A new deep convolutional neural network for fast hyperspectral image classification
Artificial neural networks (ANNs) have been widely used for the analysis of remotely sensed imagery. In particular, convolutional neural networks (CNNs) are gaining more and more attention in this field. CNNs have proved to be very effective in areas such as image recognition and classification, esp...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 145; pp. 120 - 147 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0924-2716 1872-8235 |
DOI | 10.1016/j.isprsjprs.2017.11.021 |
Cover
Loading…
Abstract | Artificial neural networks (ANNs) have been widely used for the analysis of remotely sensed imagery. In particular, convolutional neural networks (CNNs) are gaining more and more attention in this field. CNNs have proved to be very effective in areas such as image recognition and classification, especially for the classification of large sets composed by two-dimensional images. However, their application to multispectral and hyperspectral images faces some challenges, especially related to the processing of the high-dimensional information contained in multidimensional data cubes. This results in a significant increase in computation time. In this paper, we present a new CNN architecture for the classification of hyperspectral images. The proposed CNN is a 3-D network that uses both spectral and spatial information. It also implements a border mirroring strategy to effectively process border areas in the image, and has been efficiently implemented using graphics processing units (GPUs). Our experimental results indicate that the proposed network performs accurately and efficiently, achieving a reduction of the computation time and increasing the accuracy in the classification of hyperspectral images when compared to other traditional ANN techniques. |
---|---|
AbstractList | Artificial neural networks (ANNs) have been widely used for the analysis of remotely sensed imagery. In particular, convolutional neural networks (CNNs) are gaining more and more attention in this field. CNNs have proved to be very effective in areas such as image recognition and classification, especially for the classification of large sets composed by two-dimensional images. However, their application to multispectral and hyperspectral images faces some challenges, especially related to the processing of the high-dimensional information contained in multidimensional data cubes. This results in a significant increase in computation time. In this paper, we present a new CNN architecture for the classification of hyperspectral images. The proposed CNN is a 3-D network that uses both spectral and spatial information. It also implements a border mirroring strategy to effectively process border areas in the image, and has been efficiently implemented using graphics processing units (GPUs). Our experimental results indicate that the proposed network performs accurately and efficiently, achieving a reduction of the computation time and increasing the accuracy in the classification of hyperspectral images when compared to other traditional ANN techniques. |
Author | Plaza, J. Paoletti, M.E. Plaza, A. Haut, J.M. |
Author_xml | – sequence: 1 givenname: M.E. surname: Paoletti fullname: Paoletti, M.E. email: mpaolett@alumnos.unex.es – sequence: 2 givenname: J.M. surname: Haut fullname: Haut, J.M. – sequence: 3 givenname: J. surname: Plaza fullname: Plaza, J. – sequence: 4 givenname: A. surname: Plaza fullname: Plaza, A. |
BookMark | eNqNkDtPwzAQgC1UJNrCbyAjS4IfcR4DQ1XxkioxALNlOxdwSeNgJ63673FaxMACw-l0vvtOvm-GJq1tAaFLghOCSXa9TozvnF-HSCgmeUJIgik5QVNS5DQuKOMTNMUlTWOak-wMzbxfY4wJz4opel5ELeyiCqCLtG23thl6Y1vZhOfBHVK_s-4jqq2Laun76H3fgfMd6H5sm418g0g30ntTGy1H-Byd1rLxcPGd5-j17vZl-RCvnu4fl4tVrFla9DGTumSsVFyBolLlUtYp55lUTDGGQ6kYYVRDwctMFVryjFdZnVNVjjUr2RxdHfd2zn4O4HuxMV5D08gW7OAFJSQrCpZyGkbz46h21nsHtehc-LrbC4LFqFGsxY9GMWoUhIigMZA3v0ht-sOZ4X7T_INfHHkIJrYGnPDaQKuhMi44FJU1f-74AspsmSM |
CitedBy_id | crossref_primary_10_5194_acp_23_5233_2023 crossref_primary_10_1063_1_5100577 crossref_primary_10_1109_TGRS_2023_3275147 crossref_primary_10_1109_TNNLS_2020_2978577 crossref_primary_10_3390_math10111827 crossref_primary_10_3390_rs13173411 crossref_primary_10_1109_JSTARS_2022_3187009 crossref_primary_10_1016_j_jfca_2021_104071 crossref_primary_10_3390_rs15133269 crossref_primary_10_1109_TGRS_2019_2907932 crossref_primary_10_1007_s12517_020_05487_4 crossref_primary_10_1007_s13198_020_00972_1 crossref_primary_10_1155_2020_6677907 crossref_primary_10_3390_s25061858 crossref_primary_10_1109_TGRS_2022_3185612 crossref_primary_10_1007_s00477_021_02032_x crossref_primary_10_1007_s10462_021_10018_y crossref_primary_10_1007_s11227_021_03638_2 crossref_primary_10_1088_1742_6596_1950_1_012087 crossref_primary_10_1109_ACCESS_2020_3030649 crossref_primary_10_1109_LGRS_2019_2909495 crossref_primary_10_3390_rs12182956 crossref_primary_10_1109_JSTARS_2022_3210373 crossref_primary_10_3390_s18072045 crossref_primary_10_1109_LGRS_2018_2872359 crossref_primary_10_3390_rs15020316 crossref_primary_10_1080_10106049_2022_2143910 crossref_primary_10_3233_JCS_220031 crossref_primary_10_48123_rsgis_1344194 crossref_primary_10_1016_j_isprsjprs_2019_09_009 crossref_primary_10_3389_fceng_2021_727152 crossref_primary_10_3390_rs12030405 crossref_primary_10_3390_rs15194797 crossref_primary_10_1016_j_jenvman_2023_119470 crossref_primary_10_1109_ACCESS_2022_3231579 crossref_primary_10_1080_01431161_2021_1880663 crossref_primary_10_1109_LGRS_2022_3169836 crossref_primary_10_1109_TGRS_2019_2937204 crossref_primary_10_1016_j_ymssp_2021_108153 crossref_primary_10_1016_j_compbiomed_2020_104036 crossref_primary_10_53070_bbd_989102 crossref_primary_10_3390_rs14122931 crossref_primary_10_3390_rs12030536 crossref_primary_10_1016_j_infrared_2024_105449 crossref_primary_10_1109_TGRS_2018_2843525 crossref_primary_10_3390_rs12030534 crossref_primary_10_1016_j_asr_2024_10_001 crossref_primary_10_1109_TGRS_2024_3462374 crossref_primary_10_1016_j_isprsjprs_2020_04_010 crossref_primary_10_1007_s12551_023_01125_x crossref_primary_10_1007_s11042_023_15529_0 crossref_primary_10_1049_iet_ipr_2019_0561 crossref_primary_10_1109_TGRS_2024_3360261 crossref_primary_10_1016_j_psep_2024_10_011 crossref_primary_10_1117_1_JRS_13_024525 crossref_primary_10_3390_rs13142820 crossref_primary_10_1007_s00521_023_09186_5 crossref_primary_10_1007_s11042_023_16241_9 crossref_primary_10_1016_j_eswa_2020_114417 crossref_primary_10_1520_JTE20210453 crossref_primary_10_3390_rs10101602 crossref_primary_10_1007_s00521_021_06120_5 crossref_primary_10_1098_rsos_210932 crossref_primary_10_1109_TCYB_2021_3069790 crossref_primary_10_1016_j_jag_2024_104303 crossref_primary_10_3390_rs12111780 crossref_primary_10_1109_ACCESS_2020_2968965 crossref_primary_10_1080_01431161_2020_1737340 crossref_primary_10_1109_TGRS_2021_3135506 crossref_primary_10_1109_JSTARS_2022_3200733 crossref_primary_10_1080_10106049_2022_2129833 crossref_primary_10_1097_MD_0000000000019114 crossref_primary_10_1109_TGRS_2023_3295097 crossref_primary_10_3390_rs13183637 crossref_primary_10_3390_s19071714 crossref_primary_10_1109_TGRS_2022_3205119 crossref_primary_10_3390_app10103581 crossref_primary_10_3390_rs12040647 crossref_primary_10_3390_rs13204060 crossref_primary_10_52547_jgst_12_3_1 crossref_primary_10_1016_j_isprsjprs_2019_02_010 crossref_primary_10_1016_j_jag_2021_102603 crossref_primary_10_3390_electronics12030488 crossref_primary_10_1049_esi2_12114 crossref_primary_10_3390_land11111905 crossref_primary_10_3390_rs10060945 crossref_primary_10_1016_j_foodcont_2024_110756 crossref_primary_10_1109_TGRS_2020_3015357 crossref_primary_10_1109_TCI_2021_3083215 crossref_primary_10_3390_rs14174385 crossref_primary_10_1016_j_scitotenv_2021_149346 crossref_primary_10_1109_TGRS_2020_3005431 crossref_primary_10_1109_TNNLS_2020_2978760 crossref_primary_10_1080_07038992_2023_2178834 crossref_primary_10_1080_15481603_2023_2225273 crossref_primary_10_1109_LGRS_2018_2881045 crossref_primary_10_1109_TGRS_2020_3048002 crossref_primary_10_1007_s11431_021_1987_8 crossref_primary_10_3390_rs14092015 crossref_primary_10_1007_s11356_023_31575_5 crossref_primary_10_3390_s19194188 crossref_primary_10_3390_plants8110468 crossref_primary_10_1049_ipr2_12330 crossref_primary_10_1109_JSTARS_2019_2934011 crossref_primary_10_1109_TGRS_2018_2872830 crossref_primary_10_1109_JSTARS_2024_3355071 crossref_primary_10_1016_j_eswa_2021_115663 crossref_primary_10_1016_j_ecolind_2022_109648 crossref_primary_10_1109_TGRS_2022_3180548 crossref_primary_10_1155_2022_7587157 crossref_primary_10_1007_s12524_019_00946_2 crossref_primary_10_3390_rs11030282 crossref_primary_10_1109_LGRS_2021_3086796 crossref_primary_10_1155_2021_1508267 crossref_primary_10_1016_j_compag_2022_107585 crossref_primary_10_1016_j_geoderma_2023_116589 crossref_primary_10_1007_s11042_020_10169_0 crossref_primary_10_1016_j_foodcont_2023_109716 crossref_primary_10_1007_s12517_021_08127_7 crossref_primary_10_14358_PERS_21_00089R3 crossref_primary_10_1109_TGRS_2021_3093043 crossref_primary_10_1021_acs_iecr_0c01872 crossref_primary_10_1109_JSTARS_2021_3127728 crossref_primary_10_3390_su14031734 crossref_primary_10_4316_AECE_2023_04004 crossref_primary_10_1016_j_rse_2022_113197 crossref_primary_10_3390_rs10122053 crossref_primary_10_1109_MGRS_2022_3145854 crossref_primary_10_1177_1729881419842991 crossref_primary_10_3390_rs11050484 crossref_primary_10_1007_s12145_022_00929_x crossref_primary_10_1109_JSTARS_2024_3394771 crossref_primary_10_1016_j_isprsjprs_2021_01_024 crossref_primary_10_1109_TGRS_2019_2961947 crossref_primary_10_1007_s11554_018_0793_9 crossref_primary_10_1016_j_measurement_2025_116755 crossref_primary_10_1080_01431161_2022_2133579 crossref_primary_10_1016_j_isprsjprs_2018_08_011 crossref_primary_10_1109_LGRS_2019_2962768 crossref_primary_10_1117_1_JRS_16_046508 crossref_primary_10_3390_s19071486 crossref_primary_10_1007_s00521_023_08353_y crossref_primary_10_1111_1365_2478_13199 crossref_primary_10_1109_JSTARS_2024_3374813 crossref_primary_10_3390_rs14205112 crossref_primary_10_1007_s42979_023_01868_0 crossref_primary_10_1109_JSTARS_2021_3133021 crossref_primary_10_1007_s12524_024_02072_0 crossref_primary_10_1080_10106049_2025_2471091 crossref_primary_10_1109_TGRS_2022_3187187 crossref_primary_10_1109_TGRS_2023_3324947 crossref_primary_10_1007_s41976_020_00037_8 crossref_primary_10_1088_1674_1056_ac8cd7 crossref_primary_10_1109_JSTSP_2021_3063805 crossref_primary_10_1016_j_infrared_2023_104985 crossref_primary_10_1109_TGRS_2018_2871782 crossref_primary_10_1016_j_patcog_2021_107967 crossref_primary_10_1016_j_isprsjprs_2020_09_008 crossref_primary_10_1109_TGRS_2018_2860125 crossref_primary_10_1088_1742_6596_1748_4_042054 crossref_primary_10_1080_01431161_2025_2452313 crossref_primary_10_3390_rs12030354 crossref_primary_10_1109_JBHI_2019_2912668 crossref_primary_10_1109_JSTARS_2020_3017544 crossref_primary_10_1007_s10489_021_02270_0 crossref_primary_10_3390_rs15133357 crossref_primary_10_1109_TGRS_2018_2838665 crossref_primary_10_1016_j_measurement_2022_110760 crossref_primary_10_1016_j_psep_2023_07_059 crossref_primary_10_1109_JSTARS_2023_3323484 crossref_primary_10_1016_j_imavis_2019_04_007 crossref_primary_10_1016_j_atech_2023_100241 crossref_primary_10_1016_j_postharvbio_2024_112837 crossref_primary_10_1109_TGRS_2019_2918080 crossref_primary_10_1109_TGRS_2018_2860464 crossref_primary_10_1016_j_infrared_2022_104470 crossref_primary_10_1016_j_scitotenv_2021_149861 crossref_primary_10_1007_s12517_021_08420_5 crossref_primary_10_1109_TGRS_2021_3080394 crossref_primary_10_1109_LGRS_2023_3314466 crossref_primary_10_3389_fphy_2023_1163555 crossref_primary_10_3390_foods11213483 crossref_primary_10_3390_rs14030785 crossref_primary_10_1016_j_future_2024_04_056 crossref_primary_10_1109_JSTARS_2024_3441111 crossref_primary_10_1109_TGRS_2023_3297858 crossref_primary_10_1016_j_oceaneng_2024_117921 crossref_primary_10_1016_j_crfs_2024_100695 crossref_primary_10_1016_j_precisioneng_2022_01_005 crossref_primary_10_1080_17538947_2022_2152882 crossref_primary_10_1016_j_neucom_2020_05_034 crossref_primary_10_1155_2021_1759111 crossref_primary_10_3390_rs12203292 crossref_primary_10_1080_01431161_2023_2297178 crossref_primary_10_1109_ACCESS_2020_2997912 crossref_primary_10_3390_app122111299 crossref_primary_10_1002_ett_3922 crossref_primary_10_1109_ACCESS_2025_3532016 crossref_primary_10_3390_rs10071111 crossref_primary_10_1109_TGRS_2019_2890848 crossref_primary_10_1088_1538_3873_ab5ed7 crossref_primary_10_3390_rs13071290 crossref_primary_10_1109_LGRS_2019_2940467 crossref_primary_10_1109_TGRS_2024_3468269 crossref_primary_10_1016_j_srs_2023_100085 crossref_primary_10_1109_TGRS_2021_3125353 crossref_primary_10_3390_electronics11162540 crossref_primary_10_1109_LGRS_2022_3173419 crossref_primary_10_1109_TGRS_2023_3331751 crossref_primary_10_4995_riai_2019_11078 crossref_primary_10_3390_sym12040561 crossref_primary_10_1016_j_jhydrol_2019_124482 crossref_primary_10_1109_TGRS_2024_3409378 crossref_primary_10_1109_TGRS_2021_3102143 crossref_primary_10_1109_TGRS_2023_3284671 crossref_primary_10_1088_1538_3873_acea43 crossref_primary_10_3390_rs11080963 crossref_primary_10_3390_rs11111325 crossref_primary_10_1016_j_isprsjprs_2020_09_020 crossref_primary_10_1109_JSTARS_2023_3279506 crossref_primary_10_1002_jsfa_10696 crossref_primary_10_3390_rs14215555 crossref_primary_10_1080_01431161_2021_1949069 crossref_primary_10_1016_j_isprsjprs_2020_08_004 crossref_primary_10_3390_rs15030848 crossref_primary_10_1016_j_yofte_2019_03_017 crossref_primary_10_1109_JSTARS_2021_3121334 crossref_primary_10_1680_jwama_22_00094 crossref_primary_10_3390_rs13071270 crossref_primary_10_1109_LGRS_2019_2951372 crossref_primary_10_1109_ACCESS_2019_2958671 crossref_primary_10_3390_rs12091395 crossref_primary_10_1117_1_JRS_14_036519 crossref_primary_10_1109_JSTARS_2024_3439592 crossref_primary_10_1016_j_isprsjprs_2019_12_002 crossref_primary_10_3389_fenvs_2023_1308808 crossref_primary_10_3390_s19224837 crossref_primary_10_1016_j_ijleo_2021_167757 crossref_primary_10_1016_j_apr_2022_101325 crossref_primary_10_1371_journal_pone_0309884 crossref_primary_10_1016_j_ophoto_2024_100062 crossref_primary_10_1109_JSTARS_2022_3162423 crossref_primary_10_17341_gazimmfd_901291 crossref_primary_10_1007_s12517_021_08060_9 crossref_primary_10_1109_LGRS_2020_3005982 crossref_primary_10_3390_electronics12245013 crossref_primary_10_1155_2020_9673724 crossref_primary_10_1080_01431161_2022_2142079 crossref_primary_10_1109_JSTARS_2021_3088228 crossref_primary_10_1109_LGRS_2019_2894399 crossref_primary_10_1016_j_gsf_2021_101224 crossref_primary_10_1007_s00521_022_08056_w crossref_primary_10_3390_rs13132575 crossref_primary_10_1088_1361_6501_ac7034 crossref_primary_10_1007_s12517_021_06516_6 crossref_primary_10_3390_ijgi8040160 crossref_primary_10_1016_j_isprsjprs_2019_12_010 crossref_primary_10_1109_ACCESS_2023_3250447 crossref_primary_10_1016_j_ijleo_2019_02_109 crossref_primary_10_1007_s11042_022_12494_y crossref_primary_10_1016_j_patcog_2020_107298 crossref_primary_10_3390_rs11242916 crossref_primary_10_1109_TGRS_2024_3449878 crossref_primary_10_1109_ACCESS_2019_2957163 crossref_primary_10_3390_rs17050872 crossref_primary_10_1109_TGRS_2019_2910603 crossref_primary_10_46604_ijeti_2021_8244 crossref_primary_10_1109_JSTARS_2024_3353551 crossref_primary_10_1016_j_isprsjprs_2020_07_016 crossref_primary_10_1016_j_inpa_2018_05_002 crossref_primary_10_1007_s11042_023_15444_4 crossref_primary_10_1109_TGRS_2024_3493101 crossref_primary_10_3390_jimaging5050052 crossref_primary_10_1016_j_eswa_2021_115280 crossref_primary_10_1109_JSTARS_2021_3110994 crossref_primary_10_1109_TGRS_2021_3087186 crossref_primary_10_1016_j_gsf_2021_101203 crossref_primary_10_1109_TNNLS_2021_3118221 crossref_primary_10_3233_JIFS_220863 crossref_primary_10_1109_TGRS_2019_2933609 crossref_primary_10_1080_01431161_2023_2265539 crossref_primary_10_1016_j_cosrev_2024_100658 crossref_primary_10_1080_17538947_2023_2202423 crossref_primary_10_3390_rs12223839 crossref_primary_10_1109_JSTARS_2020_2995445 crossref_primary_10_1109_TGRS_2022_3141217 crossref_primary_10_1109_TGRS_2020_3024730 crossref_primary_10_32604_cmes_2022_020601 crossref_primary_10_3390_rs11202363 crossref_primary_10_3390_rs16020325 crossref_primary_10_1155_2022_7629367 crossref_primary_10_1109_ACCESS_2020_2963939 crossref_primary_10_3390_app11167614 crossref_primary_10_1007_s12517_022_10246_8 crossref_primary_10_1109_ACCESS_2020_2998164 crossref_primary_10_1080_2150704X_2019_1681598 crossref_primary_10_1016_j_isprsjprs_2021_08_009 crossref_primary_10_3390_rs14092246 crossref_primary_10_1109_TGRS_2021_3052048 crossref_primary_10_1016_j_talo_2022_100106 crossref_primary_10_1109_LGRS_2020_2970810 crossref_primary_10_3390_rs12223733 crossref_primary_10_3390_s24206647 crossref_primary_10_1109_JSTARS_2020_3044264 crossref_primary_10_1016_j_rsase_2023_100986 crossref_primary_10_1109_TGRS_2020_2967821 crossref_primary_10_1117_1_JRS_17_038503 crossref_primary_10_1016_j_optlaseng_2022_107081 crossref_primary_10_1109_JSTARS_2018_2881342 crossref_primary_10_1109_TGRS_2020_3020823 crossref_primary_10_1007_s11042_022_13959_w crossref_primary_10_1109_TGRS_2024_3386579 crossref_primary_10_1016_j_rsase_2022_100694 crossref_primary_10_1080_01431161_2021_1973688 crossref_primary_10_3390_rs11131540 crossref_primary_10_1109_TGRS_2020_3018879 crossref_primary_10_1109_JSTARS_2021_3094973 crossref_primary_10_1109_TGRS_2023_3241193 crossref_primary_10_1007_s12524_019_01045_y crossref_primary_10_3390_su14116668 crossref_primary_10_1109_JSTARS_2022_3226524 crossref_primary_10_3390_rs11070888 crossref_primary_10_3390_f10090818 crossref_primary_10_3390_app13127143 crossref_primary_10_1016_j_rse_2024_114052 crossref_primary_10_47836_pjst_31_6_11 crossref_primary_10_1109_ACCESS_2020_3027776 crossref_primary_10_3390_rs13091642 crossref_primary_10_1007_s11063_024_11631_y crossref_primary_10_3390_rs16020259 crossref_primary_10_3390_rs13173393 crossref_primary_10_1016_j_rse_2021_112353 crossref_primary_10_1007_s10489_023_04736_9 crossref_primary_10_1016_j_jfoodeng_2021_110515 crossref_primary_10_1109_TGRS_2025_3543821 crossref_primary_10_1007_s12517_021_08178_w crossref_primary_10_1109_JSTARS_2022_3225201 crossref_primary_10_1016_j_asr_2022_12_028 crossref_primary_10_3390_rs13040706 crossref_primary_10_1109_TGRS_2024_3468876 crossref_primary_10_1080_10106049_2021_1882006 crossref_primary_10_3390_rs11070883 crossref_primary_10_1109_TNNLS_2022_3213315 crossref_primary_10_3390_rs11070884 crossref_primary_10_1007_s11042_022_12809_z crossref_primary_10_3390_rs10091454 crossref_primary_10_3390_rs12060959 crossref_primary_10_1080_17538947_2023_2210310 crossref_primary_10_1007_s00521_019_04371_x crossref_primary_10_1109_TGRS_2019_2948031 crossref_primary_10_1063_5_0156044 crossref_primary_10_1109_TGRS_2022_3196771 crossref_primary_10_1109_TGRS_2019_2951445 crossref_primary_10_1007_s00521_023_08664_0 crossref_primary_10_1109_JSTARS_2024_3441709 crossref_primary_10_1109_LGRS_2021_3103180 crossref_primary_10_1186_s40537_020_00311_y crossref_primary_10_1016_j_neucom_2023_01_054 crossref_primary_10_1109_JPROC_2021_3063258 crossref_primary_10_32604_cmc_2024_048347 crossref_primary_10_3390_rs12213501 crossref_primary_10_1109_TGRS_2021_3056722 crossref_primary_10_1016_j_eswa_2024_124583 crossref_primary_10_1016_j_eswa_2024_125672 crossref_primary_10_1109_LGRS_2020_2966987 crossref_primary_10_1186_s13321_020_00436_5 crossref_primary_10_1109_TGRS_2023_3326231 crossref_primary_10_1007_s11042_020_09868_5 crossref_primary_10_1108_DTA_05_2020_0111 crossref_primary_10_1109_ACCESS_2020_2979219 crossref_primary_10_1109_TGRS_2019_2919938 crossref_primary_10_3390_s25020303 crossref_primary_10_1016_j_catena_2020_104851 crossref_primary_10_3390_rs14153751 crossref_primary_10_1016_j_jag_2024_103866 crossref_primary_10_1109_TIP_2022_3144017 crossref_primary_10_3390_rs16234504 crossref_primary_10_1109_JSTARS_2020_3022781 crossref_primary_10_3390_rs11141692 crossref_primary_10_3390_jimaging6120132 crossref_primary_10_1080_01431161_2021_1929540 crossref_primary_10_1016_j_infrared_2019_103013 crossref_primary_10_1016_j_infrared_2024_105251 crossref_primary_10_1109_JSTARS_2022_3166972 crossref_primary_10_1007_s12524_024_02011_z crossref_primary_10_1080_01431161_2023_2209268 crossref_primary_10_1109_TGRS_2021_3063287 crossref_primary_10_1002_ldr_4287 crossref_primary_10_1039_C8RA10335F crossref_primary_10_1080_19479832_2024_2349999 crossref_primary_10_1109_LGRS_2019_2909541 crossref_primary_10_1080_01431161_2020_1857877 crossref_primary_10_1007_s11042_022_13255_7 crossref_primary_10_1080_01431161_2019_1694725 crossref_primary_10_1016_j_isprsjprs_2019_04_016 crossref_primary_10_3390_rs15184439 crossref_primary_10_1007_s11042_020_10174_3 crossref_primary_10_52547_jgit_9_4_109 crossref_primary_10_1109_TGRS_2023_3299154 crossref_primary_10_3390_pr11020435 crossref_primary_10_3390_s20195538 crossref_primary_10_34133_remotesensing_0025 crossref_primary_10_1109_LGRS_2023_3341497 |
Cites_doi | 10.1561/2000000039 10.1109/MGRS.2016.2616418 10.1109/TKDE.2008.239 10.1109/TGRS.2011.2128330 10.1145/1390156.1390224 10.1109/TIP.2005.852206 10.1016/j.isprsjprs.2016.02.013 10.1162/neco.1997.9.8.1735 10.1117/12.943611 10.1109/IGARSS.2016.7729926 10.1080/014311697219015 10.1016/S0893-6080(98)00116-6 10.1109/TNNLS.2014.2359471 10.1109/TGRS.2011.2160950 10.1080/01431161.2016.1253897 10.3390/rs9010067 10.1109/TGRS.2016.2584107 10.1016/j.isprsjprs.2017.03.001 10.1109/JSTARS.2014.2329330 10.1109/TGRS.2005.846154 10.1016/B978-0-12-802806-3.00007-5 10.1109/TGRS.2015.2511197 10.1080/014311699213622 10.1016/j.neucom.2016.09.010 10.1155/2015/258619 10.1109/IGARSS.2016.7730324 10.1038/nature14539 10.1109/ICIP.2014.7026039 10.1109/LGRS.2015.2408433 10.1080/014311697218700 10.1080/2150704X.2017.1331053 10.1016/j.isprsjprs.2016.09.001 10.1109/MGRS.2016.2540798 10.1080/2150704X.2017.1280200 10.1016/S0034-4257(98)00064-9 10.1109/TGRS.2009.2016214 10.1109/TGRS.2008.922034 10.1109/TGRS.2007.910220 10.1080/01431169308904316 10.1109/TGRS.2004.831865 10.1162/neco.2006.18.7.1527 10.1109/TAC.1974.1100577 10.1109/TGRS.2015.2478379 10.3390/rs71114680 10.1007/BF00048682 10.1016/j.rse.2007.07.028 10.5721/EuJRS20144723 10.1109/TGRS.2016.2543748 10.1109/TGRS.2013.2296031 10.1126/science.1127647 10.1109/5.726791 10.1007/s11227-016-1896-3 10.1109/IGARSS.2016.7729850 10.1109/CVPR.2010.5539957 10.1109/LGRS.2017.2711425 |
ContentType | Journal Article |
Copyright | 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2017.11.021 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 147 |
ExternalDocumentID | 10_1016_j_isprsjprs_2017_11_021 S0924271617303660 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c348t-3ac9339b5beb2ab7aaf4556ab3b3307aab3132ce8596b8ca565d6f72b996b8393 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Thu Jul 10 19:11:06 EDT 2025 Tue Jul 01 03:46:38 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Fri Feb 23 02:28:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Convolutional neural networks (CNNs) Classification Hyperspectral imaging Graphics processing units (GPUs) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-3ac9339b5beb2ab7aaf4556ab3b3307aab3132ce8596b8ca565d6f72b996b8393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2116883452 |
PQPubID | 24069 |
PageCount | 28 |
ParticipantIDs | proquest_miscellaneous_2116883452 crossref_primary_10_1016_j_isprsjprs_2017_11_021 crossref_citationtrail_10_1016_j_isprsjprs_2017_11_021 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2017_11_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2018 2018-11-00 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ma, Wang, Wang (b0270) 2016; 120 Khodadadzadeh, Li, Plaza, Ghassemian, Bioucas-Dias, Li (b0190) 2014; 52 Ranzato, Poultney, Chopra, Lecun (b0310) 2006; vol. 19 Chen, Lin, Zhao, Wang, Gu (b0055) 2014; 7 Salakhutdinov, R., Hinton, G., 2009. Deep boltzmann machines. In: 12th International Conference on Artificial Intelligence and Statistics, pp. 3. Larochelle, H., Bengio, Y., 2008. Classification using discriminative restricted boltzmann machines. In: Proceedings of the 25th International Conference on Machine learning – ICML ’08, pp. 536. Qian (b0300) 1999; 12 Bengio (b0020) 2009; 2 Haut, J.M., Paoletti, M.E., Paz-Gallardo, A., Plaza, J., Plaza, A., 2017b. Cloud implementation of logistic regression for hyperspectral image classification. In: Vigo-Aguiar, J. (Ed.), Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2017. pp. 1063–2321. Zhang, Li, Zhang, Shen (b0400) 2017; 8 Wu, Diao, Dou, Sun, Zheng, Fu, Zhao (b0350) 2016; 37 Plaza, Benediktsson, Boardman, Brazile, Bruzzone, Camps-Valls, Chanussot, Fauvel, Gamba, Gualtieri, Marconcini, Tilton, Trianni (b0295) 2009; 113 Yang (b0370) 1999; 20 Karhunen, J., Raiko, T., Cho, K., 2015. Unsupervised Deep Learning: A Short Review. Yang, J., Zhao, Y., Chan, J.C.W., Yi, C., 2016. Hyperspectral image classification using two-channel deep convolutional neural network. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5079–5082. Cho, K., 2014. Foundations and Advances in Deep Learning (Ph.D. thesis). Aalto University. Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS10). Society for Artificial Intelligence and Statistics. pp. 249–256. Hu, Huang, Wei, Zhang, Li (b0175) 2015 Paoletti, M.E., Haut, J.M., Plaza, J., Plaza, A., 2017. Yinyang K-means clustering for hyperspectral image analysis. In: Vigo-Aguiar, J. (Ed.), Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering. Rota, pp. 1625–1636. Yu, Jia, Xu, 1 (b0380) 2017; 219 Benediktsson, J.A., Swain, P.H., 1990. Statistical Methods and Neural Network Approaches for Classification of Data from Multiple Sources (Ph.D. thesis). Purdue Univ., School of Elect. Eng. West Lafayette, IN. Zhang, Gong, Su, Liu, Li (b0410) 2016; 116 Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks. In: Gordon, Geoffrey J., Dunson, David B. (Ed.), Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11). Journal of Machine Learning Research – Workshop and Conference Proceedings, pp. 315–323. Fauvel, Benediktsson, Chanussot, Sveinsson (b0090) 2008; 46 Zhao, Du (b0415) 2016; 128 Smolensky (b0330) 1986; vol. 1 Chang (b0045) 2003 Li, Zang, Zhang, Li, Wu (b0235) 2014; 47 Hu, Xia, Hu, Zhang, Foody, Wang, Thenkabail (b0170) 2015; 7 Liu, Q., Hang, R., Song, H., Zhu, F., Plaza, J., Plaza, A., 2016. Adaptive Deep Pyramid Matching for Remote Sensing Scene Classification. CoRR. Available from Hinton, Osindero, Teh (b0155) 2006; 18 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., 2012. Improving neural networks by preventing co-adaptation of feature detectors. CoRR. Available from Scholkopf, Smola (b0325) 2001 Melgani, Bruzzone (b0275) 2004; 42 . LeCun, Bengio, Hinton (b0210) 2015; 521 Yuan, Mou, Lu (b0385) 2015; 26 Starck, Elad, Donoho (b0335) 2005; 14 Bishop (b0030) 1995 Bengio, Lamblin, Popovici, Larochelle (b0025) 2007 Zeiler, M.D., 2012. ADADELTA: An Adaptive Learning Rate Method. CoRR. Available from Chen, Jiang, Li, Jia, Ghamisi (b0050) 2016; 54 Xu, X., Lil, f., Plaza, A., 2016b. Fusion of hyperspectral and LiDAR data using morphological component analysis. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3575–3578. Kingma, D.P., Ba, J.L., 2014. ADAM: {A} method for stochastic optimization. CoRR. Available from Romero, Gatta, Camps-Valls (b0315) 2016; 54 LeCun, Bottou, Orr, Müller (b0220) 1998 Green, Eastwood, Sarture, Chrien, Aronsson, Chippendale, Faust, Pavri, Chovit, Solis, Olah, Williams (b0125) 1998; 65 Dosovitskiy, Springenberg, Riedmiller, Brox (b0080) 2014; vol. 27 Vetrivel, Gerke, Kerle, Nex, Vosselman (b0345) 2018; 140 LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998a. Gradient-based learning applied to document recognition. Proc. IEEE. Tarabalka, Benediktsson, Chanussot (b0340) 2009; 47 Hinton, Salakhutdinov (b0150) 2006; 313 Fisher (b0095) 1997; 18 Midhun, Nair, Prabhakar, Kumar (b0280) 2014 Ghamisi, Plaza, Chen, Li, Plaza (b0105) 2017; 5 Duchi, Edu, Hazan, Singer (b0085) 2011; 12 Wu, Wang, Plaza, Li, Wei (b0355) 2015; 12 Camps-Valls, Bruzzone (b0040) 2005; 43 Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R., June 2010. Deconvolutional networks. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2528–2535. Zhang, Zhang, Du (b0405) 2016; 4 Kunkel, B., Blechinger, F., Lutz, R., Doerffer, R., van der Piepen, H., 1988. ROSIS (Reflective Optics System Imaging Spectrometer) – A candidate instrument for polar platform missions. In: Seeley, J., Bowyer, S. (Eds.), Optoelectronic technologies for remote sensing from space. pp. 134–141. Atkinson, Tatnall (b0005) 1997; 18 Nair, Hinton (b0285) 2010 Benediktsson, Swain, Ersoy (b0015) 1993; 14 Li, Zhang, Shen (b0245) 2017; 9 Jarrett, Kavukcuoglu, Ranzato, Lecun (b0180) 2009 García, Sánchez, Mollineda (b0100) 2011 Liu, Yu, Zhang, Tan, Yu, Xue (b0255) 2017; 8 Lu, Zheng, Yuan (b0265) 2017 Rajan, Ghosh, Crawford (b0305) 2008; 46 Hochreiter, Schmidhuber (b0165) 1997; 9 Li, T., Zhang, J., Zhang, Y., 2014b. Classification of hyperspectral image based on deep belief networks. In: Image Processing (ICIP), 2014 IEEE International Conference on. pp. 5132–5136. Li, Bioucas-Dias, Plaza (b0225) 2010; 48 Cheng, Han, Lu (b0060) 2017 Böhning (b0035) 1992; 44 Li, Bioucas-Dias, Plaza (b0230) 2011; 49 Licciardi, Del Frate (b0250) 2011; 49 Deng, Yu (b0075) 2014; 7 Haut, Paoletti, Plaza, Plaza (b0130) 2017; 73 Zhou, Prasad (b0425) 2017; 14 He, Garcia (b0140) 2009; 21 He, M., Li, X., Zhang, Y., Zhang, J., Wang, W., 2016. Hyperspectral image classification based on deep stacking network. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). pp. 3286–3289. Zhao, Du (b0420) 2016; 54 Xu, Li, Huang, Dalla Mura, Plaza (b0360) 2016; 54 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b0120) 2014; vol. 27 Chien (b0065) 1974; 19 10.1016/j.isprsjprs.2017.11.021_b0290 García (10.1016/j.isprsjprs.2017.11.021_b0100) 2011 Zhao (10.1016/j.isprsjprs.2017.11.021_b0420) 2016; 54 Böhning (10.1016/j.isprsjprs.2017.11.021_b0035) 1992; 44 10.1016/j.isprsjprs.2017.11.021_b0010 Ma (10.1016/j.isprsjprs.2017.11.021_b0270) 2016; 120 Yang (10.1016/j.isprsjprs.2017.11.021_b0370) 1999; 20 10.1016/j.isprsjprs.2017.11.021_b0375 Li (10.1016/j.isprsjprs.2017.11.021_b0225) 2010; 48 Chen (10.1016/j.isprsjprs.2017.11.021_b0055) 2014; 7 10.1016/j.isprsjprs.2017.11.021_b0215 Licciardi (10.1016/j.isprsjprs.2017.11.021_b0250) 2011; 49 Liu (10.1016/j.isprsjprs.2017.11.021_b0255) 2017; 8 Lu (10.1016/j.isprsjprs.2017.11.021_b0265) 2017 Rajan (10.1016/j.isprsjprs.2017.11.021_b0305) 2008; 46 Hu (10.1016/j.isprsjprs.2017.11.021_b0170) 2015; 7 10.1016/j.isprsjprs.2017.11.021_b0135 Li (10.1016/j.isprsjprs.2017.11.021_b0235) 2014; 47 Scholkopf (10.1016/j.isprsjprs.2017.11.021_b0325) 2001 Yuan (10.1016/j.isprsjprs.2017.11.021_b0385) 2015; 26 Goodfellow (10.1016/j.isprsjprs.2017.11.021_b0120) 2014; vol. 27 Dosovitskiy (10.1016/j.isprsjprs.2017.11.021_b0080) 2014; vol. 27 10.1016/j.isprsjprs.2017.11.021_b0240 Zhang (10.1016/j.isprsjprs.2017.11.021_b0405) 2016; 4 10.1016/j.isprsjprs.2017.11.021_b0320 10.1016/j.isprsjprs.2017.11.021_b0160 10.1016/j.isprsjprs.2017.11.021_b0205 Jarrett (10.1016/j.isprsjprs.2017.11.021_b0180) 2009 Nair (10.1016/j.isprsjprs.2017.11.021_b0285) 2010 10.1016/j.isprsjprs.2017.11.021_b0200 Ranzato (10.1016/j.isprsjprs.2017.11.021_b0310) 2006; vol. 19 Vetrivel (10.1016/j.isprsjprs.2017.11.021_b0345) 2018; 140 10.1016/j.isprsjprs.2017.11.021_b0365 Deng (10.1016/j.isprsjprs.2017.11.021_b0075) 2014; 7 LeCun (10.1016/j.isprsjprs.2017.11.021_b0210) 2015; 521 Duchi (10.1016/j.isprsjprs.2017.11.021_b0085) 2011; 12 Ghamisi (10.1016/j.isprsjprs.2017.11.021_b0105) 2017; 5 Haut (10.1016/j.isprsjprs.2017.11.021_b0130) 2017; 73 10.1016/j.isprsjprs.2017.11.021_b0070 Xu (10.1016/j.isprsjprs.2017.11.021_b0360) 2016; 54 Hinton (10.1016/j.isprsjprs.2017.11.021_b0155) 2006; 18 Hinton (10.1016/j.isprsjprs.2017.11.021_b0150) 2006; 313 Smolensky (10.1016/j.isprsjprs.2017.11.021_b0330) 1986; vol. 1 10.1016/j.isprsjprs.2017.11.021_b0395 10.1016/j.isprsjprs.2017.11.021_b0110 Midhun (10.1016/j.isprsjprs.2017.11.021_b0280) 2014 Zhang (10.1016/j.isprsjprs.2017.11.021_b0410) 2016; 116 10.1016/j.isprsjprs.2017.11.021_b0390 Hu (10.1016/j.isprsjprs.2017.11.021_b0175) 2015 He (10.1016/j.isprsjprs.2017.11.021_b0140) 2009; 21 10.1016/j.isprsjprs.2017.11.021_b0195 Yu (10.1016/j.isprsjprs.2017.11.021_b0380) 2017; 219 Zhao (10.1016/j.isprsjprs.2017.11.021_b0415) 2016; 128 Li (10.1016/j.isprsjprs.2017.11.021_b0245) 2017; 9 Zhang (10.1016/j.isprsjprs.2017.11.021_b0400) 2017; 8 10.1016/j.isprsjprs.2017.11.021_b0115 Green (10.1016/j.isprsjprs.2017.11.021_b0125) 1998; 65 Plaza (10.1016/j.isprsjprs.2017.11.021_b0295) 2009; 113 Tarabalka (10.1016/j.isprsjprs.2017.11.021_b0340) 2009; 47 Wu (10.1016/j.isprsjprs.2017.11.021_b0355) 2015; 12 Wu (10.1016/j.isprsjprs.2017.11.021_b0350) 2016; 37 Bengio (10.1016/j.isprsjprs.2017.11.021_b0020) 2009; 2 Camps-Valls (10.1016/j.isprsjprs.2017.11.021_b0040) 2005; 43 Chen (10.1016/j.isprsjprs.2017.11.021_b0050) 2016; 54 Hochreiter (10.1016/j.isprsjprs.2017.11.021_b0165) 1997; 9 Qian (10.1016/j.isprsjprs.2017.11.021_b0300) 1999; 12 Benediktsson (10.1016/j.isprsjprs.2017.11.021_b0015) 1993; 14 Fauvel (10.1016/j.isprsjprs.2017.11.021_b0090) 2008; 46 10.1016/j.isprsjprs.2017.11.021_b0185 Chang (10.1016/j.isprsjprs.2017.11.021_b0045) 2003 Atkinson (10.1016/j.isprsjprs.2017.11.021_b0005) 1997; 18 Cheng (10.1016/j.isprsjprs.2017.11.021_b0060) 2017 10.1016/j.isprsjprs.2017.11.021_b0260 Bishop (10.1016/j.isprsjprs.2017.11.021_b0030) 1995 Starck (10.1016/j.isprsjprs.2017.11.021_b0335) 2005; 14 Bengio (10.1016/j.isprsjprs.2017.11.021_b0025) 2007 10.1016/j.isprsjprs.2017.11.021_b0145 Romero (10.1016/j.isprsjprs.2017.11.021_b0315) 2016; 54 Zhou (10.1016/j.isprsjprs.2017.11.021_b0425) 2017; 14 Li (10.1016/j.isprsjprs.2017.11.021_b0230) 2011; 49 Melgani (10.1016/j.isprsjprs.2017.11.021_b0275) 2004; 42 Fisher (10.1016/j.isprsjprs.2017.11.021_b0095) 1997; 18 Chien (10.1016/j.isprsjprs.2017.11.021_b0065) 1974; 19 Khodadadzadeh (10.1016/j.isprsjprs.2017.11.021_b0190) 2014; 52 LeCun (10.1016/j.isprsjprs.2017.11.021_b0220) 1998 |
References_xml | – reference: Zeiler, M.D., 2012. ADADELTA: An Adaptive Learning Rate Method. CoRR. Available from: < – volume: 113 start-page: S110 year: 2009 end-page: S122 ident: b0295 article-title: Recent advances in techniques for hyperspectral image processing publication-title: Remote Sens. Environ. – reference: Li, T., Zhang, J., Zhang, Y., 2014b. Classification of hyperspectral image based on deep belief networks. In: Image Processing (ICIP), 2014 IEEE International Conference on. pp. 5132–5136. – volume: 18 start-page: 679 year: 1997 end-page: 685 ident: b0095 article-title: The pixel: a snare and a delusion publication-title: Int. J. Remote Sens. – volume: 14 start-page: 1348 year: 2017 end-page: 1352 ident: b0425 article-title: Active and semisupervised learning with morphological component analysis for hyperspectral image classification publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: b0085 article-title: Adaptive subgradient methods for online learning and stochastic optimization∗ publication-title: J. Mach. Learn. Res. – reference: Liu, Q., Hang, R., Song, H., Zhu, F., Plaza, J., Plaza, A., 2016. Adaptive Deep Pyramid Matching for Remote Sensing Scene Classification. CoRR. Available from: – volume: 54 start-page: 3083 year: 2016 end-page: 3102 ident: b0360 article-title: Multiple morphological component analysis based decomposition for remote sensing image classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 7 start-page: 14680 year: 2015 end-page: 14707 ident: b0170 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery in surveying, mapping and remote sensing publication-title: Remote Sens. – reference: Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R., June 2010. Deconvolutional networks. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2528–2535. – volume: vol. 27 start-page: 2672 year: 2014 end-page: 2680 ident: b0120 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – volume: 52 start-page: 6298 year: 2014 end-page: 6314 ident: b0190 article-title: Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 48 start-page: 4085 year: 2010 end-page: 4098 ident: b0225 article-title: Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Salakhutdinov, R., Hinton, G., 2009. Deep boltzmann machines. In: 12th International Conference on Artificial Intelligence and Statistics, pp. 3. – volume: 20 start-page: 97 year: 1999 end-page: 110 ident: b0370 article-title: A back-propagation neural network for mineralogical mapping from AVIRIS data publication-title: Int. J. Remote Sens. – volume: 46 start-page: 1231 year: 2008 end-page: 1242 ident: b0305 article-title: An active learning approach to hyperspectral data classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 14 start-page: 1570 year: 2005 end-page: 1582 ident: b0335 article-title: Image decomposition via the combination of sparse representations and a variational approach publication-title: IEEE Trans. Image Process. – volume: 65 start-page: 227 year: 1998 end-page: 248 ident: b0125 article-title: Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) publication-title: Remote Sens. Environ. – reference: LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998a. Gradient-based learning applied to document recognition. Proc. IEEE. – volume: 19 start-page: 462 year: 1974 end-page: 463 ident: b0065 article-title: Pattern classification and scene analysis publication-title: IEEE Trans. Autom. Control – reference: Kunkel, B., Blechinger, F., Lutz, R., Doerffer, R., van der Piepen, H., 1988. ROSIS (Reflective Optics System Imaging Spectrometer) – A candidate instrument for polar platform missions. In: Seeley, J., Bowyer, S. (Eds.), Optoelectronic technologies for remote sensing from space. pp. 134–141. – volume: 49 start-page: 4163 year: 2011 end-page: 4172 ident: b0250 article-title: Pixel unmixing in hyperspectral data by means of neural networks publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 42 year: 2004 ident: b0275 article-title: Classification of hyperspectral remote sensing images with support vector machines publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 54 start-page: 6232 year: 2016 end-page: 6251 ident: b0050 article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 26 start-page: 2222 year: 2015 end-page: 2233 ident: b0385 article-title: Scene recognition by manifold regularized deep learning architecture publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 219 start-page: 88 year: 2017 end-page: 98 ident: b0380 article-title: Convolutional neural networks for hyperspectral image classification publication-title: Neurocomputing – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b0150 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – reference: Yang, J., Zhao, Y., Chan, J.C.W., Yi, C., 2016. Hyperspectral image classification using two-channel deep convolutional neural network. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5079–5082. – start-page: 9 year: 1998 end-page: 50 ident: b0220 article-title: Efficient backprop publication-title: Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop – volume: 54 start-page: 1349 year: 2016 end-page: 1362 ident: b0315 article-title: Unsupervised deep feature extraction for remote sensing image classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 140 start-page: 45 year: 2018 end-page: 59 ident: b0345 article-title: Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Benediktsson, J.A., Swain, P.H., 1990. Statistical Methods and Neural Network Approaches for Classification of Data from Multiple Sources (Ph.D. thesis). Purdue Univ., School of Elect. Eng. West Lafayette, IN. – reference: Haut, J.M., Paoletti, M.E., Paz-Gallardo, A., Plaza, J., Plaza, A., 2017b. Cloud implementation of logistic regression for hyperspectral image classification. In: Vigo-Aguiar, J. (Ed.), Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2017. pp. 1063–2321. – volume: 9 start-page: 67 year: 2017 ident: b0245 article-title: Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network publication-title: Remote Sens. – start-page: 644 year: 2011 end-page: 651 ident: b0100 article-title: Classification of high dimensional and imbalanced hyperspectral imagery data publication-title: Proceedings Pattern Recognition and Image Analysis: 5th Iberian Conference, IbPRIA 2011, Las Palmas de Gran Canaria, Spain, June 8–10, 2011 – volume: 21 start-page: 1263 year: 2009 end-page: 1284 ident: b0140 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. – year: 2003 ident: b0045 article-title: Hyperspectral Imaging: Techniques for Spectral Detection and Classification – reference: Kingma, D.P., Ba, J.L., 2014. ADAM: {A} method for stochastic optimization. CoRR. Available from: – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: b0155 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – reference: Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., 2012. Improving neural networks by preventing co-adaptation of feature detectors. CoRR. Available from: – start-page: 153 year: 2007 end-page: 160 ident: b0025 article-title: Greedy layer-wise training of deep networks publication-title: Advances in Neural Information Processing Systems 19 (NIPS’06) – year: 2015 ident: b0175 article-title: Deep convolutional neural networks for hyperspectral image classification publication-title: J. Sensors – reference: Paoletti, M.E., Haut, J.M., Plaza, J., Plaza, A., 2017. Yinyang K-means clustering for hyperspectral image analysis. In: Vigo-Aguiar, J. (Ed.), Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering. Rota, pp. 1625–1636. – volume: 7 start-page: 197 year: 2014 end-page: 387 ident: b0075 article-title: Deep learning: methods and applications publication-title: Found. Trends® Signal Process. – volume: 120 start-page: 99 year: 2016 end-page: 107 ident: b0270 article-title: Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 1 year: 2017 end-page: 10 ident: b0265 article-title: Remote sensing scene classification by unsupervised representation learning publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS10). Society for Artificial Intelligence and Statistics. pp. 249–256. – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: b0020 article-title: Learning deep architectures for AI publication-title: Mach. Learn. – volume: 18 start-page: 699 year: 1997 end-page: 709 ident: b0005 article-title: Introduction neural networks in remote sensing publication-title: Int. J. Remote Sens. – volume: vol. 19 start-page: 1137 year: 2006 end-page: 1144 ident: b0310 article-title: Efficient learning of sparse representations with an energy-based model publication-title: Advances in Neural Information Processing Systems – volume: 54 start-page: 4544 year: 2016 end-page: 4554 ident: b0420 article-title: Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 47 start-page: 389 year: 2014 end-page: 411 ident: b0235 article-title: A review of remote sensing image classification techniques: the role of spatio-contextual information publication-title: Eur. J. Remote Sens. – volume: 116 start-page: 24 year: 2016 end-page: 41 ident: b0410 article-title: Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 128 start-page: 223 year: 2016 end-page: 239 ident: b0415 article-title: Learning multiscale and deep representations for classifying remotely sensed imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: vol. 1 start-page: 194 year: 1986 end-page: 281 ident: b0330 article-title: Information processing in dynamical systems: foundations of harmony theory publication-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Foundations – volume: 47 start-page: 2973 year: 2009 end-page: 2987 ident: b0340 article-title: Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0210 article-title: Deep learning publication-title: Nature – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0165 article-title: Long short-term memory publication-title: Neural Comput. – volume: 4 start-page: 22 year: 2016 end-page: 40 ident: b0405 article-title: Deep learning for remote sensing data advances in machine learning for remote sensing and geosciences publication-title: IEEE Geosci. Remote Sens. Mag. – start-page: 807 year: 2010 end-page: 814 ident: b0285 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10) – volume: vol. 27 start-page: 766 year: 2014 end-page: 774 ident: b0080 article-title: Discriminative unsupervised feature learning with convolutional neural networks publication-title: Advances in Neural Information Processing Systems – reference: He, M., Li, X., Zhang, Y., Zhang, J., Wang, W., 2016. Hyperspectral image classification based on deep stacking network. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). pp. 3286–3289. – reference: Karhunen, J., Raiko, T., Cho, K., 2015. Unsupervised Deep Learning: A Short Review. – volume: 12 start-page: 1456 year: 2015 end-page: 1460 ident: b0355 article-title: Real-time implementation of the sparse multinomial logistic regression for hyperspectral image classification on GPUs publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 8 start-page: 839 year: 2017 end-page: 848 ident: b0255 article-title: A semi-supervised convolutional neural network for hyperspectral image classification publication-title: Remote Sens. Lett. – start-page: 2146 year: 2009 end-page: 2153 ident: b0180 article-title: What is the best multi-stage architecture for object recognition? publication-title: ICCV – volume: 46 start-page: 3804 year: 2008 end-page: 3814 ident: b0090 article-title: Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 1 year: 2017 end-page: 19 ident: b0060 article-title: Remote sensing image scene classification: benchmark and state of the art publication-title: Proc. IEEE – reference: Xu, X., Lil, f., Plaza, A., 2016b. Fusion of hyperspectral and LiDAR data using morphological component analysis. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3575–3578. – reference: Larochelle, H., Bengio, Y., 2008. Classification using discriminative restricted boltzmann machines. In: Proceedings of the 25th International Conference on Machine learning – ICML ’08, pp. 536. – reference: >. – start-page: 35:1 year: 2014 end-page: 35:7 ident: b0280 article-title: Deep model for classification of hyperspectral image using restricted Boltzmann machine publication-title: Proceedings of the 2014 International Conference on Interdisciplinary Advances in Applied Computing – year: 1995 ident: b0030 article-title: Neural Networks for Pattern Recognition – reference: . – reference: Cho, K., 2014. Foundations and Advances in Deep Learning (Ph.D. thesis). Aalto University. – volume: 14 start-page: 2883 year: 1993 end-page: 2903 ident: b0015 article-title: Conjugate gradient neural networks in classification of very high dimensional remote sensing data publication-title: Int. J. Remote Sens. – volume: 43 start-page: 1351 year: 2005 end-page: 1362 ident: b0040 article-title: Kernel-based methods for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2001 ident: b0325 article-title: Learning with Kernels:Support Vector Machines, Regularization, Optimization, and Beyond – volume: 44 start-page: 197 year: 1992 end-page: 200 ident: b0035 article-title: Multinomial logistic regression algorithm publication-title: Ann. Inst. Stat. Math. – reference: Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks. In: Gordon, Geoffrey J., Dunson, David B. (Ed.), Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11). Journal of Machine Learning Research – Workshop and Conference Proceedings, pp. 315–323. – volume: 7 start-page: 2094 year: 2014 end-page: 2107 ident: b0055 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 8 start-page: 438 year: 2017 end-page: 447 ident: b0400 article-title: Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network publication-title: Remote Sens. Lett. – volume: 37 start-page: 6012 year: 2016 end-page: 6022 ident: b0350 article-title: Shape-based object extraction in high-resolution remote-sensing images using deep Boltzmann machine publication-title: Int. J. Remote Sens. – volume: 73 start-page: 514 year: 2017 end-page: 529 ident: b0130 article-title: Cloud implementation of the k-means algorithm for hyperspectral image analysis publication-title: J. Supercomput. – volume: 12 start-page: 145 year: 1999 end-page: 151 ident: b0300 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Netw. – volume: 5 start-page: 8 year: 2017 end-page: 32 ident: b0105 article-title: Advanced supervised spectral classifiers for hyperspectral images: a review publication-title: IEEE Geosci. Remote Sens. Mag. – volume: 49 start-page: 3947 year: 2011 end-page: 3960 ident: b0230 article-title: Hyperspectral image segmentation using a new Bayesian approach with active learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 12 start-page: 2121 year: 2011 ident: 10.1016/j.isprsjprs.2017.11.021_b0085 article-title: Adaptive subgradient methods for online learning and stochastic optimization∗ publication-title: J. Mach. Learn. Res. – volume: 7 start-page: 197 issue: 3–4 year: 2014 ident: 10.1016/j.isprsjprs.2017.11.021_b0075 article-title: Deep learning: methods and applications publication-title: Found. Trends® Signal Process. doi: 10.1561/2000000039 – volume: 5 start-page: 8 issue: 1 year: 2017 ident: 10.1016/j.isprsjprs.2017.11.021_b0105 article-title: Advanced supervised spectral classifiers for hyperspectral images: a review publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2616418 – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 10.1016/j.isprsjprs.2017.11.021_b0140 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.239 – volume: 49 start-page: 3947 issue: 10 year: 2011 ident: 10.1016/j.isprsjprs.2017.11.021_b0230 article-title: Hyperspectral image segmentation using a new Bayesian approach with active learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2128330 – ident: 10.1016/j.isprsjprs.2017.11.021_b0205 doi: 10.1145/1390156.1390224 – start-page: 644 year: 2011 ident: 10.1016/j.isprsjprs.2017.11.021_b0100 article-title: Classification of high dimensional and imbalanced hyperspectral imagery data – volume: 14 start-page: 1570 issue: 10 year: 2005 ident: 10.1016/j.isprsjprs.2017.11.021_b0335 article-title: Image decomposition via the combination of sparse representations and a variational approach publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.852206 – ident: 10.1016/j.isprsjprs.2017.11.021_b0160 – volume: 116 start-page: 24 year: 2016 ident: 10.1016/j.isprsjprs.2017.11.021_b0410 article-title: Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.02.013 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.isprsjprs.2017.11.021_b0165 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: 10.1016/j.isprsjprs.2017.11.021_b0200 doi: 10.1117/12.943611 – ident: 10.1016/j.isprsjprs.2017.11.021_b0365 doi: 10.1109/IGARSS.2016.7729926 – volume: vol. 1 start-page: 194 year: 1986 ident: 10.1016/j.isprsjprs.2017.11.021_b0330 article-title: Information processing in dynamical systems: foundations of harmony theory – volume: 18 start-page: 679 issue: 3 year: 1997 ident: 10.1016/j.isprsjprs.2017.11.021_b0095 article-title: The pixel: a snare and a delusion publication-title: Int. J. Remote Sens. doi: 10.1080/014311697219015 – start-page: 1 issue: 99 year: 2017 ident: 10.1016/j.isprsjprs.2017.11.021_b0060 article-title: Remote sensing image scene classification: benchmark and state of the art publication-title: Proc. IEEE – ident: 10.1016/j.isprsjprs.2017.11.021_b0260 – volume: 12 start-page: 145 issue: 1 year: 1999 ident: 10.1016/j.isprsjprs.2017.11.021_b0300 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Netw. doi: 10.1016/S0893-6080(98)00116-6 – volume: 26 start-page: 2222 issue: 10 year: 2015 ident: 10.1016/j.isprsjprs.2017.11.021_b0385 article-title: Scene recognition by manifold regularized deep learning architecture publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2359471 – volume: 49 start-page: 4163 issue: 11 year: 2011 ident: 10.1016/j.isprsjprs.2017.11.021_b0250 article-title: Pixel unmixing in hyperspectral data by means of neural networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2160950 – volume: 37 start-page: 6012 issue: 24 year: 2016 ident: 10.1016/j.isprsjprs.2017.11.021_b0350 article-title: Shape-based object extraction in high-resolution remote-sensing images using deep Boltzmann machine publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1253897 – volume: vol. 27 start-page: 766 year: 2014 ident: 10.1016/j.isprsjprs.2017.11.021_b0080 article-title: Discriminative unsupervised feature learning with convolutional neural networks – volume: 9 start-page: 67 issue: 1 year: 2017 ident: 10.1016/j.isprsjprs.2017.11.021_b0245 article-title: Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network publication-title: Remote Sens. doi: 10.3390/rs9010067 – volume: 54 start-page: 6232 issue: 10 year: 2016 ident: 10.1016/j.isprsjprs.2017.11.021_b0050 article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2584107 – volume: 140 start-page: 45 year: 2018 ident: 10.1016/j.isprsjprs.2017.11.021_b0345 article-title: Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.03.001 – volume: 7 start-page: 2094 issue: 6 year: 2014 ident: 10.1016/j.isprsjprs.2017.11.021_b0055 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2014.2329330 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.isprsjprs.2017.11.021_b0020 article-title: Learning deep architectures for AI publication-title: Mach. Learn. – volume: 43 start-page: 1351 issue: 6 year: 2005 ident: 10.1016/j.isprsjprs.2017.11.021_b0040 article-title: Kernel-based methods for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.846154 – ident: 10.1016/j.isprsjprs.2017.11.021_b0185 doi: 10.1016/B978-0-12-802806-3.00007-5 – volume: 54 start-page: 3083 issue: 5 year: 2016 ident: 10.1016/j.isprsjprs.2017.11.021_b0360 article-title: Multiple morphological component analysis based decomposition for remote sensing image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2511197 – volume: 20 start-page: 97 issue: 1 year: 1999 ident: 10.1016/j.isprsjprs.2017.11.021_b0370 article-title: A back-propagation neural network for mineralogical mapping from AVIRIS data publication-title: Int. J. Remote Sens. doi: 10.1080/014311699213622 – year: 2003 ident: 10.1016/j.isprsjprs.2017.11.021_b0045 – ident: 10.1016/j.isprsjprs.2017.11.021_b0070 – year: 1995 ident: 10.1016/j.isprsjprs.2017.11.021_b0030 – volume: 219 start-page: 88 year: 2017 ident: 10.1016/j.isprsjprs.2017.11.021_b0380 article-title: Convolutional neural networks for hyperspectral image classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.010 – year: 2015 ident: 10.1016/j.isprsjprs.2017.11.021_b0175 article-title: Deep convolutional neural networks for hyperspectral image classification publication-title: J. Sensors doi: 10.1155/2015/258619 – ident: 10.1016/j.isprsjprs.2017.11.021_b0375 doi: 10.1109/IGARSS.2016.7730324 – ident: 10.1016/j.isprsjprs.2017.11.021_b0110 – ident: 10.1016/j.isprsjprs.2017.11.021_b0135 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.isprsjprs.2017.11.021_b0210 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: 10.1016/j.isprsjprs.2017.11.021_b0240 doi: 10.1109/ICIP.2014.7026039 – start-page: 1 issue: 99 year: 2017 ident: 10.1016/j.isprsjprs.2017.11.021_b0265 article-title: Remote sensing scene classification by unsupervised representation learning publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 9 year: 1998 ident: 10.1016/j.isprsjprs.2017.11.021_b0220 article-title: Efficient backprop – volume: 12 start-page: 1456 issue: 7 year: 2015 ident: 10.1016/j.isprsjprs.2017.11.021_b0355 article-title: Real-time implementation of the sparse multinomial logistic regression for hyperspectral image classification on GPUs publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2408433 – volume: 18 start-page: 699 issue: 4 year: 1997 ident: 10.1016/j.isprsjprs.2017.11.021_b0005 article-title: Introduction neural networks in remote sensing publication-title: Int. J. Remote Sens. doi: 10.1080/014311697218700 – start-page: 2146 year: 2009 ident: 10.1016/j.isprsjprs.2017.11.021_b0180 article-title: What is the best multi-stage architecture for object recognition? – volume: 8 start-page: 839 issue: 9 year: 2017 ident: 10.1016/j.isprsjprs.2017.11.021_b0255 article-title: A semi-supervised convolutional neural network for hyperspectral image classification publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2017.1331053 – ident: 10.1016/j.isprsjprs.2017.11.021_b0195 – year: 2001 ident: 10.1016/j.isprsjprs.2017.11.021_b0325 – volume: 120 start-page: 99 year: 2016 ident: 10.1016/j.isprsjprs.2017.11.021_b0270 article-title: Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.09.001 – start-page: 807 year: 2010 ident: 10.1016/j.isprsjprs.2017.11.021_b0285 article-title: Rectified linear units improve restricted Boltzmann machines – volume: 4 start-page: 22 issue: 2 year: 2016 ident: 10.1016/j.isprsjprs.2017.11.021_b0405 article-title: Deep learning for remote sensing data advances in machine learning for remote sensing and geosciences publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2540798 – ident: 10.1016/j.isprsjprs.2017.11.021_b0290 – volume: 8 start-page: 438 issue: 5 year: 2017 ident: 10.1016/j.isprsjprs.2017.11.021_b0400 article-title: Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2017.1280200 – volume: 65 start-page: 227 issue: 3 year: 1998 ident: 10.1016/j.isprsjprs.2017.11.021_b0125 article-title: Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(98)00064-9 – volume: 47 start-page: 2973 issue: 8 year: 2009 ident: 10.1016/j.isprsjprs.2017.11.021_b0340 article-title: Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2016214 – start-page: 153 year: 2007 ident: 10.1016/j.isprsjprs.2017.11.021_b0025 article-title: Greedy layer-wise training of deep networks – volume: 46 start-page: 3804 issue: 11 year: 2008 ident: 10.1016/j.isprsjprs.2017.11.021_b0090 article-title: Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.922034 – volume: 46 start-page: 1231 issue: 4 year: 2008 ident: 10.1016/j.isprsjprs.2017.11.021_b0305 article-title: An active learning approach to hyperspectral data classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.910220 – ident: 10.1016/j.isprsjprs.2017.11.021_b0390 – volume: 14 start-page: 2883 issue: 15 year: 1993 ident: 10.1016/j.isprsjprs.2017.11.021_b0015 article-title: Conjugate gradient neural networks in classification of very high dimensional remote sensing data publication-title: Int. J. Remote Sens. doi: 10.1080/01431169308904316 – volume: 42 issue: 8 year: 2004 ident: 10.1016/j.isprsjprs.2017.11.021_b0275 article-title: Classification of hyperspectral remote sensing images with support vector machines publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.831865 – start-page: 35:1 year: 2014 ident: 10.1016/j.isprsjprs.2017.11.021_b0280 article-title: Deep model for classification of hyperspectral image using restricted Boltzmann machine – ident: 10.1016/j.isprsjprs.2017.11.021_b0115 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.isprsjprs.2017.11.021_b0155 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 19 start-page: 462 issue: 4 year: 1974 ident: 10.1016/j.isprsjprs.2017.11.021_b0065 article-title: Pattern classification and scene analysis publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1974.1100577 – volume: 54 start-page: 1349 issue: 3 year: 2016 ident: 10.1016/j.isprsjprs.2017.11.021_b0315 article-title: Unsupervised deep feature extraction for remote sensing image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2478379 – volume: 7 start-page: 14680 issue: 11 year: 2015 ident: 10.1016/j.isprsjprs.2017.11.021_b0170 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery in surveying, mapping and remote sensing publication-title: Remote Sens. doi: 10.3390/rs71114680 – volume: 44 start-page: 197 issue: 1 year: 1992 ident: 10.1016/j.isprsjprs.2017.11.021_b0035 article-title: Multinomial logistic regression algorithm publication-title: Ann. Inst. Stat. Math. doi: 10.1007/BF00048682 – volume: 113 start-page: S110 issue: 1 year: 2009 ident: 10.1016/j.isprsjprs.2017.11.021_b0295 article-title: Recent advances in techniques for hyperspectral image processing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.07.028 – volume: vol. 27 start-page: 2672 year: 2014 ident: 10.1016/j.isprsjprs.2017.11.021_b0120 article-title: Generative adversarial nets – ident: 10.1016/j.isprsjprs.2017.11.021_b0010 – volume: 47 start-page: 389 year: 2014 ident: 10.1016/j.isprsjprs.2017.11.021_b0235 article-title: A review of remote sensing image classification techniques: the role of spatio-contextual information publication-title: Eur. J. Remote Sens. doi: 10.5721/EuJRS20144723 – volume: 54 start-page: 4544 issue: 8 year: 2016 ident: 10.1016/j.isprsjprs.2017.11.021_b0420 article-title: Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2543748 – volume: 52 start-page: 6298 issue: 10 year: 2014 ident: 10.1016/j.isprsjprs.2017.11.021_b0190 article-title: Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2296031 – volume: 313 start-page: 504 year: 2006 ident: 10.1016/j.isprsjprs.2017.11.021_b0150 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: 10.1016/j.isprsjprs.2017.11.021_b0215 doi: 10.1109/5.726791 – ident: 10.1016/j.isprsjprs.2017.11.021_b0320 – volume: vol. 19 start-page: 1137 year: 2006 ident: 10.1016/j.isprsjprs.2017.11.021_b0310 article-title: Efficient learning of sparse representations with an energy-based model – volume: 73 start-page: 514 issue: 1 year: 2017 ident: 10.1016/j.isprsjprs.2017.11.021_b0130 article-title: Cloud implementation of the k-means algorithm for hyperspectral image analysis publication-title: J. Supercomput. doi: 10.1007/s11227-016-1896-3 – ident: 10.1016/j.isprsjprs.2017.11.021_b0145 doi: 10.1109/IGARSS.2016.7729850 – volume: 128 start-page: 223 year: 2016 ident: 10.1016/j.isprsjprs.2017.11.021_b0415 article-title: Learning multiscale and deep representations for classifying remotely sensed imagery publication-title: ISPRS J. Photogramm. Remote Sens. – ident: 10.1016/j.isprsjprs.2017.11.021_b0395 doi: 10.1109/CVPR.2010.5539957 – volume: 14 start-page: 1348 issue: 8 year: 2017 ident: 10.1016/j.isprsjprs.2017.11.021_b0425 article-title: Active and semisupervised learning with morphological component analysis for hyperspectral image classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2711425 – volume: 48 start-page: 4085 issue: 11 year: 2010 ident: 10.1016/j.isprsjprs.2017.11.021_b0225 article-title: Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning publication-title: IEEE Trans. Geosci. Remote Sens. |
SSID | ssj0001568 |
Score | 2.6591542 |
Snippet | Artificial neural networks (ANNs) have been widely used for the analysis of remotely sensed imagery. In particular, convolutional neural networks (CNNs) are... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 120 |
SubjectTerms | Classification Convolutional neural networks (CNNs) Deep learning Graphics processing units (GPUs) hyperspectral imagery Hyperspectral imaging neural networks spatial data |
Title | A new deep convolutional neural network for fast hyperspectral image classification |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2017.11.021 https://www.proquest.com/docview/2116883452 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QPKgHo6gRH2RNvBbabrvteiNEghq5IAm3ZrfdBoiWBsrBi7_dmT5QTAwHD01fu20zMzvzTToPQu48qQGHC25w6UWG48WgB8FsGRo4EqnYFH6eSPsy5IOx8zRxJzXSq3JhMKyy1P2FTs-1dXmlU1Kzk85mnZEJroPtIT5HNczRb8fqdSDT7c_vMA-rSIfDwQaO3orxmq3S5WoOG8Z4eW0s52lbf1moX7o6N0D9Y3JUIkfaLT7uhNR00iCHP-oJNsh-2dJ8-nFKRl0KiJlGWqcUQ8tLEYMnYAnLfJcHgFNArTSWq4xOwSUtMi_x9uwdNA0NEVxjNFHOwDMy7j-89gZG2UHBCJnjZwaToWBMKFeBAy2VJ2XsuC6XiikGi1vCAXij2LlUcOWHEtBdxGPPVgLPmWDnpJ4sEn1BqABoEckw1lYI6zyOlHSZFKZ2ubDi0LWbhFdUC8KyvDh2uXgLqjiyebAhd4DkBucjAHI3ibmZmBYVNnZPua_YEmwJSwB2YPfk24qRASwl_D8iE71YwyDL4r7PHNe-_M8LrsgBnPlFwuI1qWfLtb4B5JKpVi6aLbLXfXweDL8A-4HxBw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbQOAAHxFO8CRLXsrVp04bbhJjGY7tsk3aLkjbVNsGY2Djw77HbdAIktAOHqo_UbWUn9mfVD4DrWFvE4VJ4QseZF8Y56kE0W55FiWQmb8ikSKTtdEV7ED4Oo-Ea3FW5MBRW6XR_qdMLbe2u1B0367PxuN5roOsQxITPSQ0L9NvXqTpVWIP15sNTu7tUyH6ZEUf3e0TwI8xrPJ-9zye4UZhXfEMVPQP_LyP1S10XNqi1A9sOPLJm-X27sGane7D1raTgHmy4ruajz33oNRmCZpZZO2MUXe5mGT6BqlgWuyIGnCFwZbmeL9gIvdIy-ZKGx6-obFhK-JoCigoZHsCgdd-_a3uuiYKX8jBZeFynknNpIoM-tDax1nkYRUIbbjiub40H6JBS81IpTJJqBHiZyOPASDrnkh9Cbfo2tUfAJKKLTKe59VNc6nlmdMS1bNhISD9Po-AYRMU1lboK49To4kVVoWQTtWS3Inaj_6GQ3cfQWBLOyiIbq0luK7GoH_NFoSlYTXxVCVLhaqJfJHpq3z7wJt8XScLDKDj5zwsuYaPd7zyr54fu0yls4khS5i-eQW3x_mHPEcgszIWbqF82FvO4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+deep+convolutional+neural+network+for+fast+hyperspectral+image+classification&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Paoletti%2C+M.E.&rft.au=Haut%2C+J.M.&rft.au=Plaza%2C+J.&rft.au=Plaza%2C+A.&rft.date=2018-11-01&rft.issn=0924-2716&rft.volume=145&rft.spage=120&rft.epage=147&rft_id=info:doi/10.1016%2Fj.isprsjprs.2017.11.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isprsjprs_2017_11_021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |