A graph-matching approach for cross-view registration of over-view and street-view based point clouds

Wide-area 3D data generation for complex urban environments often needs to leverage a mixed use of data collected from both air and ground platforms, such as from aerial surveys, satellite, and mobile vehicles. On one hand, such kind of data with information from drastically different views (ca. 90°...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 185; pp. 2 - 15
Main Authors Ling, Xiao, Qin, Rongjun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wide-area 3D data generation for complex urban environments often needs to leverage a mixed use of data collected from both air and ground platforms, such as from aerial surveys, satellite, and mobile vehicles. On one hand, such kind of data with information from drastically different views (ca. 90° and more) forming cross-view data, which due to very limited overlapping region caused by the drastically different line of sight of the sensors, is difficult to be registered without significant manual efforts. On the other hand, the registration of such data often suffers from non-rigid distortion of the street-view data (e.g., non-rigid trajectory drift), which cannot be simply rectified by a similarity transformation. In this paper, based on the assumption that the object boundaries (e.g., buildings) from the over-view data should coincide with footprints of façade 3D points generated from street-view photogrammetric images, we aim to address this problem by proposing a fully automated geo-registration method for cross-view data, which utilizes semantically segmented object boundaries as view-invariant features under a global optimization framework through graph-matching: taking the over-view point clouds generated from stereo/multi-stereo satellite images and the street-view point clouds generated from monocular video images as the inputs, the proposed method models segments of buildings as nodes of graphs, both detected from the satellite-based and street-view based point clouds, thus to form the registration as a graph-matching problem to allow non-rigid matches; to enable a robust solution and fully utilize the topological relations between these segments, we propose to address the graph-matching problem on its conjugate graph solved through a belief-propagation algorithm. The matched nodes will be subject to a further optimization to allow precise-registration, followed by a constrained bundle adjustment on the street-view image to keep 2D-3D consistencies, which yields well-registered street-view images and point clouds to the satellite point clouds. Our proposed method assumes no or little prior pose information (e.g. very sparse locations from consumer-grade GPS (global positioning system)) for the street-view data and has been applied to a large cross-view dataset with significant scale difference containing 0.5 m GSD (Ground Sampling Distance) satellite data and 0.005 m GSD street-view data, 1.5 km in length involving 12 GB of data. The experiment shows that the proposed method has achieved promising results (1.27 m accuracy in 3D), evaluated using collected LiDAR point clouds. Furthermore, we included additional experiments to demonstrate that this method can be generalized to process different types of over-view and street-view data sources, e.g., the open street view maps and the semantic labeling maps. Codes will be made available through Github Repository.1https://github.com/GDAOSU/graph-matching-based-crossview-registration.1
AbstractList Wide-area 3D data generation for complex urban environments often needs to leverage a mixed use of data collected from both air and ground platforms, such as from aerial surveys, satellite, and mobile vehicles. On one hand, such kind of data with information from drastically different views (ca. 90° and more) forming cross-view data, which due to very limited overlapping region caused by the drastically different line of sight of the sensors, is difficult to be registered without significant manual efforts. On the other hand, the registration of such data often suffers from non-rigid distortion of the street-view data (e.g., non-rigid trajectory drift), which cannot be simply rectified by a similarity transformation. In this paper, based on the assumption that the object boundaries (e.g., buildings) from the over-view data should coincide with footprints of façade 3D points generated from street-view photogrammetric images, we aim to address this problem by proposing a fully automated geo-registration method for cross-view data, which utilizes semantically segmented object boundaries as view-invariant features under a global optimization framework through graph-matching: taking the over-view point clouds generated from stereo/multi-stereo satellite images and the street-view point clouds generated from monocular video images as the inputs, the proposed method models segments of buildings as nodes of graphs, both detected from the satellite-based and street-view based point clouds, thus to form the registration as a graph-matching problem to allow non-rigid matches; to enable a robust solution and fully utilize the topological relations between these segments, we propose to address the graph-matching problem on its conjugate graph solved through a belief-propagation algorithm. The matched nodes will be subject to a further optimization to allow precise-registration, followed by a constrained bundle adjustment on the street-view image to keep 2D-3D consistencies, which yields well-registered street-view images and point clouds to the satellite point clouds. Our proposed method assumes no or little prior pose information (e.g. very sparse locations from consumer-grade GPS (global positioning system)) for the street-view data and has been applied to a large cross-view dataset with significant scale difference containing 0.5 m GSD (Ground Sampling Distance) satellite data and 0.005 m GSD street-view data, 1.5 km in length involving 12 GB of data. The experiment shows that the proposed method has achieved promising results (1.27 m accuracy in 3D), evaluated using collected LiDAR point clouds. Furthermore, we included additional experiments to demonstrate that this method can be generalized to process different types of over-view and street-view data sources, e.g., the open street view maps and the semantic labeling maps. Codes will be made available through Github Repository.1https://github.com/GDAOSU/graph-matching-based-crossview-registration.
Wide-area 3D data generation for complex urban environments often needs to leverage a mixed use of data collected from both air and ground platforms, such as from aerial surveys, satellite, and mobile vehicles. On one hand, such kind of data with information from drastically different views (ca. 90° and more) forming cross-view data, which due to very limited overlapping region caused by the drastically different line of sight of the sensors, is difficult to be registered without significant manual efforts. On the other hand, the registration of such data often suffers from non-rigid distortion of the street-view data (e.g., non-rigid trajectory drift), which cannot be simply rectified by a similarity transformation. In this paper, based on the assumption that the object boundaries (e.g., buildings) from the over-view data should coincide with footprints of façade 3D points generated from street-view photogrammetric images, we aim to address this problem by proposing a fully automated geo-registration method for cross-view data, which utilizes semantically segmented object boundaries as view-invariant features under a global optimization framework through graph-matching: taking the over-view point clouds generated from stereo/multi-stereo satellite images and the street-view point clouds generated from monocular video images as the inputs, the proposed method models segments of buildings as nodes of graphs, both detected from the satellite-based and street-view based point clouds, thus to form the registration as a graph-matching problem to allow non-rigid matches; to enable a robust solution and fully utilize the topological relations between these segments, we propose to address the graph-matching problem on its conjugate graph solved through a belief-propagation algorithm. The matched nodes will be subject to a further optimization to allow precise-registration, followed by a constrained bundle adjustment on the street-view image to keep 2D-3D consistencies, which yields well-registered street-view images and point clouds to the satellite point clouds. Our proposed method assumes no or little prior pose information (e.g. very sparse locations from consumer-grade GPS (global positioning system)) for the street-view data and has been applied to a large cross-view dataset with significant scale difference containing 0.5 m GSD (Ground Sampling Distance) satellite data and 0.005 m GSD street-view data, 1.5 km in length involving 12 GB of data. The experiment shows that the proposed method has achieved promising results (1.27 m accuracy in 3D), evaluated using collected LiDAR point clouds. Furthermore, we included additional experiments to demonstrate that this method can be generalized to process different types of over-view and street-view data sources, e.g., the open street view maps and the semantic labeling maps. Codes will be made available through Github Repository.1https://github.com/GDAOSU/graph-matching-based-crossview-registration.1
Author Qin, Rongjun
Ling, Xiao
Author_xml – sequence: 1
  givenname: Xiao
  surname: Ling
  fullname: Ling, Xiao
  organization: Geospatial Data Analytics Laboratory, The Ohio State University, 218B Bolz Hall, 2036 Neil Avenue, Columbus, OH 43210, USA
– sequence: 2
  givenname: Rongjun
  surname: Qin
  fullname: Qin, Rongjun
  email: qin.324@osu.edu
  organization: Geospatial Data Analytics Laboratory, The Ohio State University, 218B Bolz Hall, 2036 Neil Avenue, Columbus, OH 43210, USA
BookMark eNqNkE1LxDAQhoOs4O7qbzBHL635aNP24GFZ_IIFL95Dmk52s3SbmmQV_73RigcvyjAMw8z7wvss0GxwAyB0SUlOCRXX-9yG0Yd96pwRRnPKckL5CZrTumJZzXg5Q3PSsCJjFRVnaBHCnhBCS1HPEazw1qtxlx1U1Ds7bLEaR--U3mHjPNbehZC9WnjDHrY2RK-idQN2BrtX8NNFDR1OF4A47a0K0OHR2SFi3btjF87RqVF9gIvvuUTPd7fP64ds83T_uF5tMs2LOmYFU41oCaTimpatqSsNwnSClaShXUEqboioCZim4Iq0JdWNbpkh0DENnC_R1WSbErwcIUR5sEFD36sB3DFIJrgoG16WIr3eTK9fCT0YqW38ypYi2l5SIj_pyr38oSs_6UrKZKKb9NUv_ejtQfn3fyhXkxISiMTLy6AtDBo660FH2Tn7p8cHwuue1Q
CitedBy_id crossref_primary_10_1016_j_isprsjprs_2022_03_018
crossref_primary_10_1016_j_inffus_2024_102601
crossref_primary_10_1016_j_jag_2022_103081
crossref_primary_10_1111_phor_12455
crossref_primary_10_21833_ijaas_2023_11_022
crossref_primary_10_1016_j_srs_2024_100194
crossref_primary_10_3390_rs15225302
crossref_primary_10_1016_j_neucom_2023_126383
crossref_primary_10_1002_adfm_202212455
crossref_primary_10_1016_j_isprsjprs_2022_08_010
Cites_doi 10.3390/s18051641
10.1109/CVPR.2014.11
10.1109/CVPR46437.2021.00642
10.1109/ICCVW.2009.5457506
10.1109/CVPR.2017.440
10.1016/j.isprsjprs.2014.07.007
10.1109/TRO.2017.2705103
10.1109/CVPR42600.2020.00094
10.1016/S0034-4257(97)00104-1
10.1016/S1077-3142(03)00026-2
10.1109/ICCV.2019.00905
10.5194/isprsannals-III-1-77-2016
10.3390/rs12091400
10.1023/B:VISI.0000029664.99615.94
10.1111/cgf.13751
10.1145/1322432.1322434
10.1109/TIP.2010.2044963
10.1109/34.765655
10.1016/j.isprsjprs.2015.08.006
10.1111/j.1467-8659.2011.02023.x
10.1109/TPAMI.2010.46
10.1109/CVPR.2017.216
10.5194/isprs-archives-XLII-2-W5-591-2017
10.1109/CVPR.2017.29
10.1137/080732730
10.1007/s00371-011-0610-y
10.1145/3306346.3323037
10.1109/TPAMI.2015.2513405
10.1109/TPAMI.2021.3054619
10.1109/TPAMI.2004.1262177
10.14358/PERS.80.9.873
10.5194/isprs-archives-XLII-2-W9-181-2019
10.3390/s150407985
10.1016/j.isprsjprs.2019.06.005
10.1109/CVPR.2018.00758
10.1109/TPAMI.2010.223
10.1109/83.217222
10.1111/j.1467-8659.2008.01162.x
10.1109/TPAMI.2007.1166
10.1007/BF01427149
10.1007/BFb0028368
10.1109/TGRS.2016.2639025
10.1109/CVPR42600.2020.00768
10.1109/TPAMI.2013.50
10.1016/j.isprsjprs.2014.02.013
10.1109/JSTARS.2011.2168195
10.1016/j.isprsjprs.2005.02.006
ContentType Journal Article
Copyright 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2021.12.013
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 15
ExternalDocumentID 10_1016_j_isprsjprs_2021_12_013
S0924271622000065
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c348t-42a96b0e0e03c15bf87ce6fd625091d4073f0680ef943a0b51c9cb2f0ed2ce33
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Fri Jul 11 02:28:02 EDT 2025
Thu Apr 24 22:52:25 EDT 2025
Tue Jul 01 03:46:47 EDT 2025
Fri Feb 23 02:39:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cross-view registration
Multi-view satellite image
Global optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-42a96b0e0e03c15bf87ce6fd625091d4073f0680ef943a0b51c9cb2f0ed2ce33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636593556
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_2636593556
crossref_citationtrail_10_1016_j_isprsjprs_2021_12_013
crossref_primary_10_1016_j_isprsjprs_2021_12_013
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2021_12_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hu, S., Feng, M., Nguyen, R.M., Lee, G.H., 2018. Cvm-net: Cross-view matching network for image-based ground-to-aerial geo-localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7258–7267.
Qin (b0255) 2014; 96
Muja, Lowe (b0220) 2014
Bengio, Courville, Vincent (b0020) 2013; 35
Qin, R., Fang, W., 2014. A hierarchical building detection method for very high resolution remotely sensed images combined with DSM using graph cut optimization. Photogrammetric Engineering & Remote Sensing 80, 873–883. Publisher: American Society for Photogrammetry and Remote Sensing.
DigitalGlobe, 2020. Maxar – Archive Search & Discovery.
Papazov, C., Burschka, D., 2011. Deformable 3D shape registration based on local similarity transforms. In: Computer Graphics Forum, Wiley Online Library, Issue: 5. pp. 1493–1502.
Vaca-Castano, Zamir, Shah (b0355) 2012
Qin (b0275) 2019; 154
Regmi, Borji (b0300) 2018
Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T., 2017. 3dmatch: learning local geometric descriptors from rgb-d reconstructions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1802–1811.
Carlson, Ripley (b0040) 1997; 62
Girardeau-Montaut, D., 2020. CloudCompare - Open Source Project.
Rusinkiewicz (b0315) 2019; 38
Lu, X., Li, Z., Cui, Z., Oswald, M.R., Pollefeys, M., Qin, R., 2020. Geometry-aware satellite-to-ground image synthesis for urban areas. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 859–867.
Zhai, M., Bessinger, Z., Workman, S., Jacobs, N., 2017. Predicting ground-level scene layout from aerial imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 867–875.
Morel, Yu (b0210) 2009; 2
Colomina, Molina (b0075) 2014; 92
Breuel (b0030) 2003; 90
Cheng, Fu (b0065) 2020
Lin, Wang, Chen, Zai, Li (b0180) 2017; 55
Gruen, A., Akca, D., 2005. Least squares 3D surface and curve matching. ISPRS J. Photogram. Rem. Sens. 59, 151–174 (Publisher: Elsevier).
Mur-Artal, Tardos (b0225) 2017; 33
Huang, Zhang (b0140) 2012; 5
Sipiran, Bustos (b0330) 2011; 27
Castellani, Cristani, Fantoni, Murino (b0050) 2008; 27
Fabbri, Costa, Torelli, Bruno (b0095) 2008; 40
Rabbani, Van Den Heuvel, Vosselmann (b0295) 2006; 36
.
Johnson, A.E., Hebert, M., 1999. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intelli. 21, 433–449. Publisher: IEEE.
Ma, Wu, Zhao, Jiang, Zhou, Sheng (b0200) 2018
Anguelov, Taskarf, Chatalbashev, Koller, Gupta, Heitz, Ng (b0010) 2005
Thompson, Eller, Radlinski, Speert (b0340) 1966; vol. 1
Mourikis, Roumeliotis (b0215) 2007
Cheng, L., Chen, S., Liu, X., Xu, H., Wu, Y., Li, M., Chen, Y., 2018. Registration of laser scanning point clouds: a review. Sensors 18, 1641 (Multidisciplinary Digital Publishing Institute).
Jian, Vemuri (b0150) 2011; 33
Shan, Wu, Curless, Furukawa, Hernandez, Seitz (b0325) 2014
Tian, Y., Chen, C., Shah, M., 2017. Cross-view image matching for geo-localization in urban environments. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3608–3616.
Castaldo, Zamir, Angst, Palmieri, Savarese (b0045) 2015
Liu, Li (b0185) 2019
Kolmogorov, Zabih (b0160) 2004; 26
Qin, R., 2016. Rpc stereo processor (RSP)–a software package for digital surface model and orthophoto generation from satellite stereo imagery. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 3, 77. Publisher: Copernicus GmbH.
Hana, X.F., Jin, J.S., Xie, J., Wang, M.J., Jiang, W., 2018. A comprehensive review of 3D point cloud descriptors. arXiv preprint arXiv:1802.02297 2.
Yang, Li, Campbell, Jia (b0375) 2016; 38
Toker, A., Zhou, Q., Maximov, M., Leal-Taixé, L., 2021. Coming Down to Earth: Satellite-to-Street View Synthesis for Geo-Localization. arXiv preprint arXiv:2103.06818.
Agarwal, S., Mierle, K., 2012. Ceres solver: Tutorial & reference. Google Inc 2, 9.
Coughlan, Ferreira (b0080) 2002
Zhang (b0395) 1994; 13
Besl, McKay (b0025) 1992
Bruno, N., Roncella, R., 2019. Accuracy assessment of 3d models generated from google street view imagery. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
Heinly, Schönberger, Dunn, Frahm (b0125) 2015
Wu, C., 2014. Critical configurations for radial distortion self-calibration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 25–32.
Cernea, D., 2015. Openmvs: Open multiple view stereovision.
OpenStreetMap, 2021. OpenStreetMap: a map of the world.
Belongie, Malik, Puzicha (b0015) 2000
Guo, M., Liu, H., Xu, Y., Huang, Y., 2020. Building extraction based on U-Net with an attention block and multiple losses. Rem. Sens. 12, 1400 (Publisher: Multidisciplinary Digital Publishing Institute).
Lee, T., 2009. Robust 3D street-view reconstruction using sky motion estimation. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, IEEE. pp. 1840–1847.
Li, S.Z., 1994. Markov random field models in computer vision. In: European Conference on Computer Vision, Springer. pp. 361–370.
Myronenko, Song (b0230) 2010; 32
Nobre, Kasper, Heckman (b0235) 2017
Vincent, L., 1993. Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Transactions on Image Processing, vol. 2, IEEE, pp. 176–201.
Qin, R., 2017. Automated 3D recovery from very high resolution multi-view images Overview of 3D recovery from multi-view satellite images. In: ASPRS Conference (IGTF) 2017, pp. 12–16.
Stechschulte, Ahmed, Heckman (b0335) 2019
Hirschmuller (b0130) 2008; 30
Marin, Melzi, Rodolà, Castellani (b0205) 2020; 39
Yang, Zang, Dong, Huang (b0370) 2015; 109
Choy, C., Park, J., Koltun, V., 2019. Fully convolutional geometric features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8958–8966.
Rusu, Cousins (b0320) 2011
Remondino, F., Nocerino, E., Toschi, I., Menna, F., 2017. A critical review of automated photogrammetric processing of large datasets. Int. Arch. Photogram. Rem. Sens. Spat. Inform. Sci. 42, 591–599.
Dall’Asta, E., Thoeni, K., Santise, M., Forlani, G., Giacomini, A., Roncella, R., 2015. Network design and quality checks in automatic orientation of close-range photogrammetric blocks. Sensors 15, 7985–8008. Publisher: Multidisciplinary Digital Publishing Institute.
Zhang, J., Yao, Y., Deng, B., 2021. Fast and Robust Iterative Closest Point. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1.
Lowe (b0190) 2004; 60
Huang, Z., Yu, Y., Xu, J., Ni, F., Le, X., 2020. PF-Net: point fractal network for 3D point cloud completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7662–7670.
Qin, Huang, Liu, Xiao (b0285) 2019
Qin, Huang, Liu, Xiao (b0290) 2019
Pomerleau, Colas, Siegwart (b0250) 2013; 4
Grana, Borghesani, Cucchiara (b0105) 2010; 19
10.1016/j.isprsjprs.2021.12.013_b0135
10.1016/j.isprsjprs.2021.12.013_b0175
10.1016/j.isprsjprs.2021.12.013_b0055
Colomina (10.1016/j.isprsjprs.2021.12.013_b0075) 2014; 92
Lin (10.1016/j.isprsjprs.2021.12.013_b0180) 2017; 55
Nobre (10.1016/j.isprsjprs.2021.12.013_b0235) 2017
Qin (10.1016/j.isprsjprs.2021.12.013_b0255) 2014; 96
Fabbri (10.1016/j.isprsjprs.2021.12.013_b0095) 2008; 40
10.1016/j.isprsjprs.2021.12.013_b0090
Heinly (10.1016/j.isprsjprs.2021.12.013_b0125) 2015
Morel (10.1016/j.isprsjprs.2021.12.013_b0210) 2009; 2
Qin (10.1016/j.isprsjprs.2021.12.013_b0285) 2019
Rusu (10.1016/j.isprsjprs.2021.12.013_b0320) 2011
Sipiran (10.1016/j.isprsjprs.2021.12.013_b0330) 2011; 27
Coughlan (10.1016/j.isprsjprs.2021.12.013_b0080) 2002
Rusinkiewicz (10.1016/j.isprsjprs.2021.12.013_b0315) 2019; 38
Yang (10.1016/j.isprsjprs.2021.12.013_b0370) 2015; 109
Thompson (10.1016/j.isprsjprs.2021.12.013_b0340) 1966; vol. 1
Marin (10.1016/j.isprsjprs.2021.12.013_b0205) 2020; 39
Stechschulte (10.1016/j.isprsjprs.2021.12.013_b0335) 2019
Ma (10.1016/j.isprsjprs.2021.12.013_b0200) 2018
Jian (10.1016/j.isprsjprs.2021.12.013_b0150) 2011; 33
10.1016/j.isprsjprs.2021.12.013_b0345
10.1016/j.isprsjprs.2021.12.013_b0385
10.1016/j.isprsjprs.2021.12.013_b0100
10.1016/j.isprsjprs.2021.12.013_b0145
10.1016/j.isprsjprs.2021.12.013_b0380
10.1016/j.isprsjprs.2021.12.013_b0260
Castellani (10.1016/j.isprsjprs.2021.12.013_b0050) 2008; 27
10.1016/j.isprsjprs.2021.12.013_b0060
Breuel (10.1016/j.isprsjprs.2021.12.013_b0030) 2003; 90
Mourikis (10.1016/j.isprsjprs.2021.12.013_b0215) 2007
Muja (10.1016/j.isprsjprs.2021.12.013_b0220) 2014
Mur-Artal (10.1016/j.isprsjprs.2021.12.013_b0225) 2017; 33
Belongie (10.1016/j.isprsjprs.2021.12.013_b0015) 2000
Myronenko (10.1016/j.isprsjprs.2021.12.013_b0230) 2010; 32
Zhang (10.1016/j.isprsjprs.2021.12.013_b0395) 1994; 13
Huang (10.1016/j.isprsjprs.2021.12.013_b0140) 2012; 5
10.1016/j.isprsjprs.2021.12.013_b0115
10.1016/j.isprsjprs.2021.12.013_b0110
10.1016/j.isprsjprs.2021.12.013_b0155
Anguelov (10.1016/j.isprsjprs.2021.12.013_b0010) 2005
10.1016/j.isprsjprs.2021.12.013_b0035
Cheng (10.1016/j.isprsjprs.2021.12.013_b0065) 2020
Pomerleau (10.1016/j.isprsjprs.2021.12.013_b0250) 2013; 4
10.1016/j.isprsjprs.2021.12.013_b0270
10.1016/j.isprsjprs.2021.12.013_b0195
Qin (10.1016/j.isprsjprs.2021.12.013_b0290) 2019
10.1016/j.isprsjprs.2021.12.013_b0350
Carlson (10.1016/j.isprsjprs.2021.12.013_b0040) 1997; 62
10.1016/j.isprsjprs.2021.12.013_b0070
Yang (10.1016/j.isprsjprs.2021.12.013_b0375) 2016; 38
10.1016/j.isprsjprs.2021.12.013_b0390
Vaca-Castano (10.1016/j.isprsjprs.2021.12.013_b0355) 2012
Besl (10.1016/j.isprsjprs.2021.12.013_b0025) 1992
10.1016/j.isprsjprs.2021.12.013_b0305
10.1016/j.isprsjprs.2021.12.013_b0245
10.1016/j.isprsjprs.2021.12.013_b0005
Bengio (10.1016/j.isprsjprs.2021.12.013_b0020) 2013; 35
Hirschmuller (10.1016/j.isprsjprs.2021.12.013_b0130) 2008; 30
10.1016/j.isprsjprs.2021.12.013_b0120
10.1016/j.isprsjprs.2021.12.013_b0165
10.1016/j.isprsjprs.2021.12.013_b0365
10.1016/j.isprsjprs.2021.12.013_b0085
Grana (10.1016/j.isprsjprs.2021.12.013_b0105) 2010; 19
10.1016/j.isprsjprs.2021.12.013_b0360
10.1016/j.isprsjprs.2021.12.013_b0240
Lowe (10.1016/j.isprsjprs.2021.12.013_b0190) 2004; 60
Kolmogorov (10.1016/j.isprsjprs.2021.12.013_b0160) 2004; 26
10.1016/j.isprsjprs.2021.12.013_b0280
Rabbani (10.1016/j.isprsjprs.2021.12.013_b0295) 2006; 36
Liu (10.1016/j.isprsjprs.2021.12.013_b0185) 2019
Regmi (10.1016/j.isprsjprs.2021.12.013_b0300) 2018
Qin (10.1016/j.isprsjprs.2021.12.013_b0275) 2019; 154
Castaldo (10.1016/j.isprsjprs.2021.12.013_b0045) 2015
Shan (10.1016/j.isprsjprs.2021.12.013_b0325) 2014
References_xml – volume: 39
  start-page: 160
  year: 2020
  end-page: 173
  ident: b0205
  article-title: FARM: functional automatic registration method for 3D human bodies
  publication-title: Comput. Graph. Forum
– reference: Toker, A., Zhou, Q., Maximov, M., Leal-Taixé, L., 2021. Coming Down to Earth: Satellite-to-Street View Synthesis for Geo-Localization. arXiv preprint arXiv:2103.06818.
– reference: Vincent, L., 1993. Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Transactions on Image Processing, vol. 2, IEEE, pp. 176–201.
– volume: 27
  start-page: 963
  year: 2011
  end-page: 976
  ident: b0330
  article-title: Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes
  publication-title: Vis Comput
– start-page: 3287
  year: 2015
  end-page: 3295
  ident: b0125
  article-title: Reconstructing the world* in six days
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 169
  year: 2005
  end-page: 176
  ident: b0010
  article-title: Discriminative learning of Markov random fields for segmentation of 3d scan data
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: Hu, S., Feng, M., Nguyen, R.M., Lee, G.H., 2018. Cvm-net: Cross-view matching network for image-based ground-to-aerial geo-localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7258–7267.
– reference: Huang, Z., Yu, Y., Xu, J., Ni, F., Le, X., 2020. PF-Net: point fractal network for 3D point cloud completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7662–7670.
– volume: 2
  start-page: 438
  year: 2009
  end-page: 469
  ident: b0210
  article-title: ASIFT: a new framework for fully affine invariant image comparison
  publication-title: SIAM J. Imag. Sci.
– reference: Qin, R., 2017. Automated 3D recovery from very high resolution multi-view images Overview of 3D recovery from multi-view satellite images. In: ASPRS Conference (IGTF) 2017, pp. 12–16.
– start-page: 3501
  year: 2018
  end-page: 3510
  ident: b0300
  article-title: Cross-view image synthesis using conditional gans
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: Cernea, D., 2015. Openmvs: Open multiple view stereovision. <
– start-page: 525
  year: 2014
  end-page: 532
  ident: b0325
  article-title: Accurate geo-registration by ground-to-aerial image matching
  publication-title: 2014 2nd International Conference on 3D Vision
– reference: Zhang, J., Yao, Y., Deng, B., 2021. Fast and Robust Iterative Closest Point. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1.
– start-page: 2227
  year: 2014
  end-page: 2240
  ident: b0220
  article-title: Scalable nearest neighbor algorithms for high dimensional data
  publication-title: IEEE Transactions on Pattern analysis and Machine Intelligence
– start-page: 831
  year: 2000
  end-page: 837
  ident: b0015
  article-title: Shape context: a new descriptor for shape matching and object recognition
  publication-title: Advances in Neural Information Processing Systems
– start-page: 3584
  year: 2018
  end-page: 3597
  ident: b0200
  article-title: Nonrigid point set registration with robust transformation learning under manifold regularization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 27
  start-page: 643
  year: 2008
  end-page: 652
  ident: b0050
  article-title: Sparse points matching by combining 3D mesh saliency with statistical descriptors
  publication-title: Comput. Graph. Forum
– reference: Gruen, A., Akca, D., 2005. Least squares 3D surface and curve matching. ISPRS J. Photogram. Rem. Sens. 59, 151–174 (Publisher: Elsevier).
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  ident: b0190
  article-title: Distinctive Image Features from Scale-Invariant Keypoints
  publication-title: Int. J. Comput. Vis.
– reference: Zhai, M., Bessinger, Z., Workman, S., Jacobs, N., 2017. Predicting ground-level scene layout from aerial imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 867–875.
– volume: 30
  start-page: 328
  year: 2008
  end-page: 341
  ident: b0130
  article-title: Stereo processing by semiglobal matching and mutual information
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 586
  year: 1992
  end-page: 606
  ident: b0025
  article-title: Method for registration of 3-D shapes
  publication-title: Sensor Fusion IV: Control Paradigms and Data Structures, International Society for Optics and Photonics
– volume: 55
  start-page: 4839
  year: 2017
  end-page: 4854
  ident: b0180
  article-title: Facet segmentation-based line segment extraction for large-scale point clouds
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 109
  start-page: 62
  year: 2015
  end-page: 76
  ident: b0370
  article-title: An automated method to register airborne and terrestrial laser scanning point clouds
  publication-title: ISPRS J. Photogram. Rem. Sens.
– start-page: 9
  year: 2015
  end-page: 17
  ident: b0045
  article-title: Semantic cross-view matching
  publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops
– reference: Qin, R., Fang, W., 2014. A hierarchical building detection method for very high resolution remotely sensed images combined with DSM using graph cut optimization. Photogrammetric Engineering & Remote Sensing 80, 873–883. Publisher: American Society for Photogrammetry and Remote Sensing.
– reference: Tian, Y., Chen, C., Shah, M., 2017. Cross-view image matching for geo-localization in urban environments. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3608–3616.
– volume: 36
  start-page: 248
  year: 2006
  end-page: 253
  ident: b0295
  article-title: Segmentation of point clouds using smoothness constraint
  publication-title: Int. Arch. Photogram. Rem. Sens. Spat. Inform. Sci.
– volume: 4
  start-page: 1
  year: 2013
  end-page: 104
  ident: b0250
  article-title: A review of point cloud registration algorithms for mobile robotics
  publication-title: Found. Trends Robot.
– volume: 13
  start-page: 119
  year: 1994
  end-page: 152
  ident: b0395
  article-title: Iterative point matching for registration of free-form curves and surfaces
  publication-title: Int. J. Comput. Vis.
– reference: Johnson, A.E., Hebert, M., 1999. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intelli. 21, 433–449. Publisher: IEEE.
– volume: 40
  start-page: 1
  year: 2008
  end-page: 44
  ident: b0095
  article-title: 2D Euclidean distance transform algorithms: a comparative survey
  publication-title: ACM Comput. Surv.
– start-page: 1186
  year: 2012
  end-page: 1193
  ident: b0355
  article-title: City scale geo-spatial trajectory estimation of a moving camera
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: Bruno, N., Roncella, R., 2019. Accuracy assessment of 3d models generated from google street view imagery. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
– volume: 26
  start-page: 147
  year: 2004
  end-page: 159
  ident: b0160
  article-title: What energy functions can be minimized via graph cuts?
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– volume: 19
  start-page: 1596
  year: 2010
  end-page: 1609
  ident: b0105
  article-title: Optimized block-based connected components labeling with decision trees
  publication-title: IEEE Trans. Image Process.
– start-page: 6525
  year: 2017
  end-page: 6532
  ident: b0235
  article-title: Drift-correcting self-calibration for visual-inertial SLAM
  publication-title: IEEE International Conference on Robotics and Automation
– reference: Li, S.Z., 1994. Markov random field models in computer vision. In: European Conference on Computer Vision, Springer. pp. 361–370.
– volume: vol. 1
  year: 1966
  ident: b0340
  publication-title: Manual of photogrammetry
– reference: Papazov, C., Burschka, D., 2011. Deformable 3D shape registration based on local similarity transforms. In: Computer Graphics Forum, Wiley Online Library, Issue: 5. pp. 1493–1502.
– start-page: 6750
  year: 2020
  end-page: 6753
  ident: b0065
  article-title: Remote sensing image segmentation method based on HRNET
  publication-title: IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium
– volume: 32
  start-page: 2262
  year: 2010
  end-page: 2275
  ident: b0230
  article-title: Point set registration: coherent point drift
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Girardeau-Montaut, D., 2020. CloudCompare - Open Source Project. <
– start-page: 7143
  year: 2019
  end-page: 7149
  ident: b0335
  article-title: Robust low-overlap 3-D point cloud registration for outlier rejection
  publication-title: IEEE International Conference on Robotics and Automation
– volume: 154
  start-page: 139
  year: 2019
  end-page: 150
  ident: b0275
  article-title: A critical analysis of satellite stereo pairs for digital surface model generation and a matching quality prediction model
  publication-title: ISPRS J. Photogram. Rem. Sens.
– volume: 96
  start-page: 179
  year: 2014
  end-page: 192
  ident: b0255
  article-title: Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery
  publication-title: ISPRS J. Photogram. Rem. Sens.
– reference: Remondino, F., Nocerino, E., Toschi, I., Menna, F., 2017. A critical review of automated photogrammetric processing of large datasets. Int. Arch. Photogram. Rem. Sens. Spat. Inform. Sci. 42, 591–599.
– start-page: 3565
  year: 2007
  end-page: 3572
  ident: b0215
  article-title: A multi-state constraint Kalman filter for vision-aided inertial navigation
  publication-title: Proceedings 2007 IEEE International Conference on Robotics and Automation
– reference: Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T., 2017. 3dmatch: learning local geometric descriptors from rgb-d reconstructions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1802–1811.
– reference: Choy, C., Park, J., Koltun, V., 2019. Fully convolutional geometric features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8958–8966.
– start-page: 5057
  year: 2019
  end-page: 5060
  ident: b0290
  article-title: Semantic 3D reconstruction using multi-view high-resolution satellite images based on U-net and image-guided depth fusion
  publication-title: IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium
– volume: 38
  start-page: 2241
  year: 2016
  end-page: 2254
  ident: b0375
  article-title: Go-ICP: a globally optimal solution to 3D ICP point-set registration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Cheng, L., Chen, S., Liu, X., Xu, H., Wu, Y., Li, M., Chen, Y., 2018. Registration of laser scanning point clouds: a review. Sensors 18, 1641 (Multidisciplinary Digital Publishing Institute).
– volume: 92
  start-page: 79
  year: 2014
  end-page: 97
  ident: b0075
  article-title: Unmanned aerial systems for photogrammetry and remote sensing: a review
  publication-title: ISPRS J. Photogram. Rem. Sens.
– start-page: 453
  year: 2002
  end-page: 468
  ident: b0080
  article-title: Finding deformable shapes using loopy belief propagation
  publication-title: European Conference on Computer Vision
– reference: >.
– reference: OpenStreetMap, 2021. OpenStreetMap: a map of the world. <
– volume: 5
  start-page: 161
  year: 2012
  end-page: 172
  ident: b0140
  article-title: Morphological building/shadow index for building extraction from high-resolution imagery over urban areas
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens.
– reference: Wu, C., 2014. Critical configurations for radial distortion self-calibration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 25–32.
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: b0020
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 62
  start-page: 241
  year: 1997
  end-page: 252
  ident: b0040
  article-title: On the relation between NDVI, fractional vegetation cover, and leaf area index
  publication-title: Remote Sens. Environ.
– reference: Hana, X.F., Jin, J.S., Xie, J., Wang, M.J., Jiang, W., 2018. A comprehensive review of 3D point cloud descriptors. arXiv preprint arXiv:1802.02297 2.
– reference: DigitalGlobe, 2020. Maxar – Archive Search & Discovery. <
– reference: Lee, T., 2009. Robust 3D street-view reconstruction using sky motion estimation. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, IEEE. pp. 1840–1847.
– reference: Dall’Asta, E., Thoeni, K., Santise, M., Forlani, G., Giacomini, A., Roncella, R., 2015. Network design and quality checks in automatic orientation of close-range photogrammetric blocks. Sensors 15, 7985–8008. Publisher: Multidisciplinary Digital Publishing Institute.
– reference: Qin, R., 2016. Rpc stereo processor (RSP)–a software package for digital surface model and orthophoto generation from satellite stereo imagery. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 3, 77. Publisher: Copernicus GmbH.
– reference: Agarwal, S., Mierle, K., 2012. Ceres solver: Tutorial & reference. Google Inc 2, 9.
– volume: 90
  start-page: 258
  year: 2003
  end-page: 294
  ident: b0030
  article-title: Implementation techniques for geometric branch-and-bound matching methods
  publication-title: Comput. Vis. Image Understand.
– reference: Lu, X., Li, Z., Cui, Z., Oswald, M.R., Pollefeys, M., Qin, R., 2020. Geometry-aware satellite-to-ground image synthesis for urban areas. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 859–867.
– start-page: 5624
  year: 2019
  end-page: 5633
  ident: b0185
  article-title: Lending orientation to neural networks for cross-view geo-localization
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: Guo, M., Liu, H., Xu, Y., Huang, Y., 2020. Building extraction based on U-Net with an attention block and multiple losses. Rem. Sens. 12, 1400 (Publisher: Multidisciplinary Digital Publishing Institute).
– start-page: 4971
  year: 2019
  end-page: 4974
  ident: b0285
  article-title: Pairwise stereo image disparity and semantics estimation with the combination of u-net and pyramid stereo matching network
  publication-title: IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium
– start-page: 1
  year: 2011
  end-page: 4
  ident: b0320
  article-title: 3d is here: Point cloud library (pcl)
  publication-title: 2011 IEEE international conference on robotics and automation
– volume: 33
  start-page: 1633
  year: 2011
  end-page: 1645
  ident: b0150
  article-title: Robust point set registration using gaussian mixture models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 33
  start-page: 1255
  year: 2017
  end-page: 1262
  ident: b0225
  article-title: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D Cameras
  publication-title: IEEE Trans. Robot.
– volume: 38
  start-page: 1
  year: 2019
  end-page: 7
  ident: b0315
  article-title: A symmetric objective function for ICP
  publication-title: ACM Trans. Graph.
– ident: 10.1016/j.isprsjprs.2021.12.013_b0060
  doi: 10.3390/s18051641
– ident: 10.1016/j.isprsjprs.2021.12.013_b0365
  doi: 10.1109/CVPR.2014.11
– ident: 10.1016/j.isprsjprs.2021.12.013_b0350
  doi: 10.1109/CVPR46437.2021.00642
– start-page: 3287
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.12.013_b0125
  article-title: Reconstructing the world* in six days
– start-page: 1
  year: 2011
  ident: 10.1016/j.isprsjprs.2021.12.013_b0320
  article-title: 3d is here: Point cloud library (pcl)
– ident: 10.1016/j.isprsjprs.2021.12.013_b0270
– ident: 10.1016/j.isprsjprs.2021.12.013_b0165
  doi: 10.1109/ICCVW.2009.5457506
– ident: 10.1016/j.isprsjprs.2021.12.013_b0385
  doi: 10.1109/CVPR.2017.440
– volume: 96
  start-page: 179
  year: 2014
  ident: 10.1016/j.isprsjprs.2021.12.013_b0255
  article-title: Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery
  publication-title: ISPRS J. Photogram. Rem. Sens.
  doi: 10.1016/j.isprsjprs.2014.07.007
– volume: 33
  start-page: 1255
  issue: 5
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.12.013_b0225
  article-title: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D Cameras
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2017.2705103
– volume: 4
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.isprsjprs.2021.12.013_b0250
  article-title: A review of point cloud registration algorithms for mobile robotics
  publication-title: Found. Trends Robot.
– ident: 10.1016/j.isprsjprs.2021.12.013_b0195
  doi: 10.1109/CVPR42600.2020.00094
– volume: 62
  start-page: 241
  issue: 3
  year: 1997
  ident: 10.1016/j.isprsjprs.2021.12.013_b0040
  article-title: On the relation between NDVI, fractional vegetation cover, and leaf area index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00104-1
– volume: 90
  start-page: 258
  issue: 3
  year: 2003
  ident: 10.1016/j.isprsjprs.2021.12.013_b0030
  article-title: Implementation techniques for geometric branch-and-bound matching methods
  publication-title: Comput. Vis. Image Understand.
  doi: 10.1016/S1077-3142(03)00026-2
– ident: 10.1016/j.isprsjprs.2021.12.013_b0070
  doi: 10.1109/ICCV.2019.00905
– volume: vol. 1
  year: 1966
  ident: 10.1016/j.isprsjprs.2021.12.013_b0340
– ident: 10.1016/j.isprsjprs.2021.12.013_b0260
  doi: 10.5194/isprsannals-III-1-77-2016
– ident: 10.1016/j.isprsjprs.2021.12.013_b0055
– start-page: 3565
  year: 2007
  ident: 10.1016/j.isprsjprs.2021.12.013_b0215
  article-title: A multi-state constraint Kalman filter for vision-aided inertial navigation
– start-page: 525
  year: 2014
  ident: 10.1016/j.isprsjprs.2021.12.013_b0325
  article-title: Accurate geo-registration by ground-to-aerial image matching
– ident: 10.1016/j.isprsjprs.2021.12.013_b0115
  doi: 10.3390/rs12091400
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 10.1016/j.isprsjprs.2021.12.013_b0190
  article-title: Distinctive Image Features from Scale-Invariant Keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 39
  start-page: 160
  issue: 1
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.12.013_b0205
  article-title: FARM: functional automatic registration method for 3D human bodies
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.13751
– volume: 40
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.isprsjprs.2021.12.013_b0095
  article-title: 2D Euclidean distance transform algorithms: a comparative survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1322432.1322434
– volume: 19
  start-page: 1596
  issue: 6
  year: 2010
  ident: 10.1016/j.isprsjprs.2021.12.013_b0105
  article-title: Optimized block-based connected components labeling with decision trees
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2044963
– ident: 10.1016/j.isprsjprs.2021.12.013_b0155
  doi: 10.1109/34.765655
– start-page: 5624
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.12.013_b0185
  article-title: Lending orientation to neural networks for cross-view geo-localization
– volume: 109
  start-page: 62
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.12.013_b0370
  article-title: An automated method to register airborne and terrestrial laser scanning point clouds
  publication-title: ISPRS J. Photogram. Rem. Sens.
  doi: 10.1016/j.isprsjprs.2015.08.006
– ident: 10.1016/j.isprsjprs.2021.12.013_b0245
  doi: 10.1111/j.1467-8659.2011.02023.x
– volume: 36
  start-page: 248
  year: 2006
  ident: 10.1016/j.isprsjprs.2021.12.013_b0295
  article-title: Segmentation of point clouds using smoothness constraint
  publication-title: Int. Arch. Photogram. Rem. Sens. Spat. Inform. Sci.
– volume: 32
  start-page: 2262
  issue: 12
  year: 2010
  ident: 10.1016/j.isprsjprs.2021.12.013_b0230
  article-title: Point set registration: coherent point drift
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.46
– ident: 10.1016/j.isprsjprs.2021.12.013_b0345
  doi: 10.1109/CVPR.2017.216
– start-page: 3584
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.12.013_b0200
  article-title: Nonrigid point set registration with robust transformation learning under manifold regularization
– start-page: 6525
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.12.013_b0235
  article-title: Drift-correcting self-calibration for visual-inertial SLAM
– start-page: 7143
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.12.013_b0335
  article-title: Robust low-overlap 3-D point cloud registration for outlier rejection
– start-page: 5057
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.12.013_b0290
  article-title: Semantic 3D reconstruction using multi-view high-resolution satellite images based on U-net and image-guided depth fusion
– ident: 10.1016/j.isprsjprs.2021.12.013_b0305
  doi: 10.5194/isprs-archives-XLII-2-W5-591-2017
– start-page: 831
  year: 2000
  ident: 10.1016/j.isprsjprs.2021.12.013_b0015
  article-title: Shape context: a new descriptor for shape matching and object recognition
– ident: 10.1016/j.isprsjprs.2021.12.013_b0090
– ident: 10.1016/j.isprsjprs.2021.12.013_b0380
  doi: 10.1109/CVPR.2017.29
– volume: 2
  start-page: 438
  issue: 2
  year: 2009
  ident: 10.1016/j.isprsjprs.2021.12.013_b0210
  article-title: ASIFT: a new framework for fully affine invariant image comparison
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/080732730
– start-page: 2227
  year: 2014
  ident: 10.1016/j.isprsjprs.2021.12.013_b0220
  article-title: Scalable nearest neighbor algorithms for high dimensional data
– start-page: 1186
  year: 2012
  ident: 10.1016/j.isprsjprs.2021.12.013_b0355
  article-title: City scale geo-spatial trajectory estimation of a moving camera
– start-page: 453
  year: 2002
  ident: 10.1016/j.isprsjprs.2021.12.013_b0080
  article-title: Finding deformable shapes using loopy belief propagation
– volume: 27
  start-page: 963
  issue: 11
  year: 2011
  ident: 10.1016/j.isprsjprs.2021.12.013_b0330
  article-title: Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes
  publication-title: Vis Comput
  doi: 10.1007/s00371-011-0610-y
– start-page: 169
  year: 2005
  ident: 10.1016/j.isprsjprs.2021.12.013_b0010
  article-title: Discriminative learning of Markov random fields for segmentation of 3d scan data
– volume: 38
  start-page: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.12.013_b0315
  article-title: A symmetric objective function for ICP
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3306346.3323037
– volume: 38
  start-page: 2241
  issue: 11
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.12.013_b0375
  article-title: Go-ICP: a globally optimal solution to 3D ICP point-set registration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2513405
– ident: 10.1016/j.isprsjprs.2021.12.013_b0120
– start-page: 3501
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.12.013_b0300
  article-title: Cross-view image synthesis using conditional gans
– ident: 10.1016/j.isprsjprs.2021.12.013_b0390
  doi: 10.1109/TPAMI.2021.3054619
– volume: 26
  start-page: 147
  issue: 2
  year: 2004
  ident: 10.1016/j.isprsjprs.2021.12.013_b0160
  article-title: What energy functions can be minimized via graph cuts?
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/TPAMI.2004.1262177
– ident: 10.1016/j.isprsjprs.2021.12.013_b0280
  doi: 10.14358/PERS.80.9.873
– start-page: 9
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.12.013_b0045
  article-title: Semantic cross-view matching
– ident: 10.1016/j.isprsjprs.2021.12.013_b0035
  doi: 10.5194/isprs-archives-XLII-2-W9-181-2019
– ident: 10.1016/j.isprsjprs.2021.12.013_b0085
  doi: 10.3390/s150407985
– volume: 154
  start-page: 139
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.12.013_b0275
  article-title: A critical analysis of satellite stereo pairs for digital surface model generation and a matching quality prediction model
  publication-title: ISPRS J. Photogram. Rem. Sens.
  doi: 10.1016/j.isprsjprs.2019.06.005
– ident: 10.1016/j.isprsjprs.2021.12.013_b0240
– ident: 10.1016/j.isprsjprs.2021.12.013_b0135
  doi: 10.1109/CVPR.2018.00758
– volume: 33
  start-page: 1633
  issue: 8
  year: 2011
  ident: 10.1016/j.isprsjprs.2021.12.013_b0150
  article-title: Robust point set registration using gaussian mixture models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.223
– ident: 10.1016/j.isprsjprs.2021.12.013_b0360
  doi: 10.1109/83.217222
– start-page: 4971
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.12.013_b0285
  article-title: Pairwise stereo image disparity and semantics estimation with the combination of u-net and pyramid stereo matching network
– ident: 10.1016/j.isprsjprs.2021.12.013_b0005
– volume: 27
  start-page: 643
  issue: 2
  year: 2008
  ident: 10.1016/j.isprsjprs.2021.12.013_b0050
  article-title: Sparse points matching by combining 3D mesh saliency with statistical descriptors
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2008.01162.x
– volume: 30
  start-page: 328
  issue: 2
  year: 2008
  ident: 10.1016/j.isprsjprs.2021.12.013_b0130
  article-title: Stereo processing by semiglobal matching and mutual information
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1166
– volume: 13
  start-page: 119
  issue: 2
  year: 1994
  ident: 10.1016/j.isprsjprs.2021.12.013_b0395
  article-title: Iterative point matching for registration of free-form curves and surfaces
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF01427149
– start-page: 6750
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.12.013_b0065
  article-title: Remote sensing image segmentation method based on HRNET
– ident: 10.1016/j.isprsjprs.2021.12.013_b0175
  doi: 10.1007/BFb0028368
– ident: 10.1016/j.isprsjprs.2021.12.013_b0100
– volume: 55
  start-page: 4839
  issue: 9
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.12.013_b0180
  article-title: Facet segmentation-based line segment extraction for large-scale point clouds
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2639025
– ident: 10.1016/j.isprsjprs.2021.12.013_b0145
  doi: 10.1109/CVPR42600.2020.00768
– start-page: 586
  year: 1992
  ident: 10.1016/j.isprsjprs.2021.12.013_b0025
  article-title: Method for registration of 3-D shapes
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.isprsjprs.2021.12.013_b0020
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 92
  start-page: 79
  year: 2014
  ident: 10.1016/j.isprsjprs.2021.12.013_b0075
  article-title: Unmanned aerial systems for photogrammetry and remote sensing: a review
  publication-title: ISPRS J. Photogram. Rem. Sens.
  doi: 10.1016/j.isprsjprs.2014.02.013
– volume: 5
  start-page: 161
  issue: 1
  year: 2012
  ident: 10.1016/j.isprsjprs.2021.12.013_b0140
  article-title: Morphological building/shadow index for building extraction from high-resolution imagery over urban areas
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens.
  doi: 10.1109/JSTARS.2011.2168195
– ident: 10.1016/j.isprsjprs.2021.12.013_b0110
  doi: 10.1016/j.isprsjprs.2005.02.006
SSID ssj0001568
Score 2.4579217
Snippet Wide-area 3D data generation for complex urban environments often needs to leverage a mixed use of data collected from both air and ground platforms, such as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2
SubjectTerms air
algorithms
automation
Cross-view registration
data collection
Global optimization
lidar
Multi-view satellite image
photogrammetry
remote sensing
satellites
topology
Title A graph-matching approach for cross-view registration of over-view and street-view based point clouds
URI https://dx.doi.org/10.1016/j.isprsjprs.2021.12.013
https://www.proquest.com/docview/2636593556
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZWcIAeEOWhQikyElezju04m95WqGjbCi6AxM1y_BCLULJidw9c-ts74yTLQ6o4VFGkPDxyNLbnEX8zQ8gpz2IRS2eZt4ozZTVnIAMLVlhfRpB_o5DKt11e6cmt-nWX3w3IeR8Lg7DKTva3Mj1J6-7JsOPmcDadDq85uA4CEyCJJHQx0FypAmf52Z8XmEfWhsNhY4at32C8pvPZ0_wBTnAURZb-C2byXxrqnaxOCuhim2x1liMdtx_3mQxCvUM-vconuEM2upLm98-7JIxpumRgkia8JO3Th1OwU2nqm-G-AMXaDH32XNpEiqDO9o2tPZ2nbev2HlWep7NmWi-oe2yWfr5Hbi5-3JxPWFdTgTmpRgumhC11xQMc0mV5FUeFCzp6cIPAcvDg3smI5ThCLJW0vMozV7pKRB68cEHKfbJWN3X4QqiXKugsyqpEFy8UVcFh7YvobV56W4kDons2GtflG8eyF4-mB5Y9mBX_DfLfZMIA_w8IXxHO2pQbH5N878fJvJk9BhTDx8Qn_cgaWFu4YWLr0CyhkZY6xwT0-vB_OvhKNgUGTSTk2hFZWzwtwzcwZRbVcZqrx2R9_PP35Oovjqv2tQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-C9gAcJmAg2MbwJK5WHTtxmt0qNFRW6GVF4mY5_hCtUFLR9rD_fs9OUo1JiMMURcqHLUfP9u-9Fz__HsAVS3zuC6Op1SmjqZaMIgbmNNe28Ih_QxfTt91P5fgh_fmYPe7AdbcXJoRVttjfYHpE6_bJoJXmYDmfD34xdB14IEDiEXSzXegHdqqsB_3R7WQ83QJy0uyIC-VpqPAqzGu-Wr6sFniir8iT-GswEW8pqX_gOuqgm0P40BqPZNR83xHsuOoYDv6iFDyGvTar-dPvj-BGJF5StEpjyCTpGMQJmqoktk3D0gAJ6Rk6Al1SexLiOps3urJkFVeum_ug9SxZ1vNqTcxzvbGrE5jd_Jhdj2mbVoEakQ7XNOW6kCVzeAiTZKUf5sZJb9ETQuPBoocnfMjI4XyRCs3KLDGFKblnznLjhDiFXlVX7gyIFamTiRdlEbw8l5c5w-nPvdVZYXXJz0F2YlSmpRwPmS-eVRdbtlBb-asgf5VwhfI_B7atuGxYN96v8r3rJ_VqACnUDe9X_tb1rMLpFdZMdOXqDRaSQmaBg15--p8GLmFvPLu_U3e308ln2OdhD0UMZPsCvfXLxl2gZbMuv7Yj9w_5iPlm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph-matching+approach+for+cross-view+registration+of+over-view+and+street-view+based+point+clouds&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Ling%2C+Xiao&rft.au=Qin%2C+Rongjun&rft.date=2022-03-01&rft.issn=0924-2716&rft.volume=185&rft.spage=2&rft.epage=15&rft_id=info:doi/10.1016%2Fj.isprsjprs.2021.12.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isprsjprs_2021_12_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon