A new weakly supervised approach for ALS point cloud semantic segmentation

Although novel point cloud semantic segmentation schemes that continuously surpass state-of-the-art results exist, the success of learning an effective model typically relies on the availability of abundant labeled data. However, data annotation is a time-consumng and labor-intensive task, particula...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 188; pp. 237 - 254
Main Authors Wang, Puzuo, Yao, Wei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2022
Subjects
Online AccessGet full text
ISSN0924-2716
1872-8235
DOI10.1016/j.isprsjprs.2022.04.016

Cover

Loading…
Abstract Although novel point cloud semantic segmentation schemes that continuously surpass state-of-the-art results exist, the success of learning an effective model typically relies on the availability of abundant labeled data. However, data annotation is a time-consumng and labor-intensive task, particularly for large-scale airborne laser scanning (ALS) point clouds involving multiple classes in urban areas. Therefore, simultaneously obtaining promising results while significantly reducing labeling is crucial. In this study, we propose a deep-learning-based weakly supervised framework for the semantic segmentation of ALS point clouds. This is to exploit implicit information from unlabeled data subject to incomplete and sparse labels. Entropy regularization is introduced to penalize class overlap in the predictive probability. Additionally, a consistency constraint is designed to improve the robustness of the predictions by minimizing the difference between the current and ensemble predictions. Finally, we propose an online soft pseudo-labeling strategy to create additional supervisory sources in an efficient and nonparametric manner. Extensive experimental analysis using three benchmark datasets demonstrates that our proposed method significantly boosts the classification performance without compromising the computational efficiency, considering the sparse point annotations. It outperforms the current weakly supervised methods and achieves a result comparable to that of full supervision competitors. Considering the ISPRS Vaihingen 3D data, using only 1‰ labels, our method achieved an overall accuracy of 83.0% and an average F1 score of 70.0%. These increased by 6.9% and 12.8%, respectively, compared to the model trained only using sparse label information.
AbstractList Although novel point cloud semantic segmentation schemes that continuously surpass state-of-the-art results exist, the success of learning an effective model typically relies on the availability of abundant labeled data. However, data annotation is a time-consumng and labor-intensive task, particularly for large-scale airborne laser scanning (ALS) point clouds involving multiple classes in urban areas. Therefore, simultaneously obtaining promising results while significantly reducing labeling is crucial. In this study, we propose a deep-learning-based weakly supervised framework for the semantic segmentation of ALS point clouds. This is to exploit implicit information from unlabeled data subject to incomplete and sparse labels. Entropy regularization is introduced to penalize class overlap in the predictive probability. Additionally, a consistency constraint is designed to improve the robustness of the predictions by minimizing the difference between the current and ensemble predictions. Finally, we propose an online soft pseudo-labeling strategy to create additional supervisory sources in an efficient and nonparametric manner. Extensive experimental analysis using three benchmark datasets demonstrates that our proposed method significantly boosts the classification performance without compromising the computational efficiency, considering the sparse point annotations. It outperforms the current weakly supervised methods and achieves a result comparable to that of full supervision competitors. Considering the ISPRS Vaihingen 3D data, using only 1‰ labels, our method achieved an overall accuracy of 83.0% and an average F1 score of 70.0%. These increased by 6.9% and 12.8%, respectively, compared to the model trained only using sparse label information.
Author Wang, Puzuo
Yao, Wei
Author_xml – sequence: 1
  givenname: Puzuo
  surname: Wang
  fullname: Wang, Puzuo
  email: puzuo.wang@connect.polyu.hk
  organization: Dept. of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
– sequence: 2
  givenname: Wei
  surname: Yao
  fullname: Yao, Wei
  email: wei.hn.yao@polyu.edu.hk
  organization: Dept. of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
BookMark eNqNkD1PwzAQhi1UJMrHb8AjS4LtxI49MFSIT1ViAGbLcs7gktrBTqj67wkqYmCB4XSnV-97unsO0SzEAAidUlJSQsX5qvS5T3k1VckIYyWpy0nfQ3MqG1ZIVvEZmhPF6oI1VBygw5xXhBDKhZyj-wUOsMEbMG_dFuexh_ThM7TY9H2Kxr5iFxNeLB9xH30YsO3i2OIMaxMGb6fhZQ1hMIOP4RjtO9NlOPnuR-j5-urp8rZYPtzcXS6Wha1qORSVJDVlQFVluALgkloHqmpVJTmRNTjRtM42VImaQm2hYcwpYZ1wjHJCZXWEznZ7pwPfR8iDXvtsoetMgDhmzUTDORdK8cna7Kw2xZwTON0nvzZpqynRX_T0Sv_Q01_0NKn1pE_Ji19J63dvDsn47h_5xS4PE4kPD0ln6yFYaH0CO-g2-j93fAKUzZQg
CitedBy_id crossref_primary_10_1016_j_isprsjprs_2023_09_002
crossref_primary_10_1016_j_isprsjprs_2024_09_006
crossref_primary_10_1109_JSTARS_2024_3469269
crossref_primary_10_1109_TITS_2024_3469546
crossref_primary_10_1016_j_jag_2022_103129
crossref_primary_10_1109_TGRS_2024_3384250
crossref_primary_10_1109_JSTARS_2022_3223698
crossref_primary_10_1109_TGRS_2024_3364181
crossref_primary_10_1061_JCCEE5_CPENG_6263
crossref_primary_10_1109_TGRS_2024_3506016
crossref_primary_10_1109_JSTARS_2024_3363243
crossref_primary_10_1109_TGRS_2024_3484681
crossref_primary_10_1007_s00371_023_02819_9
crossref_primary_10_1109_TGRS_2024_3453966
crossref_primary_10_1088_1361_6501_ad824d
crossref_primary_10_1049_cvi2_12250
crossref_primary_10_1016_j_procir_2024_10_021
crossref_primary_10_1016_j_jag_2023_103258
crossref_primary_10_1016_j_jag_2024_103753
crossref_primary_10_1016_j_jag_2024_103951
crossref_primary_10_1007_s11263_023_01975_8
crossref_primary_10_1016_j_jag_2024_104105
crossref_primary_10_1016_j_oceaneng_2024_117418
crossref_primary_10_3390_rs16173319
crossref_primary_10_1109_TGRS_2024_3458013
crossref_primary_10_1109_TGRS_2025_3535104
crossref_primary_10_1007_s11276_023_03385_7
crossref_primary_10_1049_cit2_12239
crossref_primary_10_3390_rs16030485
crossref_primary_10_1016_j_compbiomed_2024_108115
crossref_primary_10_3788_CJL231411
crossref_primary_10_1109_TIP_2023_3286708
crossref_primary_10_3390_rs15030548
crossref_primary_10_3390_rs14143421
crossref_primary_10_1111_phor_12468
crossref_primary_10_1016_j_isprsjprs_2022_03_001
crossref_primary_10_1109_TPAMI_2024_3416302
crossref_primary_10_1109_TGRS_2024_3524212
crossref_primary_10_1109_TGRS_2024_3358370
crossref_primary_10_1016_j_isprsjprs_2022_02_007
crossref_primary_10_1109_TITS_2024_3496938
Cites_doi 10.1109/TPAMI.2018.2858821
10.1016/j.isprsjprs.2021.04.017
10.1016/j.isprsjprs.2015.01.010
10.1016/j.isprsjprs.2018.03.018
10.1109/ICCV.2017.99
10.1109/LGRS.2013.2251453
10.1109/CVPR.2019.00521
10.1016/j.isprsjprs.2014.04.015
10.1109/CVPR.2018.00472
10.1109/CVPR42600.2020.01372
10.1109/CVPR42600.2020.00444
10.1109/CVPR42600.2020.01112
10.5194/isprs-annals-V-2-2021-43-2021
10.1175/BAMS-D-12-00154.1
10.1016/j.earscirev.2019.102929
10.1080/13658816.2018.1431840
10.5194/isprsannals-I-3-293-2012
10.1127/1432-8364/2010/0041
10.1109/JSTARS.2016.2537548
10.1109/LGRS.2019.2931119
10.1109/CVPR.2016.609
10.1109/ICCV48922.2021.00685
10.3390/rs5083749
10.1109/CVPR.2019.00326
10.1002/j.1538-7305.1948.tb01338.x
10.5194/isprs-archives-XLII-1-W1-151-2017
10.3390/rs8090730
10.3390/rs9090936
10.1109/ICCV.2019.00651
10.1016/j.rse.2012.03.027
10.1109/JSTARS.2015.2510867
10.1016/j.isprsjprs.2010.08.007
10.5194/isprs-annals-IV-2-231-2018
10.1109/ICRA48506.2021.9561496
10.1109/CVPR.2018.00479
10.1016/j.isprsjprs.2020.09.003
10.3390/ijgi9070450
10.1016/j.rse.2014.11.001
10.1109/IROS.2015.7353481
10.1093/nsr/nwx106
10.1016/j.rse.2008.02.004
10.1016/j.cag.2017.11.010
10.1016/j.isprsjprs.2020.03.016
10.1016/j.isprsjprs.2020.02.020
10.1109/CVPR.2017.16
10.1016/j.isprsjprs.2018.02.008
10.3390/rs6043284
10.1007/s10994-019-05855-6
10.1016/j.isprsjprs.2015.01.016
ContentType Journal Article
Copyright 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2022.04.016
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 254
ExternalDocumentID 10_1016_j_isprsjprs_2022_04_016
S0924271622001198
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c348t-380412e193a59ee581cfe93d9385084ef67dfc719641e4ce722f96cf6f2150183
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Thu Jul 10 18:47:11 EDT 2025
Thu Apr 24 22:49:57 EDT 2025
Tue Jul 01 03:46:48 EDT 2025
Fri Feb 23 02:39:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Point cloud semantic segmentation
Consistency constraint
Weakly supervised learning
Pseudo-label
Entropy regularization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-380412e193a59ee581cfe93d9385084ef67dfc719641e4ce722f96cf6f2150183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2675556995
PQPubID 24069
PageCount 18
ParticipantIDs proquest_miscellaneous_2675556995
crossref_primary_10_1016_j_isprsjprs_2022_04_016
crossref_citationtrail_10_1016_j_isprsjprs_2022_04_016
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2022_04_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Qin, Hu, Wang, Shan, Li (b0195) 2019; 17
Klokov, R., Lempitsky, V., 2017. Escape from cells: Deep kd-networks for the recognition of 3d point cloud models. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 863–872.
Weinmann, Jutzi, Hinz, Mallet (b0255) 2015; 105
Xu, X., Lee, G.H., 2020. Weakly supervised semantic point cloud segmentation: Towards 10 fewer labels. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13703–13712.
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L., 2019. Kpconv: Flexible and deformable convolution for point clouds. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6410–6419.
Wang, Liu, Guo, Sun, Tong (b0240) 2017; 36
Guo, Huang, Zhang, Sohn (b0065) 2015; 100
Zhang, Li, Li, Liu (b0310) 2018; 138
Gao, Pan, Li, Geng, Zhao (b0050) 2021
Antonarakis, Richards, Brasington (b0005) 2008; 112
Polewski, Yao, Heurich, Krzystek, Stilla (b0180) 2016; 9
Li, Wang, Xia (b0140) 2020; 164
Bearman, Russakovsky, Ferrari, Fei-Fei (b0010) 2016
Laine, S., Aila, T., 2017. Temporal ensembling for semi-supervised learning. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings, OpenReview.net.
Shannon (b0210) 1948; 27
Huang, Xu, Stilla (b0100) 2021; 177
Landrieu, L., Simonovsky, M., 2018. Large-scale point cloud semantic segmentation with superpoint graphs. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4558–4567.
Kolesnikov, Lampert (b0115) 2016
Polewski, Yao, Heurich, Krzystek, Stilla (b0175) 2015; 105
Hu, Yuan (b0090) 2016; 8
Rottensteiner, F., Sohn, G., Jung, J., Gerke, M., Baillard, C., Benitez, S., Breitkopf, U., 2012. The isprs benchmark on urban object classification and 3d building reconstruction. ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. I-3, 293–298.
Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A., 2019. Mixmatch: A holistic approach to semi-supervised learning. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (Eds.), Advances in Neural Information Processing Systems, Curran Associates, Inc. pp. 5049–5059.
Cramer (b0030) 2010; 2010
Miyato, Maeda, Koyama, Ishii (b0165) 2018; 41
Yao, Xu, Murasaki, Ando, Sagata (b0290) 2020; 12
Yao, Krzystek, Heurich (b0285) 2012; 123
Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H., 2019. Dual attention network for scene segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3141–3149.
Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), Advances in Neural Information Processing Systems, Curran Associates, Inc. pp. 5099–5108.
Grandvalet, Y., Bengio, Y., 2004. Semi-supervised learning by entropy minimization. In: Proceedings of the 17th International Conference on Neural Information Processing Systems, p. 529–536.
Van Engelen, Hoos (b0230) 2020; 109
Zhang, Lin, Ning (b0305) 2013; 5
Zhao, Pang, Wang (b0315) 2018; 32
Lin, Vosselman, Cao, Yang (b0150) 2020; 169
Guinard, Landrieu (b0060) 2017; XLII-1/W1
Rizaldy, A., Persello, C., Gevaert, C., Elberink, S.O., 2018. Fully convolutional networks for ground classification from lidar point clouds. ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. 231–238.
Yao, Dumitru, Loffeld, Datcu (b0280) 2016; 9
Zhou, Y., Tuzel, O., 2018. Voxelnet: End-to-end learning for point cloud based 3d object detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4490–4499.
Dong, N., Xing, E.P., 2018. Few-shot semantic segmentation with prototype learning. In: BMVC, pp. 1–13.
Fan, Yao, Fu (b0040) 2014; 6
He, R., Yang, J., Qi, X., 2021. Re-distributing biased pseudo labels for semi-supervised semantic segmentation: A baseline investigation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6930–6940.
Guo, Chehata, Mallet, Boukir (b0070) 2011; 66
Wang, Sun, Liu, Sarma, Bronstein, Solomon (b0245) 2019; 38
Boulch, Guerry, Le Saux, Audebert (b0020) 2018; 71
Tarvainen, A., Valpola, H., 2017. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204.
Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J., 2016. Volumetric and multi-view cnns for object classification on 3d data. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5648–5656.
Wei, J., Lin, G., Yap, K.H., Hung, T.Y., Xie, L., 2020. Multi-path region mining for weakly supervised 3d semantic segmentation on point clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4383–4392.
Zhou (b0330) 2017; 5
Maturana, D., Scherer, S., 2015. Voxnet: A 3d convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928.
Yousefhussien, Kelbe, Ientilucci, Salvaggio (b0300) 2018; 143
Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A., 2020. Randla-net: Efficient semantic segmentation of large-scale point clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11105–11114.
Zhou (b0320) 2013; 10
Hu, Q., Yang, B., Fang, G., Guo, Y., Leonardis, A., Trigoni, N., Markham, A., 2021. Sqn: Weakly-supervised semantic segmentation of large-scale 3d point clouds with 1000x fewer labels. arXiv preprint arXiv:2104.04891.
Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J., 2017. Pointnet: Deep learning on point sets for 3d classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85.
Iscen, A., Tolias, G., Avrithis, Y., Chum, O., 2019. Label propagation for deep semi-supervised learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5065–5074.
Kölle, Laupheimer, Schmohl, Haala, Rottensteiner, Wegner, Ledoux (b0120) 2021; 1
Liu, K., Gao, Z., Lin, F., Chen, B.M., 2020. Fg-net: Fast large-scale lidar point clouds understanding network leveraging correlated feature mining and geometric-aware modelling. arXiv preprint arXiv:2012.09439.
Yan, Shaker, El-Ashmawy (b0265) 2015; 158
Yang, Tan, Pei, Jiang (b0275) 2018; 18
Okyay, Telling, Glennie, Dietrich (b0170) 2019; 198
Yang, Jiang, Xu, Zhu, Jiang, Huang (b0270) 2017; 9
Lee, D.H., 2013. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on challenges in representation learning, ICML, pp. 1–6.
Li, Cheng, Liu, Xiao, Ma, Jin, Che, Liu, Wang, Qi (b0145) 2013; 94
Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk, E.D., Kurakin, A., Li, C.L., 2020. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems, pp. 596–608.
Huang, Xu, Hong, Yao, Ghamisi, Stilla (b0095) 2020; 163
Wang, P., Yao, W., 2021. Weakly supervised pseudo-label assisted learning for als point cloud semantic segmentation. ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. V-2-2021, 43–50.
Ye, Xu, Huang, Tong, Li, Liu, Luan, Hoegner, Stilla (b0295) 2020; 9
10.1016/j.isprsjprs.2022.04.016_b0105
Miyato (10.1016/j.isprsjprs.2022.04.016_b0165) 2018; 41
Ye (10.1016/j.isprsjprs.2022.04.016_b0295) 2020; 9
Antonarakis (10.1016/j.isprsjprs.2022.04.016_b0005) 2008; 112
Yang (10.1016/j.isprsjprs.2022.04.016_b0275) 2018; 18
10.1016/j.isprsjprs.2022.04.016_b0025
10.1016/j.isprsjprs.2022.04.016_b0225
Lin (10.1016/j.isprsjprs.2022.04.016_b0150) 2020; 169
Yang (10.1016/j.isprsjprs.2022.04.016_b0270) 2017; 9
Yousefhussien (10.1016/j.isprsjprs.2022.04.016_b0300) 2018; 143
10.1016/j.isprsjprs.2022.04.016_b0190
10.1016/j.isprsjprs.2022.04.016_b0075
10.1016/j.isprsjprs.2022.04.016_b0155
Zhou (10.1016/j.isprsjprs.2022.04.016_b0320) 2013; 10
10.1016/j.isprsjprs.2022.04.016_b0110
Wang (10.1016/j.isprsjprs.2022.04.016_b0245) 2019; 38
10.1016/j.isprsjprs.2022.04.016_b0035
Polewski (10.1016/j.isprsjprs.2022.04.016_b0180) 2016; 9
Shannon (10.1016/j.isprsjprs.2022.04.016_b0210) 1948; 27
Gao (10.1016/j.isprsjprs.2022.04.016_b0050) 2021
10.1016/j.isprsjprs.2022.04.016_b0235
Hu (10.1016/j.isprsjprs.2022.04.016_b0090) 2016; 8
Weinmann (10.1016/j.isprsjprs.2022.04.016_b0255) 2015; 105
Zhang (10.1016/j.isprsjprs.2022.04.016_b0305) 2013; 5
10.1016/j.isprsjprs.2022.04.016_b0080
Cramer (10.1016/j.isprsjprs.2022.04.016_b0030) 2010; 2010
10.1016/j.isprsjprs.2022.04.016_b0045
Wang (10.1016/j.isprsjprs.2022.04.016_b0240) 2017; 36
10.1016/j.isprsjprs.2022.04.016_b0160
10.1016/j.isprsjprs.2022.04.016_b0085
Guo (10.1016/j.isprsjprs.2022.04.016_b0065) 2015; 100
10.1016/j.isprsjprs.2022.04.016_b0205
10.1016/j.isprsjprs.2022.04.016_b0325
Guinard (10.1016/j.isprsjprs.2022.04.016_b0060) 2017; XLII-1/W1
10.1016/j.isprsjprs.2022.04.016_b0200
Kolesnikov (10.1016/j.isprsjprs.2022.04.016_b0115) 2016
10.1016/j.isprsjprs.2022.04.016_b0125
Fan (10.1016/j.isprsjprs.2022.04.016_b0040) 2014; 6
Okyay (10.1016/j.isprsjprs.2022.04.016_b0170) 2019; 198
Yao (10.1016/j.isprsjprs.2022.04.016_b0280) 2016; 9
10.1016/j.isprsjprs.2022.04.016_b0130
Boulch (10.1016/j.isprsjprs.2022.04.016_b0020) 2018; 71
Guo (10.1016/j.isprsjprs.2022.04.016_b0070) 2011; 66
Zhang (10.1016/j.isprsjprs.2022.04.016_b0310) 2018; 138
10.1016/j.isprsjprs.2022.04.016_b0055
Bearman (10.1016/j.isprsjprs.2022.04.016_b0010) 2016
10.1016/j.isprsjprs.2022.04.016_b0250
Yao (10.1016/j.isprsjprs.2022.04.016_b0285) 2012; 123
Yao (10.1016/j.isprsjprs.2022.04.016_b0290) 2020; 12
Yan (10.1016/j.isprsjprs.2022.04.016_b0265) 2015; 158
10.1016/j.isprsjprs.2022.04.016_b0215
Li (10.1016/j.isprsjprs.2022.04.016_b0140) 2020; 164
Qin (10.1016/j.isprsjprs.2022.04.016_b0195) 2019; 17
10.1016/j.isprsjprs.2022.04.016_b0135
Kölle (10.1016/j.isprsjprs.2022.04.016_b0120) 2021; 1
10.1016/j.isprsjprs.2022.04.016_b0015
Van Engelen (10.1016/j.isprsjprs.2022.04.016_b0230) 2020; 109
Polewski (10.1016/j.isprsjprs.2022.04.016_b0175) 2015; 105
Li (10.1016/j.isprsjprs.2022.04.016_b0145) 2013; 94
Huang (10.1016/j.isprsjprs.2022.04.016_b0100) 2021; 177
Huang (10.1016/j.isprsjprs.2022.04.016_b0095) 2020; 163
10.1016/j.isprsjprs.2022.04.016_b0185
Zhao (10.1016/j.isprsjprs.2022.04.016_b0315) 2018; 32
10.1016/j.isprsjprs.2022.04.016_b0220
Zhou (10.1016/j.isprsjprs.2022.04.016_b0330) 2017; 5
10.1016/j.isprsjprs.2022.04.016_b0260
References_xml – volume: 12
  start-page: 1
  year: 2020
  end-page: 13
  ident: b0290
  article-title: Pseudo-labelling-aided semantic segmentation on sparsely annotated 3d point clouds
  publication-title: IPSJ Trans. Comput. Vision Appl.
– reference: Hu, Q., Yang, B., Fang, G., Guo, Y., Leonardis, A., Trigoni, N., Markham, A., 2021. Sqn: Weakly-supervised semantic segmentation of large-scale 3d point clouds with 1000x fewer labels. arXiv preprint arXiv:2104.04891.
– volume: 36
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0240
  article-title: O-cnn: Octree-based convolutional neural networks for 3d shape analysis
  publication-title: ACM Trans. Graph. (TOG)
– volume: 138
  start-page: 86
  year: 2018
  end-page: 100
  ident: b0310
  article-title: Large-scale urban point cloud labeling and reconstruction
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 109
  start-page: 373
  year: 2020
  end-page: 440
  ident: b0230
  article-title: A survey on semi-supervised learning
  publication-title: Mach. Learn.
– volume: 32
  start-page: 960
  year: 2018
  end-page: 979
  ident: b0315
  article-title: Classifying airborne lidar point clouds via deep features learned by a multi-scale convolutional neural network
  publication-title: Int. J. Geogr. Inform. Sci.
– volume: 112
  start-page: 2988
  year: 2008
  end-page: 2998
  ident: b0005
  article-title: Object-based land cover classification using airborne lidar
  publication-title: Remote Sens. Environ.
– volume: 164
  start-page: 26
  year: 2020
  end-page: 40
  ident: b0140
  article-title: A geometry-attentional network for als point cloud classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 100
  start-page: 71
  year: 2015
  end-page: 83
  ident: b0065
  article-title: Classification of airborne laser scanning data using jointboost
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J., 2017. Pointnet: Deep learning on point sets for 3d classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85.
– volume: 27
  start-page: 379
  year: 1948
  end-page: 423
  ident: b0210
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
– volume: 9
  year: 2020
  ident: b0295
  article-title: Lasdu: A large-scale aerial lidar dataset for semantic labeling in dense urban areas
  publication-title: ISPRS Int. J. Geo-Inform.
– reference: Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), Advances in Neural Information Processing Systems, Curran Associates, Inc. pp. 5099–5108.
– volume: 143
  start-page: 191
  year: 2018
  end-page: 204
  ident: b0300
  article-title: A multi-scale fully convolutional network for semantic labeling of 3d point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 123
  start-page: 368
  year: 2012
  end-page: 380
  ident: b0285
  article-title: Tree species classification and estimation of stem volume and dbh based on single tree extraction by exploiting airborne full-waveform lidar data
  publication-title: Remote Sens. Environ.
– volume: 18
  year: 2018
  ident: b0275
  article-title: Segmentation and multi-scale convolutional neural network-based classification of airborne laser scanner data
  publication-title: Sensors
– start-page: 695
  year: 2016
  end-page: 711
  ident: b0115
  article-title: Seed, expand and constrain: Three principles for weakly-supervised image segmentation
  publication-title: Computer Vision – ECCV 2016
– volume: 10
  start-page: 928
  year: 2013
  end-page: 931
  ident: b0320
  article-title: An object-based approach for urban land cover classification: Integrating lidar height and intensity data
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Grandvalet, Y., Bengio, Y., 2004. Semi-supervised learning by entropy minimization. In: Proceedings of the 17th International Conference on Neural Information Processing Systems, p. 529–536.
– reference: Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L., 2019. Kpconv: Flexible and deformable convolution for point clouds. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6410–6419.
– reference: Laine, S., Aila, T., 2017. Temporal ensembling for semi-supervised learning. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings, OpenReview.net.
– reference: Tarvainen, A., Valpola, H., 2017. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204.
– volume: 177
  start-page: 1
  year: 2021
  end-page: 20
  ident: b0100
  article-title: Granet: Global relation-aware attentional network for semantic segmentation of als point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A., 2019. Mixmatch: A holistic approach to semi-supervised learning. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (Eds.), Advances in Neural Information Processing Systems, Curran Associates, Inc. pp. 5049–5059.
– volume: 9
  start-page: 1993
  year: 2016
  end-page: 2008
  ident: b0280
  article-title: Semi-supervised hierarchical clustering for semantic sar image annotation
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 163
  start-page: 62
  year: 2020
  end-page: 81
  ident: b0095
  article-title: Deep point embedding for urban classification using als point clouds: A new perspective from local to global
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Xu, X., Lee, G.H., 2020. Weakly supervised semantic point cloud segmentation: Towards 10 fewer labels. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13703–13712.
– volume: 105
  start-page: 286
  year: 2015
  end-page: 304
  ident: b0255
  article-title: Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 2010
  start-page: 73
  year: 2010
  end-page: 82
  ident: b0030
  article-title: The dgpf-test on digital airborne camera evaluation overview and test design
  publication-title: Photogrammetrie - Fernerkundung - Geoinformation
– volume: 6
  start-page: 3284
  year: 2014
  end-page: 3301
  ident: b0040
  article-title: Segmentation of sloped roofs from airborne lidar point clouds using ridge-based hierarchical decomposition
  publication-title: Remote Sens.
– reference: He, R., Yang, J., Qi, X., 2021. Re-distributing biased pseudo labels for semi-supervised semantic segmentation: A baseline investigation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6930–6940.
– reference: Klokov, R., Lempitsky, V., 2017. Escape from cells: Deep kd-networks for the recognition of 3d point cloud models. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 863–872.
– reference: Wei, J., Lin, G., Yap, K.H., Hung, T.Y., Xie, L., 2020. Multi-path region mining for weakly supervised 3d semantic segmentation on point clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4383–4392.
– start-page: 1
  year: 2021
  end-page: 19
  ident: b0050
  article-title: Are we hungry for 3d lidar data for semantic segmentation? a survey of datasets and methods
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 94
  start-page: 1145
  year: 2013
  end-page: 1160
  ident: b0145
  article-title: Heihe watershed allied telemetry experimental research (hiwater): Scientific objectives and experimental design
  publication-title: Bull. Am. Meteorol. Soc.
– reference: Wang, P., Yao, W., 2021. Weakly supervised pseudo-label assisted learning for als point cloud semantic segmentation. ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. V-2-2021, 43–50.
– volume: 169
  start-page: 73
  year: 2020
  end-page: 92
  ident: b0150
  article-title: Active and incremental learning for semantic als point cloud segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 105
  start-page: 252
  year: 2015
  end-page: 271
  ident: b0175
  article-title: Detection of fallen trees in als point clouds using a normalized cut approach trained by simulation
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 198
  year: 2019
  ident: b0170
  article-title: Airborne lidar change detection: An overview of earth sciences applications
  publication-title: Earth Sci. Rev.
– start-page: 549
  year: 2016
  end-page: 565
  ident: b0010
  article-title: What’s the point: Semantic segmentation with point supervision
  publication-title: Computer Vision – ECCV 2016
– volume: 5
  start-page: 3749
  year: 2013
  end-page: 3775
  ident: b0305
  article-title: Svm-based classification of segmented airborne lidar point clouds in urban areas
  publication-title: Remote Sens.
– reference: Rizaldy, A., Persello, C., Gevaert, C., Elberink, S.O., 2018. Fully convolutional networks for ground classification from lidar point clouds. ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. 231–238.
– reference: Zhou, Y., Tuzel, O., 2018. Voxelnet: End-to-end learning for point cloud based 3d object detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4490–4499.
– reference: Maturana, D., Scherer, S., 2015. Voxnet: A 3d convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928.
– reference: Rottensteiner, F., Sohn, G., Jung, J., Gerke, M., Baillard, C., Benitez, S., Breitkopf, U., 2012. The isprs benchmark on urban object classification and 3d building reconstruction. ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. I-3, 293–298.
– volume: XLII-1/W1
  start-page: 151
  year: 2017
  end-page: 157
  ident: b0060
  article-title: Weakly supervised segmentation-aided classification of urban scenes from 3d lidar point clouds
  publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci.
– volume: 9
  start-page: 2910
  year: 2016
  end-page: 2922
  ident: b0180
  article-title: Combining active and semisupervised learning of remote sensing data within a renyi entropy regularization framework
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 8
  year: 2016
  ident: b0090
  article-title: Deep-learning-based classification for dtm extraction from als point cloud
  publication-title: Remote Sens.
– volume: 41
  start-page: 1979
  year: 2018
  end-page: 1993
  ident: b0165
  article-title: Virtual adversarial training: a regularization method for supervised and semi-supervised learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Iscen, A., Tolias, G., Avrithis, Y., Chum, O., 2019. Label propagation for deep semi-supervised learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5065–5074.
– volume: 66
  start-page: 56
  year: 2011
  end-page: 66
  ident: b0070
  article-title: Relevance of airborne lidar and multispectral image data for urban scene classification using random forests
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk, E.D., Kurakin, A., Li, C.L., 2020. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems, pp. 596–608.
– volume: 71
  start-page: 189
  year: 2018
  end-page: 198
  ident: b0020
  article-title: Snapnet: 3d point cloud semantic labeling with 2d deep segmentation networks
  publication-title: Comput. Graph.
– reference: Lee, D.H., 2013. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on challenges in representation learning, ICML, pp. 1–6.
– reference: Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J., 2016. Volumetric and multi-view cnns for object classification on 3d data. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5648–5656.
– volume: 5
  start-page: 44
  year: 2017
  end-page: 53
  ident: b0330
  article-title: A brief introduction to weakly supervised learning
  publication-title: Natl. Sci. Rev.
– volume: 158
  start-page: 295
  year: 2015
  end-page: 310
  ident: b0265
  article-title: Urban land cover classification using airborne lidar data: A review
  publication-title: Remote Sens. Environ.
– volume: 38
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0245
  article-title: Dynamic graph cnn for learning on point clouds
  publication-title: ACM Trans. Graph.
– reference: Landrieu, L., Simonovsky, M., 2018. Large-scale point cloud semantic segmentation with superpoint graphs. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4558–4567.
– volume: 9
  year: 2017
  ident: b0270
  article-title: A convolutional neural network-based 3d semantic labeling method for als point clouds
  publication-title: Remote Sens.
– reference: Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H., 2019. Dual attention network for scene segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3141–3149.
– reference: Liu, K., Gao, Z., Lin, F., Chen, B.M., 2020. Fg-net: Fast large-scale lidar point clouds understanding network leveraging correlated feature mining and geometric-aware modelling. arXiv preprint arXiv:2012.09439.
– volume: 17
  start-page: 859
  year: 2019
  end-page: 863
  ident: b0195
  article-title: Semantic labeling of als point cloud via learning voxel and pixel representations
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Dong, N., Xing, E.P., 2018. Few-shot semantic segmentation with prototype learning. In: BMVC, pp. 1–13.
– reference: Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A., 2020. Randla-net: Efficient semantic segmentation of large-scale point clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11105–11114.
– volume: 1
  year: 2021
  ident: b0120
  article-title: The hessigheim 3d (h3d) benchmark on semantic segmentation of high-resolution 3d point clouds and textured meshes from uav lidar and multi-view-stereo
  publication-title: ISPRS Open J. Photogramm. Remote Sens.
– volume: 41
  start-page: 1979
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.04.016_b0165
  article-title: Virtual adversarial training: a regularization method for supervised and semi-supervised learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2858821
– volume: 177
  start-page: 1
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.04.016_b0100
  article-title: Granet: Global relation-aware attentional network for semantic segmentation of als point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.04.017
– volume: 105
  start-page: 252
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.04.016_b0175
  article-title: Detection of fallen trees in als point clouds using a normalized cut approach trained by simulation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.01.010
– volume: 143
  start-page: 191
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.04.016_b0300
  article-title: A multi-scale fully convolutional network for semantic labeling of 3d point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.03.018
– ident: 10.1016/j.isprsjprs.2022.04.016_b0110
  doi: 10.1109/ICCV.2017.99
– volume: 10
  start-page: 928
  year: 2013
  ident: 10.1016/j.isprsjprs.2022.04.016_b0320
  article-title: An object-based approach for urban land cover classification: Integrating lidar height and intensity data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2251453
– ident: 10.1016/j.isprsjprs.2022.04.016_b0105
  doi: 10.1109/CVPR.2019.00521
– volume: 100
  start-page: 71
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.04.016_b0065
  article-title: Classification of airborne laser scanning data using jointboost
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.04.015
– start-page: 695
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.04.016_b0115
  article-title: Seed, expand and constrain: Three principles for weakly-supervised image segmentation
– ident: 10.1016/j.isprsjprs.2022.04.016_b0135
– ident: 10.1016/j.isprsjprs.2022.04.016_b0325
  doi: 10.1109/CVPR.2018.00472
– ident: 10.1016/j.isprsjprs.2022.04.016_b0260
  doi: 10.1109/CVPR42600.2020.01372
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.04.016_b0290
  article-title: Pseudo-labelling-aided semantic segmentation on sparsely annotated 3d point clouds
  publication-title: IPSJ Trans. Comput. Vision Appl.
– ident: 10.1016/j.isprsjprs.2022.04.016_b0250
  doi: 10.1109/CVPR42600.2020.00444
– ident: 10.1016/j.isprsjprs.2022.04.016_b0055
– ident: 10.1016/j.isprsjprs.2022.04.016_b0085
  doi: 10.1109/CVPR42600.2020.01112
– ident: 10.1016/j.isprsjprs.2022.04.016_b0235
  doi: 10.5194/isprs-annals-V-2-2021-43-2021
– volume: 94
  start-page: 1145
  year: 2013
  ident: 10.1016/j.isprsjprs.2022.04.016_b0145
  article-title: Heihe watershed allied telemetry experimental research (hiwater): Scientific objectives and experimental design
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-12-00154.1
– volume: 198
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.04.016_b0170
  article-title: Airborne lidar change detection: An overview of earth sciences applications
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2019.102929
– volume: 32
  start-page: 960
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.04.016_b0315
  article-title: Classifying airborne lidar point clouds via deep features learned by a multi-scale convolutional neural network
  publication-title: Int. J. Geogr. Inform. Sci.
  doi: 10.1080/13658816.2018.1431840
– ident: 10.1016/j.isprsjprs.2022.04.016_b0205
  doi: 10.5194/isprsannals-I-3-293-2012
– volume: 36
  start-page: 1
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.04.016_b0240
  article-title: O-cnn: Octree-based convolutional neural networks for 3d shape analysis
  publication-title: ACM Trans. Graph. (TOG)
– volume: 2010
  start-page: 73
  year: 2010
  ident: 10.1016/j.isprsjprs.2022.04.016_b0030
  article-title: The dgpf-test on digital airborne camera evaluation overview and test design
  publication-title: Photogrammetrie - Fernerkundung - Geoinformation
  doi: 10.1127/1432-8364/2010/0041
– volume: 9
  start-page: 1993
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.04.016_b0280
  article-title: Semi-supervised hierarchical clustering for semantic sar image annotation
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2016.2537548
– ident: 10.1016/j.isprsjprs.2022.04.016_b0125
– volume: 17
  start-page: 859
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.04.016_b0195
  article-title: Semantic labeling of als point cloud via learning voxel and pixel representations
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2931119
– ident: 10.1016/j.isprsjprs.2022.04.016_b0190
– ident: 10.1016/j.isprsjprs.2022.04.016_b0185
  doi: 10.1109/CVPR.2016.609
– ident: 10.1016/j.isprsjprs.2022.04.016_b0220
– ident: 10.1016/j.isprsjprs.2022.04.016_b0075
  doi: 10.1109/ICCV48922.2021.00685
– volume: 5
  start-page: 3749
  year: 2013
  ident: 10.1016/j.isprsjprs.2022.04.016_b0305
  article-title: Svm-based classification of segmented airborne lidar point clouds in urban areas
  publication-title: Remote Sens.
  doi: 10.3390/rs5083749
– ident: 10.1016/j.isprsjprs.2022.04.016_b0045
  doi: 10.1109/CVPR.2019.00326
– volume: 27
  start-page: 379
  year: 1948
  ident: 10.1016/j.isprsjprs.2022.04.016_b0210
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 18
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.04.016_b0275
  article-title: Segmentation and multi-scale convolutional neural network-based classification of airborne laser scanner data
  publication-title: Sensors
– volume: XLII-1/W1
  start-page: 151
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.04.016_b0060
  article-title: Weakly supervised segmentation-aided classification of urban scenes from 3d lidar point clouds
  publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci.
  doi: 10.5194/isprs-archives-XLII-1-W1-151-2017
– volume: 8
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.04.016_b0090
  article-title: Deep-learning-based classification for dtm extraction from als point cloud
  publication-title: Remote Sens.
  doi: 10.3390/rs8090730
– ident: 10.1016/j.isprsjprs.2022.04.016_b0015
– volume: 9
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.04.016_b0270
  article-title: A convolutional neural network-based 3d semantic labeling method for als point clouds
  publication-title: Remote Sens.
  doi: 10.3390/rs9090936
– ident: 10.1016/j.isprsjprs.2022.04.016_b0225
  doi: 10.1109/ICCV.2019.00651
– volume: 123
  start-page: 368
  year: 2012
  ident: 10.1016/j.isprsjprs.2022.04.016_b0285
  article-title: Tree species classification and estimation of stem volume and dbh based on single tree extraction by exploiting airborne full-waveform lidar data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.03.027
– volume: 9
  start-page: 2910
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.04.016_b0180
  article-title: Combining active and semisupervised learning of remote sensing data within a renyi entropy regularization framework
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2015.2510867
– volume: 66
  start-page: 56
  year: 2011
  ident: 10.1016/j.isprsjprs.2022.04.016_b0070
  article-title: Relevance of airborne lidar and multispectral image data for urban scene classification using random forests
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.08.007
– volume: 38
  start-page: 1
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.04.016_b0245
  article-title: Dynamic graph cnn for learning on point clouds
  publication-title: ACM Trans. Graph.
– ident: 10.1016/j.isprsjprs.2022.04.016_b0200
  doi: 10.5194/isprs-annals-IV-2-231-2018
– ident: 10.1016/j.isprsjprs.2022.04.016_b0155
  doi: 10.1109/ICRA48506.2021.9561496
– ident: 10.1016/j.isprsjprs.2022.04.016_b0130
  doi: 10.1109/CVPR.2018.00479
– start-page: 1
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.04.016_b0050
  article-title: Are we hungry for 3d lidar data for semantic segmentation? a survey of datasets and methods
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 169
  start-page: 73
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.04.016_b0150
  article-title: Active and incremental learning for semantic als point cloud segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.09.003
– volume: 9
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.04.016_b0295
  article-title: Lasdu: A large-scale aerial lidar dataset for semantic labeling in dense urban areas
  publication-title: ISPRS Int. J. Geo-Inform.
  doi: 10.3390/ijgi9070450
– volume: 158
  start-page: 295
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.04.016_b0265
  article-title: Urban land cover classification using airborne lidar data: A review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.11.001
– ident: 10.1016/j.isprsjprs.2022.04.016_b0080
  doi: 10.1109/CVPR42600.2020.01112
– ident: 10.1016/j.isprsjprs.2022.04.016_b0160
  doi: 10.1109/IROS.2015.7353481
– ident: 10.1016/j.isprsjprs.2022.04.016_b0215
– volume: 5
  start-page: 44
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.04.016_b0330
  article-title: A brief introduction to weakly supervised learning
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx106
– volume: 112
  start-page: 2988
  year: 2008
  ident: 10.1016/j.isprsjprs.2022.04.016_b0005
  article-title: Object-based land cover classification using airborne lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.02.004
– volume: 71
  start-page: 189
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.04.016_b0020
  article-title: Snapnet: 3d point cloud semantic labeling with 2d deep segmentation networks
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2017.11.010
– volume: 1
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.04.016_b0120
  article-title: The hessigheim 3d (h3d) benchmark on semantic segmentation of high-resolution 3d point clouds and textured meshes from uav lidar and multi-view-stereo
  publication-title: ISPRS Open J. Photogramm. Remote Sens.
– volume: 164
  start-page: 26
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.04.016_b0140
  article-title: A geometry-attentional network for als point cloud classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.03.016
– volume: 163
  start-page: 62
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.04.016_b0095
  article-title: Deep point embedding for urban classification using als point clouds: A new perspective from local to global
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.02.020
– ident: 10.1016/j.isprsjprs.2022.04.016_b0025
  doi: 10.1109/CVPR.2017.16
– start-page: 549
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.04.016_b0010
  article-title: What’s the point: Semantic segmentation with point supervision
– ident: 10.1016/j.isprsjprs.2022.04.016_b0035
– volume: 138
  start-page: 86
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.04.016_b0310
  article-title: Large-scale urban point cloud labeling and reconstruction
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.02.008
– volume: 6
  start-page: 3284
  year: 2014
  ident: 10.1016/j.isprsjprs.2022.04.016_b0040
  article-title: Segmentation of sloped roofs from airborne lidar point clouds using ridge-based hierarchical decomposition
  publication-title: Remote Sens.
  doi: 10.3390/rs6043284
– volume: 109
  start-page: 373
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.04.016_b0230
  article-title: A survey on semi-supervised learning
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-019-05855-6
– volume: 105
  start-page: 286
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.04.016_b0255
  article-title: Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.01.016
SSID ssj0001568
Score 2.5135276
Snippet Although novel point cloud semantic segmentation schemes that continuously surpass state-of-the-art results exist, the success of learning an effective model...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 237
SubjectTerms Consistency constraint
data collection
entropy
Entropy regularization
photogrammetry
Point cloud semantic segmentation
probability
Pseudo-label
Weakly supervised learning
Title A new weakly supervised approach for ALS point cloud semantic segmentation
URI https://dx.doi.org/10.1016/j.isprsjprs.2022.04.016
https://www.proquest.com/docview/2675556995
Volume 188
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KPagH8YlvVvAam8fm5S0US331UgvelmQzq6k1DaZBvPjbnc2jWhF68BBINrMkzO7MfpvMfEPIeSR1I5RC1xiCWY1ZwtJCZY_MwhsQ-6EL6jvk_cDpj9jNo_3YIt0mF0aFVda-v_LppbeuWzq1NjtZknSGOm4dTEWAZJbEZSrhV7HX4Zy--PwO8zCqdDglrCnphRivJM_e8jEeuFE0zZLzVBU-_3uF-uWrywWot0k2auRIg-rltkgL0m2y_oNPcJus1iXNnz92yE1AETHTdwhfJh80LzLlFHKIacMiThGu0uBuSLNpks6omEyLmObwiqpOBJ48vdZpSekuGfWuHrp9rS6coAmLeTPNUqRCJiA2C20fwPYMIcG3Yt_yEI8xkI4bS-EqLi4DmADXNKXvCOlIBAA6GvkeaafTFPYJldIV0oj0cjG39MiLpMFCcDw7MmwZxgfEaZTFRc0qropbTHgTPjbmcy1zpWWuM47tB0Sfd8wqYo3lXS6b0eALc4Sj-1_e-awZP44WpH6LhClMCxTCPZNtO75vH_7nAUdkTV1VYWTHpD17K-AEAcssOi1n5ClZCa5v-4MvKibsmg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH8YlvI3gt20f68raIsuq6FxW8hTadaHXtFruL-O-dtOmiInjwUChJhpZJMvNNO_kG4CRVtpMoaVucwKzFPelZid6P3KMOzOIkRP0d8mYY9O_51YP_MAdn7VkYnVZpbH9j02trbVq6RpvdMs-7tzaFDq4mQHJr4rJoHhY0OxXvwELv8ro_nBlkpzkRp8dbWuBbmldelW_VM10UK7puTXuqa5__7qR-mOvaB12swooBj6zXvN8azGGxDstfKAXXYdFUNX_62ICrHiPQzN4xeRl9sGpaartQYcZaInFGiJX1BresHOfFhMnReJqxCl9J27mkm8dXczKp2IT7i_O7s75laidY0uPRxPI0r5CLBM8SP0b0I0cqjL0s9iKCZBxVEGZKhpqOy0EuMXRdFQdSBYowgE37fAs6xbjAbWBKhVI5qV37c89Oo1Q5PMEg8lPHV0m2A0GrLCENsbiubzESbQbZs5hpWWgtC5sLat8BeyZYNtwaf4uctrMhvi0TQR7gb-Hjdv4EbSL9ZyQpcDylQRQ2-X4Qx_7ufx5wBIv9u5uBGFwOr_dgSfc0WWX70Jm8TfGA8MskPTTr8xNElu9L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+weakly+supervised+approach+for+ALS+point+cloud+semantic+segmentation&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Wang%2C+Puzuo&rft.au=Yao%2C+Wei&rft.date=2022-06-01&rft.issn=0924-2716&rft.volume=188&rft.spage=237&rft.epage=254&rft_id=info:doi/10.1016%2Fj.isprsjprs.2022.04.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isprsjprs_2022_04_016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon