.1109/TPAMI.2010.46 10.1109/CVPR.2017.216 10.5194/isprs-archives-XLII-2-W5-591-2017 10.1109/CVPR.2017.29 10.1137/080732730 10.1007/s00371-011-0610-y 10.1145/3306346.3323037 10.1109/TPAMI.2015.2513405 10.1109/TPAMI.2021.3054619 10.1109/TPAMI.2004.1262177 10.14358/PERS.80.9.873 10.5194/isprs-archives-XLII-2-W9-181-2019 10.3390/s150407985 10.1016/j.isprsjprs.2019.06.005 10.1109/CVPR.2018.00758 10.1109/TPAMI.2010.223 10.1109/83.217222 10.1111/j.1467-8659.2008.01162.x 10.1109/TPAMI.2007.1166 10.1007/BF01427149 10.1007/BFb0028368 10.1109/TGRS.2016.2639025 10.1109/CVPR42600.2020.00768 10.1109/TPAMI.2013.50 10.1016/j.isprsjprs.2014.02.013 10.1109/JSTARS.2011.2168195 10.1016/j.isprsjprs.2005.02.006 |
ContentType | Journal Article |
Copyright | 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2021.12.013 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 15 |
ExternalDocumentID | 10_1016_j_isprsjprs_2021_12_013 S0924271622000065 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c348t-42a96b0e0e03c15bf87ce6fd625091d4073f0680ef943a0b51c9cb2f0ed2ce33 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Fri Jul 11 02:28:02 EDT 2025 Thu Apr 24 22:52:25 EDT 2025 Tue Jul 01 03:46:47 EDT 2025 Fri Feb 23 02:39:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cross-view registration Multi-view satellite image Global optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-42a96b0e0e03c15bf87ce6fd625091d4073f0680ef943a0b51c9cb2f0ed2ce33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2636593556 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2636593556 crossref_citationtrail_10_1016_j_isprsjprs_2021_12_013 crossref_primary_10_1016_j_isprsjprs_2021_12_013 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2021_12_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hu, S., Feng, M., Nguyen, R.M., Lee, G.H., 2018. Cvm-net: Cross-view matching network for image-based ground-to-aerial geo-localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7258–7267. Qin (b0255) 2014; 96 Muja, Lowe (b0220) 2014 Bengio, Courville, Vincent (b0020) 2013; 35 Qin, R., Fang, W., 2014. A hierarchical building detection method for very high resolution remotely sensed images combined with DSM using graph cut optimization. Photogrammetric Engineering & Remote Sensing 80, 873–883. Publisher: American Society for Photogrammetry and Remote Sensing. DigitalGlobe, 2020. Maxar – Archive Search & Discovery. Papazov, C., Burschka, D., 2011. Deformable 3D shape registration based on local similarity transforms. In: Computer Graphics Forum, Wiley Online Library, Issue: 5. pp. 1493–1502. Vaca-Castano, Zamir, Shah (b0355) 2012 Qin (b0275) 2019; 154 Regmi, Borji (b0300) 2018 Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T., 2017. 3dmatch: learning local geometric descriptors from rgb-d reconstructions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1802–1811. Carlson, Ripley (b0040) 1997; 62 Girardeau-Montaut, D., 2020. CloudCompare - Open Source Project. Rusinkiewicz (b0315) 2019; 38 Lu, X., Li, Z., Cui, Z., Oswald, M.R., Pollefeys, M., Qin, R., 2020. Geometry-aware satellite-to-ground image synthesis for urban areas. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 859–867. Zhai, M., Bessinger, Z., Workman, S., Jacobs, N., 2017. Predicting ground-level scene layout from aerial imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 867–875. Morel, Yu (b0210) 2009; 2 Colomina, Molina (b0075) 2014; 92 Breuel (b0030) 2003; 90 Cheng, Fu (b0065) 2020 Lin, Wang, Chen, Zai, Li (b0180) 2017; 55 Gruen, A., Akca, D., 2005. Least squares 3D surface and curve matching. ISPRS J. Photogram. Rem. Sens. 59, 151–174 (Publisher: Elsevier). Mur-Artal, Tardos (b0225) 2017; 33 Huang, Zhang (b0140) 2012; 5 Sipiran, Bustos (b0330) 2011; 27 Castellani, Cristani, Fantoni, Murino (b0050) 2008; 27 Fabbri, Costa, Torelli, Bruno (b0095) 2008; 40 Rabbani, Van Den Heuvel, Vosselmann (b0295) 2006; 36 . Johnson, A.E., Hebert, M., 1999. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intelli. 21, 433–449. Publisher: IEEE. Ma, Wu, Zhao, Jiang, Zhou, Sheng (b0200) 2018 Anguelov, Taskarf, Chatalbashev, Koller, Gupta, Heitz, Ng (b0010) 2005 Thompson, Eller, Radlinski, Speert (b0340) 1966; vol. 1 Mourikis, Roumeliotis (b0215) 2007 Cheng, L., Chen, S., Liu, X., Xu, H., Wu, Y., Li, M., Chen, Y., 2018. Registration of laser scanning point clouds: a review. Sensors 18, 1641 (Multidisciplinary Digital Publishing Institute). Jian, Vemuri (b0150) 2011; 33 Shan, Wu, Curless, Furukawa, Hernandez, Seitz (b0325) 2014 Tian, Y., Chen, C., Shah, M., 2017. Cross-view image matching for geo-localization in urban environments. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3608–3616. Castaldo, Zamir, Angst, Palmieri, Savarese (b0045) 2015 Liu, Li (b0185) 2019 Kolmogorov, Zabih (b0160) 2004; 26 Qin, R., 2016. Rpc stereo processor (RSP)–a software package for digital surface model and orthophoto generation from satellite stereo imagery. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 3, 77. Publisher: Copernicus GmbH. Hana, X.F., Jin, J.S., Xie, J., Wang, M.J., Jiang, W., 2018. A comprehensive review of 3D point cloud descriptors. arXiv preprint arXiv:1802.02297 2. Yang, Li, Campbell, Jia (b0375) 2016; 38 Toker, A., Zhou, Q., Maximov, M., Leal-Taixé, L., 2021. Coming Down to Earth: Satellite-to-Street View Synthesis for Geo-Localization. arXiv preprint arXiv:2103.06818. Agarwal, S., Mierle, K., 2012. Ceres solver: Tutorial & reference. Google Inc 2, 9. Coughlan, Ferreira (b0080) 2002 Zhang (b0395) 1994; 13 Besl, McKay (b0025) 1992 Bruno, N., Roncella, R., 2019. Accuracy assessment of 3d models generated from google street view imagery. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. Heinly, Schönberger, Dunn, Frahm (b0125) 2015 Wu, C., 2014. Critical configurations for radial distortion self-calibration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 25–32. Cernea, D., 2015. Openmvs: Open multiple view stereovision. OpenStreetMap, 2021. OpenStreetMap: a map of the world. Belongie, Malik, Puzicha (b0015) 2000 Guo, M., Liu, H., Xu, Y., Huang, Y., 2020. Building extraction based on U-Net with an attention block and multiple losses. Rem. Sens. 12, 1400 (Publisher: Multidisciplinary Digital Publishing Institute). Lee, T., 2009. Robust 3D street-view reconstruction using sky motion estimation. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, IEEE. pp. 1840–1847. Li, S.Z., 1994. Markov random field models in computer vision. In: European Conference on Computer Vision, Springer. pp. 361–370. Myronenko, Song (b0230) 2010; 32 Nobre, Kasper, Heckman (b0235) 2017 Vincent, L., 1993. Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Transactions on Image Processing, vol. 2, IEEE, pp. 176–201. Qin, R., 2017. Automated 3D recovery from very high resolution multi-view images Overview of 3D recovery from multi-view satellite images. In: ASPRS Conference (IGTF) 2017, pp. 12–16. Stechschulte, Ahmed, Heckman (b0335) 2019 Hirschmuller (b0130) 2008; 30 Marin, Melzi, Rodolà, Castellani (b0205) 2020; 39 Yang, Zang, Dong, Huang (b0370) 2015; 109 Choy, C., Park, J., Koltun, V., 2019. Fully convolutional geometric features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8958–8966. Rusu, Cousins (b0320) 2011 Remondino, F., Nocerino, E., Toschi, I., Menna, F., 2017. A critical review of automated photogrammetric processing of large datasets. Int. Arch. Photogram. Rem. Sens. Spat. Inform. Sci. 42, 591–599. Dall’Asta, E., Thoeni, K., Santise, M., Forlani, G., Giacomini, A., Roncella, R., 2015. Network design and quality checks in automatic orientation of close-range photogrammetric blocks. Sensors 15, 7985–8008. Publisher: Multidisciplinary Digital Publishing Institute. Zhang, J., Yao, Y., Deng, B., 2021. Fast and Robust Iterative Closest Point. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1. Lowe (b0190) 2004; 60 Huang, Z., Yu, Y., Xu, J., Ni, F., Le, X., 2020. PF-Net: point fractal network for 3D point cloud completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7662–7670. Qin, Huang, Liu, Xiao (b0285) 2019 Qin, Huang, Liu, Xiao (b0290) 2019 Pomerleau, Colas, Siegwart (b0250) 2013; 4 Grana, Borghesani, Cucchiara (b0105) 2010; 19 10.1016/j.isprsjprs.2021.12.013_b0135 10.1016/j.isprsjprs.2021.12.013_b0175 10.1016/j.isprsjprs.2021.12.013_b0055 Colomina (10.1016/j.isprsjprs.2021.12.013_b0075) 2014; 92 Lin (10.1016/j.isprsjprs.2021.12.013_b0180) 2017; 55 Nobre (10.1016/j.isprsjprs.2021.12.013_b0235) 2017 Qin (10.1016/j.isprsjprs.2021.12.013_b0255) 2014; 96 Fabbri (10.1016/j.isprsjprs.2021.12.013_b0095) 2008; 40 10.1016/j.isprsjprs.2021.12.013_b0090 Heinly (10.1016/j.isprsjprs.2021.12.013_b0125) 2015 Morel (10.1016/j.isprsjprs.2021.12.013_b0210) 2009; 2 Qin (10.1016/j.isprsjprs.2021.12.013_b0285) 2019 Rusu (10.1016/j.isprsjprs.2021.12.013_b0320) 2011 Sipiran (10.1016/j.isprsjprs.2021.12.013_b0330) 2011; 27 Coughlan (10.1016/j.isprsjprs.2021.12.013_b0080) 2002 Rusinkiewicz (10.1016/j.isprsjprs.2021.12.013_b0315) 2019; 38 Yang (10.1016/j.isprsjprs.2021.12.013_b0370) 2015; 109 Thompson (10.1016/j.isprsjprs.2021.12.013_b0340) 1966; vol. 1 Marin (10.1016/j.isprsjprs.2021.12.013_b0205) 2020; 39 Stechschulte (10.1016/j.isprsjprs.2021.12.013_b0335) 2019 Ma (10.1016/j.isprsjprs.2021.12.013_b0200) 2018 Jian (10.1016/j.isprsjprs.2021.12.013_b0150) 2011; 33 10.1016/j.isprsjprs.2021.12.013_b0345 10.1016/j.isprsjprs.2021.12.013_b0385 10.1016/j.isprsjprs.2021.12.013_b0100 10.1016/j.isprsjprs.2021.12.013_b0145 10.1016/j.isprsjprs.2021.12.013_b0380 10.1016/j.isprsjprs.2021.12.013_b0260 Castellani (10.1016/j.isprsjprs.2021.12.013_b0050) 2008; 27 10.1016/j.isprsjprs.2021.12.013_b0060 Breuel (10.1016/j.isprsjprs.2021.12.013_b0030) 2003; 90 Mourikis (10.1016/j.isprsjprs.2021.12.013_b0215) 2007 Muja (10.1016/j.isprsjprs.2021.12.013_b0220) 2014 Mur-Artal (10.1016/j.isprsjprs.2021.12.013_b0225) 2017; 33 Belongie (10.1016/j.isprsjprs.2021.12.013_b0015) 2000 Myronenko (10.1016/j.isprsjprs.2021.12.013_b0230) 2010; 32 Zhang (10.1016/j.isprsjprs.2021.12.013_b0395) 1994; 13 Huang (10.1016/j.isprsjprs.2021.12.013_b0140) 2012; 5 10.1016/j.isprsjprs.2021.12.013_b0115 10.1016/j.isprsjprs.2021.12.013_b0110 10.1016/j.isprsjprs.2021.12.013_b0155 Anguelov (10.1016/j.isprsjprs.2021.12.013_b0010) 2005 10.1016/j.isprsjprs.2021.12.013_b0035 Cheng (10.1016/j.isprsjprs.2021.12.013_b0065) 2020 Pomerleau (10.1016/j.isprsjprs.2021.12.013_b0250) 2013; 4 10.1016/j.isprsjprs.2021.12.013_b0270 10.1016/j.isprsjprs.2021.12.013_b0195 Qin (10.1016/j.isprsjprs.2021.12.013_b0290) 2019 10.1016/j.isprsjprs.2021.12.013_b0350 Carlson (10.1016/j.isprsjprs.2021.12.013_b0040) 1997; 62 10.1016/j.isprsjprs.2021.12.013_b0070 Yang (10.1016/j.isprsjprs.2021.12.013_b0375) 2016; 38 10.1016/j.isprsjprs.2021.12.013_b0390 Vaca-Castano (10.1016/j.isprsjprs.2021.12.013_b0355) 2012 Besl (10.1016/j.isprsjprs.2021.12.013_b0025) 1992 10.1016/j.isprsjprs.2021.12.013_b0305 10.1016/j.isprsjprs.2021.12.013_b0245 10.1016/j.isprsjprs.2021.12.013_b0005 Bengio (10.1016/j.isprsjprs.2021.12.013_b0020) 2013; 35 Hirschmuller (10.1016/j.isprsjprs.2021.12.013_b0130) 2008; 30 10.1016/j.isprsjprs.2021.12.013_b0120 10.1016/j.isprsjprs.2021.12.013_b0165 10.1016/j.isprsjprs.2021.12.013_b0365 10.1016/j.isprsjprs.2021.12.013_b0085 Grana (10.1016/j.isprsjprs.2021.12.013_b0105) 2010; 19 10.1016/j.isprsjprs.2021.12.013_b0360 10.1016/j.isprsjprs.2021.12.013_b0240 Lowe (10.1016/j.isprsjprs.2021.12.013_b0190) 2004; 60 Kolmogorov (10.1016/j.isprsjprs.2021.12.013_b0160) 2004; 26 10.1016/j.isprsjprs.2021.12.013_b0280 Rabbani (10.1016/j.isprsjprs.2021.12.013_b0295) 2006; 36 Liu (10.1016/j.isprsjprs.2021.12.013_b0185) 2019 Regmi (10.1016/j.isprsjprs.2021.12.013_b0300) 2018 Qin (10.1016/j.isprsjprs.2021.12.013_b0275) 2019; 154 Castaldo (10.1016/j.isprsjprs.2021.12.013_b0045) 2015 Shan (10.1016/j.isprsjprs.2021.12.013_b0325) 2014 |
References_xml | – volume: 39 start-page: 160 year: 2020 end-page: 173 ident: b0205 article-title: FARM: functional automatic registration method for 3D human bodies publication-title: Comput. Graph. Forum – reference: Toker, A., Zhou, Q., Maximov, M., Leal-Taixé, L., 2021. Coming Down to Earth: Satellite-to-Street View Synthesis for Geo-Localization. arXiv preprint arXiv:2103.06818. – reference: Vincent, L., 1993. Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Transactions on Image Processing, vol. 2, IEEE, pp. 176–201. – volume: 27 start-page: 963 year: 2011 end-page: 976 ident: b0330 article-title: Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes publication-title: Vis Comput – start-page: 3287 year: 2015 end-page: 3295 ident: b0125 article-title: Reconstructing the world* in six days publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 169 year: 2005 end-page: 176 ident: b0010 article-title: Discriminative learning of Markov random fields for segmentation of 3d scan data publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: Hu, S., Feng, M., Nguyen, R.M., Lee, G.H., 2018. Cvm-net: Cross-view matching network for image-based ground-to-aerial geo-localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7258–7267. – reference: Huang, Z., Yu, Y., Xu, J., Ni, F., Le, X., 2020. PF-Net: point fractal network for 3D point cloud completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7662–7670. – volume: 2 start-page: 438 year: 2009 end-page: 469 ident: b0210 article-title: ASIFT: a new framework for fully affine invariant image comparison publication-title: SIAM J. Imag. Sci. – reference: Qin, R., 2017. Automated 3D recovery from very high resolution multi-view images Overview of 3D recovery from multi-view satellite images. In: ASPRS Conference (IGTF) 2017, pp. 12–16. – start-page: 3501 year: 2018 end-page: 3510 ident: b0300 article-title: Cross-view image synthesis using conditional gans publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: Cernea, D., 2015. Openmvs: Open multiple view stereovision. < – start-page: 525 year: 2014 end-page: 532 ident: b0325 article-title: Accurate geo-registration by ground-to-aerial image matching publication-title: 2014 2nd International Conference on 3D Vision – reference: Zhang, J., Yao, Y., Deng, B., 2021. Fast and Robust Iterative Closest Point. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1. – start-page: 2227 year: 2014 end-page: 2240 ident: b0220 article-title: Scalable nearest neighbor algorithms for high dimensional data publication-title: IEEE Transactions on Pattern analysis and Machine Intelligence – start-page: 831 year: 2000 end-page: 837 ident: b0015 article-title: Shape context: a new descriptor for shape matching and object recognition publication-title: Advances in Neural Information Processing Systems – start-page: 3584 year: 2018 end-page: 3597 ident: b0200 article-title: Nonrigid point set registration with robust transformation learning under manifold regularization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 27 start-page: 643 year: 2008 end-page: 652 ident: b0050 article-title: Sparse points matching by combining 3D mesh saliency with statistical descriptors publication-title: Comput. Graph. Forum – reference: Gruen, A., Akca, D., 2005. Least squares 3D surface and curve matching. ISPRS J. Photogram. Rem. Sens. 59, 151–174 (Publisher: Elsevier). – volume: 60 start-page: 91 year: 2004 end-page: 110 ident: b0190 article-title: Distinctive Image Features from Scale-Invariant Keypoints publication-title: Int. J. Comput. Vis. – reference: Zhai, M., Bessinger, Z., Workman, S., Jacobs, N., 2017. Predicting ground-level scene layout from aerial imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 867–875. – volume: 30 start-page: 328 year: 2008 end-page: 341 ident: b0130 article-title: Stereo processing by semiglobal matching and mutual information publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 586 year: 1992 end-page: 606 ident: b0025 article-title: Method for registration of 3-D shapes publication-title: Sensor Fusion IV: Control Paradigms and Data Structures, International Society for Optics and Photonics – volume: 55 start-page: 4839 year: 2017 end-page: 4854 ident: b0180 article-title: Facet segmentation-based line segment extraction for large-scale point clouds publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 109 start-page: 62 year: 2015 end-page: 76 ident: b0370 article-title: An automated method to register airborne and terrestrial laser scanning point clouds publication-title: ISPRS J. Photogram. Rem. Sens. – start-page: 9 year: 2015 end-page: 17 ident: b0045 article-title: Semantic cross-view matching publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops – reference: Qin, R., Fang, W., 2014. A hierarchical building detection method for very high resolution remotely sensed images combined with DSM using graph cut optimization. Photogrammetric Engineering & Remote Sensing 80, 873–883. Publisher: American Society for Photogrammetry and Remote Sensing. – reference: Tian, Y., Chen, C., Shah, M., 2017. Cross-view image matching for geo-localization in urban environments. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3608–3616. – volume: 36 start-page: 248 year: 2006 end-page: 253 ident: b0295 article-title: Segmentation of point clouds using smoothness constraint publication-title: Int. Arch. Photogram. Rem. Sens. Spat. Inform. Sci. – volume: 4 start-page: 1 year: 2013 end-page: 104 ident: b0250 article-title: A review of point cloud registration algorithms for mobile robotics publication-title: Found. Trends Robot. – volume: 13 start-page: 119 year: 1994 end-page: 152 ident: b0395 article-title: Iterative point matching for registration of free-form curves and surfaces publication-title: Int. J. Comput. Vis. – reference: Johnson, A.E., Hebert, M., 1999. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intelli. 21, 433–449. Publisher: IEEE. – volume: 40 start-page: 1 year: 2008 end-page: 44 ident: b0095 article-title: 2D Euclidean distance transform algorithms: a comparative survey publication-title: ACM Comput. Surv. – start-page: 1186 year: 2012 end-page: 1193 ident: b0355 article-title: City scale geo-spatial trajectory estimation of a moving camera publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: Bruno, N., Roncella, R., 2019. Accuracy assessment of 3d models generated from google street view imagery. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. – volume: 26 start-page: 147 year: 2004 end-page: 159 ident: b0160 article-title: What energy functions can be minimized via graph cuts? publication-title: IEEE Trans. Pattern Anal. Machine Intell. – volume: 19 start-page: 1596 year: 2010 end-page: 1609 ident: b0105 article-title: Optimized block-based connected components labeling with decision trees publication-title: IEEE Trans. Image Process. – start-page: 6525 year: 2017 end-page: 6532 ident: b0235 article-title: Drift-correcting self-calibration for visual-inertial SLAM publication-title: IEEE International Conference on Robotics and Automation – reference: Li, S.Z., 1994. Markov random field models in computer vision. In: European Conference on Computer Vision, Springer. pp. 361–370. – volume: vol. 1 year: 1966 ident: b0340 publication-title: Manual of photogrammetry – reference: Papazov, C., Burschka, D., 2011. Deformable 3D shape registration based on local similarity transforms. In: Computer Graphics Forum, Wiley Online Library, Issue: 5. pp. 1493–1502. – start-page: 6750 year: 2020 end-page: 6753 ident: b0065 article-title: Remote sensing image segmentation method based on HRNET publication-title: IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium – volume: 32 start-page: 2262 year: 2010 end-page: 2275 ident: b0230 article-title: Point set registration: coherent point drift publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Girardeau-Montaut, D., 2020. CloudCompare - Open Source Project. < – start-page: 7143 year: 2019 end-page: 7149 ident: b0335 article-title: Robust low-overlap 3-D point cloud registration for outlier rejection publication-title: IEEE International Conference on Robotics and Automation – volume: 154 start-page: 139 year: 2019 end-page: 150 ident: b0275 article-title: A critical analysis of satellite stereo pairs for digital surface model generation and a matching quality prediction model publication-title: ISPRS J. Photogram. Rem. Sens. – volume: 96 start-page: 179 year: 2014 end-page: 192 ident: b0255 article-title: Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery publication-title: ISPRS J. Photogram. Rem. Sens. – reference: Remondino, F., Nocerino, E., Toschi, I., Menna, F., 2017. A critical review of automated photogrammetric processing of large datasets. Int. Arch. Photogram. Rem. Sens. Spat. Inform. Sci. 42, 591–599. – start-page: 3565 year: 2007 end-page: 3572 ident: b0215 article-title: A multi-state constraint Kalman filter for vision-aided inertial navigation publication-title: Proceedings 2007 IEEE International Conference on Robotics and Automation – reference: Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T., 2017. 3dmatch: learning local geometric descriptors from rgb-d reconstructions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1802–1811. – reference: Choy, C., Park, J., Koltun, V., 2019. Fully convolutional geometric features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8958–8966. – start-page: 5057 year: 2019 end-page: 5060 ident: b0290 article-title: Semantic 3D reconstruction using multi-view high-resolution satellite images based on U-net and image-guided depth fusion publication-title: IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium – volume: 38 start-page: 2241 year: 2016 end-page: 2254 ident: b0375 article-title: Go-ICP: a globally optimal solution to 3D ICP point-set registration publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Cheng, L., Chen, S., Liu, X., Xu, H., Wu, Y., Li, M., Chen, Y., 2018. Registration of laser scanning point clouds: a review. Sensors 18, 1641 (Multidisciplinary Digital Publishing Institute). – volume: 92 start-page: 79 year: 2014 end-page: 97 ident: b0075 article-title: Unmanned aerial systems for photogrammetry and remote sensing: a review publication-title: ISPRS J. Photogram. Rem. Sens. – start-page: 453 year: 2002 end-page: 468 ident: b0080 article-title: Finding deformable shapes using loopy belief propagation publication-title: European Conference on Computer Vision – reference: >. – reference: OpenStreetMap, 2021. OpenStreetMap: a map of the world. < – volume: 5 start-page: 161 year: 2012 end-page: 172 ident: b0140 article-title: Morphological building/shadow index for building extraction from high-resolution imagery over urban areas publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. – reference: Wu, C., 2014. Critical configurations for radial distortion self-calibration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 25–32. – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: b0020 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 62 start-page: 241 year: 1997 end-page: 252 ident: b0040 article-title: On the relation between NDVI, fractional vegetation cover, and leaf area index publication-title: Remote Sens. Environ. – reference: Hana, X.F., Jin, J.S., Xie, J., Wang, M.J., Jiang, W., 2018. A comprehensive review of 3D point cloud descriptors. arXiv preprint arXiv:1802.02297 2. – reference: DigitalGlobe, 2020. Maxar – Archive Search & Discovery. < – reference: Lee, T., 2009. Robust 3D street-view reconstruction using sky motion estimation. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, IEEE. pp. 1840–1847. – reference: Dall’Asta, E., Thoeni, K., Santise, M., Forlani, G., Giacomini, A., Roncella, R., 2015. Network design and quality checks in automatic orientation of close-range photogrammetric blocks. Sensors 15, 7985–8008. Publisher: Multidisciplinary Digital Publishing Institute. – reference: Qin, R., 2016. Rpc stereo processor (RSP)–a software package for digital surface model and orthophoto generation from satellite stereo imagery. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 3, 77. Publisher: Copernicus GmbH. – reference: Agarwal, S., Mierle, K., 2012. Ceres solver: Tutorial & reference. Google Inc 2, 9. – volume: 90 start-page: 258 year: 2003 end-page: 294 ident: b0030 article-title: Implementation techniques for geometric branch-and-bound matching methods publication-title: Comput. Vis. Image Understand. – reference: Lu, X., Li, Z., Cui, Z., Oswald, M.R., Pollefeys, M., Qin, R., 2020. Geometry-aware satellite-to-ground image synthesis for urban areas. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 859–867. – start-page: 5624 year: 2019 end-page: 5633 ident: b0185 article-title: Lending orientation to neural networks for cross-view geo-localization publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: Guo, M., Liu, H., Xu, Y., Huang, Y., 2020. Building extraction based on U-Net with an attention block and multiple losses. Rem. Sens. 12, 1400 (Publisher: Multidisciplinary Digital Publishing Institute). – start-page: 4971 year: 2019 end-page: 4974 ident: b0285 article-title: Pairwise stereo image disparity and semantics estimation with the combination of u-net and pyramid stereo matching network publication-title: IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium – start-page: 1 year: 2011 end-page: 4 ident: b0320 article-title: 3d is here: Point cloud library (pcl) publication-title: 2011 IEEE international conference on robotics and automation – volume: 33 start-page: 1633 year: 2011 end-page: 1645 ident: b0150 article-title: Robust point set registration using gaussian mixture models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 33 start-page: 1255 year: 2017 end-page: 1262 ident: b0225 article-title: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D Cameras publication-title: IEEE Trans. Robot. – volume: 38 start-page: 1 year: 2019 end-page: 7 ident: b0315 article-title: A symmetric objective function for ICP publication-title: ACM Trans. Graph. – ident: 10.1016/j.isprsjprs.2021.12.013_b0060 doi: 10.3390/s18051641 – ident: 10.1016/j.isprsjprs.2021.12.013_b0365 doi: 10.1109/CVPR.2014.11 – ident: 10.1016/j.isprsjprs.2021.12.013_b0350 doi: 10.1109/CVPR46437.2021.00642 – start-page: 3287 year: 2015 ident: 10.1016/j.isprsjprs.2021.12.013_b0125 article-title: Reconstructing the world* in six days – start-page: 1 year: 2011 ident: 10.1016/j.isprsjprs.2021.12.013_b0320 article-title: 3d is here: Point cloud library (pcl) – ident: 10.1016/j.isprsjprs.2021.12.013_b0270 – ident: 10.1016/j.isprsjprs.2021.12.013_b0165 doi: 10.1109/ICCVW.2009.5457506 – ident: 10.1016/j.isprsjprs.2021.12.013_b0385 doi: 10.1109/CVPR.2017.440 – volume: 96 start-page: 179 year: 2014 ident: 10.1016/j.isprsjprs.2021.12.013_b0255 article-title: Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery publication-title: ISPRS J. Photogram. Rem. Sens. doi: 10.1016/j.isprsjprs.2014.07.007 – volume: 33 start-page: 1255 issue: 5 year: 2017 ident: 10.1016/j.isprsjprs.2021.12.013_b0225 article-title: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D Cameras publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2017.2705103 – volume: 4 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.isprsjprs.2021.12.013_b0250 article-title: A review of point cloud registration algorithms for mobile robotics publication-title: Found. Trends Robot. – ident: 10.1016/j.isprsjprs.2021.12.013_b0195 doi: 10.1109/CVPR42600.2020.00094 – volume: 62 start-page: 241 issue: 3 year: 1997 ident: 10.1016/j.isprsjprs.2021.12.013_b0040 article-title: On the relation between NDVI, fractional vegetation cover, and leaf area index publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00104-1 – volume: 90 start-page: 258 issue: 3 year: 2003 ident: 10.1016/j.isprsjprs.2021.12.013_b0030 article-title: Implementation techniques for geometric branch-and-bound matching methods publication-title: Comput. Vis. Image Understand. doi: 10.1016/S1077-3142(03)00026-2 – ident: 10.1016/j.isprsjprs.2021.12.013_b0070 doi: 10.1109/ICCV.2019.00905 – volume: vol. 1 year: 1966 ident: 10.1016/j.isprsjprs.2021.12.013_b0340 – ident: 10.1016/j.isprsjprs.2021.12.013_b0260 doi: 10.5194/isprsannals-III-1-77-2016 – ident: 10.1016/j.isprsjprs.2021.12.013_b0055 – start-page: 3565 year: 2007 ident: 10.1016/j.isprsjprs.2021.12.013_b0215 article-title: A multi-state constraint Kalman filter for vision-aided inertial navigation – start-page: 525 year: 2014 ident: 10.1016/j.isprsjprs.2021.12.013_b0325 article-title: Accurate geo-registration by ground-to-aerial image matching – ident: 10.1016/j.isprsjprs.2021.12.013_b0115 doi: 10.3390/rs12091400 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 10.1016/j.isprsjprs.2021.12.013_b0190 article-title: Distinctive Image Features from Scale-Invariant Keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 39 start-page: 160 issue: 1 year: 2020 ident: 10.1016/j.isprsjprs.2021.12.013_b0205 article-title: FARM: functional automatic registration method for 3D human bodies publication-title: Comput. Graph. Forum doi: 10.1111/cgf.13751 – volume: 40 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.isprsjprs.2021.12.013_b0095 article-title: 2D Euclidean distance transform algorithms: a comparative survey publication-title: ACM Comput. Surv. doi: 10.1145/1322432.1322434 – volume: 19 start-page: 1596 issue: 6 year: 2010 ident: 10.1016/j.isprsjprs.2021.12.013_b0105 article-title: Optimized block-based connected components labeling with decision trees publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2044963 – ident: 10.1016/j.isprsjprs.2021.12.013_b0155 doi: 10.1109/34.765655 – start-page: 5624 year: 2019 ident: 10.1016/j.isprsjprs.2021.12.013_b0185 article-title: Lending orientation to neural networks for cross-view geo-localization – volume: 109 start-page: 62 year: 2015 ident: 10.1016/j.isprsjprs.2021.12.013_b0370 article-title: An automated method to register airborne and terrestrial laser scanning point clouds publication-title: ISPRS J. Photogram. Rem. Sens. doi: 10.1016/j.isprsjprs.2015.08.006 – ident: 10.1016/j.isprsjprs.2021.12.013_b0245 doi: 10.1111/j.1467-8659.2011.02023.x – volume: 36 start-page: 248 year: 2006 ident: 10.1016/j.isprsjprs.2021.12.013_b0295 article-title: Segmentation of point clouds using smoothness constraint publication-title: Int. Arch. Photogram. Rem. Sens. Spat. Inform. Sci. – volume: 32 start-page: 2262 issue: 12 year: 2010 ident: 10.1016/j.isprsjprs.2021.12.013_b0230 article-title: Point set registration: coherent point drift publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.46 – ident: 10.1016/j.isprsjprs.2021.12.013_b0345 doi: 10.1109/CVPR.2017.216 – start-page: 3584 year: 2018 ident: 10.1016/j.isprsjprs.2021.12.013_b0200 article-title: Nonrigid point set registration with robust transformation learning under manifold regularization – start-page: 6525 year: 2017 ident: 10.1016/j.isprsjprs.2021.12.013_b0235 article-title: Drift-correcting self-calibration for visual-inertial SLAM – start-page: 7143 year: 2019 ident: 10.1016/j.isprsjprs.2021.12.013_b0335 article-title: Robust low-overlap 3-D point cloud registration for outlier rejection – start-page: 5057 year: 2019 ident: 10.1016/j.isprsjprs.2021.12.013_b0290 article-title: Semantic 3D reconstruction using multi-view high-resolution satellite images based on U-net and image-guided depth fusion – ident: 10.1016/j.isprsjprs.2021.12.013_b0305 doi: 10.5194/isprs-archives-XLII-2-W5-591-2017 – start-page: 831 year: 2000 ident: 10.1016/j.isprsjprs.2021.12.013_b0015 article-title: Shape context: a new descriptor for shape matching and object recognition – ident: 10.1016/j.isprsjprs.2021.12.013_b0090 – ident: 10.1016/j.isprsjprs.2021.12.013_b0380 doi: 10.1109/CVPR.2017.29 – volume: 2 start-page: 438 issue: 2 year: 2009 ident: 10.1016/j.isprsjprs.2021.12.013_b0210 article-title: ASIFT: a new framework for fully affine invariant image comparison publication-title: SIAM J. Imag. Sci. doi: 10.1137/080732730 – start-page: 2227 year: 2014 ident: 10.1016/j.isprsjprs.2021.12.013_b0220 article-title: Scalable nearest neighbor algorithms for high dimensional data – start-page: 1186 year: 2012 ident: 10.1016/j.isprsjprs.2021.12.013_b0355 article-title: City scale geo-spatial trajectory estimation of a moving camera – start-page: 453 year: 2002 ident: 10.1016/j.isprsjprs.2021.12.013_b0080 article-title: Finding deformable shapes using loopy belief propagation – volume: 27 start-page: 963 issue: 11 year: 2011 ident: 10.1016/j.isprsjprs.2021.12.013_b0330 article-title: Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes publication-title: Vis Comput doi: 10.1007/s00371-011-0610-y – start-page: 169 year: 2005 ident: 10.1016/j.isprsjprs.2021.12.013_b0010 article-title: Discriminative learning of Markov random fields for segmentation of 3d scan data – volume: 38 start-page: 1 issue: 4 year: 2019 ident: 10.1016/j.isprsjprs.2021.12.013_b0315 article-title: A symmetric objective function for ICP publication-title: ACM Trans. Graph. doi: 10.1145/3306346.3323037 – volume: 38 start-page: 2241 issue: 11 year: 2016 ident: 10.1016/j.isprsjprs.2021.12.013_b0375 article-title: Go-ICP: a globally optimal solution to 3D ICP point-set registration publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2513405 – ident: 10.1016/j.isprsjprs.2021.12.013_b0120 – start-page: 3501 year: 2018 ident: 10.1016/j.isprsjprs.2021.12.013_b0300 article-title: Cross-view image synthesis using conditional gans – ident: 10.1016/j.isprsjprs.2021.12.013_b0390 doi: 10.1109/TPAMI.2021.3054619 – volume: 26 start-page: 147 issue: 2 year: 2004 ident: 10.1016/j.isprsjprs.2021.12.013_b0160 article-title: What energy functions can be minimized via graph cuts? publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/TPAMI.2004.1262177 – ident: 10.1016/j.isprsjprs.2021.12.013_b0280 doi: 10.14358/PERS.80.9.873 – start-page: 9 year: 2015 ident: 10.1016/j.isprsjprs.2021.12.013_b0045 article-title: Semantic cross-view matching – ident: 10.1016/j.isprsjprs.2021.12.013_b0035 doi: 10.5194/isprs-archives-XLII-2-W9-181-2019 – ident: 10.1016/j.isprsjprs.2021.12.013_b0085 doi: 10.3390/s150407985 – volume: 154 start-page: 139 year: 2019 ident: 10.1016/j.isprsjprs.2021.12.013_b0275 article-title: A critical analysis of satellite stereo pairs for digital surface model generation and a matching quality prediction model publication-title: ISPRS J. Photogram. Rem. Sens. doi: 10.1016/j.isprsjprs.2019.06.005 – ident: 10.1016/j.isprsjprs.2021.12.013_b0240 – ident: 10.1016/j.isprsjprs.2021.12.013_b0135 doi: 10.1109/CVPR.2018.00758 – volume: 33 start-page: 1633 issue: 8 year: 2011 ident: 10.1016/j.isprsjprs.2021.12.013_b0150 article-title: Robust point set registration using gaussian mixture models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.223 – ident: 10.1016/j.isprsjprs.2021.12.013_b0360 doi: 10.1109/83.217222 – start-page: 4971 year: 2019 ident: 10.1016/j.isprsjprs.2021.12.013_b0285 article-title: Pairwise stereo image disparity and semantics estimation with the combination of u-net and pyramid stereo matching network – ident: 10.1016/j.isprsjprs.2021.12.013_b0005 – volume: 27 start-page: 643 issue: 2 year: 2008 ident: 10.1016/j.isprsjprs.2021.12.013_b0050 article-title: Sparse points matching by combining 3D mesh saliency with statistical descriptors publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2008.01162.x – volume: 30 start-page: 328 issue: 2 year: 2008 ident: 10.1016/j.isprsjprs.2021.12.013_b0130 article-title: Stereo processing by semiglobal matching and mutual information publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1166 – volume: 13 start-page: 119 issue: 2 year: 1994 ident: 10.1016/j.isprsjprs.2021.12.013_b0395 article-title: Iterative point matching for registration of free-form curves and surfaces publication-title: Int. J. Comput. Vis. doi: 10.1007/BF01427149 – start-page: 6750 year: 2020 ident: 10.1016/j.isprsjprs.2021.12.013_b0065 article-title: Remote sensing image segmentation method based on HRNET – ident: 10.1016/j.isprsjprs.2021.12.013_b0175 doi: 10.1007/BFb0028368 – ident: 10.1016/j.isprsjprs.2021.12.013_b0100 – volume: 55 start-page: 4839 issue: 9 year: 2017 ident: 10.1016/j.isprsjprs.2021.12.013_b0180 article-title: Facet segmentation-based line segment extraction for large-scale point clouds publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2639025 – ident: 10.1016/j.isprsjprs.2021.12.013_b0145 doi: 10.1109/CVPR42600.2020.00768 – start-page: 586 year: 1992 ident: 10.1016/j.isprsjprs.2021.12.013_b0025 article-title: Method for registration of 3-D shapes – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 10.1016/j.isprsjprs.2021.12.013_b0020 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – volume: 92 start-page: 79 year: 2014 ident: 10.1016/j.isprsjprs.2021.12.013_b0075 article-title: Unmanned aerial systems for photogrammetry and remote sensing: a review publication-title: ISPRS J. Photogram. Rem. Sens. doi: 10.1016/j.isprsjprs.2014.02.013 – volume: 5 start-page: 161 issue: 1 year: 2012 ident: 10.1016/j.isprsjprs.2021.12.013_b0140 article-title: Morphological building/shadow index for building extraction from high-resolution imagery over urban areas publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. doi: 10.1109/JSTARS.2011.2168195 – ident: 10.1016/j.isprsjprs.2021.12.013_b0110 doi: 10.1016/j.isprsjprs.2005.02.006 |
SSID | ssj0001568 |
Score | 2.4579217 |
Snippet | Wide-area 3D data generation for complex urban environments often needs to leverage a mixed use of data collected from both air and ground platforms, such as... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2 |
SubjectTerms | air algorithms automation Cross-view registration data collection Global optimization lidar Multi-view satellite image photogrammetry remote sensing satellites topology |
Title | A graph-matching approach for cross-view registration of over-view and street-view based point clouds |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2021.12.013 https://www.proquest.com/docview/2636593556 |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZWcIAeEOWhQikyElezju04m95WqGjbCi6AxM1y_BCLULJidw9c-ts74yTLQ6o4VFGkPDxyNLbnEX8zQ8gpz2IRS2eZt4ozZTVnIAMLVlhfRpB_o5DKt11e6cmt-nWX3w3IeR8Lg7DKTva3Mj1J6-7JsOPmcDadDq85uA4CEyCJJHQx0FypAmf52Z8XmEfWhsNhY4at32C8pvPZ0_wBTnAURZb-C2byXxrqnaxOCuhim2x1liMdtx_3mQxCvUM-vconuEM2upLm98-7JIxpumRgkia8JO3Th1OwU2nqm-G-AMXaDH32XNpEiqDO9o2tPZ2nbev2HlWep7NmWi-oe2yWfr5Hbi5-3JxPWFdTgTmpRgumhC11xQMc0mV5FUeFCzp6cIPAcvDg3smI5ThCLJW0vMozV7pKRB68cEHKfbJWN3X4QqiXKugsyqpEFy8UVcFh7YvobV56W4kDons2GtflG8eyF4-mB5Y9mBX_DfLfZMIA_w8IXxHO2pQbH5N878fJvJk9BhTDx8Qn_cgaWFu4YWLr0CyhkZY6xwT0-vB_OvhKNgUGTSTk2hFZWzwtwzcwZRbVcZqrx2R9_PP35Oovjqv2tQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-C9gAcJmAg2MbwJK5WHTtxmt0qNFRW6GVF4mY5_hCtUFLR9rD_fs9OUo1JiMMURcqHLUfP9u-9Fz__HsAVS3zuC6Op1SmjqZaMIgbmNNe28Ih_QxfTt91P5fgh_fmYPe7AdbcXJoRVttjfYHpE6_bJoJXmYDmfD34xdB14IEDiEXSzXegHdqqsB_3R7WQ83QJy0uyIC-VpqPAqzGu-Wr6sFniir8iT-GswEW8pqX_gOuqgm0P40BqPZNR83xHsuOoYDv6iFDyGvTar-dPvj-BGJF5StEpjyCTpGMQJmqoktk3D0gAJ6Rk6Al1SexLiOps3urJkFVeum_ug9SxZ1vNqTcxzvbGrE5jd_Jhdj2mbVoEakQ7XNOW6kCVzeAiTZKUf5sZJb9ETQuPBoocnfMjI4XyRCs3KLDGFKblnznLjhDiFXlVX7gyIFamTiRdlEbw8l5c5w-nPvdVZYXXJz0F2YlSmpRwPmS-eVRdbtlBb-asgf5VwhfI_B7atuGxYN96v8r3rJ_VqACnUDe9X_tb1rMLpFdZMdOXqDRaSQmaBg15--p8GLmFvPLu_U3e308ln2OdhD0UMZPsCvfXLxl2gZbMuv7Yj9w_5iPlm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph-matching+approach+for+cross-view+registration+of+over-view+and+street-view+based+point+clouds&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Ling%2C+Xiao&rft.au=Qin%2C+Rongjun&rft.date=2022-03-01&rft.issn=0924-2716&rft.volume=185&rft.spage=2&rft.epage=15&rft_id=info:doi/10.1016%2Fj.isprsjprs.2021.12.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isprsjprs_2021_12_013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |