Comparison of two maximum entropy models highlights the metabolic structure of metacommunities as a key determinant of local community assembly
•Maximum entropy models at different levels of community detail are compared.•These levels of detail are bridged by the metacommunity metabolic distribution.•A power law metabolic distribution reproduces observed metabolic patterns. The principle of Maximum Entropy (MaxEnt) promises a novel approach...
Saved in:
Published in | Ecological modelling Vol. 407; p. 108720 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-3800 1872-7026 |
DOI | 10.1016/j.ecolmodel.2019.108720 |
Cover
Abstract | •Maximum entropy models at different levels of community detail are compared.•These levels of detail are bridged by the metacommunity metabolic distribution.•A power law metabolic distribution reproduces observed metabolic patterns.
The principle of Maximum Entropy (MaxEnt) promises a novel approach for understanding community assembly. Despite reproducing a variety of observed species abundance patterns, MaxEnt models in ecology have been hampered by disparate model assumptions and interpretations. A recurring challenge is that MaxEnt predictions are highly sensitive to the level of detail used to describe the community being modeled, and there seems to be no reason to prefer one level of detail over another. Here we present of formal unification of two previously developed MaxEnt models which differ in their level of detail, but which are otherwise mathematically similar. The less detailed model, “Maximum Entropy Theory of Ecology” (METE), does not resolve species identity or explicitly represent species-specific traits. The more detailed model, “Very Entropic Growth” (VEG), defines each separate species by its per capita metabolic rate ε and assumes a “density of species” function ρ(ε) representing the distribution of ε in the metacommunity. A formal comparison of METE and VEG then highlights ρ(ε) as a key determinant of local community assembly. In particular, appropriate choice of ρ(ε) in VEG can produce more realistic predictions for the metabolic-rank distribution of local communities than METE, which does not explicitly account for metacommunity structure. This opens new avenues of inquiry about what determines metacommunity structure in nature and suggests possible ways to improve METE. |
---|---|
AbstractList | The principle of Maximum Entropy (MaxEnt) promises a novel approach for understanding community assembly. Despite reproducing a variety of observed species abundance patterns, MaxEnt models in ecology have been hampered by disparate model assumptions and interpretations. A recurring challenge is that MaxEnt predictions are highly sensitive to the level of detail used to describe the community being modeled, and there seems to be no reason to prefer one level of detail over another. Here we present of formal unification of two previously developed MaxEnt models which differ in their level of detail, but which are otherwise mathematically similar. The less detailed model, “Maximum Entropy Theory of Ecology” (METE), does not resolve species identity or explicitly represent species-specific traits. The more detailed model, “Very Entropic Growth” (VEG), defines each separate species by its per capita metabolic rate ε and assumes a “density of species” function ρ(ε) representing the distribution of ε in the metacommunity. A formal comparison of METE and VEG then highlights ρ(ε) as a key determinant of local community assembly. In particular, appropriate choice of ρ(ε) in VEG can produce more realistic predictions for the metabolic-rank distribution of local communities than METE, which does not explicitly account for metacommunity structure. This opens new avenues of inquiry about what determines metacommunity structure in nature and suggests possible ways to improve METE. •Maximum entropy models at different levels of community detail are compared.•These levels of detail are bridged by the metacommunity metabolic distribution.•A power law metabolic distribution reproduces observed metabolic patterns. The principle of Maximum Entropy (MaxEnt) promises a novel approach for understanding community assembly. Despite reproducing a variety of observed species abundance patterns, MaxEnt models in ecology have been hampered by disparate model assumptions and interpretations. A recurring challenge is that MaxEnt predictions are highly sensitive to the level of detail used to describe the community being modeled, and there seems to be no reason to prefer one level of detail over another. Here we present of formal unification of two previously developed MaxEnt models which differ in their level of detail, but which are otherwise mathematically similar. The less detailed model, “Maximum Entropy Theory of Ecology” (METE), does not resolve species identity or explicitly represent species-specific traits. The more detailed model, “Very Entropic Growth” (VEG), defines each separate species by its per capita metabolic rate ε and assumes a “density of species” function ρ(ε) representing the distribution of ε in the metacommunity. A formal comparison of METE and VEG then highlights ρ(ε) as a key determinant of local community assembly. In particular, appropriate choice of ρ(ε) in VEG can produce more realistic predictions for the metabolic-rank distribution of local communities than METE, which does not explicitly account for metacommunity structure. This opens new avenues of inquiry about what determines metacommunity structure in nature and suggests possible ways to improve METE. |
ArticleNumber | 108720 |
Author | Dewar, Roderick C. Bertram, Jason Newman, Erica A. |
Author_xml | – sequence: 1 givenname: Jason orcidid: 0000-0001-5374-6912 surname: Bertram fullname: Bertram, Jason email: jxb@iu.edu organization: Environmental Resilience Institute, Indiana University, Bloomington, IN, 47401, USA – sequence: 2 givenname: Erica A. orcidid: 0000-0001-6433-8594 surname: Newman fullname: Newman, Erica A. organization: Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA – sequence: 3 givenname: Roderick C. surname: Dewar fullname: Dewar, Roderick C. organization: Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia |
BookMark | eNqNkUtv1DAUhS1UJKYtv6FessngRxInCxbViJdUqRu6tjw3Nx0Pfgy2A-RX8JdJGGDBpkj36kpX3zmLcy7JRYgBCbnhbMsZb18ftwjR-Tig2wrG--XbKcGekQ1fbqWYaC_IhklWV7Jj7AW5zPnIGOOiExvyYxf9ySSbY6BxpOVbpN58t37yFENJ8TTTX9aZHuzjwS1bMi0HpB6L2UdngeaSJihTwtVgfUP0fgq2WMzULEM_40wHLJi8DSaUlXMRjKN_yHnhMvq9m6_J89G4jC9_3yvy8O7tp92H6u7-_cfd7V0Fsu5KJaEZQWFXY92qZs9bHJTs-kZJPspmVHvgUnW15E2vjGxAINTj0HIp-76RAPKKvDr7nlL8MmEu2tsM6JwJGKeshVC860QvxIKqMwop5pxw1KdkvUmz5kyvFeij_luBXivQ5woW5Zt_lGCLKTYuyRrr_kN_e9Yv-eNXi0lnsBgAB5sQih6ifdLjJ6i3re0 |
CitedBy_id | crossref_primary_10_1002_ecy_3011 crossref_primary_10_1007_s13131_024_2451_3 crossref_primary_10_3390_e21101009 crossref_primary_10_1002_ece3_9374 crossref_primary_10_1016_j_scitotenv_2023_167741 crossref_primary_10_3389_fevo_2019_00293 crossref_primary_10_1007_s11802_023_5422_y |
Cites_doi | 10.1088/0953-8984/22/6/063101 10.1111/j.1461-0248.2009.01328.x 10.1890/13-1955.1 10.3390/e11040931 10.1111/j.1461-0248.2007.01094.x 10.1890/07-1369.1 10.1086/650718 10.1007/s12080-015-0259-7 10.1111/ele.12489 10.1111/j.1600-0706.2009.18236.x 10.1016/j.tree.2014.04.009 10.1126/science.283.5401.554 10.1111/geb.12621 10.1890/12-0370.1 10.1111/ele.12788 10.1111/j.1600-0706.2009.17113.x 10.1034/j.1600-0706.2003.12617.x 10.1126/science.1131344 10.1890/13-0379.1 10.1016/j.jtbi.2007.12.007 10.1111/j.1461-0248.2007.01096.x 10.1016/S0065-2504(08)60042-2 10.3390/e20010011 10.1111/j.1095-8312.2007.00748.x 10.1103/PhysRev.106.620 10.1111/j.1600-0706.2009.17771.x 10.1111/j.1600-0706.2009.17770.x |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.ecolmodel.2019.108720 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
EISSN | 1872-7026 |
ExternalDocumentID | 10_1016_j_ecolmodel_2019_108720 S0304380019302200 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFNM ABFYP ABGRD ABLST ABMAC ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SDF SDG SDP SES SPCBC SSA SSJ SSZ T5K WH7 Y6R ~02 ~G- 29G 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ R2- RIG SEN SEW SSH VH1 WUQ ZY4 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c348t-3c5fc7e84e4675b16ed73895731f35f7bc1378431597a35c2ec4fd61339953cc3 |
IEDL.DBID | AIKHN |
ISSN | 0304-3800 |
IngestDate | Fri Sep 05 03:27:48 EDT 2025 Tue Jul 01 03:09:10 EDT 2025 Thu Apr 24 22:59:33 EDT 2025 Fri Feb 23 02:48:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Species-abundance distribution Community assembly Metabolic requirements Statistical aggregation Resource partitioning Macroecology |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-3c5fc7e84e4675b16ed73895731f35f7bc1378431597a35c2ec4fd61339953cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6433-8594 0000-0001-5374-6912 |
PQID | 2271882922 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2271882922 crossref_primary_10_1016_j_ecolmodel_2019_108720 crossref_citationtrail_10_1016_j_ecolmodel_2019_108720 elsevier_sciencedirect_doi_10_1016_j_ecolmodel_2019_108720 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 2019-09-00 20190901 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Ecological modelling |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Shipley, Vile, Garnier (bib0140) 2006; 314 Bertram J., (2015) Entropy-related principles for non-equilibrium systems: theoretical foundations and applications to ecology and fluid dynamics PhD Thesis doi:10.25911/5c6e716842c25. Shipley (bib0145) 2010; 119 Harte, Newman (bib0065) 2014; 29 McGill, Nekola (bib0120) 2010; 119 Tolman (bib0160) 1938 McGill, Etienne, Gray, Alonso, Anderson, Benecha, Dornelas, Enquist, Green, Fangliang (bib0115) 2007; 10 O’Dwyer, Rominger, Xiao (bib0130) 2017; 20 Harte, Newman, Rominger (bib0070) 2017; 26 Tokeshi (bib0155) 1993; 24 Favretti (bib0045) 2017; 20 Haegeman, Etienne (bib0055) 2010; 175 Hubbell, Condit, Foster (bib0095) 2005 Bertram, Dewar (bib0020) 2013; 94 Harte, Smith, Storch (bib0080) 2009; 12 He (bib0090) 2010; 119 McGill (bib0110) 2003; 102 Condit (bib0030) 1998 Brummer, Newman (bib0025) 2019 Bertram, Dewar (bib0015) 2015; 8 Banavar, Maritan, Volkov (bib0005) 2010; 22 Dewar, Porté (bib0035) 2008; 251 Gruner (bib0050) 2007; 90 Pueyo, He, Zillio (bib0135) 2007; 10 Dewar (bib0040) 2009; 11 Supp, Xiao, Ernest, White (bib0150) 2012; 93 Harte (bib0060) 2011 Hubbell, Foster, O’Brien, Harms, Condit, Wechsler, Wright, Loo de Lao (bib0100) 1999; 283 Ulrich, Ollik, Ugland (bib0165) 2010; 119 Harte, Rominger, Zhang (bib0075) 2015; 18 Harte, Zillio, Conlisk, Smith (bib0085) 2008; 89 Jaynes (bib0105) 1957; 106 Newman, Harte, Lowell, Wilber, Harte (bib0125) 2014; 95 He (10.1016/j.ecolmodel.2019.108720_bib0090) 2010; 119 Favretti (10.1016/j.ecolmodel.2019.108720_bib0045) 2017; 20 O’Dwyer (10.1016/j.ecolmodel.2019.108720_bib0130) 2017; 20 McGill (10.1016/j.ecolmodel.2019.108720_bib0120) 2010; 119 Hubbell (10.1016/j.ecolmodel.2019.108720_bib0095) 2005 Dewar (10.1016/j.ecolmodel.2019.108720_bib0035) 2008; 251 10.1016/j.ecolmodel.2019.108720_bib0010 McGill (10.1016/j.ecolmodel.2019.108720_bib0110) 2003; 102 Haegeman (10.1016/j.ecolmodel.2019.108720_bib0055) 2010; 175 Newman (10.1016/j.ecolmodel.2019.108720_bib0125) 2014; 95 Jaynes (10.1016/j.ecolmodel.2019.108720_bib0105) 1957; 106 Bertram (10.1016/j.ecolmodel.2019.108720_bib0020) 2013; 94 Condit (10.1016/j.ecolmodel.2019.108720_bib0030) 1998 Hubbell (10.1016/j.ecolmodel.2019.108720_bib0100) 1999; 283 Ulrich (10.1016/j.ecolmodel.2019.108720_bib0165) 2010; 119 Brummer (10.1016/j.ecolmodel.2019.108720_bib0025) 2019 Supp (10.1016/j.ecolmodel.2019.108720_bib0150) 2012; 93 McGill (10.1016/j.ecolmodel.2019.108720_bib0115) 2007; 10 Dewar (10.1016/j.ecolmodel.2019.108720_bib0040) 2009; 11 Harte (10.1016/j.ecolmodel.2019.108720_bib0065) 2014; 29 Harte (10.1016/j.ecolmodel.2019.108720_bib0075) 2015; 18 Gruner (10.1016/j.ecolmodel.2019.108720_bib0050) 2007; 90 Banavar (10.1016/j.ecolmodel.2019.108720_bib0005) 2010; 22 Harte (10.1016/j.ecolmodel.2019.108720_bib0070) 2017; 26 Harte (10.1016/j.ecolmodel.2019.108720_bib0085) 2008; 89 Shipley (10.1016/j.ecolmodel.2019.108720_bib0145) 2010; 119 Tokeshi (10.1016/j.ecolmodel.2019.108720_bib0155) 1993; 24 Tolman (10.1016/j.ecolmodel.2019.108720_bib0160) 1938 Bertram (10.1016/j.ecolmodel.2019.108720_bib0015) 2015; 8 Shipley (10.1016/j.ecolmodel.2019.108720_bib0140) 2006; 314 Harte (10.1016/j.ecolmodel.2019.108720_bib0080) 2009; 12 Harte (10.1016/j.ecolmodel.2019.108720_bib0060) 2011 Pueyo (10.1016/j.ecolmodel.2019.108720_bib0135) 2007; 10 |
References_xml | – volume: 11 start-page: 931 year: 2009 end-page: 944 ident: bib0040 article-title: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don’t shoot the messenger publication-title: Entropy – volume: 22 year: 2010 ident: bib0005 article-title: Applications of the principle of maximum entropy: from physics to ecology publication-title: J. Phys. Condens. Matter – volume: 29 start-page: 384 year: 2014 end-page: 389 ident: bib0065 article-title: Maximum entropy as a foundation for ecological theory publication-title: Trends Ecol. Evol. – reference: Bertram J., (2015) Entropy-related principles for non-equilibrium systems: theoretical foundations and applications to ecology and fluid dynamics PhD Thesis doi:10.25911/5c6e716842c25. – volume: 283 start-page: 554 year: 1999 end-page: 557 ident: bib0100 article-title: Light gap disturbances, recruitment limitation, and tree diversity in a neotropical forest publication-title: Science – volume: 8 start-page: 419 year: 2015 end-page: 435 ident: bib0015 article-title: Combining mechanism and drift in community ecology: a novel statistical mechanics approach publication-title: Theor. Ecol. – year: 2011 ident: bib0060 article-title: Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics – volume: 175 start-page: E74 year: 2010 end-page: E90 ident: bib0055 article-title: Entropy maximization and the spatial distribution of species publication-title: Am. Nat. – volume: 18 start-page: 1068 year: 2015 end-page: 1077 ident: bib0075 article-title: Integrating macroecological metrics and community taxonomic structure publication-title: Ecol. Lett. – volume: 119 start-page: 578 year: 2010 end-page: 582 ident: bib0090 article-title: Maximum entropy, logistic regression, and species abundance publication-title: Oikos – volume: 10 start-page: 1017 year: 2007 end-page: 1028 ident: bib0135 article-title: The maximum entropy formalism and the idiosyncratic theory of biodiversity publication-title: Ecol. Lett. – volume: 314 start-page: 812 year: 2006 end-page: 814 ident: bib0140 article-title: From plant traits to plant communities: a statistical mechanistic approach to biodiversity publication-title: Science – year: 2005 ident: bib0095 article-title: Forest Census Plot on Barro Colorado Island – volume: 251 start-page: 389 year: 2008 end-page: 403 ident: bib0035 article-title: Statistical mechanics unifies different ecological patterns publication-title: J. Theor. Biol. – year: 1998 ident: bib0030 article-title: Tropical Forest Census Plots – volume: 95 start-page: 2815 year: 2014 end-page: 2825 ident: bib0125 article-title: Empirical tests of within- and across-species energetics in a diverse plant community publication-title: Ecology – volume: 119 start-page: 604 year: 2010 end-page: 609 ident: bib0145 article-title: Community assembly, natural selection and maximum entropy models publication-title: Oikos – year: 2019 ident: bib0025 article-title: Derivations of the core functions of the maximum entropy theory of ecology publication-title: Preprints – year: 1938 ident: bib0160 article-title: The Principles of Statistical Mechanics – volume: 20 start-page: 832 year: 2017 end-page: 841 ident: bib0130 article-title: Who constrains the constraints? Reinterpreting maximum entropy in ecology: a null hypothesis constrained by ecological mechanism publication-title: Ecol. Lett. – volume: 90 start-page: 551 year: 2007 end-page: 570 ident: bib0050 article-title: Geological age, ecosystem development, and local resource constraints on arthropod community structure in the Hawaiian Islands publication-title: Biol. J. Linn. Soc. – volume: 20 start-page: 11 year: 2017 ident: bib0045 article-title: Remarks on the maximum entropy principle with application to the maximum entropy theory of ecology publication-title: Entropy – volume: 119 start-page: 1149 year: 2010 end-page: 1155 ident: bib0165 article-title: A meta‐analysis of species–abundance distributions publication-title: Oikos – volume: 26 start-page: 993 year: 2017 end-page: 997 ident: bib0070 article-title: Metabolic partitioning across individuals in ecological communities publication-title: Glob. Ecol. Biogeogr. – volume: 93 start-page: 2505 year: 2012 end-page: 2511 ident: bib0150 article-title: An experimental test of the response of macroecological patterns to altered species interactions publication-title: Ecology – volume: 106 start-page: 620 year: 1957 end-page: 630 ident: bib0105 article-title: Information theory and statistical mechanics publication-title: Phys. Rev. – volume: 10 start-page: 995 year: 2007 end-page: 1015 ident: bib0115 article-title: Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework publication-title: Ecol. Lett. – volume: 119 start-page: 591 year: 2010 end-page: 603 ident: bib0120 article-title: Mechanisms in macroecology: AWOL or purloined letter? Towards a pragmatic view of mechanism publication-title: Oikos – volume: 24 start-page: 111 year: 1993 end-page: 186 ident: bib0155 article-title: Species abundance patterns and community structure publication-title: Adv. Ecol. Res. – volume: 12 start-page: 789 year: 2009 end-page: 797 ident: bib0080 article-title: Biodiversity scales from plots to biomes with a universal species–area curve publication-title: Ecol. Lett. – volume: 89 start-page: 2700 year: 2008 end-page: 2711 ident: bib0085 article-title: Maximum entropy and the state‐variable approach to macroecology publication-title: Ecology – volume: 94 start-page: 2138 year: 2013 end-page: 2144 ident: bib0020 article-title: Statistical patterns in tropical tree cover explained by the different water demand of individual trees and grasses publication-title: Ecology – volume: 102 start-page: 679 year: 2003 end-page: 685 ident: bib0110 article-title: Strong and weak tests of macroecological theory publication-title: Oikos – volume: 22 issue: 6 year: 2010 ident: 10.1016/j.ecolmodel.2019.108720_bib0005 article-title: Applications of the principle of maximum entropy: from physics to ecology publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/22/6/063101 – volume: 12 start-page: 789 issue: 8 year: 2009 ident: 10.1016/j.ecolmodel.2019.108720_bib0080 article-title: Biodiversity scales from plots to biomes with a universal species–area curve publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2009.01328.x – volume: 95 start-page: 2815 year: 2014 ident: 10.1016/j.ecolmodel.2019.108720_bib0125 article-title: Empirical tests of within- and across-species energetics in a diverse plant community publication-title: Ecology doi: 10.1890/13-1955.1 – volume: 11 start-page: 931 issue: 4 year: 2009 ident: 10.1016/j.ecolmodel.2019.108720_bib0040 article-title: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don’t shoot the messenger publication-title: Entropy doi: 10.3390/e11040931 – volume: 10 start-page: 995 year: 2007 ident: 10.1016/j.ecolmodel.2019.108720_bib0115 article-title: Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01094.x – year: 1998 ident: 10.1016/j.ecolmodel.2019.108720_bib0030 – volume: 89 start-page: 2700 year: 2008 ident: 10.1016/j.ecolmodel.2019.108720_bib0085 article-title: Maximum entropy and the state‐variable approach to macroecology publication-title: Ecology doi: 10.1890/07-1369.1 – year: 2019 ident: 10.1016/j.ecolmodel.2019.108720_bib0025 article-title: Derivations of the core functions of the maximum entropy theory of ecology publication-title: Preprints – year: 2011 ident: 10.1016/j.ecolmodel.2019.108720_bib0060 – volume: 175 start-page: E74 issue: 4 year: 2010 ident: 10.1016/j.ecolmodel.2019.108720_bib0055 article-title: Entropy maximization and the spatial distribution of species publication-title: Am. Nat. doi: 10.1086/650718 – volume: 8 start-page: 419 year: 2015 ident: 10.1016/j.ecolmodel.2019.108720_bib0015 article-title: Combining mechanism and drift in community ecology: a novel statistical mechanics approach publication-title: Theor. Ecol. doi: 10.1007/s12080-015-0259-7 – volume: 18 start-page: 1068 issue: 10 year: 2015 ident: 10.1016/j.ecolmodel.2019.108720_bib0075 article-title: Integrating macroecological metrics and community taxonomic structure publication-title: Ecol. Lett. doi: 10.1111/ele.12489 – year: 1938 ident: 10.1016/j.ecolmodel.2019.108720_bib0160 – volume: 119 start-page: 1149 issue: 7 year: 2010 ident: 10.1016/j.ecolmodel.2019.108720_bib0165 article-title: A meta‐analysis of species–abundance distributions publication-title: Oikos doi: 10.1111/j.1600-0706.2009.18236.x – volume: 29 start-page: 384 year: 2014 ident: 10.1016/j.ecolmodel.2019.108720_bib0065 article-title: Maximum entropy as a foundation for ecological theory publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2014.04.009 – volume: 283 start-page: 554 year: 1999 ident: 10.1016/j.ecolmodel.2019.108720_bib0100 article-title: Light gap disturbances, recruitment limitation, and tree diversity in a neotropical forest publication-title: Science doi: 10.1126/science.283.5401.554 – volume: 26 start-page: 993 issue: 9 year: 2017 ident: 10.1016/j.ecolmodel.2019.108720_bib0070 article-title: Metabolic partitioning across individuals in ecological communities publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12621 – volume: 93 start-page: 2505 issue: 12 year: 2012 ident: 10.1016/j.ecolmodel.2019.108720_bib0150 article-title: An experimental test of the response of macroecological patterns to altered species interactions publication-title: Ecology doi: 10.1890/12-0370.1 – volume: 20 start-page: 832 year: 2017 ident: 10.1016/j.ecolmodel.2019.108720_bib0130 article-title: Who constrains the constraints? Reinterpreting maximum entropy in ecology: a null hypothesis constrained by ecological mechanism publication-title: Ecol. Lett. doi: 10.1111/ele.12788 – volume: 119 start-page: 578 issue: 4 year: 2010 ident: 10.1016/j.ecolmodel.2019.108720_bib0090 article-title: Maximum entropy, logistic regression, and species abundance publication-title: Oikos doi: 10.1111/j.1600-0706.2009.17113.x – volume: 102 start-page: 679 year: 2003 ident: 10.1016/j.ecolmodel.2019.108720_bib0110 article-title: Strong and weak tests of macroecological theory publication-title: Oikos doi: 10.1034/j.1600-0706.2003.12617.x – volume: 314 start-page: 812 issue: 5800 year: 2006 ident: 10.1016/j.ecolmodel.2019.108720_bib0140 article-title: From plant traits to plant communities: a statistical mechanistic approach to biodiversity publication-title: Science doi: 10.1126/science.1131344 – volume: 94 start-page: 2138 year: 2013 ident: 10.1016/j.ecolmodel.2019.108720_bib0020 article-title: Statistical patterns in tropical tree cover explained by the different water demand of individual trees and grasses publication-title: Ecology doi: 10.1890/13-0379.1 – volume: 251 start-page: 389 year: 2008 ident: 10.1016/j.ecolmodel.2019.108720_bib0035 article-title: Statistical mechanics unifies different ecological patterns publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2007.12.007 – volume: 10 start-page: 1017 issue: 11 year: 2007 ident: 10.1016/j.ecolmodel.2019.108720_bib0135 article-title: The maximum entropy formalism and the idiosyncratic theory of biodiversity publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01096.x – ident: 10.1016/j.ecolmodel.2019.108720_bib0010 – year: 2005 ident: 10.1016/j.ecolmodel.2019.108720_bib0095 – volume: 24 start-page: 111 year: 1993 ident: 10.1016/j.ecolmodel.2019.108720_bib0155 article-title: Species abundance patterns and community structure publication-title: Adv. Ecol. Res. doi: 10.1016/S0065-2504(08)60042-2 – volume: 20 start-page: 11 issue: 1 year: 2017 ident: 10.1016/j.ecolmodel.2019.108720_bib0045 article-title: Remarks on the maximum entropy principle with application to the maximum entropy theory of ecology publication-title: Entropy doi: 10.3390/e20010011 – volume: 90 start-page: 551 year: 2007 ident: 10.1016/j.ecolmodel.2019.108720_bib0050 article-title: Geological age, ecosystem development, and local resource constraints on arthropod community structure in the Hawaiian Islands publication-title: Biol. J. Linn. Soc. doi: 10.1111/j.1095-8312.2007.00748.x – volume: 106 start-page: 620 year: 1957 ident: 10.1016/j.ecolmodel.2019.108720_bib0105 article-title: Information theory and statistical mechanics publication-title: Phys. Rev. doi: 10.1103/PhysRev.106.620 – volume: 119 start-page: 591 issue: 4 year: 2010 ident: 10.1016/j.ecolmodel.2019.108720_bib0120 article-title: Mechanisms in macroecology: AWOL or purloined letter? Towards a pragmatic view of mechanism publication-title: Oikos doi: 10.1111/j.1600-0706.2009.17771.x – volume: 119 start-page: 604 issue: 4 year: 2010 ident: 10.1016/j.ecolmodel.2019.108720_bib0145 article-title: Community assembly, natural selection and maximum entropy models publication-title: Oikos doi: 10.1111/j.1600-0706.2009.17770.x |
SSID | ssj0001282 |
Score | 2.3288496 |
Snippet | •Maximum entropy models at different levels of community detail are compared.•These levels of detail are bridged by the metacommunity metabolic distribution.•A... The principle of Maximum Entropy (MaxEnt) promises a novel approach for understanding community assembly. Despite reproducing a variety of observed species... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108720 |
SubjectTerms | Community assembly Macroecology Metabolic requirements metabolism prediction Resource partitioning species abundance Species-abundance distribution Statistical aggregation |
Title | Comparison of two maximum entropy models highlights the metabolic structure of metacommunities as a key determinant of local community assembly |
URI | https://dx.doi.org/10.1016/j.ecolmodel.2019.108720 https://www.proquest.com/docview/2271882922 |
Volume | 407 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SDYFeSpoHTZsEFXp1dq2HH72FZcO2hVzaQG5CkmXYYq-Xepd2L_0L_cudseUNCYUcCr5Y1thCM_pmZM0D4ENqjTC88NHEJkkkvcijXJQ-khYBORMmxufkbXGbzO_k53t1vwfTIRaG3CoD9veY3qF1aBmH2RyvFovxVzrUExnZKILCRXHfvs9FnqgR7F9_-jK_3QEyQnA4TJARETxy88JNXtUVnSE3r5xc7lKq_f1vJfUErjsddHMIr4LxyK778b2GPb88goNZl3h6ewSns4eoNewWlm17DH-mu2qDrCnZ-mfDavNrUW9qRj93m9WWdYNrGWUvrmi_3jK0DFnt1ygk1cKxPs_s5oenF1Cz6yNLKB8rM3gxRANWPDjXUL9OUbKh5xb7tb621fYE7m5m36bzKFRiiJyQ2ToSTpUu9Zn0iKvKxokvUrR0VCriUqgytS4WaYa2CG5PjFCOeyfLAi0FCpwVzolTGC2bpX8DzHDhsomz3KtCclNSRj3ritQpmztp1Bkkw9RrF9KUU7WMSg_-aN_1jmeaeKZ7np3BZEe46jN1PE_yceCtfiR0GvXJ88TvB2nQuCTpnMUsfbNpNeeo8DOec_72fz7wDl7SXe_Qdg4j5LO_QAtobS_hxdXv-DLI-V_NEQse |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQCLEXBCxoWV5eaa-hrR9xwg1VReV5WZC4WbbjSF0lTbVpBb3wF_jLzOTRCoTEYaWc7HFieex5xN_MEPJbWcMNS3zQtWEYCM_jIOapD4QFgRxx04N-RFvchcMHcfUoH1dIv42FQVhlI_trmV5J66al06xmZzIadf7gpR6P0EbhGC4KfvuakFwhru_0ZYnzAAHcXCWIAMnfgbzAxcuqkjMI8ooRcKew8vfnKuqDsK400MUW2WxMR3pez26brPjxDlkfVGmn5ztkb7CMWQOy5tCW38lrf1FrkBYpnT4VNDfPo3yWU_y1W0zmtJpcSTF3cYbeeknBLqS5n8IWyUaO1llmZ_88vgCbXR1XgtlYqYGHgiygyRJag3SVmqQt5RzoSp_bbL5LHi4G9_1h0NRhCBwX0TTgTqZO-Uh4kKrS9kKfKLBzpOK9lMtUWdfjKgJLBJwTw6Vj3ok0ATsBw2a5c3yPrI6Lsf9BqGHcRV1nmZeJYCbFfHrWJcpJGzth5D4J26XXrklSjrUyMt2i0f7qBc808kzXPNsn3cXASZ2n4-shZy1v9bstp0GbfD34V7sbNBxIvGUxY1_MSs0YqPuIxYz9_J8PnJCN4f3tjb65vLs-IN-wp4a2HZJV4Lk_Altoao-rvf4GGqEL6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+two+maximum+entropy+models+highlights+the+metabolic+structure+of+metacommunities+as+a+key+determinant+of+local+community+assembly&rft.jtitle=Ecological+modelling&rft.au=Bertram%2C+Jason&rft.au=Newman%2C+Erica+A.&rft.au=Dewar%2C+Roderick+C.&rft.date=2019-09-01&rft.pub=Elsevier+B.V&rft.issn=0304-3800&rft.eissn=1872-7026&rft.volume=407&rft_id=info:doi/10.1016%2Fj.ecolmodel.2019.108720&rft.externalDocID=S0304380019302200 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon |