A new weakly supervised approach for ALS point cloud semantic segmentation
Although novel point cloud semantic segmentation schemes that continuously surpass state-of-the-art results exist, the success of learning an effective model typically relies on the availability of abundant labeled data. However, data annotation is a time-consumng and labor-intensive task, particula...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 188; pp. 237 - 254 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0924-2716 1872-8235 |
DOI | 10.1016/j.isprsjprs.2022.04.016 |
Cover
Loading…
Abstract | Although novel point cloud semantic segmentation schemes that continuously surpass state-of-the-art results exist, the success of learning an effective model typically relies on the availability of abundant labeled data. However, data annotation is a time-consumng and labor-intensive task, particularly for large-scale airborne laser scanning (ALS) point clouds involving multiple classes in urban areas. Therefore, simultaneously obtaining promising results while significantly reducing labeling is crucial. In this study, we propose a deep-learning-based weakly supervised framework for the semantic segmentation of ALS point clouds. This is to exploit implicit information from unlabeled data subject to incomplete and sparse labels. Entropy regularization is introduced to penalize class overlap in the predictive probability. Additionally, a consistency constraint is designed to improve the robustness of the predictions by minimizing the difference between the current and ensemble predictions. Finally, we propose an online soft pseudo-labeling strategy to create additional supervisory sources in an efficient and nonparametric manner. Extensive experimental analysis using three benchmark datasets demonstrates that our proposed method significantly boosts the classification performance without compromising the computational efficiency, considering the sparse point annotations. It outperforms the current weakly supervised methods and achieves a result comparable to that of full supervision competitors. Considering the ISPRS Vaihingen 3D data, using only 1‰ labels, our method achieved an overall accuracy of 83.0% and an average F1 score of 70.0%. These increased by 6.9% and 12.8%, respectively, compared to the model trained only using sparse label information. |
---|---|
AbstractList | Although novel point cloud semantic segmentation schemes that continuously surpass state-of-the-art results exist, the success of learning an effective model typically relies on the availability of abundant labeled data. However, data annotation is a time-consumng and labor-intensive task, particularly for large-scale airborne laser scanning (ALS) point clouds involving multiple classes in urban areas. Therefore, simultaneously obtaining promising results while significantly reducing labeling is crucial. In this study, we propose a deep-learning-based weakly supervised framework for the semantic segmentation of ALS point clouds. This is to exploit implicit information from unlabeled data subject to incomplete and sparse labels. Entropy regularization is introduced to penalize class overlap in the predictive probability. Additionally, a consistency constraint is designed to improve the robustness of the predictions by minimizing the difference between the current and ensemble predictions. Finally, we propose an online soft pseudo-labeling strategy to create additional supervisory sources in an efficient and nonparametric manner. Extensive experimental analysis using three benchmark datasets demonstrates that our proposed method significantly boosts the classification performance without compromising the computational efficiency, considering the sparse point annotations. It outperforms the current weakly supervised methods and achieves a result comparable to that of full supervision competitors. Considering the ISPRS Vaihingen 3D data, using only 1‰ labels, our method achieved an overall accuracy of 83.0% and an average F1 score of 70.0%. These increased by 6.9% and 12.8%, respectively, compared to the model trained only using sparse label information. |
Author | Wang, Puzuo Yao, Wei |
Author_xml | – sequence: 1 givenname: Puzuo surname: Wang fullname: Wang, Puzuo email: puzuo.wang@connect.polyu.hk organization: Dept. of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong – sequence: 2 givenname: Wei surname: Yao fullname: Yao, Wei email: wei.hn.yao@polyu.edu.hk organization: Dept. of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong |
BookMark | eNqNkD1PwzAQhi1UJMrHb8AjS4LtxI49MFSIT1ViAGbLcs7gktrBTqj67wkqYmCB4XSnV-97unsO0SzEAAidUlJSQsX5qvS5T3k1VckIYyWpy0nfQ3MqG1ZIVvEZmhPF6oI1VBygw5xXhBDKhZyj-wUOsMEbMG_dFuexh_ThM7TY9H2Kxr5iFxNeLB9xH30YsO3i2OIMaxMGb6fhZQ1hMIOP4RjtO9NlOPnuR-j5-urp8rZYPtzcXS6Wha1qORSVJDVlQFVluALgkloHqmpVJTmRNTjRtM42VImaQm2hYcwpYZ1wjHJCZXWEznZ7pwPfR8iDXvtsoetMgDhmzUTDORdK8cna7Kw2xZwTON0nvzZpqynRX_T0Sv_Q01_0NKn1pE_Ji19J63dvDsn47h_5xS4PE4kPD0ln6yFYaH0CO-g2-j93fAKUzZQg |
CitedBy_id | crossref_primary_10_1016_j_isprsjprs_2023_09_002 crossref_primary_10_1016_j_isprsjprs_2024_09_006 crossref_primary_10_1109_JSTARS_2024_3469269 crossref_primary_10_1109_TITS_2024_3469546 crossref_primary_10_1016_j_jag_2022_103129 crossref_primary_10_1109_TGRS_2024_3384250 crossref_primary_10_1109_JSTARS_2022_3223698 crossref_primary_10_1109_TGRS_2024_3364181 crossref_primary_10_1061_JCCEE5_CPENG_6263 crossref_primary_10_1109_TGRS_2024_3506016 crossref_primary_10_1109_JSTARS_2024_3363243 crossref_primary_10_1109_TGRS_2024_3484681 crossref_primary_10_1007_s00371_023_02819_9 crossref_primary_10_1109_TGRS_2024_3453966 crossref_primary_10_1088_1361_6501_ad824d crossref_primary_10_1049_cvi2_12250 crossref_primary_10_1016_j_procir_2024_10_021 crossref_primary_10_1016_j_jag_2023_103258 crossref_primary_10_1016_j_jag_2024_103753 crossref_primary_10_1016_j_jag_2024_103951 crossref_primary_10_1007_s11263_023_01975_8 crossref_primary_10_1016_j_jag_2024_104105 crossref_primary_10_1016_j_oceaneng_2024_117418 crossref_primary_10_3390_rs16173319 crossref_primary_10_1109_TGRS_2024_3458013 crossref_primary_10_1109_TGRS_2025_3535104 crossref_primary_10_1007_s11276_023_03385_7 crossref_primary_10_1049_cit2_12239 crossref_primary_10_3390_rs16030485 crossref_primary_10_1016_j_compbiomed_2024_108115 crossref_primary_10_3788_CJL231411 crossref_primary_10_1109_TIP_2023_3286708 crossref_primary_10_3390_rs15030548 crossref_primary_10_3390_rs14143421 crossref_primary_10_1111_phor_12468 crossref_primary_10_1016_j_isprsjprs_2022_03_001 crossref_primary_10_1109_TPAMI_2024_3416302 crossref_primary_10_1109_TGRS_2024_3524212 crossref_primary_10_1109_TGRS_2024_3358370 crossref_primary_10_1016_j_isprsjprs_2022_02_007 crossref_primary_10_1109_TITS_2024_3496938 |
Cites_doi | 10.1109/TPAMI.2018.2858821 10.1016/j.isprsjprs.2021.04.017 10.1016/j.isprsjprs.2015.01.010 10.1016/j.isprsjprs.2018.03.018 10.1109/ICCV.2017.99 10.1109/LGRS.2013.2251453 10.1109/CVPR.2019.00521 10.1016/j.isprsjprs.2014.04.015 10.1109/CVPR.2018.00472 10.1109/CVPR42600.2020.01372 10.1109/CVPR42600.2020.00444 10.1109/CVPR42600.2020.01112 10.5194/isprs-annals-V-2-2021-43-2021 10.1175/BAMS-D-12-00154.1 10.1016/j.earscirev.2019.102929 10.1080/13658816.2018.1431840 10.5194/isprsannals-I-3-293-2012 10.1127/1432-8364/2010/0041 10.1109/JSTARS.2016.2537548 10.1109/LGRS.2019.2931119 10.1109/CVPR.2016.609 10.1109/ICCV48922.2021.00685 10.3390/rs5083749 10.1109/CVPR.2019.00326 10.1002/j.1538-7305.1948.tb01338.x 10.5194/isprs-archives-XLII-1-W1-151-2017 10.3390/rs8090730 10.3390/rs9090936 10.1109/ICCV.2019.00651 10.1016/j.rse.2012.03.027 10.1109/JSTARS.2015.2510867 10.1016/j.isprsjprs.2010.08.007 10.5194/isprs-annals-IV-2-231-2018 10.1109/ICRA48506.2021.9561496 10.1109/CVPR.2018.00479 10.1016/j.isprsjprs.2020.09.003 10.3390/ijgi9070450 10.1016/j.rse.2014.11.001 10.1109/IROS.2015.7353481 10.1093/nsr/nwx106 10.1016/j.rse.2008.02.004 10.1016/j.cag.2017.11.010 10.1016/j.isprsjprs.2020.03.016 10.1016/j.isprsjprs.2020.02.020 10.1109/CVPR.2017.16 10.1016/j.isprsjprs.2018.02.008 10.3390/rs6043284 10.1007/s10994-019-05855-6 10.1016/j.isprsjprs.2015.01.016 |
ContentType | Journal Article |
Copyright | 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2022.04.016 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 254 |
ExternalDocumentID | 10_1016_j_isprsjprs_2022_04_016 S0924271622001198 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c348t-380412e193a59ee581cfe93d9385084ef67dfc719641e4ce722f96cf6f2150183 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Thu Jul 10 18:47:11 EDT 2025 Thu Apr 24 22:49:57 EDT 2025 Tue Jul 01 03:46:48 EDT 2025 Fri Feb 23 02:39:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Point cloud semantic segmentation Consistency constraint Weakly supervised learning Pseudo-label Entropy regularization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-380412e193a59ee581cfe93d9385084ef67dfc719641e4ce722f96cf6f2150183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2675556995 |
PQPubID | 24069 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2675556995 crossref_primary_10_1016_j_isprsjprs_2022_04_016 crossref_citationtrail_10_1016_j_isprsjprs_2022_04_016 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2022_04_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Qin, Hu, Wang, Shan, Li (b0195) 2019; 17 Klokov, R., Lempitsky, V., 2017. Escape from cells: Deep kd-networks for the recognition of 3d point cloud models. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 863–872. Weinmann, Jutzi, Hinz, Mallet (b0255) 2015; 105 Xu, X., Lee, G.H., 2020. Weakly supervised semantic point cloud segmentation: Towards 10 fewer labels. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13703–13712. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L., 2019. Kpconv: Flexible and deformable convolution for point clouds. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6410–6419. Wang, Liu, Guo, Sun, Tong (b0240) 2017; 36 Guo, Huang, Zhang, Sohn (b0065) 2015; 100 Zhang, Li, Li, Liu (b0310) 2018; 138 Gao, Pan, Li, Geng, Zhao (b0050) 2021 Antonarakis, Richards, Brasington (b0005) 2008; 112 Polewski, Yao, Heurich, Krzystek, Stilla (b0180) 2016; 9 Li, Wang, Xia (b0140) 2020; 164 Bearman, Russakovsky, Ferrari, Fei-Fei (b0010) 2016 Laine, S., Aila, T., 2017. Temporal ensembling for semi-supervised learning. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings, OpenReview.net. Shannon (b0210) 1948; 27 Huang, Xu, Stilla (b0100) 2021; 177 Landrieu, L., Simonovsky, M., 2018. Large-scale point cloud semantic segmentation with superpoint graphs. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4558–4567. Kolesnikov, Lampert (b0115) 2016 Polewski, Yao, Heurich, Krzystek, Stilla (b0175) 2015; 105 Hu, Yuan (b0090) 2016; 8 Rottensteiner, F., Sohn, G., Jung, J., Gerke, M., Baillard, C., Benitez, S., Breitkopf, U., 2012. The isprs benchmark on urban object classification and 3d building reconstruction. ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. I-3, 293–298. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A., 2019. Mixmatch: A holistic approach to semi-supervised learning. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (Eds.), Advances in Neural Information Processing Systems, Curran Associates, Inc. pp. 5049–5059. Cramer (b0030) 2010; 2010 Miyato, Maeda, Koyama, Ishii (b0165) 2018; 41 Yao, Xu, Murasaki, Ando, Sagata (b0290) 2020; 12 Yao, Krzystek, Heurich (b0285) 2012; 123 Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H., 2019. Dual attention network for scene segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3141–3149. Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), Advances in Neural Information Processing Systems, Curran Associates, Inc. pp. 5099–5108. Grandvalet, Y., Bengio, Y., 2004. Semi-supervised learning by entropy minimization. In: Proceedings of the 17th International Conference on Neural Information Processing Systems, p. 529–536. Van Engelen, Hoos (b0230) 2020; 109 Zhang, Lin, Ning (b0305) 2013; 5 Zhao, Pang, Wang (b0315) 2018; 32 Lin, Vosselman, Cao, Yang (b0150) 2020; 169 Guinard, Landrieu (b0060) 2017; XLII-1/W1 Rizaldy, A., Persello, C., Gevaert, C., Elberink, S.O., 2018. Fully convolutional networks for ground classification from lidar point clouds. ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. 231–238. Yao, Dumitru, Loffeld, Datcu (b0280) 2016; 9 Zhou, Y., Tuzel, O., 2018. Voxelnet: End-to-end learning for point cloud based 3d object detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4490–4499. Dong, N., Xing, E.P., 2018. Few-shot semantic segmentation with prototype learning. In: BMVC, pp. 1–13. Fan, Yao, Fu (b0040) 2014; 6 He, R., Yang, J., Qi, X., 2021. Re-distributing biased pseudo labels for semi-supervised semantic segmentation: A baseline investigation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6930–6940. Guo, Chehata, Mallet, Boukir (b0070) 2011; 66 Wang, Sun, Liu, Sarma, Bronstein, Solomon (b0245) 2019; 38 Boulch, Guerry, Le Saux, Audebert (b0020) 2018; 71 Tarvainen, A., Valpola, H., 2017. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J., 2016. Volumetric and multi-view cnns for object classification on 3d data. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5648–5656. Wei, J., Lin, G., Yap, K.H., Hung, T.Y., Xie, L., 2020. Multi-path region mining for weakly supervised 3d semantic segmentation on point clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4383–4392. Zhou (b0330) 2017; 5 Maturana, D., Scherer, S., 2015. Voxnet: A 3d convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. Yousefhussien, Kelbe, Ientilucci, Salvaggio (b0300) 2018; 143 Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A., 2020. Randla-net: Efficient semantic segmentation of large-scale point clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11105–11114. Zhou (b0320) 2013; 10 Hu, Q., Yang, B., Fang, G., Guo, Y., Leonardis, A., Trigoni, N., Markham, A., 2021. Sqn: Weakly-supervised semantic segmentation of large-scale 3d point clouds with 1000x fewer labels. arXiv preprint arXiv:2104.04891. Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J., 2017. Pointnet: Deep learning on point sets for 3d classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85. Iscen, A., Tolias, G., Avrithis, Y., Chum, O., 2019. Label propagation for deep semi-supervised learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5065–5074. Kölle, Laupheimer, Schmohl, Haala, Rottensteiner, Wegner, Ledoux (b0120) 2021; 1 Liu, K., Gao, Z., Lin, F., Chen, B.M., 2020. Fg-net: Fast large-scale lidar point clouds understanding network leveraging correlated feature mining and geometric-aware modelling. arXiv preprint arXiv:2012.09439. Yan, Shaker, El-Ashmawy (b0265) 2015; 158 Yang, Tan, Pei, Jiang (b0275) 2018; 18 Okyay, Telling, Glennie, Dietrich (b0170) 2019; 198 Yang, Jiang, Xu, Zhu, Jiang, Huang (b0270) 2017; 9 Lee, D.H., 2013. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on challenges in representation learning, ICML, pp. 1–6. Li, Cheng, Liu, Xiao, Ma, Jin, Che, Liu, Wang, Qi (b0145) 2013; 94 Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk, E.D., Kurakin, A., Li, C.L., 2020. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems, pp. 596–608. Huang, Xu, Hong, Yao, Ghamisi, Stilla (b0095) 2020; 163 Wang, P., Yao, W., 2021. Weakly supervised pseudo-label assisted learning for als point cloud semantic segmentation. ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. V-2-2021, 43–50. Ye, Xu, Huang, Tong, Li, Liu, Luan, Hoegner, Stilla (b0295) 2020; 9 10.1016/j.isprsjprs.2022.04.016_b0105 Miyato (10.1016/j.isprsjprs.2022.04.016_b0165) 2018; 41 Ye (10.1016/j.isprsjprs.2022.04.016_b0295) 2020; 9 Antonarakis (10.1016/j.isprsjprs.2022.04.016_b0005) 2008; 112 Yang (10.1016/j.isprsjprs.2022.04.016_b0275) 2018; 18 10.1016/j.isprsjprs.2022.04.016_b0025 10.1016/j.isprsjprs.2022.04.016_b0225 Lin (10.1016/j.isprsjprs.2022.04.016_b0150) 2020; 169 Yang (10.1016/j.isprsjprs.2022.04.016_b0270) 2017; 9 Yousefhussien (10.1016/j.isprsjprs.2022.04.016_b0300) 2018; 143 10.1016/j.isprsjprs.2022.04.016_b0190 10.1016/j.isprsjprs.2022.04.016_b0075 10.1016/j.isprsjprs.2022.04.016_b0155 Zhou (10.1016/j.isprsjprs.2022.04.016_b0320) 2013; 10 10.1016/j.isprsjprs.2022.04.016_b0110 Wang (10.1016/j.isprsjprs.2022.04.016_b0245) 2019; 38 10.1016/j.isprsjprs.2022.04.016_b0035 Polewski (10.1016/j.isprsjprs.2022.04.016_b0180) 2016; 9 Shannon (10.1016/j.isprsjprs.2022.04.016_b0210) 1948; 27 Gao (10.1016/j.isprsjprs.2022.04.016_b0050) 2021 10.1016/j.isprsjprs.2022.04.016_b0235 Hu (10.1016/j.isprsjprs.2022.04.016_b0090) 2016; 8 Weinmann (10.1016/j.isprsjprs.2022.04.016_b0255) 2015; 105 Zhang (10.1016/j.isprsjprs.2022.04.016_b0305) 2013; 5 10.1016/j.isprsjprs.2022.04.016_b0080 Cramer (10.1016/j.isprsjprs.2022.04.016_b0030) 2010; 2010 10.1016/j.isprsjprs.2022.04.016_b0045 Wang (10.1016/j.isprsjprs.2022.04.016_b0240) 2017; 36 10.1016/j.isprsjprs.2022.04.016_b0160 10.1016/j.isprsjprs.2022.04.016_b0085 Guo (10.1016/j.isprsjprs.2022.04.016_b0065) 2015; 100 10.1016/j.isprsjprs.2022.04.016_b0205 10.1016/j.isprsjprs.2022.04.016_b0325 Guinard (10.1016/j.isprsjprs.2022.04.016_b0060) 2017; XLII-1/W1 10.1016/j.isprsjprs.2022.04.016_b0200 Kolesnikov (10.1016/j.isprsjprs.2022.04.016_b0115) 2016 10.1016/j.isprsjprs.2022.04.016_b0125 Fan (10.1016/j.isprsjprs.2022.04.016_b0040) 2014; 6 Okyay (10.1016/j.isprsjprs.2022.04.016_b0170) 2019; 198 Yao (10.1016/j.isprsjprs.2022.04.016_b0280) 2016; 9 10.1016/j.isprsjprs.2022.04.016_b0130 Boulch (10.1016/j.isprsjprs.2022.04.016_b0020) 2018; 71 Guo (10.1016/j.isprsjprs.2022.04.016_b0070) 2011; 66 Zhang (10.1016/j.isprsjprs.2022.04.016_b0310) 2018; 138 10.1016/j.isprsjprs.2022.04.016_b0055 Bearman (10.1016/j.isprsjprs.2022.04.016_b0010) 2016 10.1016/j.isprsjprs.2022.04.016_b0250 Yao (10.1016/j.isprsjprs.2022.04.016_b0285) 2012; 123 Yao (10.1016/j.isprsjprs.2022.04.016_b0290) 2020; 12 Yan (10.1016/j.isprsjprs.2022.04.016_b0265) 2015; 158 10.1016/j.isprsjprs.2022.04.016_b0215 Li (10.1016/j.isprsjprs.2022.04.016_b0140) 2020; 164 Qin (10.1016/j.isprsjprs.2022.04.016_b0195) 2019; 17 10.1016/j.isprsjprs.2022.04.016_b0135 Kölle (10.1016/j.isprsjprs.2022.04.016_b0120) 2021; 1 10.1016/j.isprsjprs.2022.04.016_b0015 Van Engelen (10.1016/j.isprsjprs.2022.04.016_b0230) 2020; 109 Polewski (10.1016/j.isprsjprs.2022.04.016_b0175) 2015; 105 Li (10.1016/j.isprsjprs.2022.04.016_b0145) 2013; 94 Huang (10.1016/j.isprsjprs.2022.04.016_b0100) 2021; 177 Huang (10.1016/j.isprsjprs.2022.04.016_b0095) 2020; 163 10.1016/j.isprsjprs.2022.04.016_b0185 Zhao (10.1016/j.isprsjprs.2022.04.016_b0315) 2018; 32 10.1016/j.isprsjprs.2022.04.016_b0220 Zhou (10.1016/j.isprsjprs.2022.04.016_b0330) 2017; 5 10.1016/j.isprsjprs.2022.04.016_b0260 |
References_xml | – volume: 12 start-page: 1 year: 2020 end-page: 13 ident: b0290 article-title: Pseudo-labelling-aided semantic segmentation on sparsely annotated 3d point clouds publication-title: IPSJ Trans. Comput. Vision Appl. – reference: Hu, Q., Yang, B., Fang, G., Guo, Y., Leonardis, A., Trigoni, N., Markham, A., 2021. Sqn: Weakly-supervised semantic segmentation of large-scale 3d point clouds with 1000x fewer labels. arXiv preprint arXiv:2104.04891. – volume: 36 start-page: 1 year: 2017 end-page: 11 ident: b0240 article-title: O-cnn: Octree-based convolutional neural networks for 3d shape analysis publication-title: ACM Trans. Graph. (TOG) – volume: 138 start-page: 86 year: 2018 end-page: 100 ident: b0310 article-title: Large-scale urban point cloud labeling and reconstruction publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 109 start-page: 373 year: 2020 end-page: 440 ident: b0230 article-title: A survey on semi-supervised learning publication-title: Mach. Learn. – volume: 32 start-page: 960 year: 2018 end-page: 979 ident: b0315 article-title: Classifying airborne lidar point clouds via deep features learned by a multi-scale convolutional neural network publication-title: Int. J. Geogr. Inform. Sci. – volume: 112 start-page: 2988 year: 2008 end-page: 2998 ident: b0005 article-title: Object-based land cover classification using airborne lidar publication-title: Remote Sens. Environ. – volume: 164 start-page: 26 year: 2020 end-page: 40 ident: b0140 article-title: A geometry-attentional network for als point cloud classification publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 100 start-page: 71 year: 2015 end-page: 83 ident: b0065 article-title: Classification of airborne laser scanning data using jointboost publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J., 2017. Pointnet: Deep learning on point sets for 3d classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85. – volume: 27 start-page: 379 year: 1948 end-page: 423 ident: b0210 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. – volume: 9 year: 2020 ident: b0295 article-title: Lasdu: A large-scale aerial lidar dataset for semantic labeling in dense urban areas publication-title: ISPRS Int. J. Geo-Inform. – reference: Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), Advances in Neural Information Processing Systems, Curran Associates, Inc. pp. 5099–5108. – volume: 143 start-page: 191 year: 2018 end-page: 204 ident: b0300 article-title: A multi-scale fully convolutional network for semantic labeling of 3d point clouds publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 123 start-page: 368 year: 2012 end-page: 380 ident: b0285 article-title: Tree species classification and estimation of stem volume and dbh based on single tree extraction by exploiting airborne full-waveform lidar data publication-title: Remote Sens. Environ. – volume: 18 year: 2018 ident: b0275 article-title: Segmentation and multi-scale convolutional neural network-based classification of airborne laser scanner data publication-title: Sensors – start-page: 695 year: 2016 end-page: 711 ident: b0115 article-title: Seed, expand and constrain: Three principles for weakly-supervised image segmentation publication-title: Computer Vision – ECCV 2016 – volume: 10 start-page: 928 year: 2013 end-page: 931 ident: b0320 article-title: An object-based approach for urban land cover classification: Integrating lidar height and intensity data publication-title: IEEE Geosci. Remote Sens. Lett. – reference: Grandvalet, Y., Bengio, Y., 2004. Semi-supervised learning by entropy minimization. In: Proceedings of the 17th International Conference on Neural Information Processing Systems, p. 529–536. – reference: Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L., 2019. Kpconv: Flexible and deformable convolution for point clouds. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6410–6419. – reference: Laine, S., Aila, T., 2017. Temporal ensembling for semi-supervised learning. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings, OpenReview.net. – reference: Tarvainen, A., Valpola, H., 2017. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204. – volume: 177 start-page: 1 year: 2021 end-page: 20 ident: b0100 article-title: Granet: Global relation-aware attentional network for semantic segmentation of als point clouds publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A., 2019. Mixmatch: A holistic approach to semi-supervised learning. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (Eds.), Advances in Neural Information Processing Systems, Curran Associates, Inc. pp. 5049–5059. – volume: 9 start-page: 1993 year: 2016 end-page: 2008 ident: b0280 article-title: Semi-supervised hierarchical clustering for semantic sar image annotation publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 163 start-page: 62 year: 2020 end-page: 81 ident: b0095 article-title: Deep point embedding for urban classification using als point clouds: A new perspective from local to global publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Xu, X., Lee, G.H., 2020. Weakly supervised semantic point cloud segmentation: Towards 10 fewer labels. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13703–13712. – volume: 105 start-page: 286 year: 2015 end-page: 304 ident: b0255 article-title: Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 2010 start-page: 73 year: 2010 end-page: 82 ident: b0030 article-title: The dgpf-test on digital airborne camera evaluation overview and test design publication-title: Photogrammetrie - Fernerkundung - Geoinformation – volume: 6 start-page: 3284 year: 2014 end-page: 3301 ident: b0040 article-title: Segmentation of sloped roofs from airborne lidar point clouds using ridge-based hierarchical decomposition publication-title: Remote Sens. – reference: He, R., Yang, J., Qi, X., 2021. Re-distributing biased pseudo labels for semi-supervised semantic segmentation: A baseline investigation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6930–6940. – reference: Klokov, R., Lempitsky, V., 2017. Escape from cells: Deep kd-networks for the recognition of 3d point cloud models. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 863–872. – reference: Wei, J., Lin, G., Yap, K.H., Hung, T.Y., Xie, L., 2020. Multi-path region mining for weakly supervised 3d semantic segmentation on point clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4383–4392. – start-page: 1 year: 2021 end-page: 19 ident: b0050 article-title: Are we hungry for 3d lidar data for semantic segmentation? a survey of datasets and methods publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 94 start-page: 1145 year: 2013 end-page: 1160 ident: b0145 article-title: Heihe watershed allied telemetry experimental research (hiwater): Scientific objectives and experimental design publication-title: Bull. Am. Meteorol. Soc. – reference: Wang, P., Yao, W., 2021. Weakly supervised pseudo-label assisted learning for als point cloud semantic segmentation. ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. V-2-2021, 43–50. – volume: 169 start-page: 73 year: 2020 end-page: 92 ident: b0150 article-title: Active and incremental learning for semantic als point cloud segmentation publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 105 start-page: 252 year: 2015 end-page: 271 ident: b0175 article-title: Detection of fallen trees in als point clouds using a normalized cut approach trained by simulation publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 198 year: 2019 ident: b0170 article-title: Airborne lidar change detection: An overview of earth sciences applications publication-title: Earth Sci. Rev. – start-page: 549 year: 2016 end-page: 565 ident: b0010 article-title: What’s the point: Semantic segmentation with point supervision publication-title: Computer Vision – ECCV 2016 – volume: 5 start-page: 3749 year: 2013 end-page: 3775 ident: b0305 article-title: Svm-based classification of segmented airborne lidar point clouds in urban areas publication-title: Remote Sens. – reference: Rizaldy, A., Persello, C., Gevaert, C., Elberink, S.O., 2018. Fully convolutional networks for ground classification from lidar point clouds. ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. 231–238. – reference: Zhou, Y., Tuzel, O., 2018. Voxelnet: End-to-end learning for point cloud based 3d object detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4490–4499. – reference: Maturana, D., Scherer, S., 2015. Voxnet: A 3d convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. – reference: Rottensteiner, F., Sohn, G., Jung, J., Gerke, M., Baillard, C., Benitez, S., Breitkopf, U., 2012. The isprs benchmark on urban object classification and 3d building reconstruction. ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. I-3, 293–298. – volume: XLII-1/W1 start-page: 151 year: 2017 end-page: 157 ident: b0060 article-title: Weakly supervised segmentation-aided classification of urban scenes from 3d lidar point clouds publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci. – volume: 9 start-page: 2910 year: 2016 end-page: 2922 ident: b0180 article-title: Combining active and semisupervised learning of remote sensing data within a renyi entropy regularization framework publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 8 year: 2016 ident: b0090 article-title: Deep-learning-based classification for dtm extraction from als point cloud publication-title: Remote Sens. – volume: 41 start-page: 1979 year: 2018 end-page: 1993 ident: b0165 article-title: Virtual adversarial training: a regularization method for supervised and semi-supervised learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Iscen, A., Tolias, G., Avrithis, Y., Chum, O., 2019. Label propagation for deep semi-supervised learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5065–5074. – volume: 66 start-page: 56 year: 2011 end-page: 66 ident: b0070 article-title: Relevance of airborne lidar and multispectral image data for urban scene classification using random forests publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk, E.D., Kurakin, A., Li, C.L., 2020. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems, pp. 596–608. – volume: 71 start-page: 189 year: 2018 end-page: 198 ident: b0020 article-title: Snapnet: 3d point cloud semantic labeling with 2d deep segmentation networks publication-title: Comput. Graph. – reference: Lee, D.H., 2013. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on challenges in representation learning, ICML, pp. 1–6. – reference: Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J., 2016. Volumetric and multi-view cnns for object classification on 3d data. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5648–5656. – volume: 5 start-page: 44 year: 2017 end-page: 53 ident: b0330 article-title: A brief introduction to weakly supervised learning publication-title: Natl. Sci. Rev. – volume: 158 start-page: 295 year: 2015 end-page: 310 ident: b0265 article-title: Urban land cover classification using airborne lidar data: A review publication-title: Remote Sens. Environ. – volume: 38 start-page: 1 year: 2019 end-page: 12 ident: b0245 article-title: Dynamic graph cnn for learning on point clouds publication-title: ACM Trans. Graph. – reference: Landrieu, L., Simonovsky, M., 2018. Large-scale point cloud semantic segmentation with superpoint graphs. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4558–4567. – volume: 9 year: 2017 ident: b0270 article-title: A convolutional neural network-based 3d semantic labeling method for als point clouds publication-title: Remote Sens. – reference: Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H., 2019. Dual attention network for scene segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3141–3149. – reference: Liu, K., Gao, Z., Lin, F., Chen, B.M., 2020. Fg-net: Fast large-scale lidar point clouds understanding network leveraging correlated feature mining and geometric-aware modelling. arXiv preprint arXiv:2012.09439. – volume: 17 start-page: 859 year: 2019 end-page: 863 ident: b0195 article-title: Semantic labeling of als point cloud via learning voxel and pixel representations publication-title: IEEE Geosci. Remote Sens. Lett. – reference: Dong, N., Xing, E.P., 2018. Few-shot semantic segmentation with prototype learning. In: BMVC, pp. 1–13. – reference: Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A., 2020. Randla-net: Efficient semantic segmentation of large-scale point clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11105–11114. – volume: 1 year: 2021 ident: b0120 article-title: The hessigheim 3d (h3d) benchmark on semantic segmentation of high-resolution 3d point clouds and textured meshes from uav lidar and multi-view-stereo publication-title: ISPRS Open J. Photogramm. Remote Sens. – volume: 41 start-page: 1979 year: 2018 ident: 10.1016/j.isprsjprs.2022.04.016_b0165 article-title: Virtual adversarial training: a regularization method for supervised and semi-supervised learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2858821 – volume: 177 start-page: 1 year: 2021 ident: 10.1016/j.isprsjprs.2022.04.016_b0100 article-title: Granet: Global relation-aware attentional network for semantic segmentation of als point clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.04.017 – volume: 105 start-page: 252 year: 2015 ident: 10.1016/j.isprsjprs.2022.04.016_b0175 article-title: Detection of fallen trees in als point clouds using a normalized cut approach trained by simulation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.01.010 – volume: 143 start-page: 191 year: 2018 ident: 10.1016/j.isprsjprs.2022.04.016_b0300 article-title: A multi-scale fully convolutional network for semantic labeling of 3d point clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.03.018 – ident: 10.1016/j.isprsjprs.2022.04.016_b0110 doi: 10.1109/ICCV.2017.99 – volume: 10 start-page: 928 year: 2013 ident: 10.1016/j.isprsjprs.2022.04.016_b0320 article-title: An object-based approach for urban land cover classification: Integrating lidar height and intensity data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2251453 – ident: 10.1016/j.isprsjprs.2022.04.016_b0105 doi: 10.1109/CVPR.2019.00521 – volume: 100 start-page: 71 year: 2015 ident: 10.1016/j.isprsjprs.2022.04.016_b0065 article-title: Classification of airborne laser scanning data using jointboost publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.04.015 – start-page: 695 year: 2016 ident: 10.1016/j.isprsjprs.2022.04.016_b0115 article-title: Seed, expand and constrain: Three principles for weakly-supervised image segmentation – ident: 10.1016/j.isprsjprs.2022.04.016_b0135 – ident: 10.1016/j.isprsjprs.2022.04.016_b0325 doi: 10.1109/CVPR.2018.00472 – ident: 10.1016/j.isprsjprs.2022.04.016_b0260 doi: 10.1109/CVPR42600.2020.01372 – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.isprsjprs.2022.04.016_b0290 article-title: Pseudo-labelling-aided semantic segmentation on sparsely annotated 3d point clouds publication-title: IPSJ Trans. Comput. Vision Appl. – ident: 10.1016/j.isprsjprs.2022.04.016_b0250 doi: 10.1109/CVPR42600.2020.00444 – ident: 10.1016/j.isprsjprs.2022.04.016_b0055 – ident: 10.1016/j.isprsjprs.2022.04.016_b0085 doi: 10.1109/CVPR42600.2020.01112 – ident: 10.1016/j.isprsjprs.2022.04.016_b0235 doi: 10.5194/isprs-annals-V-2-2021-43-2021 – volume: 94 start-page: 1145 year: 2013 ident: 10.1016/j.isprsjprs.2022.04.016_b0145 article-title: Heihe watershed allied telemetry experimental research (hiwater): Scientific objectives and experimental design publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-12-00154.1 – volume: 198 year: 2019 ident: 10.1016/j.isprsjprs.2022.04.016_b0170 article-title: Airborne lidar change detection: An overview of earth sciences applications publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2019.102929 – volume: 32 start-page: 960 year: 2018 ident: 10.1016/j.isprsjprs.2022.04.016_b0315 article-title: Classifying airborne lidar point clouds via deep features learned by a multi-scale convolutional neural network publication-title: Int. J. Geogr. Inform. Sci. doi: 10.1080/13658816.2018.1431840 – ident: 10.1016/j.isprsjprs.2022.04.016_b0205 doi: 10.5194/isprsannals-I-3-293-2012 – volume: 36 start-page: 1 year: 2017 ident: 10.1016/j.isprsjprs.2022.04.016_b0240 article-title: O-cnn: Octree-based convolutional neural networks for 3d shape analysis publication-title: ACM Trans. Graph. (TOG) – volume: 2010 start-page: 73 year: 2010 ident: 10.1016/j.isprsjprs.2022.04.016_b0030 article-title: The dgpf-test on digital airborne camera evaluation overview and test design publication-title: Photogrammetrie - Fernerkundung - Geoinformation doi: 10.1127/1432-8364/2010/0041 – volume: 9 start-page: 1993 year: 2016 ident: 10.1016/j.isprsjprs.2022.04.016_b0280 article-title: Semi-supervised hierarchical clustering for semantic sar image annotation publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2016.2537548 – ident: 10.1016/j.isprsjprs.2022.04.016_b0125 – volume: 17 start-page: 859 year: 2019 ident: 10.1016/j.isprsjprs.2022.04.016_b0195 article-title: Semantic labeling of als point cloud via learning voxel and pixel representations publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2931119 – ident: 10.1016/j.isprsjprs.2022.04.016_b0190 – ident: 10.1016/j.isprsjprs.2022.04.016_b0185 doi: 10.1109/CVPR.2016.609 – ident: 10.1016/j.isprsjprs.2022.04.016_b0220 – ident: 10.1016/j.isprsjprs.2022.04.016_b0075 doi: 10.1109/ICCV48922.2021.00685 – volume: 5 start-page: 3749 year: 2013 ident: 10.1016/j.isprsjprs.2022.04.016_b0305 article-title: Svm-based classification of segmented airborne lidar point clouds in urban areas publication-title: Remote Sens. doi: 10.3390/rs5083749 – ident: 10.1016/j.isprsjprs.2022.04.016_b0045 doi: 10.1109/CVPR.2019.00326 – volume: 27 start-page: 379 year: 1948 ident: 10.1016/j.isprsjprs.2022.04.016_b0210 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 18 year: 2018 ident: 10.1016/j.isprsjprs.2022.04.016_b0275 article-title: Segmentation and multi-scale convolutional neural network-based classification of airborne laser scanner data publication-title: Sensors – volume: XLII-1/W1 start-page: 151 year: 2017 ident: 10.1016/j.isprsjprs.2022.04.016_b0060 article-title: Weakly supervised segmentation-aided classification of urban scenes from 3d lidar point clouds publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci. doi: 10.5194/isprs-archives-XLII-1-W1-151-2017 – volume: 8 year: 2016 ident: 10.1016/j.isprsjprs.2022.04.016_b0090 article-title: Deep-learning-based classification for dtm extraction from als point cloud publication-title: Remote Sens. doi: 10.3390/rs8090730 – ident: 10.1016/j.isprsjprs.2022.04.016_b0015 – volume: 9 year: 2017 ident: 10.1016/j.isprsjprs.2022.04.016_b0270 article-title: A convolutional neural network-based 3d semantic labeling method for als point clouds publication-title: Remote Sens. doi: 10.3390/rs9090936 – ident: 10.1016/j.isprsjprs.2022.04.016_b0225 doi: 10.1109/ICCV.2019.00651 – volume: 123 start-page: 368 year: 2012 ident: 10.1016/j.isprsjprs.2022.04.016_b0285 article-title: Tree species classification and estimation of stem volume and dbh based on single tree extraction by exploiting airborne full-waveform lidar data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.03.027 – volume: 9 start-page: 2910 year: 2016 ident: 10.1016/j.isprsjprs.2022.04.016_b0180 article-title: Combining active and semisupervised learning of remote sensing data within a renyi entropy regularization framework publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2015.2510867 – volume: 66 start-page: 56 year: 2011 ident: 10.1016/j.isprsjprs.2022.04.016_b0070 article-title: Relevance of airborne lidar and multispectral image data for urban scene classification using random forests publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.08.007 – volume: 38 start-page: 1 year: 2019 ident: 10.1016/j.isprsjprs.2022.04.016_b0245 article-title: Dynamic graph cnn for learning on point clouds publication-title: ACM Trans. Graph. – ident: 10.1016/j.isprsjprs.2022.04.016_b0200 doi: 10.5194/isprs-annals-IV-2-231-2018 – ident: 10.1016/j.isprsjprs.2022.04.016_b0155 doi: 10.1109/ICRA48506.2021.9561496 – ident: 10.1016/j.isprsjprs.2022.04.016_b0130 doi: 10.1109/CVPR.2018.00479 – start-page: 1 year: 2021 ident: 10.1016/j.isprsjprs.2022.04.016_b0050 article-title: Are we hungry for 3d lidar data for semantic segmentation? a survey of datasets and methods publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 169 start-page: 73 year: 2020 ident: 10.1016/j.isprsjprs.2022.04.016_b0150 article-title: Active and incremental learning for semantic als point cloud segmentation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.09.003 – volume: 9 year: 2020 ident: 10.1016/j.isprsjprs.2022.04.016_b0295 article-title: Lasdu: A large-scale aerial lidar dataset for semantic labeling in dense urban areas publication-title: ISPRS Int. J. Geo-Inform. doi: 10.3390/ijgi9070450 – volume: 158 start-page: 295 year: 2015 ident: 10.1016/j.isprsjprs.2022.04.016_b0265 article-title: Urban land cover classification using airborne lidar data: A review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.001 – ident: 10.1016/j.isprsjprs.2022.04.016_b0080 doi: 10.1109/CVPR42600.2020.01112 – ident: 10.1016/j.isprsjprs.2022.04.016_b0160 doi: 10.1109/IROS.2015.7353481 – ident: 10.1016/j.isprsjprs.2022.04.016_b0215 – volume: 5 start-page: 44 year: 2017 ident: 10.1016/j.isprsjprs.2022.04.016_b0330 article-title: A brief introduction to weakly supervised learning publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwx106 – volume: 112 start-page: 2988 year: 2008 ident: 10.1016/j.isprsjprs.2022.04.016_b0005 article-title: Object-based land cover classification using airborne lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.02.004 – volume: 71 start-page: 189 year: 2018 ident: 10.1016/j.isprsjprs.2022.04.016_b0020 article-title: Snapnet: 3d point cloud semantic labeling with 2d deep segmentation networks publication-title: Comput. Graph. doi: 10.1016/j.cag.2017.11.010 – volume: 1 year: 2021 ident: 10.1016/j.isprsjprs.2022.04.016_b0120 article-title: The hessigheim 3d (h3d) benchmark on semantic segmentation of high-resolution 3d point clouds and textured meshes from uav lidar and multi-view-stereo publication-title: ISPRS Open J. Photogramm. Remote Sens. – volume: 164 start-page: 26 year: 2020 ident: 10.1016/j.isprsjprs.2022.04.016_b0140 article-title: A geometry-attentional network for als point cloud classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.03.016 – volume: 163 start-page: 62 year: 2020 ident: 10.1016/j.isprsjprs.2022.04.016_b0095 article-title: Deep point embedding for urban classification using als point clouds: A new perspective from local to global publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.02.020 – ident: 10.1016/j.isprsjprs.2022.04.016_b0025 doi: 10.1109/CVPR.2017.16 – start-page: 549 year: 2016 ident: 10.1016/j.isprsjprs.2022.04.016_b0010 article-title: What’s the point: Semantic segmentation with point supervision – ident: 10.1016/j.isprsjprs.2022.04.016_b0035 – volume: 138 start-page: 86 year: 2018 ident: 10.1016/j.isprsjprs.2022.04.016_b0310 article-title: Large-scale urban point cloud labeling and reconstruction publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.02.008 – volume: 6 start-page: 3284 year: 2014 ident: 10.1016/j.isprsjprs.2022.04.016_b0040 article-title: Segmentation of sloped roofs from airborne lidar point clouds using ridge-based hierarchical decomposition publication-title: Remote Sens. doi: 10.3390/rs6043284 – volume: 109 start-page: 373 year: 2020 ident: 10.1016/j.isprsjprs.2022.04.016_b0230 article-title: A survey on semi-supervised learning publication-title: Mach. Learn. doi: 10.1007/s10994-019-05855-6 – volume: 105 start-page: 286 year: 2015 ident: 10.1016/j.isprsjprs.2022.04.016_b0255 article-title: Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.01.016 |
SSID | ssj0001568 |
Score | 2.5135276 |
Snippet | Although novel point cloud semantic segmentation schemes that continuously surpass state-of-the-art results exist, the success of learning an effective model... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 237 |
SubjectTerms | Consistency constraint data collection entropy Entropy regularization photogrammetry Point cloud semantic segmentation probability Pseudo-label Weakly supervised learning |
Title | A new weakly supervised approach for ALS point cloud semantic segmentation |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2022.04.016 https://www.proquest.com/docview/2675556995 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KPagH8YlvVvAam8fm5S0US331UgvelmQzq6k1DaZBvPjbnc2jWhF68BBINrMkzO7MfpvMfEPIeSR1I5RC1xiCWY1ZwtJCZY_MwhsQ-6EL6jvk_cDpj9jNo_3YIt0mF0aFVda-v_LppbeuWzq1NjtZknSGOm4dTEWAZJbEZSrhV7HX4Zy--PwO8zCqdDglrCnphRivJM_e8jEeuFE0zZLzVBU-_3uF-uWrywWot0k2auRIg-rltkgL0m2y_oNPcJus1iXNnz92yE1AETHTdwhfJh80LzLlFHKIacMiThGu0uBuSLNpks6omEyLmObwiqpOBJ48vdZpSekuGfWuHrp9rS6coAmLeTPNUqRCJiA2C20fwPYMIcG3Yt_yEI8xkI4bS-EqLi4DmADXNKXvCOlIBAA6GvkeaafTFPYJldIV0oj0cjG39MiLpMFCcDw7MmwZxgfEaZTFRc0qropbTHgTPjbmcy1zpWWuM47tB0Sfd8wqYo3lXS6b0eALc4Sj-1_e-awZP44WpH6LhClMCxTCPZNtO75vH_7nAUdkTV1VYWTHpD17K-AEAcssOi1n5ClZCa5v-4MvKibsmg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH8YlvI3gt20f68raIsuq6FxW8hTadaHXtFruL-O-dtOmiInjwUChJhpZJMvNNO_kG4CRVtpMoaVucwKzFPelZid6P3KMOzOIkRP0d8mYY9O_51YP_MAdn7VkYnVZpbH9j02trbVq6RpvdMs-7tzaFDq4mQHJr4rJoHhY0OxXvwELv8ro_nBlkpzkRp8dbWuBbmldelW_VM10UK7puTXuqa5__7qR-mOvaB12swooBj6zXvN8azGGxDstfKAXXYdFUNX_62ICrHiPQzN4xeRl9sGpaartQYcZaInFGiJX1BresHOfFhMnReJqxCl9J27mkm8dXczKp2IT7i_O7s75laidY0uPRxPI0r5CLBM8SP0b0I0cqjL0s9iKCZBxVEGZKhpqOy0EuMXRdFQdSBYowgE37fAs6xbjAbWBKhVI5qV37c89Oo1Q5PMEg8lPHV0m2A0GrLCENsbiubzESbQbZs5hpWWgtC5sLat8BeyZYNtwaf4uctrMhvi0TQR7gb-Hjdv4EbSL9ZyQpcDylQRQ2-X4Qx_7ufx5wBIv9u5uBGFwOr_dgSfc0WWX70Jm8TfGA8MskPTTr8xNElu9L |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+weakly+supervised+approach+for+ALS+point+cloud+semantic+segmentation&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Wang%2C+Puzuo&rft.au=Yao%2C+Wei&rft.date=2022-06-01&rft.issn=0924-2716&rft.volume=188&rft.spage=237&rft.epage=254&rft_id=info:doi/10.1016%2Fj.isprsjprs.2022.04.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isprsjprs_2022_04_016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |