Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods
The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li (2014). We put forward two improvements to the met...
Saved in:
Published in | Science China. Mathematics Vol. 59; no. 8; pp. 1443 - 1460 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Science China Press
01.08.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-7283 1869-1862 |
DOI | 10.1007/s11425-016-0297-1 |
Cover
Abstract | The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li (2014). We put forward two improvements to the method: A shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4dCG (ELOBP4dCG). Numerical results of the ELOBP4dCG strongly demonstrate the capability of deflation technique and effec- tiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems. |
---|---|
AbstractList | The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li (2014). We put forward two improvements to the method: A shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4dCG (ELOBP4dCG). Numerical results of the ELOBP4dCG strongly demonstrate the capability of deflation technique and effectiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems. The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li (2014). We put forward two improvements to the method: A shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4dCG (ELOBP4dCG). Numerical results of the ELOBP4dCG strongly demonstrate the capability of deflation technique and effec- tiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems. |
Author | BAI ZhaoJun LI RenCang LIN WenWeia |
AuthorAffiliation | Department of Computer Science and Department of Mathematics, University of California at Davis, Davis, CA 95616, USA Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, USA Department of Applied Mathematics, Taiwan Chiao Tung University, Hsinehu 300, China |
Author_xml | – sequence: 1 givenname: ZhaoJun surname: Bai fullname: Bai, ZhaoJun email: bai@cs.ucdavis.edu organization: Department of Computer Science and Department of Mathematics, University of California at Davis – sequence: 2 givenname: RenCang surname: Li fullname: Li, RenCang organization: Department of Mathematics, University of Texas at Arlington – sequence: 3 givenname: WenWei surname: Lin fullname: Lin, WenWei organization: Department of Applied Mathematics, Taiwan Chiao Tung University |
BookMark | eNp9kDtvFDEUhS0UJELID6CzqGgG_JixPSWKICCtRAO15cediVdee2N7Ivbf49VGFBRxYZ_ifL73nLfoKuUECL2n5BMlRH6ulI5sGggVA2GzHOgrdE2VmId-sauuhRwHyRR_g25r3ZN--ExGya9R3oUEpuAC9ZhTBQxhhfRk4gb4WLKNcMA1xyfw2J4w_GmQfNcxOxPjCedjCwcTuxVcTj600DfzuOv9tpoGeC3GB0gNH6A9ZF_fodeLiRVun98b9Pvb119334fdz_sfd192g-OjagP3hBkQk7ez484KAKasnNUExno_gZB2WiTnbrGSKLCjskD84i1VbByl4Dfo4-XfHuJxg9r0IVQHMZoEeauaKkUI44LRbqUXqyu51gKLPpYeqpw0Jfrcr770q3u_-tyvPjPyP8aFZs7pWzEhvkiyC1n7lLRC0fu8ldS7eBH68DzuIaf1sXP_dhRinvgkBeN_AWOfn-Y |
CitedBy_id | crossref_primary_10_1016_j_cam_2021_113650 crossref_primary_10_1016_j_laa_2024_01_015 crossref_primary_10_1137_23M1566017 crossref_primary_10_1016_j_jcp_2019_109058 crossref_primary_10_3934_jimo_2021206 crossref_primary_10_1016_j_laa_2016_08_023 crossref_primary_10_1016_j_laa_2022_10_012 crossref_primary_10_1515_dema_2022_0029 crossref_primary_10_3390_mca23010010 crossref_primary_10_3390_a12090181 |
Cites_doi | 10.1137/110838972 10.1016/0021-9991(88)90081-2 10.1137/110838960 10.1088/0953-8984/21/39/395502 10.1016/j.cam.2008.10.071 10.1016/0024-3795(92)90231-X 10.1134/1.568257 10.1016/0024-3795(93)00126-K 10.1080/03081087.2013.803242 10.1137/1.9780898719604 10.1007/978-3-642-61852-9 10.1137/140990735 10.1016/j.jcp.2006.02.007 10.1137/S1064827500366124 10.1137/1.9781611971446 10.1007/BF02141743 10.1016/0029-5582(61)90364-9 10.1145/1067967.1067973 10.1016/j.laa.2012.12.003 10.1007/s11075-015-9987-4 10.1016/j.laa.2010.06.034 10.1137/S1064827500382579 10.1063/1.1385368 10.1103/PhysRevB.40.12255 10.1137/0717059 10.1007/s10543-014-0472-6 10.1007/s00211-014-0681-6 10.1063/1.448223 |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag Berlin Heidelberg 2016 |
Copyright_xml | – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2016 |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1007/s11425-016-0297-1 |
DatabaseName | 中文期刊服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods |
EISSN | 1869-1862 |
EndPage | 1460 |
ExternalDocumentID | 10_1007_s11425_016_0297_1 669535762 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0VY 1N0 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ AXYYD B-. BAPOH BDATZ BGNMA CAG CCEZO CCVFK CHBEP COF CQIGP CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9J P9R PF0 PT4 QOS R89 RIG ROL RSV S16 S3B SAP SCL SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 ~WA -SA -S~ 0R~ 5XA 5XB AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AGQEE AGRTI AIGIU BSONS CAJEA CJPJV H13 Q-- U1G U5K AAPKM AAYXX ABBRH ABDBE ACMFV AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION 7TB 8FD ABRTQ FR3 KR7 |
ID | FETCH-LOGICAL-c348t-3d02ae65db9c3cb6ee28b7985eabdd5e67b5f733cfb708eb48be0dfdb18244763 |
IEDL.DBID | U2A |
ISSN | 1674-7283 |
IngestDate | Thu Sep 04 20:05:52 EDT 2025 Tue Jul 01 03:54:52 EDT 2025 Thu Apr 24 23:02:45 EDT 2025 Fri Feb 21 02:33:39 EST 2025 Wed Feb 14 10:17:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | linear response 81Q15 conjugate-gradient 65L15 deflation eigenvalue problem 15A18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-3d02ae65db9c3cb6ee28b7985eabdd5e67b5f733cfb708eb48be0dfdb18244763 |
Notes | eigenvalue problem, linear response, deflation, conjugate-gradient, deflation The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li (2014). We put forward two improvements to the method: A shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4dCG (ELOBP4dCG). Numerical results of the ELOBP4dCG strongly demonstrate the capability of deflation technique and effec- tiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems. 11-5837/O1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1880023621 |
PQPubID | 23500 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1880023621 crossref_primary_10_1007_s11425_016_0297_1 crossref_citationtrail_10_1007_s11425_016_0297_1 springer_journals_10_1007_s11425_016_0297_1 chongqing_primary_669535762 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-01 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Science China. Mathematics |
PublicationTitleAbbrev | Sci. China Math |
PublicationTitleAlternate | SCIENCE CHINA Mathematics |
PublicationYear | 2016 |
Publisher | Science China Press |
Publisher_xml | – name: Science China Press |
References | BaiZLiR-CMinimization principle for the linear response eigenvalue problem, II: ComputationSIAM J Matrix Anal Appl201334392416304681010.1137/1108389721311.65102 ThoulessD JThe Quantum Mechanics of Many-Body Systems1972New YorkAcademic0103.23502 ThoulessD JVibrational states of nuclei in the random phase approximationNuclear Phys196122789512119310.1016/0029-5582(61)90364-90091.23103 MarquesM ACastroARubioAAssessment of exchange-correlation functionals for the calculation of dynamical properties of small clusters in time-dependent density functional theoryJ Chem Phys20011153006301410.1063/1.1385368 ZhouYLiR-CBounding the spectrum of large Hermitian matricesLinear Algebra Appl2011435480493279458710.1016/j.laa.2010.06.0341221.15022 ImakuraADuLSakuraiTError bounds of Rayleigh-Ritz type contour integral-based eigensolver for solving generalized eigenvalue problemsNumer Algor201671103120343934810.1007/s11075-015-9987-41333.65039 LiR-CBaiZGaoWSuY FRayleigh quotient based optimization methods for eigenvalue problemsMatrix Functions and Matrix Equations, vol. 19. Series in Contemporary Applied Mathematics2015SingaporeWorld Scientific7610810.1142/9789814675772_0004 MoneyJYeQEIGIFP: A MATLAB program for solving large symmetric generalized eigenvalue problemsACM Trans Math Software200531270279226679310.1145/1067967.10679731070.65531 YeQAn adaptive block Lanczos algorithmNumer Algor19961297110142355010.1007/BF021417430859.65032 KnyazevA VToward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient methodSIAM J Sci Comput200123517541186126310.1137/S10648275003661240992.65028 QuillenPYeQA block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problemsJ Comput Appl Math201023312981313255936510.1016/j.cam.2008.10.0711186.65044 GolubGYeQAn inverse free preconditioned Krylov subspace methods for symmetric eigenvalue problemsSIAM J Sci Comput200224312334192442710.1137/S10648275003825791016.65017 LiR-CZhangL-HConvergence of block Lanczos method for eigenvalue clustersNumer Math201513183113338332910.1007/s00211-014-0681-61334.65073 OlsenJJørgensenPLinear and nonlinear response functions for an exact state and for an MCSCF stateJ Chem Phys1985823235326410.1063/1.448223 LiangXLiR-CExtensions of Wielandt’s min-max principles for positive semi-definite pencilsLinear Multilinear Algebra20146210321048324694210.1080/03081087.2013.8032421307.15015 HetmaniukULehoucqRBasis selection in LOBPCGJ Comput Phys2006218324332226795510.1016/j.jcp.2006.02.0071104.65031 SaadYOn the rates of convergence of the Lanczos and the block-Lanczos methodsSIAM J Numer Anal19801568770658875510.1137/07170590456.65016 CarsonECommunication-avoiding Krylov Subspace Methods in Theory and Practice2015BerkeleyUniversity of California FlaschkaULinW-WWuJ-LA KQZ algorithm for solving linear-response eigenvalue equationsLinear Algebra Appl199216593123114974810.1016/0024-3795(92)90231-X0759.65013 BaiZLiR-CMinimization principles and computation for the generalized linear response eigenvalue problemBIT Numer Math2014543154317795410.1007/s10543-014-0472-61293.65053 GiannozziPQUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materialsJ Phys Condensed Matter20092139550210.1088/0953-8984/21/39/395502 RoccaDTime-Dependent Density Functional Perturbation Theory: New algorithms with Applications to Molecular Spectra2007TriesteThe International School for Advanced Studies Kovač-StrikoJVeselićKTrace minimization and definiteness of symmetric pencilsLinear Algebra Appl1995216139158131998110.1016/0024-3795(93)00126-K0821.15008 LiangXLiR-CBaiZTrace minimization principles for positive semi-definite pencilsLinear Algebra Appl201343830853106301805910.1016/j.laa.2012.12.0031262.15010 WenZZhangYBlock algorithms with augmented Rayleigh-Ritz projections for large-scale eigenpair computation2015 OlsenJJensen AaH JJørgensenPSolution of the large matrix equations which occur in response theoryJ Comput Phys19887426528210.1016/0021-9991(88)90081-20636.65034 GolubG HVan LoanC FMatrix Computations1996Baltimore-MarylandJohns Hopkins University Press0865.65009 RoccaDIterative diagonalization of non-hermitian eigenproblems in time-dependent density functional and manybody perturbation theory2012BostonPresentation at Session B39, the APS Marching Meeting TsiperE VVariational procedure and generalized Lanczos recursion for small-amplitude classical oscillationsJETP Letters19997075175510.1134/1.568257 BaiZLiR-CMinimization principles for the linear response eigenvalue problem, I: TheorySIAM J Matrix Anal Appl20123310751100302346510.1137/1108389601263.65078 AndersonEBaiZBischofCLAPACK Users’ Guide1999PhiladelphiaSIAM10.1137/1.97808987196040755.65028 LancasterPYeQVariational properties and Rayleigh quotient algorithms for symmetric matrix pencilsOper Theory Adv Appl19894024727810383170676.15007 DemmelJApplied Numerical Linear Algebra1997PhiladelphiaSIAM10.1137/1.97816119714460879.65017 RingPSchuckPThe Nuclear Many-Body Problem1980New YorkSpringer-Verlag10.1007/978-3-642-61852-9 CarsonEDemmelJAccuracy of the s-step Lanczos method for the symmetric eigenproblem in finite precisionSIAM J Matrix Anal Appl201536793819335763110.1137/1409907351319.65024 TeterMPayneMAllanDSolution of Schr¨odinger equation for large systemsPhys Rev B198940122551226310.1103/PhysRevB.40.12255 A Imakura (297_CR13) 2016; 71 X Liang (297_CR19) 2014; 62 M A Marques (297_CR21) 2001; 115 U Hetmaniuk (297_CR12) 2006; 218 D J Thouless (297_CR31) 1961; 22 M Teter (297_CR30) 1989; 40 Z Wen (297_CR34) 2015 P Giannozzi (297_CR9) 2009; 21 R-C Li (297_CR18) 2015; 131 Z Bai (297_CR4) 2014; 54 P Ring (297_CR26) 1980 Y Zhou (297_CR36) 2011; 435 G H Golub (297_CR11) 1996 X Liang (297_CR20) 2013; 438 J Olsen (297_CR23) 1988; 74 E Carson (297_CR5) 2015 E Anderson (297_CR1) 1999 P Lancaster (297_CR16) 1989; 40 J Olsen (297_CR24) 1985; 82 D Rocca (297_CR27) 2007 Z Bai (297_CR3) 2013; 34 E Carson (297_CR6) 2015; 36 J Money (297_CR22) 2005; 31 Z Bai (297_CR2) 2012; 33 U Flaschka (297_CR8) 1992; 165 P Quillen (297_CR25) 2010; 233 A V Knyazev (297_CR14) 2001; 23 E V Tsiper (297_CR33) 1999; 70 R-C Li (297_CR17) 2015 J Kovač-Striko (297_CR15) 1995; 216 Y Saad (297_CR29) 1980; 15 Q Ye (297_CR35) 1996; 12 G Golub (297_CR10) 2002; 24 D Rocca (297_CR28) 2012 J Demmel (297_CR7) 1997 D J Thouless (297_CR32) 1972 |
References_xml | – reference: OlsenJJørgensenPLinear and nonlinear response functions for an exact state and for an MCSCF stateJ Chem Phys1985823235326410.1063/1.448223 – reference: Kovač-StrikoJVeselićKTrace minimization and definiteness of symmetric pencilsLinear Algebra Appl1995216139158131998110.1016/0024-3795(93)00126-K0821.15008 – reference: LiR-CBaiZGaoWSuY FRayleigh quotient based optimization methods for eigenvalue problemsMatrix Functions and Matrix Equations, vol. 19. Series in Contemporary Applied Mathematics2015SingaporeWorld Scientific7610810.1142/9789814675772_0004 – reference: ThoulessD JVibrational states of nuclei in the random phase approximationNuclear Phys196122789512119310.1016/0029-5582(61)90364-90091.23103 – reference: CarsonEDemmelJAccuracy of the s-step Lanczos method for the symmetric eigenproblem in finite precisionSIAM J Matrix Anal Appl201536793819335763110.1137/1409907351319.65024 – reference: ThoulessD JThe Quantum Mechanics of Many-Body Systems1972New YorkAcademic0103.23502 – reference: YeQAn adaptive block Lanczos algorithmNumer Algor19961297110142355010.1007/BF021417430859.65032 – reference: KnyazevA VToward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient methodSIAM J Sci Comput200123517541186126310.1137/S10648275003661240992.65028 – reference: ImakuraADuLSakuraiTError bounds of Rayleigh-Ritz type contour integral-based eigensolver for solving generalized eigenvalue problemsNumer Algor201671103120343934810.1007/s11075-015-9987-41333.65039 – reference: CarsonECommunication-avoiding Krylov Subspace Methods in Theory and Practice2015BerkeleyUniversity of California – reference: LiangXLiR-CBaiZTrace minimization principles for positive semi-definite pencilsLinear Algebra Appl201343830853106301805910.1016/j.laa.2012.12.0031262.15010 – reference: MarquesM ACastroARubioAAssessment of exchange-correlation functionals for the calculation of dynamical properties of small clusters in time-dependent density functional theoryJ Chem Phys20011153006301410.1063/1.1385368 – reference: TeterMPayneMAllanDSolution of Schr¨odinger equation for large systemsPhys Rev B198940122551226310.1103/PhysRevB.40.12255 – reference: WenZZhangYBlock algorithms with augmented Rayleigh-Ritz projections for large-scale eigenpair computation2015 – reference: BaiZLiR-CMinimization principles for the linear response eigenvalue problem, I: TheorySIAM J Matrix Anal Appl20123310751100302346510.1137/1108389601263.65078 – reference: ZhouYLiR-CBounding the spectrum of large Hermitian matricesLinear Algebra Appl2011435480493279458710.1016/j.laa.2010.06.0341221.15022 – reference: AndersonEBaiZBischofCLAPACK Users’ Guide1999PhiladelphiaSIAM10.1137/1.97808987196040755.65028 – reference: RingPSchuckPThe Nuclear Many-Body Problem1980New YorkSpringer-Verlag10.1007/978-3-642-61852-9 – reference: LiR-CZhangL-HConvergence of block Lanczos method for eigenvalue clustersNumer Math201513183113338332910.1007/s00211-014-0681-61334.65073 – reference: DemmelJApplied Numerical Linear Algebra1997PhiladelphiaSIAM10.1137/1.97816119714460879.65017 – reference: OlsenJJensen AaH JJørgensenPSolution of the large matrix equations which occur in response theoryJ Comput Phys19887426528210.1016/0021-9991(88)90081-20636.65034 – reference: LiangXLiR-CExtensions of Wielandt’s min-max principles for positive semi-definite pencilsLinear Multilinear Algebra20146210321048324694210.1080/03081087.2013.8032421307.15015 – reference: QuillenPYeQA block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problemsJ Comput Appl Math201023312981313255936510.1016/j.cam.2008.10.0711186.65044 – reference: LancasterPYeQVariational properties and Rayleigh quotient algorithms for symmetric matrix pencilsOper Theory Adv Appl19894024727810383170676.15007 – reference: SaadYOn the rates of convergence of the Lanczos and the block-Lanczos methodsSIAM J Numer Anal19801568770658875510.1137/07170590456.65016 – reference: BaiZLiR-CMinimization principle for the linear response eigenvalue problem, II: ComputationSIAM J Matrix Anal Appl201334392416304681010.1137/1108389721311.65102 – reference: MoneyJYeQEIGIFP: A MATLAB program for solving large symmetric generalized eigenvalue problemsACM Trans Math Software200531270279226679310.1145/1067967.10679731070.65531 – reference: RoccaDIterative diagonalization of non-hermitian eigenproblems in time-dependent density functional and manybody perturbation theory2012BostonPresentation at Session B39, the APS Marching Meeting – reference: GiannozziPQUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materialsJ Phys Condensed Matter20092139550210.1088/0953-8984/21/39/395502 – reference: HetmaniukULehoucqRBasis selection in LOBPCGJ Comput Phys2006218324332226795510.1016/j.jcp.2006.02.0071104.65031 – reference: RoccaDTime-Dependent Density Functional Perturbation Theory: New algorithms with Applications to Molecular Spectra2007TriesteThe International School for Advanced Studies – reference: GolubGYeQAn inverse free preconditioned Krylov subspace methods for symmetric eigenvalue problemsSIAM J Sci Comput200224312334192442710.1137/S10648275003825791016.65017 – reference: FlaschkaULinW-WWuJ-LA KQZ algorithm for solving linear-response eigenvalue equationsLinear Algebra Appl199216593123114974810.1016/0024-3795(92)90231-X0759.65013 – reference: TsiperE VVariational procedure and generalized Lanczos recursion for small-amplitude classical oscillationsJETP Letters19997075175510.1134/1.568257 – reference: BaiZLiR-CMinimization principles and computation for the generalized linear response eigenvalue problemBIT Numer Math2014543154317795410.1007/s10543-014-0472-61293.65053 – reference: GolubG HVan LoanC FMatrix Computations1996Baltimore-MarylandJohns Hopkins University Press0865.65009 – volume: 34 start-page: 392 year: 2013 ident: 297_CR3 publication-title: SIAM J Matrix Anal Appl doi: 10.1137/110838972 – volume: 74 start-page: 265 year: 1988 ident: 297_CR23 publication-title: J Comput Phys doi: 10.1016/0021-9991(88)90081-2 – volume: 33 start-page: 1075 year: 2012 ident: 297_CR2 publication-title: SIAM J Matrix Anal Appl doi: 10.1137/110838960 – volume: 21 start-page: 395502 year: 2009 ident: 297_CR9 publication-title: J Phys Condensed Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 233 start-page: 1298 year: 2010 ident: 297_CR25 publication-title: J Comput Appl Math doi: 10.1016/j.cam.2008.10.071 – volume: 165 start-page: 93 year: 1992 ident: 297_CR8 publication-title: Linear Algebra Appl doi: 10.1016/0024-3795(92)90231-X – start-page: 76 volume-title: Matrix Functions and Matrix Equations, vol. 19. Series in Contemporary Applied Mathematics year: 2015 ident: 297_CR17 – volume-title: Communication-avoiding Krylov Subspace Methods in Theory and Practice year: 2015 ident: 297_CR5 – volume: 40 start-page: 247 year: 1989 ident: 297_CR16 publication-title: Oper Theory Adv Appl – volume: 70 start-page: 751 year: 1999 ident: 297_CR33 publication-title: JETP Letters doi: 10.1134/1.568257 – volume-title: Matrix Computations year: 1996 ident: 297_CR11 – volume: 216 start-page: 139 year: 1995 ident: 297_CR15 publication-title: Linear Algebra Appl doi: 10.1016/0024-3795(93)00126-K – volume: 62 start-page: 1032 year: 2014 ident: 297_CR19 publication-title: Linear Multilinear Algebra doi: 10.1080/03081087.2013.803242 – volume-title: LAPACK Users’ Guide year: 1999 ident: 297_CR1 doi: 10.1137/1.9780898719604 – volume-title: The Nuclear Many-Body Problem year: 1980 ident: 297_CR26 doi: 10.1007/978-3-642-61852-9 – volume: 36 start-page: 793 year: 2015 ident: 297_CR6 publication-title: SIAM J Matrix Anal Appl doi: 10.1137/140990735 – volume: 218 start-page: 324 year: 2006 ident: 297_CR12 publication-title: J Comput Phys doi: 10.1016/j.jcp.2006.02.007 – volume: 23 start-page: 517 year: 2001 ident: 297_CR14 publication-title: SIAM J Sci Comput doi: 10.1137/S1064827500366124 – volume-title: Applied Numerical Linear Algebra year: 1997 ident: 297_CR7 doi: 10.1137/1.9781611971446 – volume: 12 start-page: 97 year: 1996 ident: 297_CR35 publication-title: Numer Algor doi: 10.1007/BF02141743 – volume: 22 start-page: 78 year: 1961 ident: 297_CR31 publication-title: Nuclear Phys doi: 10.1016/0029-5582(61)90364-9 – volume-title: Time-Dependent Density Functional Perturbation Theory: New algorithms with Applications to Molecular Spectra year: 2007 ident: 297_CR27 – volume: 31 start-page: 270 year: 2005 ident: 297_CR22 publication-title: ACM Trans Math Software doi: 10.1145/1067967.1067973 – volume-title: Block algorithms with augmented Rayleigh-Ritz projections for large-scale eigenpair computation year: 2015 ident: 297_CR34 – volume-title: The Quantum Mechanics of Many-Body Systems year: 1972 ident: 297_CR32 – volume: 438 start-page: 3085 year: 2013 ident: 297_CR20 publication-title: Linear Algebra Appl doi: 10.1016/j.laa.2012.12.003 – volume: 71 start-page: 103 year: 2016 ident: 297_CR13 publication-title: Numer Algor doi: 10.1007/s11075-015-9987-4 – volume: 435 start-page: 480 year: 2011 ident: 297_CR36 publication-title: Linear Algebra Appl doi: 10.1016/j.laa.2010.06.034 – volume: 24 start-page: 312 year: 2002 ident: 297_CR10 publication-title: SIAM J Sci Comput doi: 10.1137/S1064827500382579 – volume: 115 start-page: 3006 year: 2001 ident: 297_CR21 publication-title: J Chem Phys doi: 10.1063/1.1385368 – volume: 40 start-page: 12255 year: 1989 ident: 297_CR30 publication-title: Phys Rev B doi: 10.1103/PhysRevB.40.12255 – volume: 15 start-page: 687 year: 1980 ident: 297_CR29 publication-title: SIAM J Numer Anal doi: 10.1137/0717059 – volume: 54 start-page: 31 year: 2014 ident: 297_CR4 publication-title: BIT Numer Math doi: 10.1007/s10543-014-0472-6 – volume: 131 start-page: 83 year: 2015 ident: 297_CR18 publication-title: Numer Math doi: 10.1007/s00211-014-0681-6 – volume: 82 start-page: 3235 year: 1985 ident: 297_CR24 publication-title: J Chem Phys doi: 10.1063/1.448223 – volume-title: Iterative diagonalization of non-hermitian eigenproblems in time-dependent density functional and manybody perturbation theory year: 2012 ident: 297_CR28 |
SSID | ssj0000390473 |
Score | 2.0970411 |
Snippet | The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013)... The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013)... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1443 |
SubjectTerms | Algorithms Applications of Mathematics Conjugate gradient method Convergence Eigenvalues Mathematical models Mathematics Mathematics and Statistics Optimization Searching Subspaces 共轭梯度方法 局部优化 局部最优 搜索子空间 收敛速度 特征值问题 线性响应 预条件共轭梯度法 |
Title | Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods |
URI | http://lib.cqvip.com/qk/60114X/201608/669535762.html https://link.springer.com/article/10.1007/s11425-016-0297-1 https://www.proquest.com/docview/1880023621 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5iL3oQn1hfRPCkLOwju8kei_hA0ZMFPYVNMq1IbbXbCv33zmR3WxQVvC1sHpCZZObLTL5h7CRWyuIfEZgcEKCQD6cKKYJCOScF2gvpCUzv7rPrrrh5TB_rd9xlk-3ehCT9Sb147BahfiH0paTZXAYIeVopQnfajd24M79YCRHFCx9ZpgT7QKL9bKKZP41CnArPo2H_HWf8apsWDue3GKk3PZfrbK32GXmnEvIGW4LhJlu9mxOulltshJgSdZaPq5RX4EAsm8TkDbyuGcNRyz7AcTPjzc0395ZsMOMjPDhecYo3j49dxV_kOH6_TOmejffHPjVswquK0-U2615ePJxfB3UthcAmQk2CxIVxAVnqTG4TazKAWBmZqxQK41wKmTRpTyaJ7RkZKjBCGQhdzxnEH0LgIbTDloc49S7jxOASRZntCQsCZFQQRgxFkbrEyriwbbY_X1H9VnFm6CzL0wSxTdxmYbPG2tY05FQNY6AXBMokIk2pZyQiHbXZ6bxLM94fjY8bwWncKRT-KIYwmpaamOeILz_GNmeNRHW9ZcvfR9z7V-t9thJ77aIcwQO2PBlP4RD9lok5Yq3O1dPtxZHX109RKecR |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iB_UgPrE-I3hSFvaR3WSPIkp91JMFb2GTTBXRtnZbwX_vTHa3RVHB28LmAZlJZr7M5BvGjmOlLP4RgckBAQr5cKqQIiiUc1KgvZCewLRzl7W74vohfajfcZdNtnsTkvQn9eyxW4T6hdCXkmZzGSDkWUBfQFHZgm58Nr1YCRHFCx9ZpgT7QKL9bKKZP41CnApPg_7jG8741TbNHM5vMVJvei5X2UrtM_KzSshrbA7662y5MyVcLTfYADEl6iwfVSmvwIFYNonJG3hdM4ajlr2D4-aDNzff3Fuylw8-wIPjFacYenzsKv4ix_H7eUL3bPxx5FPDxryqOF1usu7lxf15O6hrKQQ2EWocJC6MC8hSZ3KbWJMBxMrIXKVQGOdSyKRJezJJbM_IUIERykDoes4g_hACD6EtNt_HqbcZJwaXKMpsT1gQIKOCMGIoitQlVsaFbbHd6YrqYcWZobMsTxPENnGLhc0aa1vTkFM1jBc9I1AmEWlKPSMR6ajFTqZdmvH-aHzUCE7jTqHwR9GHwaTUxDxHfPkxtjltJKrrLVv-PuLOv1ofssX2fedW317d3eyypdhrGuUL7rH58WgC--jDjM2B19lPGhnocA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBelg9I9lK3bWNpu02BPHab-kC35MWwLWduEPSyQN2FJ55bS2mnsFPLf984fCSvrYG8G6wN0J939dKffMfYlVMriH-GZFBCgkA-nMim8TDknBdoL2RCYTqbJeCbO5_G8q3Na9dnufUiyfdNALE1FfbZw-dn24VuAuoYwmBJoU-kh_HmBp3FAij4Lh5tLFh8RvWiizJRs70m0pX1k82-jEL_CdVlc3ePsf9qprfP5JF7amKHRK3bQ-Y982Ar8NduB4pC9nGzIV6s3rER8ifrLl236K3Agxk1i9Qbe1Y_hqHEP4LhZ8_4WnDdW7XbNSzxE7nCKRYOVXctl5Dh-36zozo1fLZs0sZq31aert2w2-vH729jr6ip4NhKq9iLnhxkksTOpjaxJAEJlZKpiyIxzMSTSxLmMIpsb6SswQhnwXe4MYhEh8EB6x3YLnPo948TmEgSJzYUFATLICC_6IotdZGWY2QE73qyoXrT8GTpJ0jhCnBMOmN-vsbYdJTlVxrjVWzJlEpGmNDQSkQ4G7HTTpR_vH40_94LTuGsoFJIVUK4qTSx0xJ0fYpuvvUR1t32r50c8-q_Wn9jer-8jfflzenHM9sNG0Sh18ITt1ssVfEB3pjYfG5V9BHDi7Kw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+response+eigenvalue+problem+solved+by+extended+locally+optimal+preconditioned+conjugate+gradient+methods&rft.jtitle=Science+China.+Mathematics&rft.au=Bai%2C+ZhaoJun&rft.au=Li%2C+RenCang&rft.au=Lin%2C+WenWei&rft.date=2016-08-01&rft.pub=Science+China+Press&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=59&rft.issue=8&rft.spage=1443&rft.epage=1460&rft_id=info:doi/10.1007%2Fs11425-016-0297-1&rft.externalDocID=10_1007_s11425_016_0297_1 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60114X%2F60114X.jpg |