Comparison of two maximum entropy models highlights the metabolic structure of metacommunities as a key determinant of local community assembly

•Maximum entropy models at different levels of community detail are compared.•These levels of detail are bridged by the metacommunity metabolic distribution.•A power law metabolic distribution reproduces observed metabolic patterns. The principle of Maximum Entropy (MaxEnt) promises a novel approach...

Full description

Saved in:
Bibliographic Details
Published inEcological modelling Vol. 407; p. 108720
Main Authors Bertram, Jason, Newman, Erica A., Dewar, Roderick C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2019
Subjects
Online AccessGet full text
ISSN0304-3800
1872-7026
DOI10.1016/j.ecolmodel.2019.108720

Cover

Abstract •Maximum entropy models at different levels of community detail are compared.•These levels of detail are bridged by the metacommunity metabolic distribution.•A power law metabolic distribution reproduces observed metabolic patterns. The principle of Maximum Entropy (MaxEnt) promises a novel approach for understanding community assembly. Despite reproducing a variety of observed species abundance patterns, MaxEnt models in ecology have been hampered by disparate model assumptions and interpretations. A recurring challenge is that MaxEnt predictions are highly sensitive to the level of detail used to describe the community being modeled, and there seems to be no reason to prefer one level of detail over another. Here we present of formal unification of two previously developed MaxEnt models which differ in their level of detail, but which are otherwise mathematically similar. The less detailed model, “Maximum Entropy Theory of Ecology” (METE), does not resolve species identity or explicitly represent species-specific traits. The more detailed model, “Very Entropic Growth” (VEG), defines each separate species by its per capita metabolic rate  ε and assumes a “density of species” function ρ(ε) representing the distribution of ε in the metacommunity. A formal comparison of METE and VEG then highlights ρ(ε) as a key determinant of local community assembly. In particular, appropriate choice of ρ(ε) in VEG can produce more realistic predictions for the metabolic-rank distribution of local communities than METE, which does not explicitly account for metacommunity structure. This opens new avenues of inquiry about what determines metacommunity structure in nature and suggests possible ways to improve METE.
AbstractList The principle of Maximum Entropy (MaxEnt) promises a novel approach for understanding community assembly. Despite reproducing a variety of observed species abundance patterns, MaxEnt models in ecology have been hampered by disparate model assumptions and interpretations. A recurring challenge is that MaxEnt predictions are highly sensitive to the level of detail used to describe the community being modeled, and there seems to be no reason to prefer one level of detail over another. Here we present of formal unification of two previously developed MaxEnt models which differ in their level of detail, but which are otherwise mathematically similar. The less detailed model, “Maximum Entropy Theory of Ecology” (METE), does not resolve species identity or explicitly represent species-specific traits. The more detailed model, “Very Entropic Growth” (VEG), defines each separate species by its per capita metabolic rate ε and assumes a “density of species” function ρ(ε) representing the distribution of ε in the metacommunity. A formal comparison of METE and VEG then highlights ρ(ε) as a key determinant of local community assembly. In particular, appropriate choice of ρ(ε) in VEG can produce more realistic predictions for the metabolic-rank distribution of local communities than METE, which does not explicitly account for metacommunity structure. This opens new avenues of inquiry about what determines metacommunity structure in nature and suggests possible ways to improve METE.
•Maximum entropy models at different levels of community detail are compared.•These levels of detail are bridged by the metacommunity metabolic distribution.•A power law metabolic distribution reproduces observed metabolic patterns. The principle of Maximum Entropy (MaxEnt) promises a novel approach for understanding community assembly. Despite reproducing a variety of observed species abundance patterns, MaxEnt models in ecology have been hampered by disparate model assumptions and interpretations. A recurring challenge is that MaxEnt predictions are highly sensitive to the level of detail used to describe the community being modeled, and there seems to be no reason to prefer one level of detail over another. Here we present of formal unification of two previously developed MaxEnt models which differ in their level of detail, but which are otherwise mathematically similar. The less detailed model, “Maximum Entropy Theory of Ecology” (METE), does not resolve species identity or explicitly represent species-specific traits. The more detailed model, “Very Entropic Growth” (VEG), defines each separate species by its per capita metabolic rate  ε and assumes a “density of species” function ρ(ε) representing the distribution of ε in the metacommunity. A formal comparison of METE and VEG then highlights ρ(ε) as a key determinant of local community assembly. In particular, appropriate choice of ρ(ε) in VEG can produce more realistic predictions for the metabolic-rank distribution of local communities than METE, which does not explicitly account for metacommunity structure. This opens new avenues of inquiry about what determines metacommunity structure in nature and suggests possible ways to improve METE.
ArticleNumber 108720
Author Dewar, Roderick C.
Bertram, Jason
Newman, Erica A.
Author_xml – sequence: 1
  givenname: Jason
  orcidid: 0000-0001-5374-6912
  surname: Bertram
  fullname: Bertram, Jason
  email: jxb@iu.edu
  organization: Environmental Resilience Institute, Indiana University, Bloomington, IN, 47401, USA
– sequence: 2
  givenname: Erica A.
  orcidid: 0000-0001-6433-8594
  surname: Newman
  fullname: Newman, Erica A.
  organization: Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
– sequence: 3
  givenname: Roderick C.
  surname: Dewar
  fullname: Dewar, Roderick C.
  organization: Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
BookMark eNqNkUtv1DAUhS1UJKYtv6FessngRxInCxbViJdUqRu6tjw3Nx0Pfgy2A-RX8JdJGGDBpkj36kpX3zmLcy7JRYgBCbnhbMsZb18ftwjR-Tig2wrG--XbKcGekQ1fbqWYaC_IhklWV7Jj7AW5zPnIGOOiExvyYxf9ySSbY6BxpOVbpN58t37yFENJ8TTTX9aZHuzjwS1bMi0HpB6L2UdngeaSJihTwtVgfUP0fgq2WMzULEM_40wHLJi8DSaUlXMRjKN_yHnhMvq9m6_J89G4jC9_3yvy8O7tp92H6u7-_cfd7V0Fsu5KJaEZQWFXY92qZs9bHJTs-kZJPspmVHvgUnW15E2vjGxAINTj0HIp-76RAPKKvDr7nlL8MmEu2tsM6JwJGKeshVC860QvxIKqMwop5pxw1KdkvUmz5kyvFeij_luBXivQ5woW5Zt_lGCLKTYuyRrr_kN_e9Yv-eNXi0lnsBgAB5sQih6ifdLjJ6i3re0
CitedBy_id crossref_primary_10_1002_ecy_3011
crossref_primary_10_1007_s13131_024_2451_3
crossref_primary_10_3390_e21101009
crossref_primary_10_1002_ece3_9374
crossref_primary_10_1016_j_scitotenv_2023_167741
crossref_primary_10_3389_fevo_2019_00293
crossref_primary_10_1007_s11802_023_5422_y
Cites_doi 10.1088/0953-8984/22/6/063101
10.1111/j.1461-0248.2009.01328.x
10.1890/13-1955.1
10.3390/e11040931
10.1111/j.1461-0248.2007.01094.x
10.1890/07-1369.1
10.1086/650718
10.1007/s12080-015-0259-7
10.1111/ele.12489
10.1111/j.1600-0706.2009.18236.x
10.1016/j.tree.2014.04.009
10.1126/science.283.5401.554
10.1111/geb.12621
10.1890/12-0370.1
10.1111/ele.12788
10.1111/j.1600-0706.2009.17113.x
10.1034/j.1600-0706.2003.12617.x
10.1126/science.1131344
10.1890/13-0379.1
10.1016/j.jtbi.2007.12.007
10.1111/j.1461-0248.2007.01096.x
10.1016/S0065-2504(08)60042-2
10.3390/e20010011
10.1111/j.1095-8312.2007.00748.x
10.1103/PhysRev.106.620
10.1111/j.1600-0706.2009.17771.x
10.1111/j.1600-0706.2009.17770.x
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.ecolmodel.2019.108720
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1872-7026
ExternalDocumentID 10_1016_j_ecolmodel_2019_108720
S0304380019302200
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPCBC
SSA
SSJ
SSZ
T5K
WH7
Y6R
~02
~G-
29G
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
VH1
WUQ
ZY4
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c348t-3c5fc7e84e4675b16ed73895731f35f7bc1378431597a35c2ec4fd61339953cc3
IEDL.DBID AIKHN
ISSN 0304-3800
IngestDate Fri Sep 05 03:27:48 EDT 2025
Tue Jul 01 03:09:10 EDT 2025
Thu Apr 24 22:59:33 EDT 2025
Fri Feb 23 02:48:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Species-abundance distribution
Community assembly
Metabolic requirements
Statistical aggregation
Resource partitioning
Macroecology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-3c5fc7e84e4675b16ed73895731f35f7bc1378431597a35c2ec4fd61339953cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6433-8594
0000-0001-5374-6912
PQID 2271882922
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2271882922
crossref_primary_10_1016_j_ecolmodel_2019_108720
crossref_citationtrail_10_1016_j_ecolmodel_2019_108720
elsevier_sciencedirect_doi_10_1016_j_ecolmodel_2019_108720
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
2019-09-00
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Ecological modelling
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shipley, Vile, Garnier (bib0140) 2006; 314
Bertram J., (2015) Entropy-related principles for non-equilibrium systems: theoretical foundations and applications to ecology and fluid dynamics PhD Thesis doi:10.25911/5c6e716842c25.
Shipley (bib0145) 2010; 119
Harte, Newman (bib0065) 2014; 29
McGill, Nekola (bib0120) 2010; 119
Tolman (bib0160) 1938
McGill, Etienne, Gray, Alonso, Anderson, Benecha, Dornelas, Enquist, Green, Fangliang (bib0115) 2007; 10
O’Dwyer, Rominger, Xiao (bib0130) 2017; 20
Harte, Newman, Rominger (bib0070) 2017; 26
Tokeshi (bib0155) 1993; 24
Favretti (bib0045) 2017; 20
Haegeman, Etienne (bib0055) 2010; 175
Hubbell, Condit, Foster (bib0095) 2005
Bertram, Dewar (bib0020) 2013; 94
Harte, Smith, Storch (bib0080) 2009; 12
He (bib0090) 2010; 119
McGill (bib0110) 2003; 102
Condit (bib0030) 1998
Brummer, Newman (bib0025) 2019
Bertram, Dewar (bib0015) 2015; 8
Banavar, Maritan, Volkov (bib0005) 2010; 22
Dewar, Porté (bib0035) 2008; 251
Gruner (bib0050) 2007; 90
Pueyo, He, Zillio (bib0135) 2007; 10
Dewar (bib0040) 2009; 11
Supp, Xiao, Ernest, White (bib0150) 2012; 93
Harte (bib0060) 2011
Hubbell, Foster, O’Brien, Harms, Condit, Wechsler, Wright, Loo de Lao (bib0100) 1999; 283
Ulrich, Ollik, Ugland (bib0165) 2010; 119
Harte, Rominger, Zhang (bib0075) 2015; 18
Harte, Zillio, Conlisk, Smith (bib0085) 2008; 89
Jaynes (bib0105) 1957; 106
Newman, Harte, Lowell, Wilber, Harte (bib0125) 2014; 95
He (10.1016/j.ecolmodel.2019.108720_bib0090) 2010; 119
Favretti (10.1016/j.ecolmodel.2019.108720_bib0045) 2017; 20
O’Dwyer (10.1016/j.ecolmodel.2019.108720_bib0130) 2017; 20
McGill (10.1016/j.ecolmodel.2019.108720_bib0120) 2010; 119
Hubbell (10.1016/j.ecolmodel.2019.108720_bib0095) 2005
Dewar (10.1016/j.ecolmodel.2019.108720_bib0035) 2008; 251
10.1016/j.ecolmodel.2019.108720_bib0010
McGill (10.1016/j.ecolmodel.2019.108720_bib0110) 2003; 102
Haegeman (10.1016/j.ecolmodel.2019.108720_bib0055) 2010; 175
Newman (10.1016/j.ecolmodel.2019.108720_bib0125) 2014; 95
Jaynes (10.1016/j.ecolmodel.2019.108720_bib0105) 1957; 106
Bertram (10.1016/j.ecolmodel.2019.108720_bib0020) 2013; 94
Condit (10.1016/j.ecolmodel.2019.108720_bib0030) 1998
Hubbell (10.1016/j.ecolmodel.2019.108720_bib0100) 1999; 283
Ulrich (10.1016/j.ecolmodel.2019.108720_bib0165) 2010; 119
Brummer (10.1016/j.ecolmodel.2019.108720_bib0025) 2019
Supp (10.1016/j.ecolmodel.2019.108720_bib0150) 2012; 93
McGill (10.1016/j.ecolmodel.2019.108720_bib0115) 2007; 10
Dewar (10.1016/j.ecolmodel.2019.108720_bib0040) 2009; 11
Harte (10.1016/j.ecolmodel.2019.108720_bib0065) 2014; 29
Harte (10.1016/j.ecolmodel.2019.108720_bib0075) 2015; 18
Gruner (10.1016/j.ecolmodel.2019.108720_bib0050) 2007; 90
Banavar (10.1016/j.ecolmodel.2019.108720_bib0005) 2010; 22
Harte (10.1016/j.ecolmodel.2019.108720_bib0070) 2017; 26
Harte (10.1016/j.ecolmodel.2019.108720_bib0085) 2008; 89
Shipley (10.1016/j.ecolmodel.2019.108720_bib0145) 2010; 119
Tokeshi (10.1016/j.ecolmodel.2019.108720_bib0155) 1993; 24
Tolman (10.1016/j.ecolmodel.2019.108720_bib0160) 1938
Bertram (10.1016/j.ecolmodel.2019.108720_bib0015) 2015; 8
Shipley (10.1016/j.ecolmodel.2019.108720_bib0140) 2006; 314
Harte (10.1016/j.ecolmodel.2019.108720_bib0080) 2009; 12
Harte (10.1016/j.ecolmodel.2019.108720_bib0060) 2011
Pueyo (10.1016/j.ecolmodel.2019.108720_bib0135) 2007; 10
References_xml – volume: 11
  start-page: 931
  year: 2009
  end-page: 944
  ident: bib0040
  article-title: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don’t shoot the messenger
  publication-title: Entropy
– volume: 22
  year: 2010
  ident: bib0005
  article-title: Applications of the principle of maximum entropy: from physics to ecology
  publication-title: J. Phys. Condens. Matter
– volume: 29
  start-page: 384
  year: 2014
  end-page: 389
  ident: bib0065
  article-title: Maximum entropy as a foundation for ecological theory
  publication-title: Trends Ecol. Evol.
– reference: Bertram J., (2015) Entropy-related principles for non-equilibrium systems: theoretical foundations and applications to ecology and fluid dynamics PhD Thesis doi:10.25911/5c6e716842c25.
– volume: 283
  start-page: 554
  year: 1999
  end-page: 557
  ident: bib0100
  article-title: Light gap disturbances, recruitment limitation, and tree diversity in a neotropical forest
  publication-title: Science
– volume: 8
  start-page: 419
  year: 2015
  end-page: 435
  ident: bib0015
  article-title: Combining mechanism and drift in community ecology: a novel statistical mechanics approach
  publication-title: Theor. Ecol.
– year: 2011
  ident: bib0060
  article-title: Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics
– volume: 175
  start-page: E74
  year: 2010
  end-page: E90
  ident: bib0055
  article-title: Entropy maximization and the spatial distribution of species
  publication-title: Am. Nat.
– volume: 18
  start-page: 1068
  year: 2015
  end-page: 1077
  ident: bib0075
  article-title: Integrating macroecological metrics and community taxonomic structure
  publication-title: Ecol. Lett.
– volume: 119
  start-page: 578
  year: 2010
  end-page: 582
  ident: bib0090
  article-title: Maximum entropy, logistic regression, and species abundance
  publication-title: Oikos
– volume: 10
  start-page: 1017
  year: 2007
  end-page: 1028
  ident: bib0135
  article-title: The maximum entropy formalism and the idiosyncratic theory of biodiversity
  publication-title: Ecol. Lett.
– volume: 314
  start-page: 812
  year: 2006
  end-page: 814
  ident: bib0140
  article-title: From plant traits to plant communities: a statistical mechanistic approach to biodiversity
  publication-title: Science
– year: 2005
  ident: bib0095
  article-title: Forest Census Plot on Barro Colorado Island
– volume: 251
  start-page: 389
  year: 2008
  end-page: 403
  ident: bib0035
  article-title: Statistical mechanics unifies different ecological patterns
  publication-title: J. Theor. Biol.
– year: 1998
  ident: bib0030
  article-title: Tropical Forest Census Plots
– volume: 95
  start-page: 2815
  year: 2014
  end-page: 2825
  ident: bib0125
  article-title: Empirical tests of within- and across-species energetics in a diverse plant community
  publication-title: Ecology
– volume: 119
  start-page: 604
  year: 2010
  end-page: 609
  ident: bib0145
  article-title: Community assembly, natural selection and maximum entropy models
  publication-title: Oikos
– year: 2019
  ident: bib0025
  article-title: Derivations of the core functions of the maximum entropy theory of ecology
  publication-title: Preprints
– year: 1938
  ident: bib0160
  article-title: The Principles of Statistical Mechanics
– volume: 20
  start-page: 832
  year: 2017
  end-page: 841
  ident: bib0130
  article-title: Who constrains the constraints? Reinterpreting maximum entropy in ecology: a null hypothesis constrained by ecological mechanism
  publication-title: Ecol. Lett.
– volume: 90
  start-page: 551
  year: 2007
  end-page: 570
  ident: bib0050
  article-title: Geological age, ecosystem development, and local resource constraints on arthropod community structure in the Hawaiian Islands
  publication-title: Biol. J. Linn. Soc.
– volume: 20
  start-page: 11
  year: 2017
  ident: bib0045
  article-title: Remarks on the maximum entropy principle with application to the maximum entropy theory of ecology
  publication-title: Entropy
– volume: 119
  start-page: 1149
  year: 2010
  end-page: 1155
  ident: bib0165
  article-title: A meta‐analysis of species–abundance distributions
  publication-title: Oikos
– volume: 26
  start-page: 993
  year: 2017
  end-page: 997
  ident: bib0070
  article-title: Metabolic partitioning across individuals in ecological communities
  publication-title: Glob. Ecol. Biogeogr.
– volume: 93
  start-page: 2505
  year: 2012
  end-page: 2511
  ident: bib0150
  article-title: An experimental test of the response of macroecological patterns to altered species interactions
  publication-title: Ecology
– volume: 106
  start-page: 620
  year: 1957
  end-page: 630
  ident: bib0105
  article-title: Information theory and statistical mechanics
  publication-title: Phys. Rev.
– volume: 10
  start-page: 995
  year: 2007
  end-page: 1015
  ident: bib0115
  article-title: Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework
  publication-title: Ecol. Lett.
– volume: 119
  start-page: 591
  year: 2010
  end-page: 603
  ident: bib0120
  article-title: Mechanisms in macroecology: AWOL or purloined letter? Towards a pragmatic view of mechanism
  publication-title: Oikos
– volume: 24
  start-page: 111
  year: 1993
  end-page: 186
  ident: bib0155
  article-title: Species abundance patterns and community structure
  publication-title: Adv. Ecol. Res.
– volume: 12
  start-page: 789
  year: 2009
  end-page: 797
  ident: bib0080
  article-title: Biodiversity scales from plots to biomes with a universal species–area curve
  publication-title: Ecol. Lett.
– volume: 89
  start-page: 2700
  year: 2008
  end-page: 2711
  ident: bib0085
  article-title: Maximum entropy and the state‐variable approach to macroecology
  publication-title: Ecology
– volume: 94
  start-page: 2138
  year: 2013
  end-page: 2144
  ident: bib0020
  article-title: Statistical patterns in tropical tree cover explained by the different water demand of individual trees and grasses
  publication-title: Ecology
– volume: 102
  start-page: 679
  year: 2003
  end-page: 685
  ident: bib0110
  article-title: Strong and weak tests of macroecological theory
  publication-title: Oikos
– volume: 22
  issue: 6
  year: 2010
  ident: 10.1016/j.ecolmodel.2019.108720_bib0005
  article-title: Applications of the principle of maximum entropy: from physics to ecology
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/22/6/063101
– volume: 12
  start-page: 789
  issue: 8
  year: 2009
  ident: 10.1016/j.ecolmodel.2019.108720_bib0080
  article-title: Biodiversity scales from plots to biomes with a universal species–area curve
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2009.01328.x
– volume: 95
  start-page: 2815
  year: 2014
  ident: 10.1016/j.ecolmodel.2019.108720_bib0125
  article-title: Empirical tests of within- and across-species energetics in a diverse plant community
  publication-title: Ecology
  doi: 10.1890/13-1955.1
– volume: 11
  start-page: 931
  issue: 4
  year: 2009
  ident: 10.1016/j.ecolmodel.2019.108720_bib0040
  article-title: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don’t shoot the messenger
  publication-title: Entropy
  doi: 10.3390/e11040931
– volume: 10
  start-page: 995
  year: 2007
  ident: 10.1016/j.ecolmodel.2019.108720_bib0115
  article-title: Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2007.01094.x
– year: 1998
  ident: 10.1016/j.ecolmodel.2019.108720_bib0030
– volume: 89
  start-page: 2700
  year: 2008
  ident: 10.1016/j.ecolmodel.2019.108720_bib0085
  article-title: Maximum entropy and the state‐variable approach to macroecology
  publication-title: Ecology
  doi: 10.1890/07-1369.1
– year: 2019
  ident: 10.1016/j.ecolmodel.2019.108720_bib0025
  article-title: Derivations of the core functions of the maximum entropy theory of ecology
  publication-title: Preprints
– year: 2011
  ident: 10.1016/j.ecolmodel.2019.108720_bib0060
– volume: 175
  start-page: E74
  issue: 4
  year: 2010
  ident: 10.1016/j.ecolmodel.2019.108720_bib0055
  article-title: Entropy maximization and the spatial distribution of species
  publication-title: Am. Nat.
  doi: 10.1086/650718
– volume: 8
  start-page: 419
  year: 2015
  ident: 10.1016/j.ecolmodel.2019.108720_bib0015
  article-title: Combining mechanism and drift in community ecology: a novel statistical mechanics approach
  publication-title: Theor. Ecol.
  doi: 10.1007/s12080-015-0259-7
– volume: 18
  start-page: 1068
  issue: 10
  year: 2015
  ident: 10.1016/j.ecolmodel.2019.108720_bib0075
  article-title: Integrating macroecological metrics and community taxonomic structure
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12489
– year: 1938
  ident: 10.1016/j.ecolmodel.2019.108720_bib0160
– volume: 119
  start-page: 1149
  issue: 7
  year: 2010
  ident: 10.1016/j.ecolmodel.2019.108720_bib0165
  article-title: A meta‐analysis of species–abundance distributions
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2009.18236.x
– volume: 29
  start-page: 384
  year: 2014
  ident: 10.1016/j.ecolmodel.2019.108720_bib0065
  article-title: Maximum entropy as a foundation for ecological theory
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2014.04.009
– volume: 283
  start-page: 554
  year: 1999
  ident: 10.1016/j.ecolmodel.2019.108720_bib0100
  article-title: Light gap disturbances, recruitment limitation, and tree diversity in a neotropical forest
  publication-title: Science
  doi: 10.1126/science.283.5401.554
– volume: 26
  start-page: 993
  issue: 9
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.108720_bib0070
  article-title: Metabolic partitioning across individuals in ecological communities
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12621
– volume: 93
  start-page: 2505
  issue: 12
  year: 2012
  ident: 10.1016/j.ecolmodel.2019.108720_bib0150
  article-title: An experimental test of the response of macroecological patterns to altered species interactions
  publication-title: Ecology
  doi: 10.1890/12-0370.1
– volume: 20
  start-page: 832
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.108720_bib0130
  article-title: Who constrains the constraints? Reinterpreting maximum entropy in ecology: a null hypothesis constrained by ecological mechanism
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12788
– volume: 119
  start-page: 578
  issue: 4
  year: 2010
  ident: 10.1016/j.ecolmodel.2019.108720_bib0090
  article-title: Maximum entropy, logistic regression, and species abundance
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2009.17113.x
– volume: 102
  start-page: 679
  year: 2003
  ident: 10.1016/j.ecolmodel.2019.108720_bib0110
  article-title: Strong and weak tests of macroecological theory
  publication-title: Oikos
  doi: 10.1034/j.1600-0706.2003.12617.x
– volume: 314
  start-page: 812
  issue: 5800
  year: 2006
  ident: 10.1016/j.ecolmodel.2019.108720_bib0140
  article-title: From plant traits to plant communities: a statistical mechanistic approach to biodiversity
  publication-title: Science
  doi: 10.1126/science.1131344
– volume: 94
  start-page: 2138
  year: 2013
  ident: 10.1016/j.ecolmodel.2019.108720_bib0020
  article-title: Statistical patterns in tropical tree cover explained by the different water demand of individual trees and grasses
  publication-title: Ecology
  doi: 10.1890/13-0379.1
– volume: 251
  start-page: 389
  year: 2008
  ident: 10.1016/j.ecolmodel.2019.108720_bib0035
  article-title: Statistical mechanics unifies different ecological patterns
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2007.12.007
– volume: 10
  start-page: 1017
  issue: 11
  year: 2007
  ident: 10.1016/j.ecolmodel.2019.108720_bib0135
  article-title: The maximum entropy formalism and the idiosyncratic theory of biodiversity
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2007.01096.x
– ident: 10.1016/j.ecolmodel.2019.108720_bib0010
– year: 2005
  ident: 10.1016/j.ecolmodel.2019.108720_bib0095
– volume: 24
  start-page: 111
  year: 1993
  ident: 10.1016/j.ecolmodel.2019.108720_bib0155
  article-title: Species abundance patterns and community structure
  publication-title: Adv. Ecol. Res.
  doi: 10.1016/S0065-2504(08)60042-2
– volume: 20
  start-page: 11
  issue: 1
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.108720_bib0045
  article-title: Remarks on the maximum entropy principle with application to the maximum entropy theory of ecology
  publication-title: Entropy
  doi: 10.3390/e20010011
– volume: 90
  start-page: 551
  year: 2007
  ident: 10.1016/j.ecolmodel.2019.108720_bib0050
  article-title: Geological age, ecosystem development, and local resource constraints on arthropod community structure in the Hawaiian Islands
  publication-title: Biol. J. Linn. Soc.
  doi: 10.1111/j.1095-8312.2007.00748.x
– volume: 106
  start-page: 620
  year: 1957
  ident: 10.1016/j.ecolmodel.2019.108720_bib0105
  article-title: Information theory and statistical mechanics
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.106.620
– volume: 119
  start-page: 591
  issue: 4
  year: 2010
  ident: 10.1016/j.ecolmodel.2019.108720_bib0120
  article-title: Mechanisms in macroecology: AWOL or purloined letter? Towards a pragmatic view of mechanism
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2009.17771.x
– volume: 119
  start-page: 604
  issue: 4
  year: 2010
  ident: 10.1016/j.ecolmodel.2019.108720_bib0145
  article-title: Community assembly, natural selection and maximum entropy models
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2009.17770.x
SSID ssj0001282
Score 2.3288496
Snippet •Maximum entropy models at different levels of community detail are compared.•These levels of detail are bridged by the metacommunity metabolic distribution.•A...
The principle of Maximum Entropy (MaxEnt) promises a novel approach for understanding community assembly. Despite reproducing a variety of observed species...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108720
SubjectTerms Community assembly
Macroecology
Metabolic requirements
metabolism
prediction
Resource partitioning
species abundance
Species-abundance distribution
Statistical aggregation
Title Comparison of two maximum entropy models highlights the metabolic structure of metacommunities as a key determinant of local community assembly
URI https://dx.doi.org/10.1016/j.ecolmodel.2019.108720
https://www.proquest.com/docview/2271882922
Volume 407
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SDYFeSpoHTZsEFXp1dq2HH72FZcO2hVzaQG5CkmXYYq-Xepd2L_0L_cudseUNCYUcCr5Y1thCM_pmZM0D4ENqjTC88NHEJkkkvcijXJQ-khYBORMmxufkbXGbzO_k53t1vwfTIRaG3CoD9veY3qF1aBmH2RyvFovxVzrUExnZKILCRXHfvs9FnqgR7F9_-jK_3QEyQnA4TJARETxy88JNXtUVnSE3r5xc7lKq_f1vJfUErjsddHMIr4LxyK778b2GPb88goNZl3h6ewSns4eoNewWlm17DH-mu2qDrCnZ-mfDavNrUW9qRj93m9WWdYNrGWUvrmi_3jK0DFnt1ygk1cKxPs_s5oenF1Cz6yNLKB8rM3gxRANWPDjXUL9OUbKh5xb7tb621fYE7m5m36bzKFRiiJyQ2ToSTpUu9Zn0iKvKxokvUrR0VCriUqgytS4WaYa2CG5PjFCOeyfLAi0FCpwVzolTGC2bpX8DzHDhsomz3KtCclNSRj3ritQpmztp1Bkkw9RrF9KUU7WMSg_-aN_1jmeaeKZ7np3BZEe46jN1PE_yceCtfiR0GvXJ88TvB2nQuCTpnMUsfbNpNeeo8DOec_72fz7wDl7SXe_Qdg4j5LO_QAtobS_hxdXv-DLI-V_NEQse
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQCLEXBCxoWV5eaa-hrR9xwg1VReV5WZC4WbbjSF0lTbVpBb3wF_jLzOTRCoTEYaWc7HFieex5xN_MEPJbWcMNS3zQtWEYCM_jIOapD4QFgRxx04N-RFvchcMHcfUoH1dIv42FQVhlI_trmV5J66al06xmZzIadf7gpR6P0EbhGC4KfvuakFwhru_0ZYnzAAHcXCWIAMnfgbzAxcuqkjMI8ooRcKew8vfnKuqDsK400MUW2WxMR3pez26brPjxDlkfVGmn5ztkb7CMWQOy5tCW38lrf1FrkBYpnT4VNDfPo3yWU_y1W0zmtJpcSTF3cYbeeknBLqS5n8IWyUaO1llmZ_88vgCbXR1XgtlYqYGHgiygyRJag3SVmqQt5RzoSp_bbL5LHi4G9_1h0NRhCBwX0TTgTqZO-Uh4kKrS9kKfKLBzpOK9lMtUWdfjKgJLBJwTw6Vj3ok0ATsBw2a5c3yPrI6Lsf9BqGHcRV1nmZeJYCbFfHrWJcpJGzth5D4J26XXrklSjrUyMt2i0f7qBc808kzXPNsn3cXASZ2n4-shZy1v9bstp0GbfD34V7sbNBxIvGUxY1_MSs0YqPuIxYz9_J8PnJCN4f3tjb65vLs-IN-wp4a2HZJV4Lk_Altoao-rvf4GGqEL6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+two+maximum+entropy+models+highlights+the+metabolic+structure+of+metacommunities+as+a+key+determinant+of+local+community+assembly&rft.jtitle=Ecological+modelling&rft.au=Bertram%2C+Jason&rft.au=Newman%2C+Erica+A.&rft.au=Dewar%2C+Roderick+C.&rft.date=2019-09-01&rft.pub=Elsevier+B.V&rft.issn=0304-3800&rft.eissn=1872-7026&rft.volume=407&rft_id=info:doi/10.1016%2Fj.ecolmodel.2019.108720&rft.externalDocID=S0304380019302200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon