A new deep convolutional neural network for fast hyperspectral image classification

Artificial neural networks (ANNs) have been widely used for the analysis of remotely sensed imagery. In particular, convolutional neural networks (CNNs) are gaining more and more attention in this field. CNNs have proved to be very effective in areas such as image recognition and classification, esp...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 145; pp. 120 - 147
Main Authors Paoletti, M.E., Haut, J.M., Plaza, J., Plaza, A.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2018
Subjects
Online AccessGet full text
ISSN0924-2716
1872-8235
DOI10.1016/j.isprsjprs.2017.11.021

Cover

Loading…
Abstract Artificial neural networks (ANNs) have been widely used for the analysis of remotely sensed imagery. In particular, convolutional neural networks (CNNs) are gaining more and more attention in this field. CNNs have proved to be very effective in areas such as image recognition and classification, especially for the classification of large sets composed by two-dimensional images. However, their application to multispectral and hyperspectral images faces some challenges, especially related to the processing of the high-dimensional information contained in multidimensional data cubes. This results in a significant increase in computation time. In this paper, we present a new CNN architecture for the classification of hyperspectral images. The proposed CNN is a 3-D network that uses both spectral and spatial information. It also implements a border mirroring strategy to effectively process border areas in the image, and has been efficiently implemented using graphics processing units (GPUs). Our experimental results indicate that the proposed network performs accurately and efficiently, achieving a reduction of the computation time and increasing the accuracy in the classification of hyperspectral images when compared to other traditional ANN techniques.
AbstractList Artificial neural networks (ANNs) have been widely used for the analysis of remotely sensed imagery. In particular, convolutional neural networks (CNNs) are gaining more and more attention in this field. CNNs have proved to be very effective in areas such as image recognition and classification, especially for the classification of large sets composed by two-dimensional images. However, their application to multispectral and hyperspectral images faces some challenges, especially related to the processing of the high-dimensional information contained in multidimensional data cubes. This results in a significant increase in computation time. In this paper, we present a new CNN architecture for the classification of hyperspectral images. The proposed CNN is a 3-D network that uses both spectral and spatial information. It also implements a border mirroring strategy to effectively process border areas in the image, and has been efficiently implemented using graphics processing units (GPUs). Our experimental results indicate that the proposed network performs accurately and efficiently, achieving a reduction of the computation time and increasing the accuracy in the classification of hyperspectral images when compared to other traditional ANN techniques.
Author Plaza, J.
Paoletti, M.E.
Plaza, A.
Haut, J.M.
Author_xml – sequence: 1
  givenname: M.E.
  surname: Paoletti
  fullname: Paoletti, M.E.
  email: mpaolett@alumnos.unex.es
– sequence: 2
  givenname: J.M.
  surname: Haut
  fullname: Haut, J.M.
– sequence: 3
  givenname: J.
  surname: Plaza
  fullname: Plaza, J.
– sequence: 4
  givenname: A.
  surname: Plaza
  fullname: Plaza, A.
BookMark eNqNkDtPwzAQgC1UJNrCbyAjS4IfcR4DQ1XxkioxALNlOxdwSeNgJ63673FaxMACw-l0vvtOvm-GJq1tAaFLghOCSXa9TozvnF-HSCgmeUJIgik5QVNS5DQuKOMTNMUlTWOak-wMzbxfY4wJz4opel5ELeyiCqCLtG23thl6Y1vZhOfBHVK_s-4jqq2Laun76H3fgfMd6H5sm418g0g30ntTGy1H-Byd1rLxcPGd5-j17vZl-RCvnu4fl4tVrFla9DGTumSsVFyBolLlUtYp55lUTDGGQ6kYYVRDwctMFVryjFdZnVNVjjUr2RxdHfd2zn4O4HuxMV5D08gW7OAFJSQrCpZyGkbz46h21nsHtehc-LrbC4LFqFGsxY9GMWoUhIigMZA3v0ht-sOZ4X7T_INfHHkIJrYGnPDaQKuhMi44FJU1f-74AspsmSM
CitedBy_id crossref_primary_10_5194_acp_23_5233_2023
crossref_primary_10_1063_1_5100577
crossref_primary_10_1109_TGRS_2023_3275147
crossref_primary_10_1109_TNNLS_2020_2978577
crossref_primary_10_3390_math10111827
crossref_primary_10_3390_rs13173411
crossref_primary_10_1109_JSTARS_2022_3187009
crossref_primary_10_1016_j_jfca_2021_104071
crossref_primary_10_3390_rs15133269
crossref_primary_10_1109_TGRS_2019_2907932
crossref_primary_10_1007_s12517_020_05487_4
crossref_primary_10_1007_s13198_020_00972_1
crossref_primary_10_1155_2020_6677907
crossref_primary_10_3390_s25061858
crossref_primary_10_1109_TGRS_2022_3185612
crossref_primary_10_1007_s00477_021_02032_x
crossref_primary_10_1007_s10462_021_10018_y
crossref_primary_10_1007_s11227_021_03638_2
crossref_primary_10_1088_1742_6596_1950_1_012087
crossref_primary_10_1109_ACCESS_2020_3030649
crossref_primary_10_1109_LGRS_2019_2909495
crossref_primary_10_3390_rs12182956
crossref_primary_10_1109_JSTARS_2022_3210373
crossref_primary_10_3390_s18072045
crossref_primary_10_1109_LGRS_2018_2872359
crossref_primary_10_3390_rs15020316
crossref_primary_10_1080_10106049_2022_2143910
crossref_primary_10_3233_JCS_220031
crossref_primary_10_48123_rsgis_1344194
crossref_primary_10_1016_j_isprsjprs_2019_09_009
crossref_primary_10_3389_fceng_2021_727152
crossref_primary_10_3390_rs12030405
crossref_primary_10_3390_rs15194797
crossref_primary_10_1016_j_jenvman_2023_119470
crossref_primary_10_1109_ACCESS_2022_3231579
crossref_primary_10_1080_01431161_2021_1880663
crossref_primary_10_1109_LGRS_2022_3169836
crossref_primary_10_1109_TGRS_2019_2937204
crossref_primary_10_1016_j_ymssp_2021_108153
crossref_primary_10_1016_j_compbiomed_2020_104036
crossref_primary_10_53070_bbd_989102
crossref_primary_10_3390_rs14122931
crossref_primary_10_3390_rs12030536
crossref_primary_10_1016_j_infrared_2024_105449
crossref_primary_10_1109_TGRS_2018_2843525
crossref_primary_10_3390_rs12030534
crossref_primary_10_1016_j_asr_2024_10_001
crossref_primary_10_1109_TGRS_2024_3462374
crossref_primary_10_1016_j_isprsjprs_2020_04_010
crossref_primary_10_1007_s12551_023_01125_x
crossref_primary_10_1007_s11042_023_15529_0
crossref_primary_10_1049_iet_ipr_2019_0561
crossref_primary_10_1109_TGRS_2024_3360261
crossref_primary_10_1016_j_psep_2024_10_011
crossref_primary_10_1117_1_JRS_13_024525
crossref_primary_10_3390_rs13142820
crossref_primary_10_1007_s00521_023_09186_5
crossref_primary_10_1007_s11042_023_16241_9
crossref_primary_10_1016_j_eswa_2020_114417
crossref_primary_10_1520_JTE20210453
crossref_primary_10_3390_rs10101602
crossref_primary_10_1007_s00521_021_06120_5
crossref_primary_10_1098_rsos_210932
crossref_primary_10_1109_TCYB_2021_3069790
crossref_primary_10_1016_j_jag_2024_104303
crossref_primary_10_3390_rs12111780
crossref_primary_10_1109_ACCESS_2020_2968965
crossref_primary_10_1080_01431161_2020_1737340
crossref_primary_10_1109_TGRS_2021_3135506
crossref_primary_10_1109_JSTARS_2022_3200733
crossref_primary_10_1080_10106049_2022_2129833
crossref_primary_10_1097_MD_0000000000019114
crossref_primary_10_1109_TGRS_2023_3295097
crossref_primary_10_3390_rs13183637
crossref_primary_10_3390_s19071714
crossref_primary_10_1109_TGRS_2022_3205119
crossref_primary_10_3390_app10103581
crossref_primary_10_3390_rs12040647
crossref_primary_10_3390_rs13204060
crossref_primary_10_52547_jgst_12_3_1
crossref_primary_10_1016_j_isprsjprs_2019_02_010
crossref_primary_10_1016_j_jag_2021_102603
crossref_primary_10_3390_electronics12030488
crossref_primary_10_1049_esi2_12114
crossref_primary_10_3390_land11111905
crossref_primary_10_3390_rs10060945
crossref_primary_10_1016_j_foodcont_2024_110756
crossref_primary_10_1109_TGRS_2020_3015357
crossref_primary_10_1109_TCI_2021_3083215
crossref_primary_10_3390_rs14174385
crossref_primary_10_1016_j_scitotenv_2021_149346
crossref_primary_10_1109_TGRS_2020_3005431
crossref_primary_10_1109_TNNLS_2020_2978760
crossref_primary_10_1080_07038992_2023_2178834
crossref_primary_10_1080_15481603_2023_2225273
crossref_primary_10_1109_LGRS_2018_2881045
crossref_primary_10_1109_TGRS_2020_3048002
crossref_primary_10_1007_s11431_021_1987_8
crossref_primary_10_3390_rs14092015
crossref_primary_10_1007_s11356_023_31575_5
crossref_primary_10_3390_s19194188
crossref_primary_10_3390_plants8110468
crossref_primary_10_1049_ipr2_12330
crossref_primary_10_1109_JSTARS_2019_2934011
crossref_primary_10_1109_TGRS_2018_2872830
crossref_primary_10_1109_JSTARS_2024_3355071
crossref_primary_10_1016_j_eswa_2021_115663
crossref_primary_10_1016_j_ecolind_2022_109648
crossref_primary_10_1109_TGRS_2022_3180548
crossref_primary_10_1155_2022_7587157
crossref_primary_10_1007_s12524_019_00946_2
crossref_primary_10_3390_rs11030282
crossref_primary_10_1109_LGRS_2021_3086796
crossref_primary_10_1155_2021_1508267
crossref_primary_10_1016_j_compag_2022_107585
crossref_primary_10_1016_j_geoderma_2023_116589
crossref_primary_10_1007_s11042_020_10169_0
crossref_primary_10_1016_j_foodcont_2023_109716
crossref_primary_10_1007_s12517_021_08127_7
crossref_primary_10_14358_PERS_21_00089R3
crossref_primary_10_1109_TGRS_2021_3093043
crossref_primary_10_1021_acs_iecr_0c01872
crossref_primary_10_1109_JSTARS_2021_3127728
crossref_primary_10_3390_su14031734
crossref_primary_10_4316_AECE_2023_04004
crossref_primary_10_1016_j_rse_2022_113197
crossref_primary_10_3390_rs10122053
crossref_primary_10_1109_MGRS_2022_3145854
crossref_primary_10_1177_1729881419842991
crossref_primary_10_3390_rs11050484
crossref_primary_10_1007_s12145_022_00929_x
crossref_primary_10_1109_JSTARS_2024_3394771
crossref_primary_10_1016_j_isprsjprs_2021_01_024
crossref_primary_10_1109_TGRS_2019_2961947
crossref_primary_10_1007_s11554_018_0793_9
crossref_primary_10_1016_j_measurement_2025_116755
crossref_primary_10_1080_01431161_2022_2133579
crossref_primary_10_1016_j_isprsjprs_2018_08_011
crossref_primary_10_1109_LGRS_2019_2962768
crossref_primary_10_1117_1_JRS_16_046508
crossref_primary_10_3390_s19071486
crossref_primary_10_1007_s00521_023_08353_y
crossref_primary_10_1111_1365_2478_13199
crossref_primary_10_1109_JSTARS_2024_3374813
crossref_primary_10_3390_rs14205112
crossref_primary_10_1007_s42979_023_01868_0
crossref_primary_10_1109_JSTARS_2021_3133021
crossref_primary_10_1007_s12524_024_02072_0
crossref_primary_10_1080_10106049_2025_2471091
crossref_primary_10_1109_TGRS_2022_3187187
crossref_primary_10_1109_TGRS_2023_3324947
crossref_primary_10_1007_s41976_020_00037_8
crossref_primary_10_1088_1674_1056_ac8cd7
crossref_primary_10_1109_JSTSP_2021_3063805
crossref_primary_10_1016_j_infrared_2023_104985
crossref_primary_10_1109_TGRS_2018_2871782
crossref_primary_10_1016_j_patcog_2021_107967
crossref_primary_10_1016_j_isprsjprs_2020_09_008
crossref_primary_10_1109_TGRS_2018_2860125
crossref_primary_10_1088_1742_6596_1748_4_042054
crossref_primary_10_1080_01431161_2025_2452313
crossref_primary_10_3390_rs12030354
crossref_primary_10_1109_JBHI_2019_2912668
crossref_primary_10_1109_JSTARS_2020_3017544
crossref_primary_10_1007_s10489_021_02270_0
crossref_primary_10_3390_rs15133357
crossref_primary_10_1109_TGRS_2018_2838665
crossref_primary_10_1016_j_measurement_2022_110760
crossref_primary_10_1016_j_psep_2023_07_059
crossref_primary_10_1109_JSTARS_2023_3323484
crossref_primary_10_1016_j_imavis_2019_04_007
crossref_primary_10_1016_j_atech_2023_100241
crossref_primary_10_1016_j_postharvbio_2024_112837
crossref_primary_10_1109_TGRS_2019_2918080
crossref_primary_10_1109_TGRS_2018_2860464
crossref_primary_10_1016_j_infrared_2022_104470
crossref_primary_10_1016_j_scitotenv_2021_149861
crossref_primary_10_1007_s12517_021_08420_5
crossref_primary_10_1109_TGRS_2021_3080394
crossref_primary_10_1109_LGRS_2023_3314466
crossref_primary_10_3389_fphy_2023_1163555
crossref_primary_10_3390_foods11213483
crossref_primary_10_3390_rs14030785
crossref_primary_10_1016_j_future_2024_04_056
crossref_primary_10_1109_JSTARS_2024_3441111
crossref_primary_10_1109_TGRS_2023_3297858
crossref_primary_10_1016_j_oceaneng_2024_117921
crossref_primary_10_1016_j_crfs_2024_100695
crossref_primary_10_1016_j_precisioneng_2022_01_005
crossref_primary_10_1080_17538947_2022_2152882
crossref_primary_10_1016_j_neucom_2020_05_034
crossref_primary_10_1155_2021_1759111
crossref_primary_10_3390_rs12203292
crossref_primary_10_1080_01431161_2023_2297178
crossref_primary_10_1109_ACCESS_2020_2997912
crossref_primary_10_3390_app122111299
crossref_primary_10_1002_ett_3922
crossref_primary_10_1109_ACCESS_2025_3532016
crossref_primary_10_3390_rs10071111
crossref_primary_10_1109_TGRS_2019_2890848
crossref_primary_10_1088_1538_3873_ab5ed7
crossref_primary_10_3390_rs13071290
crossref_primary_10_1109_LGRS_2019_2940467
crossref_primary_10_1109_TGRS_2024_3468269
crossref_primary_10_1016_j_srs_2023_100085
crossref_primary_10_1109_TGRS_2021_3125353
crossref_primary_10_3390_electronics11162540
crossref_primary_10_1109_LGRS_2022_3173419
crossref_primary_10_1109_TGRS_2023_3331751
crossref_primary_10_4995_riai_2019_11078
crossref_primary_10_3390_sym12040561
crossref_primary_10_1016_j_jhydrol_2019_124482
crossref_primary_10_1109_TGRS_2024_3409378
crossref_primary_10_1109_TGRS_2021_3102143
crossref_primary_10_1109_TGRS_2023_3284671
crossref_primary_10_1088_1538_3873_acea43
crossref_primary_10_3390_rs11080963
crossref_primary_10_3390_rs11111325
crossref_primary_10_1016_j_isprsjprs_2020_09_020
crossref_primary_10_1109_JSTARS_2023_3279506
crossref_primary_10_1002_jsfa_10696
crossref_primary_10_3390_rs14215555
crossref_primary_10_1080_01431161_2021_1949069
crossref_primary_10_1016_j_isprsjprs_2020_08_004
crossref_primary_10_3390_rs15030848
crossref_primary_10_1016_j_yofte_2019_03_017
crossref_primary_10_1109_JSTARS_2021_3121334
crossref_primary_10_1680_jwama_22_00094
crossref_primary_10_3390_rs13071270
crossref_primary_10_1109_LGRS_2019_2951372
crossref_primary_10_1109_ACCESS_2019_2958671
crossref_primary_10_3390_rs12091395
crossref_primary_10_1117_1_JRS_14_036519
crossref_primary_10_1109_JSTARS_2024_3439592
crossref_primary_10_1016_j_isprsjprs_2019_12_002
crossref_primary_10_3389_fenvs_2023_1308808
crossref_primary_10_3390_s19224837
crossref_primary_10_1016_j_ijleo_2021_167757
crossref_primary_10_1016_j_apr_2022_101325
crossref_primary_10_1371_journal_pone_0309884
crossref_primary_10_1016_j_ophoto_2024_100062
crossref_primary_10_1109_JSTARS_2022_3162423
crossref_primary_10_17341_gazimmfd_901291
crossref_primary_10_1007_s12517_021_08060_9
crossref_primary_10_1109_LGRS_2020_3005982
crossref_primary_10_3390_electronics12245013
crossref_primary_10_1155_2020_9673724
crossref_primary_10_1080_01431161_2022_2142079
crossref_primary_10_1109_JSTARS_2021_3088228
crossref_primary_10_1109_LGRS_2019_2894399
crossref_primary_10_1016_j_gsf_2021_101224
crossref_primary_10_1007_s00521_022_08056_w
crossref_primary_10_3390_rs13132575
crossref_primary_10_1088_1361_6501_ac7034
crossref_primary_10_1007_s12517_021_06516_6
crossref_primary_10_3390_ijgi8040160
crossref_primary_10_1016_j_isprsjprs_2019_12_010
crossref_primary_10_1109_ACCESS_2023_3250447
crossref_primary_10_1016_j_ijleo_2019_02_109
crossref_primary_10_1007_s11042_022_12494_y
crossref_primary_10_1016_j_patcog_2020_107298
crossref_primary_10_3390_rs11242916
crossref_primary_10_1109_TGRS_2024_3449878
crossref_primary_10_1109_ACCESS_2019_2957163
crossref_primary_10_3390_rs17050872
crossref_primary_10_1109_TGRS_2019_2910603
crossref_primary_10_46604_ijeti_2021_8244
crossref_primary_10_1109_JSTARS_2024_3353551
crossref_primary_10_1016_j_isprsjprs_2020_07_016
crossref_primary_10_1016_j_inpa_2018_05_002
crossref_primary_10_1007_s11042_023_15444_4
crossref_primary_10_1109_TGRS_2024_3493101
crossref_primary_10_3390_jimaging5050052
crossref_primary_10_1016_j_eswa_2021_115280
crossref_primary_10_1109_JSTARS_2021_3110994
crossref_primary_10_1109_TGRS_2021_3087186
crossref_primary_10_1016_j_gsf_2021_101203
crossref_primary_10_1109_TNNLS_2021_3118221
crossref_primary_10_3233_JIFS_220863
crossref_primary_10_1109_TGRS_2019_2933609
crossref_primary_10_1080_01431161_2023_2265539
crossref_primary_10_1016_j_cosrev_2024_100658
crossref_primary_10_1080_17538947_2023_2202423
crossref_primary_10_3390_rs12223839
crossref_primary_10_1109_JSTARS_2020_2995445
crossref_primary_10_1109_TGRS_2022_3141217
crossref_primary_10_1109_TGRS_2020_3024730
crossref_primary_10_32604_cmes_2022_020601
crossref_primary_10_3390_rs11202363
crossref_primary_10_3390_rs16020325
crossref_primary_10_1155_2022_7629367
crossref_primary_10_1109_ACCESS_2020_2963939
crossref_primary_10_3390_app11167614
crossref_primary_10_1007_s12517_022_10246_8
crossref_primary_10_1109_ACCESS_2020_2998164
crossref_primary_10_1080_2150704X_2019_1681598
crossref_primary_10_1016_j_isprsjprs_2021_08_009
crossref_primary_10_3390_rs14092246
crossref_primary_10_1109_TGRS_2021_3052048
crossref_primary_10_1016_j_talo_2022_100106
crossref_primary_10_1109_LGRS_2020_2970810
crossref_primary_10_3390_rs12223733
crossref_primary_10_3390_s24206647
crossref_primary_10_1109_JSTARS_2020_3044264
crossref_primary_10_1016_j_rsase_2023_100986
crossref_primary_10_1109_TGRS_2020_2967821
crossref_primary_10_1117_1_JRS_17_038503
crossref_primary_10_1016_j_optlaseng_2022_107081
crossref_primary_10_1109_JSTARS_2018_2881342
crossref_primary_10_1109_TGRS_2020_3020823
crossref_primary_10_1007_s11042_022_13959_w
crossref_primary_10_1109_TGRS_2024_3386579
crossref_primary_10_1016_j_rsase_2022_100694
crossref_primary_10_1080_01431161_2021_1973688
crossref_primary_10_3390_rs11131540
crossref_primary_10_1109_TGRS_2020_3018879
crossref_primary_10_1109_JSTARS_2021_3094973
crossref_primary_10_1109_TGRS_2023_3241193
crossref_primary_10_1007_s12524_019_01045_y
crossref_primary_10_3390_su14116668
crossref_primary_10_1109_JSTARS_2022_3226524
crossref_primary_10_3390_rs11070888
crossref_primary_10_3390_f10090818
crossref_primary_10_3390_app13127143
crossref_primary_10_1016_j_rse_2024_114052
crossref_primary_10_47836_pjst_31_6_11
crossref_primary_10_1109_ACCESS_2020_3027776
crossref_primary_10_3390_rs13091642
crossref_primary_10_1007_s11063_024_11631_y
crossref_primary_10_3390_rs16020259
crossref_primary_10_3390_rs13173393
crossref_primary_10_1016_j_rse_2021_112353
crossref_primary_10_1007_s10489_023_04736_9
crossref_primary_10_1016_j_jfoodeng_2021_110515
crossref_primary_10_1109_TGRS_2025_3543821
crossref_primary_10_1007_s12517_021_08178_w
crossref_primary_10_1109_JSTARS_2022_3225201
crossref_primary_10_1016_j_asr_2022_12_028
crossref_primary_10_3390_rs13040706
crossref_primary_10_1109_TGRS_2024_3468876
crossref_primary_10_1080_10106049_2021_1882006
crossref_primary_10_3390_rs11070883
crossref_primary_10_1109_TNNLS_2022_3213315
crossref_primary_10_3390_rs11070884
crossref_primary_10_1007_s11042_022_12809_z
crossref_primary_10_3390_rs10091454
crossref_primary_10_3390_rs12060959
crossref_primary_10_1080_17538947_2023_2210310
crossref_primary_10_1007_s00521_019_04371_x
crossref_primary_10_1109_TGRS_2019_2948031
crossref_primary_10_1063_5_0156044
crossref_primary_10_1109_TGRS_2022_3196771
crossref_primary_10_1109_TGRS_2019_2951445
crossref_primary_10_1007_s00521_023_08664_0
crossref_primary_10_1109_JSTARS_2024_3441709
crossref_primary_10_1109_LGRS_2021_3103180
crossref_primary_10_1186_s40537_020_00311_y
crossref_primary_10_1016_j_neucom_2023_01_054
crossref_primary_10_1109_JPROC_2021_3063258
crossref_primary_10_32604_cmc_2024_048347
crossref_primary_10_3390_rs12213501
crossref_primary_10_1109_TGRS_2021_3056722
crossref_primary_10_1016_j_eswa_2024_124583
crossref_primary_10_1016_j_eswa_2024_125672
crossref_primary_10_1109_LGRS_2020_2966987
crossref_primary_10_1186_s13321_020_00436_5
crossref_primary_10_1109_TGRS_2023_3326231
crossref_primary_10_1007_s11042_020_09868_5
crossref_primary_10_1108_DTA_05_2020_0111
crossref_primary_10_1109_ACCESS_2020_2979219
crossref_primary_10_1109_TGRS_2019_2919938
crossref_primary_10_3390_s25020303
crossref_primary_10_1016_j_catena_2020_104851
crossref_primary_10_3390_rs14153751
crossref_primary_10_1016_j_jag_2024_103866
crossref_primary_10_1109_TIP_2022_3144017
crossref_primary_10_3390_rs16234504
crossref_primary_10_1109_JSTARS_2020_3022781
crossref_primary_10_3390_rs11141692
crossref_primary_10_3390_jimaging6120132
crossref_primary_10_1080_01431161_2021_1929540
crossref_primary_10_1016_j_infrared_2019_103013
crossref_primary_10_1016_j_infrared_2024_105251
crossref_primary_10_1109_JSTARS_2022_3166972
crossref_primary_10_1007_s12524_024_02011_z
crossref_primary_10_1080_01431161_2023_2209268
crossref_primary_10_1109_TGRS_2021_3063287
crossref_primary_10_1002_ldr_4287
crossref_primary_10_1039_C8RA10335F
crossref_primary_10_1080_19479832_2024_2349999
crossref_primary_10_1109_LGRS_2019_2909541
crossref_primary_10_1080_01431161_2020_1857877
crossref_primary_10_1007_s11042_022_13255_7
crossref_primary_10_1080_01431161_2019_1694725
crossref_primary_10_1016_j_isprsjprs_2019_04_016
crossref_primary_10_3390_rs15184439
crossref_primary_10_1007_s11042_020_10174_3
crossref_primary_10_52547_jgit_9_4_109
crossref_primary_10_1109_TGRS_2023_3299154
crossref_primary_10_3390_pr11020435
crossref_primary_10_3390_s20195538
crossref_primary_10_34133_remotesensing_0025
crossref_primary_10_1109_LGRS_2023_3341497
Cites_doi 10.1561/2000000039
10.1109/MGRS.2016.2616418
10.1109/TKDE.2008.239
10.1109/TGRS.2011.2128330
10.1145/1390156.1390224
10.1109/TIP.2005.852206
10.1016/j.isprsjprs.2016.02.013
10.1162/neco.1997.9.8.1735
10.1117/12.943611
10.1109/IGARSS.2016.7729926
10.1080/014311697219015
10.1016/S0893-6080(98)00116-6
10.1109/TNNLS.2014.2359471
10.1109/TGRS.2011.2160950
10.1080/01431161.2016.1253897
10.3390/rs9010067
10.1109/TGRS.2016.2584107
10.1016/j.isprsjprs.2017.03.001
10.1109/JSTARS.2014.2329330
10.1109/TGRS.2005.846154
10.1016/B978-0-12-802806-3.00007-5
10.1109/TGRS.2015.2511197
10.1080/014311699213622
10.1016/j.neucom.2016.09.010
10.1155/2015/258619
10.1109/IGARSS.2016.7730324
10.1038/nature14539
10.1109/ICIP.2014.7026039
10.1109/LGRS.2015.2408433
10.1080/014311697218700
10.1080/2150704X.2017.1331053
10.1016/j.isprsjprs.2016.09.001
10.1109/MGRS.2016.2540798
10.1080/2150704X.2017.1280200
10.1016/S0034-4257(98)00064-9
10.1109/TGRS.2009.2016214
10.1109/TGRS.2008.922034
10.1109/TGRS.2007.910220
10.1080/01431169308904316
10.1109/TGRS.2004.831865
10.1162/neco.2006.18.7.1527
10.1109/TAC.1974.1100577
10.1109/TGRS.2015.2478379
10.3390/rs71114680
10.1007/BF00048682
10.1016/j.rse.2007.07.028
10.5721/EuJRS20144723
10.1109/TGRS.2016.2543748
10.1109/TGRS.2013.2296031
10.1126/science.1127647
10.1109/5.726791
10.1007/s11227-016-1896-3
10.1109/IGARSS.2016.7729850
10.1109/CVPR.2010.5539957
10.1109/LGRS.2017.2711425
ContentType Journal Article
Copyright 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2017.11.021
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 147
ExternalDocumentID 10_1016_j_isprsjprs_2017_11_021
S0924271617303660
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c348t-3ac9339b5beb2ab7aaf4556ab3b3307aab3132ce8596b8ca565d6f72b996b8393
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Thu Jul 10 19:11:06 EDT 2025
Tue Jul 01 03:46:38 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Fri Feb 23 02:28:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Convolutional neural networks (CNNs)
Classification
Hyperspectral imaging
Graphics processing units (GPUs)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-3ac9339b5beb2ab7aaf4556ab3b3307aab3132ce8596b8ca565d6f72b996b8393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2116883452
PQPubID 24069
PageCount 28
ParticipantIDs proquest_miscellaneous_2116883452
crossref_primary_10_1016_j_isprsjprs_2017_11_021
crossref_citationtrail_10_1016_j_isprsjprs_2017_11_021
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2017_11_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ma, Wang, Wang (b0270) 2016; 120
Khodadadzadeh, Li, Plaza, Ghassemian, Bioucas-Dias, Li (b0190) 2014; 52
Ranzato, Poultney, Chopra, Lecun (b0310) 2006; vol. 19
Chen, Lin, Zhao, Wang, Gu (b0055) 2014; 7
Salakhutdinov, R., Hinton, G., 2009. Deep boltzmann machines. In: 12th International Conference on Artificial Intelligence and Statistics, pp. 3.
Larochelle, H., Bengio, Y., 2008. Classification using discriminative restricted boltzmann machines. In: Proceedings of the 25th International Conference on Machine learning – ICML ’08, pp. 536.
Qian (b0300) 1999; 12
Bengio (b0020) 2009; 2
Haut, J.M., Paoletti, M.E., Paz-Gallardo, A., Plaza, J., Plaza, A., 2017b. Cloud implementation of logistic regression for hyperspectral image classification. In: Vigo-Aguiar, J. (Ed.), Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2017. pp. 1063–2321.
Zhang, Li, Zhang, Shen (b0400) 2017; 8
Wu, Diao, Dou, Sun, Zheng, Fu, Zhao (b0350) 2016; 37
Plaza, Benediktsson, Boardman, Brazile, Bruzzone, Camps-Valls, Chanussot, Fauvel, Gamba, Gualtieri, Marconcini, Tilton, Trianni (b0295) 2009; 113
Yang (b0370) 1999; 20
Karhunen, J., Raiko, T., Cho, K., 2015. Unsupervised Deep Learning: A Short Review.
Yang, J., Zhao, Y., Chan, J.C.W., Yi, C., 2016. Hyperspectral image classification using two-channel deep convolutional neural network. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5079–5082.
Cho, K., 2014. Foundations and Advances in Deep Learning (Ph.D. thesis). Aalto University.
Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS10). Society for Artificial Intelligence and Statistics. pp. 249–256.
Hu, Huang, Wei, Zhang, Li (b0175) 2015
Paoletti, M.E., Haut, J.M., Plaza, J., Plaza, A., 2017. Yinyang K-means clustering for hyperspectral image analysis. In: Vigo-Aguiar, J. (Ed.), Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering. Rota, pp. 1625–1636.
Yu, Jia, Xu, 1 (b0380) 2017; 219
Benediktsson, J.A., Swain, P.H., 1990. Statistical Methods and Neural Network Approaches for Classification of Data from Multiple Sources (Ph.D. thesis). Purdue Univ., School of Elect. Eng. West Lafayette, IN.
Zhang, Gong, Su, Liu, Li (b0410) 2016; 116
Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks. In: Gordon, Geoffrey J., Dunson, David B. (Ed.), Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11). Journal of Machine Learning Research – Workshop and Conference Proceedings, pp. 315–323.
Fauvel, Benediktsson, Chanussot, Sveinsson (b0090) 2008; 46
Zhao, Du (b0415) 2016; 128
Smolensky (b0330) 1986; vol. 1
Chang (b0045) 2003
Li, Zang, Zhang, Li, Wu (b0235) 2014; 47
Hu, Xia, Hu, Zhang, Foody, Wang, Thenkabail (b0170) 2015; 7
Liu, Q., Hang, R., Song, H., Zhu, F., Plaza, J., Plaza, A., 2016. Adaptive Deep Pyramid Matching for Remote Sensing Scene Classification. CoRR. Available from
Hinton, Osindero, Teh (b0155) 2006; 18
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., 2012. Improving neural networks by preventing co-adaptation of feature detectors. CoRR. Available from
Scholkopf, Smola (b0325) 2001
Melgani, Bruzzone (b0275) 2004; 42
.
LeCun, Bengio, Hinton (b0210) 2015; 521
Yuan, Mou, Lu (b0385) 2015; 26
Starck, Elad, Donoho (b0335) 2005; 14
Bishop (b0030) 1995
Bengio, Lamblin, Popovici, Larochelle (b0025) 2007
Zeiler, M.D., 2012. ADADELTA: An Adaptive Learning Rate Method. CoRR. Available from
Chen, Jiang, Li, Jia, Ghamisi (b0050) 2016; 54
Xu, X., Lil, f., Plaza, A., 2016b. Fusion of hyperspectral and LiDAR data using morphological component analysis. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3575–3578.
Kingma, D.P., Ba, J.L., 2014. ADAM: {A} method for stochastic optimization. CoRR. Available from
Romero, Gatta, Camps-Valls (b0315) 2016; 54
LeCun, Bottou, Orr, Müller (b0220) 1998
Green, Eastwood, Sarture, Chrien, Aronsson, Chippendale, Faust, Pavri, Chovit, Solis, Olah, Williams (b0125) 1998; 65
Dosovitskiy, Springenberg, Riedmiller, Brox (b0080) 2014; vol. 27
Vetrivel, Gerke, Kerle, Nex, Vosselman (b0345) 2018; 140
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998a. Gradient-based learning applied to document recognition. Proc. IEEE.
Tarabalka, Benediktsson, Chanussot (b0340) 2009; 47
Hinton, Salakhutdinov (b0150) 2006; 313
Fisher (b0095) 1997; 18
Midhun, Nair, Prabhakar, Kumar (b0280) 2014
Ghamisi, Plaza, Chen, Li, Plaza (b0105) 2017; 5
Duchi, Edu, Hazan, Singer (b0085) 2011; 12
Wu, Wang, Plaza, Li, Wei (b0355) 2015; 12
Camps-Valls, Bruzzone (b0040) 2005; 43
Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R., June 2010. Deconvolutional networks. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2528–2535.
Zhang, Zhang, Du (b0405) 2016; 4
Kunkel, B., Blechinger, F., Lutz, R., Doerffer, R., van der Piepen, H., 1988. ROSIS (Reflective Optics System Imaging Spectrometer) – A candidate instrument for polar platform missions. In: Seeley, J., Bowyer, S. (Eds.), Optoelectronic technologies for remote sensing from space. pp. 134–141.
Atkinson, Tatnall (b0005) 1997; 18
Nair, Hinton (b0285) 2010
Benediktsson, Swain, Ersoy (b0015) 1993; 14
Li, Zhang, Shen (b0245) 2017; 9
Jarrett, Kavukcuoglu, Ranzato, Lecun (b0180) 2009
García, Sánchez, Mollineda (b0100) 2011
Liu, Yu, Zhang, Tan, Yu, Xue (b0255) 2017; 8
Lu, Zheng, Yuan (b0265) 2017
Rajan, Ghosh, Crawford (b0305) 2008; 46
Hochreiter, Schmidhuber (b0165) 1997; 9
Li, T., Zhang, J., Zhang, Y., 2014b. Classification of hyperspectral image based on deep belief networks. In: Image Processing (ICIP), 2014 IEEE International Conference on. pp. 5132–5136.
Li, Bioucas-Dias, Plaza (b0225) 2010; 48
Cheng, Han, Lu (b0060) 2017
Böhning (b0035) 1992; 44
Li, Bioucas-Dias, Plaza (b0230) 2011; 49
Licciardi, Del Frate (b0250) 2011; 49
Deng, Yu (b0075) 2014; 7
Haut, Paoletti, Plaza, Plaza (b0130) 2017; 73
Zhou, Prasad (b0425) 2017; 14
He, Garcia (b0140) 2009; 21
He, M., Li, X., Zhang, Y., Zhang, J., Wang, W., 2016. Hyperspectral image classification based on deep stacking network. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). pp. 3286–3289.
Zhao, Du (b0420) 2016; 54
Xu, Li, Huang, Dalla Mura, Plaza (b0360) 2016; 54
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b0120) 2014; vol. 27
Chien (b0065) 1974; 19
10.1016/j.isprsjprs.2017.11.021_b0290
García (10.1016/j.isprsjprs.2017.11.021_b0100) 2011
Zhao (10.1016/j.isprsjprs.2017.11.021_b0420) 2016; 54
Böhning (10.1016/j.isprsjprs.2017.11.021_b0035) 1992; 44
10.1016/j.isprsjprs.2017.11.021_b0010
Ma (10.1016/j.isprsjprs.2017.11.021_b0270) 2016; 120
Yang (10.1016/j.isprsjprs.2017.11.021_b0370) 1999; 20
10.1016/j.isprsjprs.2017.11.021_b0375
Li (10.1016/j.isprsjprs.2017.11.021_b0225) 2010; 48
Chen (10.1016/j.isprsjprs.2017.11.021_b0055) 2014; 7
10.1016/j.isprsjprs.2017.11.021_b0215
Licciardi (10.1016/j.isprsjprs.2017.11.021_b0250) 2011; 49
Liu (10.1016/j.isprsjprs.2017.11.021_b0255) 2017; 8
Lu (10.1016/j.isprsjprs.2017.11.021_b0265) 2017
Rajan (10.1016/j.isprsjprs.2017.11.021_b0305) 2008; 46
Hu (10.1016/j.isprsjprs.2017.11.021_b0170) 2015; 7
10.1016/j.isprsjprs.2017.11.021_b0135
Li (10.1016/j.isprsjprs.2017.11.021_b0235) 2014; 47
Scholkopf (10.1016/j.isprsjprs.2017.11.021_b0325) 2001
Yuan (10.1016/j.isprsjprs.2017.11.021_b0385) 2015; 26
Goodfellow (10.1016/j.isprsjprs.2017.11.021_b0120) 2014; vol. 27
Dosovitskiy (10.1016/j.isprsjprs.2017.11.021_b0080) 2014; vol. 27
10.1016/j.isprsjprs.2017.11.021_b0240
Zhang (10.1016/j.isprsjprs.2017.11.021_b0405) 2016; 4
10.1016/j.isprsjprs.2017.11.021_b0320
10.1016/j.isprsjprs.2017.11.021_b0160
10.1016/j.isprsjprs.2017.11.021_b0205
Jarrett (10.1016/j.isprsjprs.2017.11.021_b0180) 2009
Nair (10.1016/j.isprsjprs.2017.11.021_b0285) 2010
10.1016/j.isprsjprs.2017.11.021_b0200
Ranzato (10.1016/j.isprsjprs.2017.11.021_b0310) 2006; vol. 19
Vetrivel (10.1016/j.isprsjprs.2017.11.021_b0345) 2018; 140
10.1016/j.isprsjprs.2017.11.021_b0365
Deng (10.1016/j.isprsjprs.2017.11.021_b0075) 2014; 7
LeCun (10.1016/j.isprsjprs.2017.11.021_b0210) 2015; 521
Duchi (10.1016/j.isprsjprs.2017.11.021_b0085) 2011; 12
Ghamisi (10.1016/j.isprsjprs.2017.11.021_b0105) 2017; 5
Haut (10.1016/j.isprsjprs.2017.11.021_b0130) 2017; 73
10.1016/j.isprsjprs.2017.11.021_b0070
Xu (10.1016/j.isprsjprs.2017.11.021_b0360) 2016; 54
Hinton (10.1016/j.isprsjprs.2017.11.021_b0155) 2006; 18
Hinton (10.1016/j.isprsjprs.2017.11.021_b0150) 2006; 313
Smolensky (10.1016/j.isprsjprs.2017.11.021_b0330) 1986; vol. 1
10.1016/j.isprsjprs.2017.11.021_b0395
10.1016/j.isprsjprs.2017.11.021_b0110
Midhun (10.1016/j.isprsjprs.2017.11.021_b0280) 2014
Zhang (10.1016/j.isprsjprs.2017.11.021_b0410) 2016; 116
10.1016/j.isprsjprs.2017.11.021_b0390
Hu (10.1016/j.isprsjprs.2017.11.021_b0175) 2015
He (10.1016/j.isprsjprs.2017.11.021_b0140) 2009; 21
10.1016/j.isprsjprs.2017.11.021_b0195
Yu (10.1016/j.isprsjprs.2017.11.021_b0380) 2017; 219
Zhao (10.1016/j.isprsjprs.2017.11.021_b0415) 2016; 128
Li (10.1016/j.isprsjprs.2017.11.021_b0245) 2017; 9
Zhang (10.1016/j.isprsjprs.2017.11.021_b0400) 2017; 8
10.1016/j.isprsjprs.2017.11.021_b0115
Green (10.1016/j.isprsjprs.2017.11.021_b0125) 1998; 65
Plaza (10.1016/j.isprsjprs.2017.11.021_b0295) 2009; 113
Tarabalka (10.1016/j.isprsjprs.2017.11.021_b0340) 2009; 47
Wu (10.1016/j.isprsjprs.2017.11.021_b0355) 2015; 12
Wu (10.1016/j.isprsjprs.2017.11.021_b0350) 2016; 37
Bengio (10.1016/j.isprsjprs.2017.11.021_b0020) 2009; 2
Camps-Valls (10.1016/j.isprsjprs.2017.11.021_b0040) 2005; 43
Chen (10.1016/j.isprsjprs.2017.11.021_b0050) 2016; 54
Hochreiter (10.1016/j.isprsjprs.2017.11.021_b0165) 1997; 9
Qian (10.1016/j.isprsjprs.2017.11.021_b0300) 1999; 12
Benediktsson (10.1016/j.isprsjprs.2017.11.021_b0015) 1993; 14
Fauvel (10.1016/j.isprsjprs.2017.11.021_b0090) 2008; 46
10.1016/j.isprsjprs.2017.11.021_b0185
Chang (10.1016/j.isprsjprs.2017.11.021_b0045) 2003
Atkinson (10.1016/j.isprsjprs.2017.11.021_b0005) 1997; 18
Cheng (10.1016/j.isprsjprs.2017.11.021_b0060) 2017
10.1016/j.isprsjprs.2017.11.021_b0260
Bishop (10.1016/j.isprsjprs.2017.11.021_b0030) 1995
Starck (10.1016/j.isprsjprs.2017.11.021_b0335) 2005; 14
Bengio (10.1016/j.isprsjprs.2017.11.021_b0025) 2007
10.1016/j.isprsjprs.2017.11.021_b0145
Romero (10.1016/j.isprsjprs.2017.11.021_b0315) 2016; 54
Zhou (10.1016/j.isprsjprs.2017.11.021_b0425) 2017; 14
Li (10.1016/j.isprsjprs.2017.11.021_b0230) 2011; 49
Melgani (10.1016/j.isprsjprs.2017.11.021_b0275) 2004; 42
Fisher (10.1016/j.isprsjprs.2017.11.021_b0095) 1997; 18
Chien (10.1016/j.isprsjprs.2017.11.021_b0065) 1974; 19
Khodadadzadeh (10.1016/j.isprsjprs.2017.11.021_b0190) 2014; 52
LeCun (10.1016/j.isprsjprs.2017.11.021_b0220) 1998
References_xml – reference: Zeiler, M.D., 2012. ADADELTA: An Adaptive Learning Rate Method. CoRR. Available from: <
– volume: 113
  start-page: S110
  year: 2009
  end-page: S122
  ident: b0295
  article-title: Recent advances in techniques for hyperspectral image processing
  publication-title: Remote Sens. Environ.
– reference: Li, T., Zhang, J., Zhang, Y., 2014b. Classification of hyperspectral image based on deep belief networks. In: Image Processing (ICIP), 2014 IEEE International Conference on. pp. 5132–5136.
– volume: 18
  start-page: 679
  year: 1997
  end-page: 685
  ident: b0095
  article-title: The pixel: a snare and a delusion
  publication-title: Int. J. Remote Sens.
– volume: 14
  start-page: 1348
  year: 2017
  end-page: 1352
  ident: b0425
  article-title: Active and semisupervised learning with morphological component analysis for hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: b0085
  article-title: Adaptive subgradient methods for online learning and stochastic optimization∗
  publication-title: J. Mach. Learn. Res.
– reference: Liu, Q., Hang, R., Song, H., Zhu, F., Plaza, J., Plaza, A., 2016. Adaptive Deep Pyramid Matching for Remote Sensing Scene Classification. CoRR. Available from:
– volume: 54
  start-page: 3083
  year: 2016
  end-page: 3102
  ident: b0360
  article-title: Multiple morphological component analysis based decomposition for remote sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 14680
  year: 2015
  end-page: 14707
  ident: b0170
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery in surveying, mapping and remote sensing
  publication-title: Remote Sens.
– reference: Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R., June 2010. Deconvolutional networks. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2528–2535.
– volume: vol. 27
  start-page: 2672
  year: 2014
  end-page: 2680
  ident: b0120
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– volume: 52
  start-page: 6298
  year: 2014
  end-page: 6314
  ident: b0190
  article-title: Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 48
  start-page: 4085
  year: 2010
  end-page: 4098
  ident: b0225
  article-title: Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Salakhutdinov, R., Hinton, G., 2009. Deep boltzmann machines. In: 12th International Conference on Artificial Intelligence and Statistics, pp. 3.
– volume: 20
  start-page: 97
  year: 1999
  end-page: 110
  ident: b0370
  article-title: A back-propagation neural network for mineralogical mapping from AVIRIS data
  publication-title: Int. J. Remote Sens.
– volume: 46
  start-page: 1231
  year: 2008
  end-page: 1242
  ident: b0305
  article-title: An active learning approach to hyperspectral data classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  start-page: 1570
  year: 2005
  end-page: 1582
  ident: b0335
  article-title: Image decomposition via the combination of sparse representations and a variational approach
  publication-title: IEEE Trans. Image Process.
– volume: 65
  start-page: 227
  year: 1998
  end-page: 248
  ident: b0125
  article-title: Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
  publication-title: Remote Sens. Environ.
– reference: LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998a. Gradient-based learning applied to document recognition. Proc. IEEE.
– volume: 19
  start-page: 462
  year: 1974
  end-page: 463
  ident: b0065
  article-title: Pattern classification and scene analysis
  publication-title: IEEE Trans. Autom. Control
– reference: Kunkel, B., Blechinger, F., Lutz, R., Doerffer, R., van der Piepen, H., 1988. ROSIS (Reflective Optics System Imaging Spectrometer) – A candidate instrument for polar platform missions. In: Seeley, J., Bowyer, S. (Eds.), Optoelectronic technologies for remote sensing from space. pp. 134–141.
– volume: 49
  start-page: 4163
  year: 2011
  end-page: 4172
  ident: b0250
  article-title: Pixel unmixing in hyperspectral data by means of neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 42
  year: 2004
  ident: b0275
  article-title: Classification of hyperspectral remote sensing images with support vector machines
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 54
  start-page: 6232
  year: 2016
  end-page: 6251
  ident: b0050
  article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 26
  start-page: 2222
  year: 2015
  end-page: 2233
  ident: b0385
  article-title: Scene recognition by manifold regularized deep learning architecture
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 219
  start-page: 88
  year: 2017
  end-page: 98
  ident: b0380
  article-title: Convolutional neural networks for hyperspectral image classification
  publication-title: Neurocomputing
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b0150
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– reference: Yang, J., Zhao, Y., Chan, J.C.W., Yi, C., 2016. Hyperspectral image classification using two-channel deep convolutional neural network. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5079–5082.
– start-page: 9
  year: 1998
  end-page: 50
  ident: b0220
  article-title: Efficient backprop
  publication-title: Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop
– volume: 54
  start-page: 1349
  year: 2016
  end-page: 1362
  ident: b0315
  article-title: Unsupervised deep feature extraction for remote sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 140
  start-page: 45
  year: 2018
  end-page: 59
  ident: b0345
  article-title: Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Benediktsson, J.A., Swain, P.H., 1990. Statistical Methods and Neural Network Approaches for Classification of Data from Multiple Sources (Ph.D. thesis). Purdue Univ., School of Elect. Eng. West Lafayette, IN.
– reference: Haut, J.M., Paoletti, M.E., Paz-Gallardo, A., Plaza, J., Plaza, A., 2017b. Cloud implementation of logistic regression for hyperspectral image classification. In: Vigo-Aguiar, J. (Ed.), Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2017. pp. 1063–2321.
– volume: 9
  start-page: 67
  year: 2017
  ident: b0245
  article-title: Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network
  publication-title: Remote Sens.
– start-page: 644
  year: 2011
  end-page: 651
  ident: b0100
  article-title: Classification of high dimensional and imbalanced hyperspectral imagery data
  publication-title: Proceedings Pattern Recognition and Image Analysis: 5th Iberian Conference, IbPRIA 2011, Las Palmas de Gran Canaria, Spain, June 8–10, 2011
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: b0140
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2003
  ident: b0045
  article-title: Hyperspectral Imaging: Techniques for Spectral Detection and Classification
– reference: Kingma, D.P., Ba, J.L., 2014. ADAM: {A} method for stochastic optimization. CoRR. Available from:
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b0155
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– reference: Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., 2012. Improving neural networks by preventing co-adaptation of feature detectors. CoRR. Available from:
– start-page: 153
  year: 2007
  end-page: 160
  ident: b0025
  article-title: Greedy layer-wise training of deep networks
  publication-title: Advances in Neural Information Processing Systems 19 (NIPS’06)
– year: 2015
  ident: b0175
  article-title: Deep convolutional neural networks for hyperspectral image classification
  publication-title: J. Sensors
– reference: Paoletti, M.E., Haut, J.M., Plaza, J., Plaza, A., 2017. Yinyang K-means clustering for hyperspectral image analysis. In: Vigo-Aguiar, J. (Ed.), Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering. Rota, pp. 1625–1636.
– volume: 7
  start-page: 197
  year: 2014
  end-page: 387
  ident: b0075
  article-title: Deep learning: methods and applications
  publication-title: Found. Trends® Signal Process.
– volume: 120
  start-page: 99
  year: 2016
  end-page: 107
  ident: b0270
  article-title: Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 1
  year: 2017
  end-page: 10
  ident: b0265
  article-title: Remote sensing scene classification by unsupervised representation learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS10). Society for Artificial Intelligence and Statistics. pp. 249–256.
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: b0020
  article-title: Learning deep architectures for AI
  publication-title: Mach. Learn.
– volume: 18
  start-page: 699
  year: 1997
  end-page: 709
  ident: b0005
  article-title: Introduction neural networks in remote sensing
  publication-title: Int. J. Remote Sens.
– volume: vol. 19
  start-page: 1137
  year: 2006
  end-page: 1144
  ident: b0310
  article-title: Efficient learning of sparse representations with an energy-based model
  publication-title: Advances in Neural Information Processing Systems
– volume: 54
  start-page: 4544
  year: 2016
  end-page: 4554
  ident: b0420
  article-title: Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 47
  start-page: 389
  year: 2014
  end-page: 411
  ident: b0235
  article-title: A review of remote sensing image classification techniques: the role of spatio-contextual information
  publication-title: Eur. J. Remote Sens.
– volume: 116
  start-page: 24
  year: 2016
  end-page: 41
  ident: b0410
  article-title: Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 128
  start-page: 223
  year: 2016
  end-page: 239
  ident: b0415
  article-title: Learning multiscale and deep representations for classifying remotely sensed imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: vol. 1
  start-page: 194
  year: 1986
  end-page: 281
  ident: b0330
  article-title: Information processing in dynamical systems: foundations of harmony theory
  publication-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Foundations
– volume: 47
  start-page: 2973
  year: 2009
  end-page: 2987
  ident: b0340
  article-title: Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0210
  article-title: Deep learning
  publication-title: Nature
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0165
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 4
  start-page: 22
  year: 2016
  end-page: 40
  ident: b0405
  article-title: Deep learning for remote sensing data advances in machine learning for remote sensing and geosciences
  publication-title: IEEE Geosci. Remote Sens. Mag.
– start-page: 807
  year: 2010
  end-page: 814
  ident: b0285
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10)
– volume: vol. 27
  start-page: 766
  year: 2014
  end-page: 774
  ident: b0080
  article-title: Discriminative unsupervised feature learning with convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– reference: He, M., Li, X., Zhang, Y., Zhang, J., Wang, W., 2016. Hyperspectral image classification based on deep stacking network. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). pp. 3286–3289.
– reference: Karhunen, J., Raiko, T., Cho, K., 2015. Unsupervised Deep Learning: A Short Review.
– volume: 12
  start-page: 1456
  year: 2015
  end-page: 1460
  ident: b0355
  article-title: Real-time implementation of the sparse multinomial logistic regression for hyperspectral image classification on GPUs
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 8
  start-page: 839
  year: 2017
  end-page: 848
  ident: b0255
  article-title: A semi-supervised convolutional neural network for hyperspectral image classification
  publication-title: Remote Sens. Lett.
– start-page: 2146
  year: 2009
  end-page: 2153
  ident: b0180
  article-title: What is the best multi-stage architecture for object recognition?
  publication-title: ICCV
– volume: 46
  start-page: 3804
  year: 2008
  end-page: 3814
  ident: b0090
  article-title: Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 1
  year: 2017
  end-page: 19
  ident: b0060
  article-title: Remote sensing image scene classification: benchmark and state of the art
  publication-title: Proc. IEEE
– reference: Xu, X., Lil, f., Plaza, A., 2016b. Fusion of hyperspectral and LiDAR data using morphological component analysis. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3575–3578.
– reference: Larochelle, H., Bengio, Y., 2008. Classification using discriminative restricted boltzmann machines. In: Proceedings of the 25th International Conference on Machine learning – ICML ’08, pp. 536.
– reference: >.
– start-page: 35:1
  year: 2014
  end-page: 35:7
  ident: b0280
  article-title: Deep model for classification of hyperspectral image using restricted Boltzmann machine
  publication-title: Proceedings of the 2014 International Conference on Interdisciplinary Advances in Applied Computing
– year: 1995
  ident: b0030
  article-title: Neural Networks for Pattern Recognition
– reference: .
– reference: Cho, K., 2014. Foundations and Advances in Deep Learning (Ph.D. thesis). Aalto University.
– volume: 14
  start-page: 2883
  year: 1993
  end-page: 2903
  ident: b0015
  article-title: Conjugate gradient neural networks in classification of very high dimensional remote sensing data
  publication-title: Int. J. Remote Sens.
– volume: 43
  start-page: 1351
  year: 2005
  end-page: 1362
  ident: b0040
  article-title: Kernel-based methods for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2001
  ident: b0325
  article-title: Learning with Kernels:Support Vector Machines, Regularization, Optimization, and Beyond
– volume: 44
  start-page: 197
  year: 1992
  end-page: 200
  ident: b0035
  article-title: Multinomial logistic regression algorithm
  publication-title: Ann. Inst. Stat. Math.
– reference: Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks. In: Gordon, Geoffrey J., Dunson, David B. (Ed.), Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11). Journal of Machine Learning Research – Workshop and Conference Proceedings, pp. 315–323.
– volume: 7
  start-page: 2094
  year: 2014
  end-page: 2107
  ident: b0055
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 8
  start-page: 438
  year: 2017
  end-page: 447
  ident: b0400
  article-title: Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network
  publication-title: Remote Sens. Lett.
– volume: 37
  start-page: 6012
  year: 2016
  end-page: 6022
  ident: b0350
  article-title: Shape-based object extraction in high-resolution remote-sensing images using deep Boltzmann machine
  publication-title: Int. J. Remote Sens.
– volume: 73
  start-page: 514
  year: 2017
  end-page: 529
  ident: b0130
  article-title: Cloud implementation of the k-means algorithm for hyperspectral image analysis
  publication-title: J. Supercomput.
– volume: 12
  start-page: 145
  year: 1999
  end-page: 151
  ident: b0300
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Netw.
– volume: 5
  start-page: 8
  year: 2017
  end-page: 32
  ident: b0105
  article-title: Advanced supervised spectral classifiers for hyperspectral images: a review
  publication-title: IEEE Geosci. Remote Sens. Mag.
– volume: 49
  start-page: 3947
  year: 2011
  end-page: 3960
  ident: b0230
  article-title: Hyperspectral image segmentation using a new Bayesian approach with active learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  start-page: 2121
  year: 2011
  ident: 10.1016/j.isprsjprs.2017.11.021_b0085
  article-title: Adaptive subgradient methods for online learning and stochastic optimization∗
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 197
  issue: 3–4
  year: 2014
  ident: 10.1016/j.isprsjprs.2017.11.021_b0075
  article-title: Deep learning: methods and applications
  publication-title: Found. Trends® Signal Process.
  doi: 10.1561/2000000039
– volume: 5
  start-page: 8
  issue: 1
  year: 2017
  ident: 10.1016/j.isprsjprs.2017.11.021_b0105
  article-title: Advanced supervised spectral classifiers for hyperspectral images: a review
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2616418
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 10.1016/j.isprsjprs.2017.11.021_b0140
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– volume: 49
  start-page: 3947
  issue: 10
  year: 2011
  ident: 10.1016/j.isprsjprs.2017.11.021_b0230
  article-title: Hyperspectral image segmentation using a new Bayesian approach with active learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2128330
– ident: 10.1016/j.isprsjprs.2017.11.021_b0205
  doi: 10.1145/1390156.1390224
– start-page: 644
  year: 2011
  ident: 10.1016/j.isprsjprs.2017.11.021_b0100
  article-title: Classification of high dimensional and imbalanced hyperspectral imagery data
– volume: 14
  start-page: 1570
  issue: 10
  year: 2005
  ident: 10.1016/j.isprsjprs.2017.11.021_b0335
  article-title: Image decomposition via the combination of sparse representations and a variational approach
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.852206
– ident: 10.1016/j.isprsjprs.2017.11.021_b0160
– volume: 116
  start-page: 24
  year: 2016
  ident: 10.1016/j.isprsjprs.2017.11.021_b0410
  article-title: Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.02.013
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.isprsjprs.2017.11.021_b0165
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10.1016/j.isprsjprs.2017.11.021_b0200
  doi: 10.1117/12.943611
– ident: 10.1016/j.isprsjprs.2017.11.021_b0365
  doi: 10.1109/IGARSS.2016.7729926
– volume: vol. 1
  start-page: 194
  year: 1986
  ident: 10.1016/j.isprsjprs.2017.11.021_b0330
  article-title: Information processing in dynamical systems: foundations of harmony theory
– volume: 18
  start-page: 679
  issue: 3
  year: 1997
  ident: 10.1016/j.isprsjprs.2017.11.021_b0095
  article-title: The pixel: a snare and a delusion
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311697219015
– start-page: 1
  issue: 99
  year: 2017
  ident: 10.1016/j.isprsjprs.2017.11.021_b0060
  article-title: Remote sensing image scene classification: benchmark and state of the art
  publication-title: Proc. IEEE
– ident: 10.1016/j.isprsjprs.2017.11.021_b0260
– volume: 12
  start-page: 145
  issue: 1
  year: 1999
  ident: 10.1016/j.isprsjprs.2017.11.021_b0300
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(98)00116-6
– volume: 26
  start-page: 2222
  issue: 10
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.11.021_b0385
  article-title: Scene recognition by manifold regularized deep learning architecture
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2359471
– volume: 49
  start-page: 4163
  issue: 11
  year: 2011
  ident: 10.1016/j.isprsjprs.2017.11.021_b0250
  article-title: Pixel unmixing in hyperspectral data by means of neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2160950
– volume: 37
  start-page: 6012
  issue: 24
  year: 2016
  ident: 10.1016/j.isprsjprs.2017.11.021_b0350
  article-title: Shape-based object extraction in high-resolution remote-sensing images using deep Boltzmann machine
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1253897
– volume: vol. 27
  start-page: 766
  year: 2014
  ident: 10.1016/j.isprsjprs.2017.11.021_b0080
  article-title: Discriminative unsupervised feature learning with convolutional neural networks
– volume: 9
  start-page: 67
  issue: 1
  year: 2017
  ident: 10.1016/j.isprsjprs.2017.11.021_b0245
  article-title: Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network
  publication-title: Remote Sens.
  doi: 10.3390/rs9010067
– volume: 54
  start-page: 6232
  issue: 10
  year: 2016
  ident: 10.1016/j.isprsjprs.2017.11.021_b0050
  article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2584107
– volume: 140
  start-page: 45
  year: 2018
  ident: 10.1016/j.isprsjprs.2017.11.021_b0345
  article-title: Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.03.001
– volume: 7
  start-page: 2094
  issue: 6
  year: 2014
  ident: 10.1016/j.isprsjprs.2017.11.021_b0055
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2014.2329330
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.isprsjprs.2017.11.021_b0020
  article-title: Learning deep architectures for AI
  publication-title: Mach. Learn.
– volume: 43
  start-page: 1351
  issue: 6
  year: 2005
  ident: 10.1016/j.isprsjprs.2017.11.021_b0040
  article-title: Kernel-based methods for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.846154
– ident: 10.1016/j.isprsjprs.2017.11.021_b0185
  doi: 10.1016/B978-0-12-802806-3.00007-5
– volume: 54
  start-page: 3083
  issue: 5
  year: 2016
  ident: 10.1016/j.isprsjprs.2017.11.021_b0360
  article-title: Multiple morphological component analysis based decomposition for remote sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2511197
– volume: 20
  start-page: 97
  issue: 1
  year: 1999
  ident: 10.1016/j.isprsjprs.2017.11.021_b0370
  article-title: A back-propagation neural network for mineralogical mapping from AVIRIS data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311699213622
– year: 2003
  ident: 10.1016/j.isprsjprs.2017.11.021_b0045
– ident: 10.1016/j.isprsjprs.2017.11.021_b0070
– year: 1995
  ident: 10.1016/j.isprsjprs.2017.11.021_b0030
– volume: 219
  start-page: 88
  year: 2017
  ident: 10.1016/j.isprsjprs.2017.11.021_b0380
  article-title: Convolutional neural networks for hyperspectral image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.010
– year: 2015
  ident: 10.1016/j.isprsjprs.2017.11.021_b0175
  article-title: Deep convolutional neural networks for hyperspectral image classification
  publication-title: J. Sensors
  doi: 10.1155/2015/258619
– ident: 10.1016/j.isprsjprs.2017.11.021_b0375
  doi: 10.1109/IGARSS.2016.7730324
– ident: 10.1016/j.isprsjprs.2017.11.021_b0110
– ident: 10.1016/j.isprsjprs.2017.11.021_b0135
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.11.021_b0210
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10.1016/j.isprsjprs.2017.11.021_b0240
  doi: 10.1109/ICIP.2014.7026039
– start-page: 1
  issue: 99
  year: 2017
  ident: 10.1016/j.isprsjprs.2017.11.021_b0265
  article-title: Remote sensing scene classification by unsupervised representation learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 9
  year: 1998
  ident: 10.1016/j.isprsjprs.2017.11.021_b0220
  article-title: Efficient backprop
– volume: 12
  start-page: 1456
  issue: 7
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.11.021_b0355
  article-title: Real-time implementation of the sparse multinomial logistic regression for hyperspectral image classification on GPUs
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2408433
– volume: 18
  start-page: 699
  issue: 4
  year: 1997
  ident: 10.1016/j.isprsjprs.2017.11.021_b0005
  article-title: Introduction neural networks in remote sensing
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311697218700
– start-page: 2146
  year: 2009
  ident: 10.1016/j.isprsjprs.2017.11.021_b0180
  article-title: What is the best multi-stage architecture for object recognition?
– volume: 8
  start-page: 839
  issue: 9
  year: 2017
  ident: 10.1016/j.isprsjprs.2017.11.021_b0255
  article-title: A semi-supervised convolutional neural network for hyperspectral image classification
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2017.1331053
– ident: 10.1016/j.isprsjprs.2017.11.021_b0195
– year: 2001
  ident: 10.1016/j.isprsjprs.2017.11.021_b0325
– volume: 120
  start-page: 99
  year: 2016
  ident: 10.1016/j.isprsjprs.2017.11.021_b0270
  article-title: Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.09.001
– start-page: 807
  year: 2010
  ident: 10.1016/j.isprsjprs.2017.11.021_b0285
  article-title: Rectified linear units improve restricted Boltzmann machines
– volume: 4
  start-page: 22
  issue: 2
  year: 2016
  ident: 10.1016/j.isprsjprs.2017.11.021_b0405
  article-title: Deep learning for remote sensing data advances in machine learning for remote sensing and geosciences
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2540798
– ident: 10.1016/j.isprsjprs.2017.11.021_b0290
– volume: 8
  start-page: 438
  issue: 5
  year: 2017
  ident: 10.1016/j.isprsjprs.2017.11.021_b0400
  article-title: Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2017.1280200
– volume: 65
  start-page: 227
  issue: 3
  year: 1998
  ident: 10.1016/j.isprsjprs.2017.11.021_b0125
  article-title: Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00064-9
– volume: 47
  start-page: 2973
  issue: 8
  year: 2009
  ident: 10.1016/j.isprsjprs.2017.11.021_b0340
  article-title: Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2016214
– start-page: 153
  year: 2007
  ident: 10.1016/j.isprsjprs.2017.11.021_b0025
  article-title: Greedy layer-wise training of deep networks
– volume: 46
  start-page: 3804
  issue: 11
  year: 2008
  ident: 10.1016/j.isprsjprs.2017.11.021_b0090
  article-title: Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.922034
– volume: 46
  start-page: 1231
  issue: 4
  year: 2008
  ident: 10.1016/j.isprsjprs.2017.11.021_b0305
  article-title: An active learning approach to hyperspectral data classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.910220
– ident: 10.1016/j.isprsjprs.2017.11.021_b0390
– volume: 14
  start-page: 2883
  issue: 15
  year: 1993
  ident: 10.1016/j.isprsjprs.2017.11.021_b0015
  article-title: Conjugate gradient neural networks in classification of very high dimensional remote sensing data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169308904316
– volume: 42
  issue: 8
  year: 2004
  ident: 10.1016/j.isprsjprs.2017.11.021_b0275
  article-title: Classification of hyperspectral remote sensing images with support vector machines
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.831865
– start-page: 35:1
  year: 2014
  ident: 10.1016/j.isprsjprs.2017.11.021_b0280
  article-title: Deep model for classification of hyperspectral image using restricted Boltzmann machine
– ident: 10.1016/j.isprsjprs.2017.11.021_b0115
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.isprsjprs.2017.11.021_b0155
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 19
  start-page: 462
  issue: 4
  year: 1974
  ident: 10.1016/j.isprsjprs.2017.11.021_b0065
  article-title: Pattern classification and scene analysis
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1974.1100577
– volume: 54
  start-page: 1349
  issue: 3
  year: 2016
  ident: 10.1016/j.isprsjprs.2017.11.021_b0315
  article-title: Unsupervised deep feature extraction for remote sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2478379
– volume: 7
  start-page: 14680
  issue: 11
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.11.021_b0170
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery in surveying, mapping and remote sensing
  publication-title: Remote Sens.
  doi: 10.3390/rs71114680
– volume: 44
  start-page: 197
  issue: 1
  year: 1992
  ident: 10.1016/j.isprsjprs.2017.11.021_b0035
  article-title: Multinomial logistic regression algorithm
  publication-title: Ann. Inst. Stat. Math.
  doi: 10.1007/BF00048682
– volume: 113
  start-page: S110
  issue: 1
  year: 2009
  ident: 10.1016/j.isprsjprs.2017.11.021_b0295
  article-title: Recent advances in techniques for hyperspectral image processing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.028
– volume: vol. 27
  start-page: 2672
  year: 2014
  ident: 10.1016/j.isprsjprs.2017.11.021_b0120
  article-title: Generative adversarial nets
– ident: 10.1016/j.isprsjprs.2017.11.021_b0010
– volume: 47
  start-page: 389
  year: 2014
  ident: 10.1016/j.isprsjprs.2017.11.021_b0235
  article-title: A review of remote sensing image classification techniques: the role of spatio-contextual information
  publication-title: Eur. J. Remote Sens.
  doi: 10.5721/EuJRS20144723
– volume: 54
  start-page: 4544
  issue: 8
  year: 2016
  ident: 10.1016/j.isprsjprs.2017.11.021_b0420
  article-title: Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2543748
– volume: 52
  start-page: 6298
  issue: 10
  year: 2014
  ident: 10.1016/j.isprsjprs.2017.11.021_b0190
  article-title: Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2296031
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.isprsjprs.2017.11.021_b0150
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 10.1016/j.isprsjprs.2017.11.021_b0215
  doi: 10.1109/5.726791
– ident: 10.1016/j.isprsjprs.2017.11.021_b0320
– volume: vol. 19
  start-page: 1137
  year: 2006
  ident: 10.1016/j.isprsjprs.2017.11.021_b0310
  article-title: Efficient learning of sparse representations with an energy-based model
– volume: 73
  start-page: 514
  issue: 1
  year: 2017
  ident: 10.1016/j.isprsjprs.2017.11.021_b0130
  article-title: Cloud implementation of the k-means algorithm for hyperspectral image analysis
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-016-1896-3
– ident: 10.1016/j.isprsjprs.2017.11.021_b0145
  doi: 10.1109/IGARSS.2016.7729850
– volume: 128
  start-page: 223
  year: 2016
  ident: 10.1016/j.isprsjprs.2017.11.021_b0415
  article-title: Learning multiscale and deep representations for classifying remotely sensed imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– ident: 10.1016/j.isprsjprs.2017.11.021_b0395
  doi: 10.1109/CVPR.2010.5539957
– volume: 14
  start-page: 1348
  issue: 8
  year: 2017
  ident: 10.1016/j.isprsjprs.2017.11.021_b0425
  article-title: Active and semisupervised learning with morphological component analysis for hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2711425
– volume: 48
  start-page: 4085
  issue: 11
  year: 2010
  ident: 10.1016/j.isprsjprs.2017.11.021_b0225
  article-title: Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
SSID ssj0001568
Score 2.6591542
Snippet Artificial neural networks (ANNs) have been widely used for the analysis of remotely sensed imagery. In particular, convolutional neural networks (CNNs) are...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120
SubjectTerms Classification
Convolutional neural networks (CNNs)
Deep learning
Graphics processing units (GPUs)
hyperspectral imagery
Hyperspectral imaging
neural networks
spatial data
Title A new deep convolutional neural network for fast hyperspectral image classification
URI https://dx.doi.org/10.1016/j.isprsjprs.2017.11.021
https://www.proquest.com/docview/2116883452
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QPKgHo6gRH2RNvBbabrvteiNEghq5IAm3ZrfdBoiWBsrBi7_dmT5QTAwHD01fu20zMzvzTToPQu48qQGHC25w6UWG48WgB8FsGRo4EqnYFH6eSPsy5IOx8zRxJzXSq3JhMKyy1P2FTs-1dXmlU1Kzk85mnZEJroPtIT5HNczRb8fqdSDT7c_vMA-rSIfDwQaO3orxmq3S5WoOG8Z4eW0s52lbf1moX7o6N0D9Y3JUIkfaLT7uhNR00iCHP-oJNsh-2dJ8-nFKRl0KiJlGWqcUQ8tLEYMnYAnLfJcHgFNArTSWq4xOwSUtMi_x9uwdNA0NEVxjNFHOwDMy7j-89gZG2UHBCJnjZwaToWBMKFeBAy2VJ2XsuC6XiikGi1vCAXij2LlUcOWHEtBdxGPPVgLPmWDnpJ4sEn1BqABoEckw1lYI6zyOlHSZFKZ2ubDi0LWbhFdUC8KyvDh2uXgLqjiyebAhd4DkBucjAHI3ibmZmBYVNnZPua_YEmwJSwB2YPfk24qRASwl_D8iE71YwyDL4r7PHNe-_M8LrsgBnPlFwuI1qWfLtb4B5JKpVi6aLbLXfXweDL8A-4HxBw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbQOAAHxFO8CRLXsrVp04bbhJjGY7tsk3aLkjbVNsGY2Djw77HbdAIktAOHqo_UbWUn9mfVD4DrWFvE4VJ4QseZF8Y56kE0W55FiWQmb8ikSKTtdEV7ED4Oo-Ea3FW5MBRW6XR_qdMLbe2u1B0367PxuN5roOsQxITPSQ0L9NvXqTpVWIP15sNTu7tUyH6ZEUf3e0TwI8xrPJ-9zye4UZhXfEMVPQP_LyP1S10XNqi1A9sOPLJm-X27sGane7D1raTgHmy4ruajz33oNRmCZpZZO2MUXe5mGT6BqlgWuyIGnCFwZbmeL9gIvdIy-ZKGx6-obFhK-JoCigoZHsCgdd-_a3uuiYKX8jBZeFynknNpIoM-tDax1nkYRUIbbjiub40H6JBS81IpTJJqBHiZyOPASDrnkh9Cbfo2tUfAJKKLTKe59VNc6nlmdMS1bNhISD9Po-AYRMU1lboK49To4kVVoWQTtWS3Inaj_6GQ3cfQWBLOyiIbq0luK7GoH_NFoSlYTXxVCVLhaqJfJHpq3z7wJt8XScLDKDj5zwsuYaPd7zyr54fu0yls4khS5i-eQW3x_mHPEcgszIWbqF82FvO4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+deep+convolutional+neural+network+for+fast+hyperspectral+image+classification&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Paoletti%2C+M.E.&rft.au=Haut%2C+J.M.&rft.au=Plaza%2C+J.&rft.au=Plaza%2C+A.&rft.date=2018-11-01&rft.issn=0924-2716&rft.volume=145&rft.spage=120&rft.epage=147&rft_id=info:doi/10.1016%2Fj.isprsjprs.2017.11.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isprsjprs_2017_11_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon