Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods

The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li (2014). We put forward two improvements to the met...

Full description

Saved in:
Bibliographic Details
Published inScience China. Mathematics Vol. 59; no. 8; pp. 1443 - 1460
Main Authors Bai, ZhaoJun, Li, RenCang, Lin, WenWei
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.08.2016
Subjects
Online AccessGet full text
ISSN1674-7283
1869-1862
DOI10.1007/s11425-016-0297-1

Cover

Abstract The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li (2014). We put forward two improvements to the method: A shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4dCG (ELOBP4dCG). Numerical results of the ELOBP4dCG strongly demonstrate the capability of deflation technique and effec- tiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems.
AbstractList The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li (2014). We put forward two improvements to the method: A shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4dCG (ELOBP4dCG). Numerical results of the ELOBP4dCG strongly demonstrate the capability of deflation technique and effectiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems.
The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li (2014). We put forward two improvements to the method: A shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4dCG (ELOBP4dCG). Numerical results of the ELOBP4dCG strongly demonstrate the capability of deflation technique and effec- tiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems.
Author BAI ZhaoJun LI RenCang LIN WenWeia
AuthorAffiliation Department of Computer Science and Department of Mathematics, University of California at Davis, Davis, CA 95616, USA Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, USA Department of Applied Mathematics, Taiwan Chiao Tung University, Hsinehu 300, China
Author_xml – sequence: 1
  givenname: ZhaoJun
  surname: Bai
  fullname: Bai, ZhaoJun
  email: bai@cs.ucdavis.edu
  organization: Department of Computer Science and Department of Mathematics, University of California at Davis
– sequence: 2
  givenname: RenCang
  surname: Li
  fullname: Li, RenCang
  organization: Department of Mathematics, University of Texas at Arlington
– sequence: 3
  givenname: WenWei
  surname: Lin
  fullname: Lin, WenWei
  organization: Department of Applied Mathematics, Taiwan Chiao Tung University
BookMark eNp9kDtvFDEUhS0UJELID6CzqGgG_JixPSWKICCtRAO15cediVdee2N7Ivbf49VGFBRxYZ_ifL73nLfoKuUECL2n5BMlRH6ulI5sGggVA2GzHOgrdE2VmId-sauuhRwHyRR_g25r3ZN--ExGya9R3oUEpuAC9ZhTBQxhhfRk4gb4WLKNcMA1xyfw2J4w_GmQfNcxOxPjCedjCwcTuxVcTj600DfzuOv9tpoGeC3GB0gNH6A9ZF_fodeLiRVun98b9Pvb119334fdz_sfd192g-OjagP3hBkQk7ez484KAKasnNUExno_gZB2WiTnbrGSKLCjskD84i1VbByl4Dfo4-XfHuJxg9r0IVQHMZoEeauaKkUI44LRbqUXqyu51gKLPpYeqpw0Jfrcr770q3u_-tyvPjPyP8aFZs7pWzEhvkiyC1n7lLRC0fu8ldS7eBH68DzuIaf1sXP_dhRinvgkBeN_AWOfn-Y
CitedBy_id crossref_primary_10_1016_j_cam_2021_113650
crossref_primary_10_1016_j_laa_2024_01_015
crossref_primary_10_1137_23M1566017
crossref_primary_10_1016_j_jcp_2019_109058
crossref_primary_10_3934_jimo_2021206
crossref_primary_10_1016_j_laa_2016_08_023
crossref_primary_10_1016_j_laa_2022_10_012
crossref_primary_10_1515_dema_2022_0029
crossref_primary_10_3390_mca23010010
crossref_primary_10_3390_a12090181
Cites_doi 10.1137/110838972
10.1016/0021-9991(88)90081-2
10.1137/110838960
10.1088/0953-8984/21/39/395502
10.1016/j.cam.2008.10.071
10.1016/0024-3795(92)90231-X
10.1134/1.568257
10.1016/0024-3795(93)00126-K
10.1080/03081087.2013.803242
10.1137/1.9780898719604
10.1007/978-3-642-61852-9
10.1137/140990735
10.1016/j.jcp.2006.02.007
10.1137/S1064827500366124
10.1137/1.9781611971446
10.1007/BF02141743
10.1016/0029-5582(61)90364-9
10.1145/1067967.1067973
10.1016/j.laa.2012.12.003
10.1007/s11075-015-9987-4
10.1016/j.laa.2010.06.034
10.1137/S1064827500382579
10.1063/1.1385368
10.1103/PhysRevB.40.12255
10.1137/0717059
10.1007/s10543-014-0472-6
10.1007/s00211-014-0681-6
10.1063/1.448223
ContentType Journal Article
Copyright Science China Press and Springer-Verlag Berlin Heidelberg 2016
Copyright_xml – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2016
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1007/s11425-016-0297-1
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods
EISSN 1869-1862
EndPage 1460
ExternalDocumentID 10_1007_s11425_016_0297_1
669535762
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0VY
1N0
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BAPOH
BDATZ
BGNMA
CAG
CCEZO
CCVFK
CHBEP
COF
CQIGP
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9J
P9R
PF0
PT4
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
~WA
-SA
-S~
0R~
5XA
5XB
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
BSONS
CAJEA
CJPJV
H13
Q--
U1G
U5K
AAPKM
AAYXX
ABBRH
ABDBE
ACMFV
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
7TB
8FD
ABRTQ
FR3
KR7
ID FETCH-LOGICAL-c348t-3d02ae65db9c3cb6ee28b7985eabdd5e67b5f733cfb708eb48be0dfdb18244763
IEDL.DBID U2A
ISSN 1674-7283
IngestDate Thu Sep 04 20:05:52 EDT 2025
Tue Jul 01 03:54:52 EDT 2025
Thu Apr 24 23:02:45 EDT 2025
Fri Feb 21 02:33:39 EST 2025
Wed Feb 14 10:17:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords linear response
81Q15
conjugate-gradient
65L15
deflation
eigenvalue problem
15A18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-3d02ae65db9c3cb6ee28b7985eabdd5e67b5f733cfb708eb48be0dfdb18244763
Notes eigenvalue problem, linear response, deflation, conjugate-gradient, deflation
The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li (2014). We put forward two improvements to the method: A shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4dCG (ELOBP4dCG). Numerical results of the ELOBP4dCG strongly demonstrate the capability of deflation technique and effec- tiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems.
11-5837/O1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1880023621
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_1880023621
crossref_primary_10_1007_s11425_016_0297_1
crossref_citationtrail_10_1007_s11425_016_0297_1
springer_journals_10_1007_s11425_016_0297_1
chongqing_primary_669535762
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Science China. Mathematics
PublicationTitleAbbrev Sci. China Math
PublicationTitleAlternate SCIENCE CHINA Mathematics
PublicationYear 2016
Publisher Science China Press
Publisher_xml – name: Science China Press
References BaiZLiR-CMinimization principle for the linear response eigenvalue problem, II: ComputationSIAM J Matrix Anal Appl201334392416304681010.1137/1108389721311.65102
ThoulessD JThe Quantum Mechanics of Many-Body Systems1972New YorkAcademic0103.23502
ThoulessD JVibrational states of nuclei in the random phase approximationNuclear Phys196122789512119310.1016/0029-5582(61)90364-90091.23103
MarquesM ACastroARubioAAssessment of exchange-correlation functionals for the calculation of dynamical properties of small clusters in time-dependent density functional theoryJ Chem Phys20011153006301410.1063/1.1385368
ZhouYLiR-CBounding the spectrum of large Hermitian matricesLinear Algebra Appl2011435480493279458710.1016/j.laa.2010.06.0341221.15022
ImakuraADuLSakuraiTError bounds of Rayleigh-Ritz type contour integral-based eigensolver for solving generalized eigenvalue problemsNumer Algor201671103120343934810.1007/s11075-015-9987-41333.65039
LiR-CBaiZGaoWSuY FRayleigh quotient based optimization methods for eigenvalue problemsMatrix Functions and Matrix Equations, vol. 19. Series in Contemporary Applied Mathematics2015SingaporeWorld Scientific7610810.1142/9789814675772_0004
MoneyJYeQEIGIFP: A MATLAB program for solving large symmetric generalized eigenvalue problemsACM Trans Math Software200531270279226679310.1145/1067967.10679731070.65531
YeQAn adaptive block Lanczos algorithmNumer Algor19961297110142355010.1007/BF021417430859.65032
KnyazevA VToward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient methodSIAM J Sci Comput200123517541186126310.1137/S10648275003661240992.65028
QuillenPYeQA block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problemsJ Comput Appl Math201023312981313255936510.1016/j.cam.2008.10.0711186.65044
GolubGYeQAn inverse free preconditioned Krylov subspace methods for symmetric eigenvalue problemsSIAM J Sci Comput200224312334192442710.1137/S10648275003825791016.65017
LiR-CZhangL-HConvergence of block Lanczos method for eigenvalue clustersNumer Math201513183113338332910.1007/s00211-014-0681-61334.65073
OlsenJJørgensenPLinear and nonlinear response functions for an exact state and for an MCSCF stateJ Chem Phys1985823235326410.1063/1.448223
LiangXLiR-CExtensions of Wielandt’s min-max principles for positive semi-definite pencilsLinear Multilinear Algebra20146210321048324694210.1080/03081087.2013.8032421307.15015
HetmaniukULehoucqRBasis selection in LOBPCGJ Comput Phys2006218324332226795510.1016/j.jcp.2006.02.0071104.65031
SaadYOn the rates of convergence of the Lanczos and the block-Lanczos methodsSIAM J Numer Anal19801568770658875510.1137/07170590456.65016
CarsonECommunication-avoiding Krylov Subspace Methods in Theory and Practice2015BerkeleyUniversity of California
FlaschkaULinW-WWuJ-LA KQZ algorithm for solving linear-response eigenvalue equationsLinear Algebra Appl199216593123114974810.1016/0024-3795(92)90231-X0759.65013
BaiZLiR-CMinimization principles and computation for the generalized linear response eigenvalue problemBIT Numer Math2014543154317795410.1007/s10543-014-0472-61293.65053
GiannozziPQUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materialsJ Phys Condensed Matter20092139550210.1088/0953-8984/21/39/395502
RoccaDTime-Dependent Density Functional Perturbation Theory: New algorithms with Applications to Molecular Spectra2007TriesteThe International School for Advanced Studies
Kovač-StrikoJVeselićKTrace minimization and definiteness of symmetric pencilsLinear Algebra Appl1995216139158131998110.1016/0024-3795(93)00126-K0821.15008
LiangXLiR-CBaiZTrace minimization principles for positive semi-definite pencilsLinear Algebra Appl201343830853106301805910.1016/j.laa.2012.12.0031262.15010
WenZZhangYBlock algorithms with augmented Rayleigh-Ritz projections for large-scale eigenpair computation2015
OlsenJJensen AaH JJørgensenPSolution of the large matrix equations which occur in response theoryJ Comput Phys19887426528210.1016/0021-9991(88)90081-20636.65034
GolubG HVan LoanC FMatrix Computations1996Baltimore-MarylandJohns Hopkins University Press0865.65009
RoccaDIterative diagonalization of non-hermitian eigenproblems in time-dependent density functional and manybody perturbation theory2012BostonPresentation at Session B39, the APS Marching Meeting
TsiperE VVariational procedure and generalized Lanczos recursion for small-amplitude classical oscillationsJETP Letters19997075175510.1134/1.568257
BaiZLiR-CMinimization principles for the linear response eigenvalue problem, I: TheorySIAM J Matrix Anal Appl20123310751100302346510.1137/1108389601263.65078
AndersonEBaiZBischofCLAPACK Users’ Guide1999PhiladelphiaSIAM10.1137/1.97808987196040755.65028
LancasterPYeQVariational properties and Rayleigh quotient algorithms for symmetric matrix pencilsOper Theory Adv Appl19894024727810383170676.15007
DemmelJApplied Numerical Linear Algebra1997PhiladelphiaSIAM10.1137/1.97816119714460879.65017
RingPSchuckPThe Nuclear Many-Body Problem1980New YorkSpringer-Verlag10.1007/978-3-642-61852-9
CarsonEDemmelJAccuracy of the s-step Lanczos method for the symmetric eigenproblem in finite precisionSIAM J Matrix Anal Appl201536793819335763110.1137/1409907351319.65024
TeterMPayneMAllanDSolution of Schr¨odinger equation for large systemsPhys Rev B198940122551226310.1103/PhysRevB.40.12255
A Imakura (297_CR13) 2016; 71
X Liang (297_CR19) 2014; 62
M A Marques (297_CR21) 2001; 115
U Hetmaniuk (297_CR12) 2006; 218
D J Thouless (297_CR31) 1961; 22
M Teter (297_CR30) 1989; 40
Z Wen (297_CR34) 2015
P Giannozzi (297_CR9) 2009; 21
R-C Li (297_CR18) 2015; 131
Z Bai (297_CR4) 2014; 54
P Ring (297_CR26) 1980
Y Zhou (297_CR36) 2011; 435
G H Golub (297_CR11) 1996
X Liang (297_CR20) 2013; 438
J Olsen (297_CR23) 1988; 74
E Carson (297_CR5) 2015
E Anderson (297_CR1) 1999
P Lancaster (297_CR16) 1989; 40
J Olsen (297_CR24) 1985; 82
D Rocca (297_CR27) 2007
Z Bai (297_CR3) 2013; 34
E Carson (297_CR6) 2015; 36
J Money (297_CR22) 2005; 31
Z Bai (297_CR2) 2012; 33
U Flaschka (297_CR8) 1992; 165
P Quillen (297_CR25) 2010; 233
A V Knyazev (297_CR14) 2001; 23
E V Tsiper (297_CR33) 1999; 70
R-C Li (297_CR17) 2015
J Kovač-Striko (297_CR15) 1995; 216
Y Saad (297_CR29) 1980; 15
Q Ye (297_CR35) 1996; 12
G Golub (297_CR10) 2002; 24
D Rocca (297_CR28) 2012
J Demmel (297_CR7) 1997
D J Thouless (297_CR32) 1972
References_xml – reference: OlsenJJørgensenPLinear and nonlinear response functions for an exact state and for an MCSCF stateJ Chem Phys1985823235326410.1063/1.448223
– reference: Kovač-StrikoJVeselićKTrace minimization and definiteness of symmetric pencilsLinear Algebra Appl1995216139158131998110.1016/0024-3795(93)00126-K0821.15008
– reference: LiR-CBaiZGaoWSuY FRayleigh quotient based optimization methods for eigenvalue problemsMatrix Functions and Matrix Equations, vol. 19. Series in Contemporary Applied Mathematics2015SingaporeWorld Scientific7610810.1142/9789814675772_0004
– reference: ThoulessD JVibrational states of nuclei in the random phase approximationNuclear Phys196122789512119310.1016/0029-5582(61)90364-90091.23103
– reference: CarsonEDemmelJAccuracy of the s-step Lanczos method for the symmetric eigenproblem in finite precisionSIAM J Matrix Anal Appl201536793819335763110.1137/1409907351319.65024
– reference: ThoulessD JThe Quantum Mechanics of Many-Body Systems1972New YorkAcademic0103.23502
– reference: YeQAn adaptive block Lanczos algorithmNumer Algor19961297110142355010.1007/BF021417430859.65032
– reference: KnyazevA VToward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient methodSIAM J Sci Comput200123517541186126310.1137/S10648275003661240992.65028
– reference: ImakuraADuLSakuraiTError bounds of Rayleigh-Ritz type contour integral-based eigensolver for solving generalized eigenvalue problemsNumer Algor201671103120343934810.1007/s11075-015-9987-41333.65039
– reference: CarsonECommunication-avoiding Krylov Subspace Methods in Theory and Practice2015BerkeleyUniversity of California
– reference: LiangXLiR-CBaiZTrace minimization principles for positive semi-definite pencilsLinear Algebra Appl201343830853106301805910.1016/j.laa.2012.12.0031262.15010
– reference: MarquesM ACastroARubioAAssessment of exchange-correlation functionals for the calculation of dynamical properties of small clusters in time-dependent density functional theoryJ Chem Phys20011153006301410.1063/1.1385368
– reference: TeterMPayneMAllanDSolution of Schr¨odinger equation for large systemsPhys Rev B198940122551226310.1103/PhysRevB.40.12255
– reference: WenZZhangYBlock algorithms with augmented Rayleigh-Ritz projections for large-scale eigenpair computation2015
– reference: BaiZLiR-CMinimization principles for the linear response eigenvalue problem, I: TheorySIAM J Matrix Anal Appl20123310751100302346510.1137/1108389601263.65078
– reference: ZhouYLiR-CBounding the spectrum of large Hermitian matricesLinear Algebra Appl2011435480493279458710.1016/j.laa.2010.06.0341221.15022
– reference: AndersonEBaiZBischofCLAPACK Users’ Guide1999PhiladelphiaSIAM10.1137/1.97808987196040755.65028
– reference: RingPSchuckPThe Nuclear Many-Body Problem1980New YorkSpringer-Verlag10.1007/978-3-642-61852-9
– reference: LiR-CZhangL-HConvergence of block Lanczos method for eigenvalue clustersNumer Math201513183113338332910.1007/s00211-014-0681-61334.65073
– reference: DemmelJApplied Numerical Linear Algebra1997PhiladelphiaSIAM10.1137/1.97816119714460879.65017
– reference: OlsenJJensen AaH JJørgensenPSolution of the large matrix equations which occur in response theoryJ Comput Phys19887426528210.1016/0021-9991(88)90081-20636.65034
– reference: LiangXLiR-CExtensions of Wielandt’s min-max principles for positive semi-definite pencilsLinear Multilinear Algebra20146210321048324694210.1080/03081087.2013.8032421307.15015
– reference: QuillenPYeQA block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problemsJ Comput Appl Math201023312981313255936510.1016/j.cam.2008.10.0711186.65044
– reference: LancasterPYeQVariational properties and Rayleigh quotient algorithms for symmetric matrix pencilsOper Theory Adv Appl19894024727810383170676.15007
– reference: SaadYOn the rates of convergence of the Lanczos and the block-Lanczos methodsSIAM J Numer Anal19801568770658875510.1137/07170590456.65016
– reference: BaiZLiR-CMinimization principle for the linear response eigenvalue problem, II: ComputationSIAM J Matrix Anal Appl201334392416304681010.1137/1108389721311.65102
– reference: MoneyJYeQEIGIFP: A MATLAB program for solving large symmetric generalized eigenvalue problemsACM Trans Math Software200531270279226679310.1145/1067967.10679731070.65531
– reference: RoccaDIterative diagonalization of non-hermitian eigenproblems in time-dependent density functional and manybody perturbation theory2012BostonPresentation at Session B39, the APS Marching Meeting
– reference: GiannozziPQUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materialsJ Phys Condensed Matter20092139550210.1088/0953-8984/21/39/395502
– reference: HetmaniukULehoucqRBasis selection in LOBPCGJ Comput Phys2006218324332226795510.1016/j.jcp.2006.02.0071104.65031
– reference: RoccaDTime-Dependent Density Functional Perturbation Theory: New algorithms with Applications to Molecular Spectra2007TriesteThe International School for Advanced Studies
– reference: GolubGYeQAn inverse free preconditioned Krylov subspace methods for symmetric eigenvalue problemsSIAM J Sci Comput200224312334192442710.1137/S10648275003825791016.65017
– reference: FlaschkaULinW-WWuJ-LA KQZ algorithm for solving linear-response eigenvalue equationsLinear Algebra Appl199216593123114974810.1016/0024-3795(92)90231-X0759.65013
– reference: TsiperE VVariational procedure and generalized Lanczos recursion for small-amplitude classical oscillationsJETP Letters19997075175510.1134/1.568257
– reference: BaiZLiR-CMinimization principles and computation for the generalized linear response eigenvalue problemBIT Numer Math2014543154317795410.1007/s10543-014-0472-61293.65053
– reference: GolubG HVan LoanC FMatrix Computations1996Baltimore-MarylandJohns Hopkins University Press0865.65009
– volume: 34
  start-page: 392
  year: 2013
  ident: 297_CR3
  publication-title: SIAM J Matrix Anal Appl
  doi: 10.1137/110838972
– volume: 74
  start-page: 265
  year: 1988
  ident: 297_CR23
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(88)90081-2
– volume: 33
  start-page: 1075
  year: 2012
  ident: 297_CR2
  publication-title: SIAM J Matrix Anal Appl
  doi: 10.1137/110838960
– volume: 21
  start-page: 395502
  year: 2009
  ident: 297_CR9
  publication-title: J Phys Condensed Matter
  doi: 10.1088/0953-8984/21/39/395502
– volume: 233
  start-page: 1298
  year: 2010
  ident: 297_CR25
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2008.10.071
– volume: 165
  start-page: 93
  year: 1992
  ident: 297_CR8
  publication-title: Linear Algebra Appl
  doi: 10.1016/0024-3795(92)90231-X
– start-page: 76
  volume-title: Matrix Functions and Matrix Equations, vol. 19. Series in Contemporary Applied Mathematics
  year: 2015
  ident: 297_CR17
– volume-title: Communication-avoiding Krylov Subspace Methods in Theory and Practice
  year: 2015
  ident: 297_CR5
– volume: 40
  start-page: 247
  year: 1989
  ident: 297_CR16
  publication-title: Oper Theory Adv Appl
– volume: 70
  start-page: 751
  year: 1999
  ident: 297_CR33
  publication-title: JETP Letters
  doi: 10.1134/1.568257
– volume-title: Matrix Computations
  year: 1996
  ident: 297_CR11
– volume: 216
  start-page: 139
  year: 1995
  ident: 297_CR15
  publication-title: Linear Algebra Appl
  doi: 10.1016/0024-3795(93)00126-K
– volume: 62
  start-page: 1032
  year: 2014
  ident: 297_CR19
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081087.2013.803242
– volume-title: LAPACK Users’ Guide
  year: 1999
  ident: 297_CR1
  doi: 10.1137/1.9780898719604
– volume-title: The Nuclear Many-Body Problem
  year: 1980
  ident: 297_CR26
  doi: 10.1007/978-3-642-61852-9
– volume: 36
  start-page: 793
  year: 2015
  ident: 297_CR6
  publication-title: SIAM J Matrix Anal Appl
  doi: 10.1137/140990735
– volume: 218
  start-page: 324
  year: 2006
  ident: 297_CR12
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2006.02.007
– volume: 23
  start-page: 517
  year: 2001
  ident: 297_CR14
  publication-title: SIAM J Sci Comput
  doi: 10.1137/S1064827500366124
– volume-title: Applied Numerical Linear Algebra
  year: 1997
  ident: 297_CR7
  doi: 10.1137/1.9781611971446
– volume: 12
  start-page: 97
  year: 1996
  ident: 297_CR35
  publication-title: Numer Algor
  doi: 10.1007/BF02141743
– volume: 22
  start-page: 78
  year: 1961
  ident: 297_CR31
  publication-title: Nuclear Phys
  doi: 10.1016/0029-5582(61)90364-9
– volume-title: Time-Dependent Density Functional Perturbation Theory: New algorithms with Applications to Molecular Spectra
  year: 2007
  ident: 297_CR27
– volume: 31
  start-page: 270
  year: 2005
  ident: 297_CR22
  publication-title: ACM Trans Math Software
  doi: 10.1145/1067967.1067973
– volume-title: Block algorithms with augmented Rayleigh-Ritz projections for large-scale eigenpair computation
  year: 2015
  ident: 297_CR34
– volume-title: The Quantum Mechanics of Many-Body Systems
  year: 1972
  ident: 297_CR32
– volume: 438
  start-page: 3085
  year: 2013
  ident: 297_CR20
  publication-title: Linear Algebra Appl
  doi: 10.1016/j.laa.2012.12.003
– volume: 71
  start-page: 103
  year: 2016
  ident: 297_CR13
  publication-title: Numer Algor
  doi: 10.1007/s11075-015-9987-4
– volume: 435
  start-page: 480
  year: 2011
  ident: 297_CR36
  publication-title: Linear Algebra Appl
  doi: 10.1016/j.laa.2010.06.034
– volume: 24
  start-page: 312
  year: 2002
  ident: 297_CR10
  publication-title: SIAM J Sci Comput
  doi: 10.1137/S1064827500382579
– volume: 115
  start-page: 3006
  year: 2001
  ident: 297_CR21
  publication-title: J Chem Phys
  doi: 10.1063/1.1385368
– volume: 40
  start-page: 12255
  year: 1989
  ident: 297_CR30
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.40.12255
– volume: 15
  start-page: 687
  year: 1980
  ident: 297_CR29
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0717059
– volume: 54
  start-page: 31
  year: 2014
  ident: 297_CR4
  publication-title: BIT Numer Math
  doi: 10.1007/s10543-014-0472-6
– volume: 131
  start-page: 83
  year: 2015
  ident: 297_CR18
  publication-title: Numer Math
  doi: 10.1007/s00211-014-0681-6
– volume: 82
  start-page: 3235
  year: 1985
  ident: 297_CR24
  publication-title: J Chem Phys
  doi: 10.1063/1.448223
– volume-title: Iterative diagonalization of non-hermitian eigenproblems in time-dependent density functional and manybody perturbation theory
  year: 2012
  ident: 297_CR28
SSID ssj0000390473
Score 2.0970411
Snippet The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013)...
The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013)...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1443
SubjectTerms Algorithms
Applications of Mathematics
Conjugate gradient method
Convergence
Eigenvalues
Mathematical models
Mathematics
Mathematics and Statistics
Optimization
Searching
Subspaces
共轭梯度方法
局部优化
局部最优
搜索子空间
收敛速度
特征值问题
线性响应
预条件共轭梯度法
Title Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods
URI http://lib.cqvip.com/qk/60114X/201608/669535762.html
https://link.springer.com/article/10.1007/s11425-016-0297-1
https://www.proquest.com/docview/1880023621
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5iL3oQn1hfRPCkLOwju8kei_hA0ZMFPYVNMq1IbbXbCv33zmR3WxQVvC1sHpCZZObLTL5h7CRWyuIfEZgcEKCQD6cKKYJCOScF2gvpCUzv7rPrrrh5TB_rd9xlk-3ehCT9Sb147BahfiH0paTZXAYIeVopQnfajd24M79YCRHFCx9ZpgT7QKL9bKKZP41CnArPo2H_HWf8apsWDue3GKk3PZfrbK32GXmnEvIGW4LhJlu9mxOulltshJgSdZaPq5RX4EAsm8TkDbyuGcNRyz7AcTPjzc0395ZsMOMjPDhecYo3j49dxV_kOH6_TOmejffHPjVswquK0-U2615ePJxfB3UthcAmQk2CxIVxAVnqTG4TazKAWBmZqxQK41wKmTRpTyaJ7RkZKjBCGQhdzxnEH0LgIbTDloc49S7jxOASRZntCQsCZFQQRgxFkbrEyriwbbY_X1H9VnFm6CzL0wSxTdxmYbPG2tY05FQNY6AXBMokIk2pZyQiHbXZ6bxLM94fjY8bwWncKRT-KIYwmpaamOeILz_GNmeNRHW9ZcvfR9z7V-t9thJ77aIcwQO2PBlP4RD9lok5Yq3O1dPtxZHX109RKecR
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iB_UgPrE-I3hSFvaR3WSPIkp91JMFb2GTTBXRtnZbwX_vTHa3RVHB28LmAZlJZr7M5BvGjmOlLP4RgckBAQr5cKqQIiiUc1KgvZCewLRzl7W74vohfajfcZdNtnsTkvQn9eyxW4T6hdCXkmZzGSDkWUBfQFHZgm58Nr1YCRHFCx9ZpgT7QKL9bKKZP41CnApPg_7jG8741TbNHM5vMVJvei5X2UrtM_KzSshrbA7662y5MyVcLTfYADEl6iwfVSmvwIFYNonJG3hdM4ajlr2D4-aDNzff3Fuylw8-wIPjFacYenzsKv4ix_H7eUL3bPxx5FPDxryqOF1usu7lxf15O6hrKQQ2EWocJC6MC8hSZ3KbWJMBxMrIXKVQGOdSyKRJezJJbM_IUIERykDoes4g_hACD6EtNt_HqbcZJwaXKMpsT1gQIKOCMGIoitQlVsaFbbHd6YrqYcWZobMsTxPENnGLhc0aa1vTkFM1jBc9I1AmEWlKPSMR6ajFTqZdmvH-aHzUCE7jTqHwR9GHwaTUxDxHfPkxtjltJKrrLVv-PuLOv1ofssX2fedW317d3eyypdhrGuUL7rH58WgC--jDjM2B19lPGhnocA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBelg9I9lK3bWNpu02BPHab-kC35MWwLWduEPSyQN2FJ55bS2mnsFPLf984fCSvrYG8G6wN0J939dKffMfYlVMriH-GZFBCgkA-nMim8TDknBdoL2RCYTqbJeCbO5_G8q3Na9dnufUiyfdNALE1FfbZw-dn24VuAuoYwmBJoU-kh_HmBp3FAij4Lh5tLFh8RvWiizJRs70m0pX1k82-jEL_CdVlc3ePsf9qprfP5JF7amKHRK3bQ-Y982Ar8NduB4pC9nGzIV6s3rER8ifrLl236K3Agxk1i9Qbe1Y_hqHEP4LhZ8_4WnDdW7XbNSzxE7nCKRYOVXctl5Dh-36zozo1fLZs0sZq31aert2w2-vH729jr6ip4NhKq9iLnhxkksTOpjaxJAEJlZKpiyIxzMSTSxLmMIpsb6SswQhnwXe4MYhEh8EB6x3YLnPo948TmEgSJzYUFATLICC_6IotdZGWY2QE73qyoXrT8GTpJ0jhCnBMOmN-vsbYdJTlVxrjVWzJlEpGmNDQSkQ4G7HTTpR_vH40_94LTuGsoFJIVUK4qTSx0xJ0fYpuvvUR1t32r50c8-q_Wn9jer-8jfflzenHM9sNG0Sh18ITt1ssVfEB3pjYfG5V9BHDi7Kw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+response+eigenvalue+problem+solved+by+extended+locally+optimal+preconditioned+conjugate+gradient+methods&rft.jtitle=Science+China.+Mathematics&rft.au=Bai%2C+ZhaoJun&rft.au=Li%2C+RenCang&rft.au=Lin%2C+WenWei&rft.date=2016-08-01&rft.pub=Science+China+Press&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=59&rft.issue=8&rft.spage=1443&rft.epage=1460&rft_id=info:doi/10.1007%2Fs11425-016-0297-1&rft.externalDocID=10_1007_s11425_016_0297_1
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60114X%2F60114X.jpg