Statistical Considerations for Planning Clinical Trials with Quantitative Imaging Biomarkers

Abstract As imaging technologies and treatment options continue to advance, imaging outcome measures are becoming increasingly utilized as the basis of making major decisions in new drug development and clinical practice. Quantitative imaging biomarkers (QIBs) are now commonly used for subject selec...

Full description

Saved in:
Bibliographic Details
Published inJNCI : Journal of the National Cancer Institute Vol. 111; no. 1; pp. 19 - 26
Main Authors Obuchowski, Nancy A, Mozley, P David, Matthews, Dawn, Buckler, Andrew, Bullen, Jennifer, Jackson, Edward
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.01.2019
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract As imaging technologies and treatment options continue to advance, imaging outcome measures are becoming increasingly utilized as the basis of making major decisions in new drug development and clinical practice. Quantitative imaging biomarkers (QIBs) are now commonly used for subject selection, response assessment, and safety monitoring. Although quantitative measurements can have many advantages compared with subjective, qualitative endpoints, it is important to recognize that QIBs are measured with error. This study uses Monte Carlo simulation to examine the impact of measurement error on a variety of clinical trial designs as well as to test proposed adjustments for measurement error. The focus is on some of the QIBs currently being studied by the Quantitative Imaging Biomarkers Alliance. The results show that the ability of QIBs to discriminate between health states and predict patient outcome is attenuated by measurement error; however, the known technical performance characteristics of QIBs can be used to adjust study sample size, control the misinterpretation rate of imaging findings, and establish statistically valid decision thresholds. We conclude that estimates of the precision and bias of a QIB are important for properly designing clinical trials and establishing the level of imaging standardization required.
AbstractList As imaging technologies and treatment options continue to advance, imaging outcome measures are becoming increasingly utilized as the basis of making major decisions in new drug development and clinical practice. Quantitative imaging biomarkers (QIBs) are now commonly used for subject selection, response assessment, and safety monitoring. Although quantitative measurements can have many advantages compared with subjective, qualitative endpoints, it is important to recognize that QIBs are measured with error. This study uses Monte Carlo simulation to examine the impact of measurement error on a variety of clinical trial designs as well as to test proposed adjustments for measurement error. The focus is on some of the QIBs currently being studied by the Quantitative Imaging Biomarkers Alliance. The results show that the ability of QIBs to discriminate between health states and predict patient outcome is attenuated by measurement error; however, the known technical performance characteristics of QIBs can be used to adjust study sample size, control the misinterpretation rate of imaging findings, and establish statistically valid decision thresholds. We conclude that estimates of the precision and bias of a QIB are important for properly designing clinical trials and establishing the level of imaging standardization required.
As imaging technologies and treatment options continue to advance, imaging outcome measures are becoming increasingly utilized as the basis of making major decisions in new drug development and clinical practice. Quantitative imaging biomarkers (QIBs) are now commonly used for subject selection, response assessment, and safety monitoring. Although quantitative measurements can have many advantages compared with subjective, qualitative endpoints, it is important to recognize that QIBs are measured with error. This study uses Monte Carlo simulation to examine the impact of measurement error on a variety of clinical trial designs as well as to test proposed adjustments for measurement error. The focus is on some of the QIBs currently being studied by the Quantitative Imaging Biomarkers Alliance. The results show that the ability of QIBs to discriminate between health states and predict patient outcome is attenuated by measurement error; however, the known technical performance characteristics of QIBs can be used to adjust study sample size, control the misinterpretation rate of imaging findings, and establish statistically valid decision thresholds. We conclude that estimates of the precision and bias of a QIB are important for properly designing clinical trials and establishing the level of imaging standardization required.As imaging technologies and treatment options continue to advance, imaging outcome measures are becoming increasingly utilized as the basis of making major decisions in new drug development and clinical practice. Quantitative imaging biomarkers (QIBs) are now commonly used for subject selection, response assessment, and safety monitoring. Although quantitative measurements can have many advantages compared with subjective, qualitative endpoints, it is important to recognize that QIBs are measured with error. This study uses Monte Carlo simulation to examine the impact of measurement error on a variety of clinical trial designs as well as to test proposed adjustments for measurement error. The focus is on some of the QIBs currently being studied by the Quantitative Imaging Biomarkers Alliance. The results show that the ability of QIBs to discriminate between health states and predict patient outcome is attenuated by measurement error; however, the known technical performance characteristics of QIBs can be used to adjust study sample size, control the misinterpretation rate of imaging findings, and establish statistically valid decision thresholds. We conclude that estimates of the precision and bias of a QIB are important for properly designing clinical trials and establishing the level of imaging standardization required.
Abstract As imaging technologies and treatment options continue to advance, imaging outcome measures are becoming increasingly utilized as the basis of making major decisions in new drug development and clinical practice. Quantitative imaging biomarkers (QIBs) are now commonly used for subject selection, response assessment, and safety monitoring. Although quantitative measurements can have many advantages compared with subjective, qualitative endpoints, it is important to recognize that QIBs are measured with error. This study uses Monte Carlo simulation to examine the impact of measurement error on a variety of clinical trial designs as well as to test proposed adjustments for measurement error. The focus is on some of the QIBs currently being studied by the Quantitative Imaging Biomarkers Alliance. The results show that the ability of QIBs to discriminate between health states and predict patient outcome is attenuated by measurement error; however, the known technical performance characteristics of QIBs can be used to adjust study sample size, control the misinterpretation rate of imaging findings, and establish statistically valid decision thresholds. We conclude that estimates of the precision and bias of a QIB are important for properly designing clinical trials and establishing the level of imaging standardization required.
Author Jackson, Edward
Buckler, Andrew
Matthews, Dawn
Bullen, Jennifer
Obuchowski, Nancy A
Mozley, P David
Author_xml – sequence: 1
  givenname: Nancy A
  surname: Obuchowski
  fullname: Obuchowski, Nancy A
  email: obuchon@ccf.org
  organization: Cleveland Clinic Foundation, Quantitative Health Sciences/JJN3, Cleveland, OH
– sequence: 2
  givenname: P David
  surname: Mozley
  fullname: Mozley, P David
  organization: Weill Cornell Medical College
– sequence: 3
  givenname: Dawn
  surname: Matthews
  fullname: Matthews, Dawn
  organization: ADM Diagnostics, Inc
– sequence: 4
  givenname: Andrew
  surname: Buckler
  fullname: Buckler, Andrew
  organization: Elucid Bioimaging
– sequence: 5
  givenname: Jennifer
  surname: Bullen
  fullname: Bullen, Jennifer
  organization: Cleveland Clinic Foundation
– sequence: 6
  givenname: Edward
  surname: Jackson
  fullname: Jackson, Edward
  organization: University of Wisconsin School of Medicine and Public Health, Madison, WI
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30597055$$D View this record in MEDLINE/PubMed
BookMark eNp90UlLAzEUAOAgFduqJ-8yIIggo9lmyVEHl0JBRb0JIZPJ1NRpUpMZpf_edPFSxFwSwvcebxmCnrFGAXCE4AWCjFxOjdSX1XSBGN0BA0RTGGMEkx4YQIizOM8z2gdD76cwHIbpHugTmLAMJskAvD23otW-1VI0UWGN15Vy4Se8otq66LERxmgziYpGmxV6cVo0PvrW7Xv01AnT6mWGLxWNZmKylNfazoT7UM4fgN06WHW4uffB6-3NS3Efjx_uRsXVOJaE5m2MqcyFqnNRMoJkBbOUJUyluBKVhHUqWIZKWhEI66xGQpIaVyUhIjSaq7SUjOyDs3XeubOfnfItn2kvVRNqV7bzHKMUU5bkEAd6skWntnMmVMcxgWlCCUE0qOON6sqZqvjc6dDSgv_OLQC0BtJZ752quVyNwZrWCd1wBPlyN3y5G77eTYg534r5Tfu3Pl1r283_hT-C45-J
CitedBy_id crossref_primary_10_1002_mrm_29084
crossref_primary_10_1016_j_joca_2020_07_005
crossref_primary_10_1016_j_mad_2020_111257
crossref_primary_10_1259_bjro_20210083
crossref_primary_10_1016_j_semarthrit_2021_08_004
crossref_primary_10_2967_jnumed_122_264031
crossref_primary_10_1016_j_acra_2021_06_009
crossref_primary_10_1016_j_mric_2023_09_001
crossref_primary_10_1016_j_radonc_2020_09_013
crossref_primary_10_1148_radiol_2021204587
crossref_primary_10_1177_1740774520981934
Cites_doi 10.1002/(SICI)1097-0258(19970715)16:13<1529::AID-SIM565>3.0.CO;2-H
10.1002/(SICI)1097-0258(19980630)17:12<1375::AID-SIM857>3.0.CO;2-D
10.3389/fonc.2013.00212
10.1002/9780470316665
10.1177/0163278703255232
10.1038/nrclinonc.2016.162
10.1002/sim.1388
10.1007/s11523-018-0550-9
10.1177/0962280214537390
10.1038/nrclinonc.2016.108
10.1200/JCO.2005.05.2878
10.2307/2532348
10.2967/jnumed.107.045914
10.1002/pst.1524
10.1093/biomet/77.1.127
10.1177/0962280214537333
10.1002/9780470906514
10.1001/jama.2016.16951
10.1093/biomet/69.2.331
10.2967/jnumed.114.149732
10.1016/j.acra.2014.09.001
10.1259/bjr.20160768
10.1177/0962280214537344
10.1002/9781118849712
10.1002/sim.4780080407
10.1093/oxfordjournals.aje.a117014
10.1593/tlo.09268
10.1177/096228029900800204
10.1016/j.acra.2014.08.011
10.1002/hep.510240201
10.1002/sim.5403
10.1016/j.ejca.2008.10.042
10.1016/0895-4356(94)90190-2
10.1371/journal.pone.0186660
10.1016/j.neuroimage.2014.11.055
10.1377/hlthaff.24.1.67
10.1016/j.jspi.2007.09.015
10.1016/j.ejca.2008.10.026
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com 2018
The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com 2018
– notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7U7
7U9
C1K
H94
K9.
NAPCQ
7X8
DOI 10.1093/jnci/djy194
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2105
EndPage 26
ExternalDocumentID 30597055
10_1093_jnci_djy194
10.1093/jnci/djy194
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Radiological Society of North America
  funderid: 10.13039/100006098
GroupedDBID ---
-E4
-~X
.2P
.I3
.XZ
.ZR
08P
0R~
1TH
29L
2WC
354
4.4
482
48X
5GY
5RE
5VS
5WD
70D
96U
AABZA
AACZT
AAHTB
AAJKP
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWTL
ABCQX
ABEUO
ABIXL
ABJNI
ABKDP
ABNHQ
ABNKS
ABOCM
ABPEJ
ABPPZ
ABPTD
ABQLI
ABQNK
ABXVV
ABZBJ
ACBMB
ACGFO
ACGFS
ACGOD
ACKOT
ACNCT
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKSI
AEMDU
AENZO
AEPUE
AETBJ
AEWNT
AFAZI
AFFNX
AFFZL
AFIYH
AFOFC
AFRAH
AFXAL
AGINJ
AGKEF
AGSYK
AGUTN
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ATGXG
BAWUL
BAYMD
BCRHZ
BEYMZ
BTRTY
BVRKM
C45
CDBKE
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EMOBN
ENERS
F5P
F8P
F9B
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
MHKGH
ML0
N9A
NGC
NOMLY
NOYVH
NU-
OAUYM
OAWHX
OBH
OCB
OCZFY
ODMLO
ODZKP
OGEVE
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q.-
Q1.
Q5Y
R44
RD5
RHF
RNS
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCURE
TEORI
TJX
TMA
TR2
TWZ
UDS
UPT
VVN
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YQT
YXANX
ZKX
ZRR
ZY1
~91
~H1
AAYXX
ABDFA
ABEJV
ABGNP
ABVGC
ADNBA
AEMQT
AFYAG
AGORE
AHGBF
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7U7
7U9
C1K
H94
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c348t-24c8aef8ab931cd076959e62dadc0f6a971b4d300f7f1ac3f2db33a4608e6bc93
ISSN 0027-8874
1460-2105
IngestDate Fri Jul 11 09:18:48 EDT 2025
Mon Jun 30 10:44:20 EDT 2025
Wed Feb 19 02:30:58 EST 2025
Tue Jul 01 02:54:30 EDT 2025
Thu Apr 24 23:01:56 EDT 2025
Wed Sep 11 04:47:08 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-24c8aef8ab931cd076959e62dadc0f6a971b4d300f7f1ac3f2db33a4608e6bc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30597055
PQID 2306543314
PQPubID 41605
PageCount 8
ParticipantIDs proquest_miscellaneous_2162495802
proquest_journals_2306543314
pubmed_primary_30597055
crossref_citationtrail_10_1093_jnci_djy194
crossref_primary_10_1093_jnci_djy194
oup_primary_10_1093_jnci_djy194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 20190101
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle JNCI : Journal of the National Cancer Institute
PublicationTitleAlternate J Natl Cancer Inst
PublicationYear 2019
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Dancey ( key 2019011618581613200_djy194-B27) 2009; 45
Nakamura ( key 2019011618581613200_djy194-B20) 1992; 48
Hong ( key 2019011618581613200_djy194-B43) 2012; 11
Fleming ( key 2019011618581613200_djy194-B45) 2012; 31
Raunig ( key 2019011618581613200_djy194-B11) 2015; 24
Institute of Medicine ( key 2019011618581613200_djy194-B8) 2010
Obuchowski ( key 2019011618581613200_djy194-B13) 1997; 16
Carroll ( key 2019011618581613200_djy194-B26) 2005
Wong ( key 2019011618581613200_djy194-B6) 2017; 90
Bedossa ( key 2019011618581613200_djy194-B30) 1996; 24
Gonen ( key 2019011618581613200_djy194-B29) 2007
Rosenkrantz ( key 2019011618581613200_djy194-B7) 2015; 22
FDA-NIH Biomarker Working Group ( key 2019011618581613200_djy194-B31) 2018
Nicholls ( key 2019011618581613200_djy194-B39) 2016; 316
Kim ( key 2019011618581613200_djy194-B5) 2016; 13
Brendel ( key 2019011618581613200_djy194-B40) 2015; 108
Fuller ( key 2019011618581613200_djy194-B19) 1987
Abramson ( key 2019011618581613200_djy194-B1) 2015; 22
Xiao ( key 2019011618581613200_djy194-B32) 2017; 12
Kostakoglu ( key 2019011618581613200_djy194-B36) 2013; 3
Obuchowski ( key 2019011618581613200_djy194-B16) 2016
Devine ( key 2019011618581613200_djy194-B23) 1998; 17
Rischin ( key 2019011618581613200_djy194-B33) 2006; 24
Chen ( key 2019011618581613200_djy194-B41) 2015; 56
Prentice ( key 2019011618581613200_djy194-B17) 1982; 69
Zhou ( key 2019011618581613200_djy194-B14) 2011
O’Connor ( key 2019011618581613200_djy194-B4) 2017; 14
QIBA Wiki ( key 2019011618581613200_djy194-B9) 2018
Blume ( key 2019011618581613200_djy194-B15) 2009; 139
key 2019011618581613200_djy194-B35
Barnhart ( key 2019011618581613200_djy194-B38) 2009; 2
Makvandi ( key 2019011618581613200_djy194-B3) 2018; 13
Obuchowski ( key 2019011618581613200_djy194-B12) 2015; 24
Bland ( key 2019011618581613200_djy194-B37) 1999; 8
Prentice ( key 2019011618581613200_djy194-B46) 1989; 8
Stefanski ( key 2019011618581613200_djy194-B18) 1987; 74
Nakamura ( key 2019011618581613200_djy194-B21) 1990; 77
White ( key 2019011618581613200_djy194-B28) 1994; 47
Krohn ( key 2019011618581613200_djy194-B34) 2008; 49(suppl_2)
QIBA Website ( key 2019011618581613200_djy194-B10) 2018
Tosteson ( key 2019011618581613200_djy194-B25) 2003; 22
Eisenhauer ( key 2019011618581613200_djy194-B42) 2009; 45
Kessler ( key 2019011618581613200_djy194-B2) 2015; 24
Fleming ( key 2019011618581613200_djy194-B44) 2005; 24
McKeown-Eyssen ( key 2019011618581613200_djy194-B22) 1994; 139
Devine ( key 2019011618581613200_djy194-B24) 2003; 26
References_xml – year: 2018
  ident: key 2019011618581613200_djy194-B31
– volume-title: Evaluation of Biomarkers and Surrogate Endpoints in Chronic Disease.
  year: 2010
  ident: key 2019011618581613200_djy194-B8
– volume: 16
  start-page: 1529
  issue: 13
  year: 1997
  ident: key 2019011618581613200_djy194-B13
  article-title: Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19970715)16:13<1529::AID-SIM565>3.0.CO;2-H
– volume: 17
  start-page: 1375
  issue: 12
  year: 1998
  ident: key 2019011618581613200_djy194-B23
  article-title: Estimating sample size for epidemiologic studies: the impact of ignoring exposure uncertainty
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19980630)17:12<1375::AID-SIM857>3.0.CO;2-D
– volume: 3
  start-page: 212
  year: 2013
  ident: key 2019011618581613200_djy194-B36
  article-title: State of the art research on lymphomas: role of molecular imaging for staging, prognostic evaluation, and treatment response
  publication-title: Front Oncol
  doi: 10.3389/fonc.2013.00212
– volume-title: Measurement Error Models
  year: 1987
  ident: key 2019011618581613200_djy194-B19
  doi: 10.1002/9780470316665
– volume: 26
  start-page: 315
  issue: 3
  year: 2003
  ident: key 2019011618581613200_djy194-B24
  article-title: The impact of ignoring measurement error when estimating sample size for epidemiologic studies
  publication-title: Eval Health Prof
  doi: 10.1177/0163278703255232
– volume: 14
  start-page: 169
  issue: 3
  year: 2017
  ident: key 2019011618581613200_djy194-B4
  article-title: Imaging biomarker roadmap for cancer studies
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2016.162
– volume: 22
  start-page: 1069
  issue: 7
  year: 2003
  ident: key 2019011618581613200_djy194-B25
  article-title: Power and sample size calculations for generalized regression models with covariate measurement error
  publication-title: Stat Med
  doi: 10.1002/sim.1388
– volume: 13
  start-page: 189
  issue: 2
  year: 2018
  ident: key 2019011618581613200_djy194-B3
  article-title: Alpha-emitters and targeted alpha therapy in oncology: from basic science to clinical investigations
  publication-title: Target Oncol
  doi: 10.1007/s11523-018-0550-9
– volume: 24
  start-page: 68
  issue: 1
  year: 2015
  ident: key 2019011618581613200_djy194-B12
  article-title: Quantitative imaging biomarkers: a review of statistical methods for computer algorithm comparisons
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280214537390
– year: 2018
  ident: key 2019011618581613200_djy194-B10
– volume: 13
  start-page: 725
  issue: 12
  year: 2016
  ident: key 2019011618581613200_djy194-B5
  article-title: Non-invasive metabolic imaging of brain tumours in the era of precision medicine
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2016.108
– volume: 24
  start-page: 2098
  issue: 13
  year: 2006
  ident: key 2019011618581613200_djy194-B33
  article-title: Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2005.05.2878
– volume: 48
  start-page: 829
  issue: 3
  year: 1992
  ident: key 2019011618581613200_djy194-B20
  article-title: Proportional hazards model with covariates subject to measurement error
  publication-title: Biometrics
  doi: 10.2307/2532348
– volume-title: Analyzing Receiver Operating Characteristic Curves with SAS
  year: 2007
  ident: key 2019011618581613200_djy194-B29
– volume: 49(suppl_2)
  start-page: 129s
  year: 2008
  ident: key 2019011618581613200_djy194-B34
  article-title: Molecular imaging in hypoxia
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.107.045914
– volume: 11
  start-page: 394
  issue: 5
  year: 2012
  ident: key 2019011618581613200_djy194-B43
  article-title: Attenuation of treatment effect due to measurement variability in assessment of progression-free survival
  publication-title: Pharm Stat
  doi: 10.1002/pst.1524
– volume: 77
  start-page: 127
  issue: 1
  year: 1990
  ident: key 2019011618581613200_djy194-B21
  article-title: Corrected score function of errors in variables models: methodology and application in generalized linear model
  publication-title: Biometrika
  doi: 10.1093/biomet/77.1.127
– volume: 24
  start-page: 9
  issue: 1
  year: 2015
  ident: key 2019011618581613200_djy194-B2
  article-title: The emerging science of quantitative imaging biomarkers: terminology and definitions for scientific studies and for regulatory submissions
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280214537333
– volume-title: Statistical Methods in Diagnostic Medicine
  year: 2011
  ident: key 2019011618581613200_djy194-B14
  doi: 10.1002/9780470906514
– volume: 316
  start-page: 2373
  issue: 22
  year: 2016
  ident: key 2019011618581613200_djy194-B39
  article-title: Effect of evolocumab on progression of coronary disease in statin-treated patients. The GLAGOV Randomized Clinical Trial
  publication-title: JAMA
  doi: 10.1001/jama.2016.16951
– volume: 69
  start-page: 331
  issue: 2
  year: 1982
  ident: key 2019011618581613200_djy194-B17
  article-title: Covariate measurement errors and parameter estimation in a failure time regression model
  publication-title: Biometrika
  doi: 10.1093/biomet/69.2.331
– volume: 56
  start-page: 560
  issue: 4
  year: 2015
  ident: key 2019011618581613200_djy194-B41
  article-title: Improved power for characterizing longitudinal amyloid-β PET changes and evaluating amyloid-modifying treatments with a cerebral white matter reference region
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.114.149732
– volume: 22
  start-page: 25
  issue: 1
  year: 2015
  ident: key 2019011618581613200_djy194-B1
  article-title: Methods and challenges in quantitative imaging biomarker development
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2014.09.001
– volume: 90
  start-page: 20160768
  issue: 1071
  year: 2017
  ident: key 2019011618581613200_djy194-B6
  article-title: The emerging potential of magnetic resonance imaging in personalizing radiotherapy for head and neck cancer: an oncologist’s perspective
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20160768
– volume: 24
  start-page: 27
  issue: 1
  year: 2015
  ident: key 2019011618581613200_djy194-B11
  article-title: Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280214537344
– volume-title: Handbook for Clinical Trials of Imaging and Image-Guided Interventions
  year: 2016
  ident: key 2019011618581613200_djy194-B16
  doi: 10.1002/9781118849712
– volume: 8
  start-page: 431
  issue: 4
  year: 1989
  ident: key 2019011618581613200_djy194-B46
  article-title: Surrogate endpoints in clinical trials: definition and operational criteria
  publication-title: Stat Med
  doi: 10.1002/sim.4780080407
– volume: 139
  start-page: 415
  issue: 4
  year: 1994
  ident: key 2019011618581613200_djy194-B22
  article-title: Implications of measurement error in exposure for the sample sizes of case-control studies
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a117014
– volume-title: Measurement Error in Epidemiologic Studies. Encyclopedia of Biostatistics
  year: 2005
  ident: key 2019011618581613200_djy194-B26
– volume: 2
  start-page: 231
  issue: 4
  year: 2009
  ident: key 2019011618581613200_djy194-B38
  article-title: Applications of the repeatability of quantitative imaging biomarkers: a review of statistical analysis of repeat data sets
  publication-title: Transl Oncol
  doi: 10.1593/tlo.09268
– volume: 8
  start-page: 135
  issue: 2
  year: 1999
  ident: key 2019011618581613200_djy194-B37
  article-title: Measuring agreement in method comparison studies
  publication-title: Stat Methods Med Res
  doi: 10.1177/096228029900800204
– year: 2018
  ident: key 2019011618581613200_djy194-B9
– volume: 22
  start-page: 33
  issue: 1
  year: 2015
  ident: key 2019011618581613200_djy194-B7
  article-title: Clinical utility of quantitative imaging
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2014.08.011
– volume: 24
  start-page: 289
  issue: 2
  year: 1996
  ident: key 2019011618581613200_djy194-B30
  article-title: An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group
  publication-title: Hepatology
  doi: 10.1002/hep.510240201
– volume: 31
  start-page: 2973
  issue: 25
  year: 2012
  ident: key 2019011618581613200_djy194-B45
  article-title: Biomarkers and surrogate endpoints in clinical trials
  publication-title: Stat Med
  doi: 10.1002/sim.5403
– volume: 74
  start-page: 703
  issue: 4
  year: 1987
  ident: key 2019011618581613200_djy194-B18
  article-title: Conditional scores and optimal scores for generalized linear measurement error models
  publication-title: Biometrika
– volume: 45
  start-page: 281
  issue: 2
  year: 2009
  ident: key 2019011618581613200_djy194-B27
  article-title: Recommendations for the assessment of progression in randomised cancer treatment trials
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2008.10.042
– volume: 47
  start-page: 873
  issue: 8
  year: 1994
  ident: key 2019011618581613200_djy194-B28
  article-title: The effect of exposure variance and exposure measurement error on study sample size. Implications for designs of epidemiologic studies
  publication-title: J Clin Epidemiol
  doi: 10.1016/0895-4356(94)90190-2
– volume: 12
  start-page: e0186660
  issue: 11
  year: 2017
  ident: key 2019011618581613200_djy194-B32
  article-title: Comparison of diagnostic accuracy of magnetic resonance elastography and Fibroscan for detecting liver fibrosis in chronic hepatitis B patients: a systematic review and meta-analysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0186660
– volume: 108
  start-page: 450
  year: 2015
  ident: key 2019011618581613200_djy194-B40
  article-title: Improved longitudinal [18F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.11.055
– volume: 24
  start-page: 67
  issue: 1
  year: 2005
  ident: key 2019011618581613200_djy194-B44
  article-title: Surrogate endpoints and FDA’s accelerated approval process
  publication-title: Health Aff (Millwood)
  doi: 10.1377/hlthaff.24.1.67
– volume: 139
  start-page: 711
  issue: 1
  year: 2009
  ident: key 2019011618581613200_djy194-B15
  article-title: Bounding sample size projections for the area under a ROC curve
  publication-title: J Stat Plan Inference
  doi: 10.1016/j.jspi.2007.09.015
– ident: key 2019011618581613200_djy194-B35
– volume: 45
  start-page: 228
  issue: 2
  year: 2009
  ident: key 2019011618581613200_djy194-B42
  article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2008.10.026
SSID ssj0000924
Score 2.3512106
SecondaryResourceType review_article
Snippet Abstract As imaging technologies and treatment options continue to advance, imaging outcome measures are becoming increasingly utilized as the basis of making...
As imaging technologies and treatment options continue to advance, imaging outcome measures are becoming increasingly utilized as the basis of making major...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19
SubjectTerms Biomarkers
Biomarkers - analysis
Clinical trials
Clinical Trials as Topic - standards
Computer simulation
Diagnostic Imaging - methods
Drug development
Error analysis
Humans
Imaging
Monte Carlo simulation
Neoplasms - diagnosis
Neoplasms - therapy
Outcome Assessment, Health Care
Research Design - statistics & numerical data
Standardization
Title Statistical Considerations for Planning Clinical Trials with Quantitative Imaging Biomarkers
URI https://www.ncbi.nlm.nih.gov/pubmed/30597055
https://www.proquest.com/docview/2306543314
https://www.proquest.com/docview/2162495802
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaGIiEuiJ0pBYzUEyitHWexjzAFdUBTgTSVekCK4k1qRTNoOqOK_iv-Ic-xs9GW7RKNEmcZvy9vy_f8ENrW1CjLJYlMDiFKoq2NJLc0KmXCZWq4JpkrFJ4dZPuHyYej9Gg0-tFjLa1XckddXFlX8j9ShX0gV1cl-w-SbS8KO-A3yBe2IGHY_pWMnadYL7RcZwB8581AbXPswaYh0etJU_44rx_KJ18_r8uqrjBz3KHpqe9W9PZ4ceoIO-EbT-O1Hkymde6g577W5Mgmkzhx2Fl2zIM2dSvXoF7PQ2_sWpN3ydPZ4iIkzD_1qfXDHuR75XkLX_8devkLDzOkLFyV1CBlcU0pZF9Nx2A6uW_fs2O8Zk4yEkF8mg5Ud1DUfYx6RRz0sDfpvib_krHwC2mdVMoJWp98pyLprGLLVbxm5A10M4bIxDXN2Jt-7Iy_iMPC3_4fhJJQuMCuO33XnzxwggaFlZfim9rPmd9Fd4KE8RuPtntoZKr76NYsUDAeoC890OEh6DBMOG5AhxvQYQ867ECH-6DDAXS4A91DdPj-3XyyH4UWHZFiCV9FcaJ4aSwvpWBUaZJnIhUmi3WpFbFZKXIqE80IsbmlpWI21pKxEmTJTSaVYI_QRrWozBOElY65TlMJAa5NSJ4LroRklpJcWkqZGqNXzZwVKqxf79qofC08j4IVboILP8FjtN0O_uaXbbl62AuY_N-P2GoEU4Q3_6xwYXvqSg3h8Mv2MOhl97GtrMxiDWNo5tq6cxKP0WMv0PY-YGOFW8Vq84-3f4pudy_QFtpYLdfmGXjBK_m8xt1P8US6Ww
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Considerations+for+Planning+Clinical+Trials+with+Quantitative+Imaging+Biomarkers&rft.jtitle=JNCI+%3A+Journal+of+the+National+Cancer+Institute&rft.au=Obuchowski%2C+Nancy+A&rft.au=Mozley%2C+P+David&rft.au=Matthews%2C+Dawn&rft.au=Buckler%2C+Andrew&rft.date=2019-01-01&rft.pub=Oxford+University+Press&rft.issn=0027-8874&rft.eissn=1460-2105&rft.volume=111&rft.issue=1&rft.spage=19&rft.epage=26&rft_id=info:doi/10.1093%2Fjnci%2Fdjy194&rft.externalDocID=10.1093%2Fjnci%2Fdjy194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8874&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8874&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8874&client=summon