Evolutionarily stable levels of aposematic defence in prey populations
Our understanding of aposematism (the conspicuous signalling of a defence for the deterrence of predators) has advanced notably since its first observation in the late nineteenth century. Indeed, it extends the scope of a well-established game-theoretical model of this very same process both from th...
Saved in:
Published in | Theoretical population biology Vol. 153; pp. 15 - 36 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Our understanding of aposematism (the conspicuous signalling of a defence for the deterrence of predators) has advanced notably since its first observation in the late nineteenth century. Indeed, it extends the scope of a well-established game-theoretical model of this very same process both from the analytical standpoint (by considering regimes of varying background mortality and colony size) and from the practical standpoint (by assessing its efficacy and limitations in predicting the evolution of prey traits in finite simulated populations). The nature of the manuscript at hand is more mathematical and its aim is two-fold: first, to determine the relationship between evolutionarily stable levels of defence and signal strength under various regimes of background mortality and colony size. Second, to compare these predictions with simulations of finite prey populations that are subject to random local mutation. We compare the roles of absolute resident fitness, mutant fitness and stochasticity in the evolution of prey traits and discuss the importance of population size in the above. |
---|---|
AbstractList | Our understanding of aposematism (the conspicuous signalling of a defence for the deterrence of predators) has advanced notably since its first observation in the late nineteenth century. Indeed, it extends the scope of a well-established game-theoretical model of this very same process both from the analytical standpoint (by considering regimes of varying background mortality and colony size) and from the practical standpoint (by assessing its efficacy and limitations in predicting the evolution of prey traits in finite simulated populations). The nature of the manuscript at hand is more mathematical and its aim is two-fold: first, to determine the relationship between evolutionarily stable levels of defence and signal strength under various regimes of background mortality and colony size. Second, to compare these predictions with simulations of finite prey populations that are subject to random local mutation. We compare the roles of absolute resident fitness, mutant fitness and stochasticity in the evolution of prey traits and discuss the importance of population size in the above. Our understanding of aposematism (the conspicuous signalling of a defence for the deterrence of predators) has advanced notably since its first observation in the late nineteenth century. Indeed, it extends the scope of a well-established game-theoretical model of this very same process both from the analytical standpoint (by considering regimes of varying background mortality and colony size) and from the practical standpoint (by assessing its efficacy and limitations in predicting the evolution of prey traits in finite simulated populations). The nature of the manuscript at hand is more mathematical and its aim is two-fold: first, to determine the relationship between evolutionarily stable levels of defence and signal strength under various regimes of background mortality and colony size. Second, to compare these predictions with simulations of finite prey populations that are subject to random local mutation. We compare the roles of absolute resident fitness, mutant fitness and stochasticity in the evolution of prey traits and discuss the importance of population size in the above.Our understanding of aposematism (the conspicuous signalling of a defence for the deterrence of predators) has advanced notably since its first observation in the late nineteenth century. Indeed, it extends the scope of a well-established game-theoretical model of this very same process both from the analytical standpoint (by considering regimes of varying background mortality and colony size) and from the practical standpoint (by assessing its efficacy and limitations in predicting the evolution of prey traits in finite simulated populations). The nature of the manuscript at hand is more mathematical and its aim is two-fold: first, to determine the relationship between evolutionarily stable levels of defence and signal strength under various regimes of background mortality and colony size. Second, to compare these predictions with simulations of finite prey populations that are subject to random local mutation. We compare the roles of absolute resident fitness, mutant fitness and stochasticity in the evolution of prey traits and discuss the importance of population size in the above. |
Author | Broom, Mark Ruxton, Graeme D. Scaramangas, Alan Rouviere, Anna |
Author_xml | – sequence: 1 givenname: Alan orcidid: 0000-0003-3132-5425 surname: Scaramangas fullname: Scaramangas, Alan email: alan.scaramangas@city.ac.uk, a.scaramangas@qmul.ac.uk organization: School of Mathematics, Computer Science and Engineering, City, University of London, EC1V, 0HB London, UK – sequence: 2 givenname: Mark surname: Broom fullname: Broom, Mark organization: School of Mathematics, Computer Science and Engineering, City, University of London, EC1V, 0HB London, UK – sequence: 3 givenname: Graeme D. surname: Ruxton fullname: Ruxton, Graeme D. organization: School of Biology, University of St Andrews, KY16 9TH, St Andrews, UK – sequence: 4 givenname: Anna surname: Rouviere fullname: Rouviere, Anna organization: School of Biology, University of St Andrews, KY16 9TH, St Andrews, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37044181$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1Lw0AQQBepaKv-AC-So5fU2Y-kGzxJqR8geNHzsruZwJZtNu4mhf57E1o9CgNzeW9g3oLM2tAiIbcUlhRo-bBd9p1ZMmB8CeMAPSNzClWZA2fFjMwBBOSFhOqSLFLaAoCknF-QS74CIaikc_K82Qc_9C60Ojp_yFKvjcfM4x59ykKT6S4k3One2azGBluLmWuzLuIh60I3eD256ZqcN9onvDntK_L1vPlcv-bvHy9v66f33HIh-5zx2lS2AFkxoJLpBmoDK7SrympRWltVhbTSMEuNsUUhS8pKYaARnDdMoOFX5P54t4vhe8DUq51LFr3XLYYhKSYBSsakoCN6d0IHs8NaddHtdDyo399HgB4BG0NKEZs_hIKa-qqtGvuqqa-CcWByHo_OWAf3DqNK1k1RahfR9qoO7h_7B3zggfw |
Cites_doi | 10.1051/mmnp/20149310 10.1086/284581 10.1078/1439-6092-00076 10.1111/jeb.12676 10.1016/j.ecolmodel.2019.05.008 10.1007/s10682-008-9247-3 10.1007/s00285-022-01762-y 10.1111/j.1558-5646.2011.01257.x 10.1016/j.tree.2005.07.011 10.1073/pnas.0600625103 10.1073/pnas.2133521100 10.2307/1933543 10.1038/s41437-021-00420-1 10.1093/beheco/arz199 10.1093/beheco/art013 10.1016/j.jtbi.2007.10.022 10.1126/science.aan5061 10.1086/663197 10.1098/rspb.2005.3227 10.1016/j.jtbi.2006.01.032 10.1073/pnas.1010952108 10.1146/annurev.en.29.010184.001541 10.1007/BF02124750 10.1073/pnas.101134898 10.1086/271979 |
ContentType | Journal Article |
Copyright | 2023 Crown Copyright © 2023. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 – notice: Crown Copyright © 2023. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.tpb.2023.03.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Biology |
EISSN | 1096-0325 |
EndPage | 36 |
ExternalDocumentID | 37044181 10_1016_j_tpb_2023_03_001 S0040580923000114 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO ABFRF ABGRD ABJNI ABLJU ABMAC ABTAH ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ADBBV ADEZE ADFGL ADMUD ADNMO ADQTV ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEQOU AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ H~9 IHE J1W KOM LG5 LW8 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SPCBC SSA SSH SSZ T5K TN5 UNMZH UQL WH7 WUQ XPP XSW YNT ZGI ZMT ZU3 ZY4 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION AFKWA AJOXV AMFUW NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c348t-23db9c508920182af0db07ec79ca46cc9958c8b2c1bbc55861264b0f433f24eb3 |
IEDL.DBID | .~1 |
ISSN | 0040-5809 1096-0325 |
IngestDate | Tue Aug 05 09:56:50 EDT 2025 Wed Feb 19 02:22:47 EST 2025 Tue Jul 01 02:11:33 EDT 2025 Sun Apr 06 06:52:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Numerical simulation ESS Chemical defence Aposematism |
Language | English |
License | This is an open access article under the CC BY license. Crown Copyright © 2023. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-23db9c508920182af0db07ec79ca46cc9958c8b2c1bbc55861264b0f433f24eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3132-5425 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0040580923000114 |
PMID | 37044181 |
PQID | 2800622841 |
PQPubID | 23479 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2800622841 pubmed_primary_37044181 crossref_primary_10_1016_j_tpb_2023_03_001 elsevier_sciencedirect_doi_10_1016_j_tpb_2023_03_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Theoretical population biology |
PublicationTitleAlternate | Theor Popul Biol |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ruxton, Beauchamp (b20) 2008; 250 Taylor (b29) 1984; 29 Endler (b8) 1978 Mappes, Marples, Endler (b12) 2005; 20 Wallace (b33) 1877; 11 Leimar, Enquist, Sillen-Tullberg (b10) 1986; 128 Santos, Cannatella (b22) 2011; 108 Cole (b5) 1946; 27 Summers, Clough (b26) 2001; 98 Pointer, Gage, Spurgin (b14) 2021; 126 Hämäläinen, Mappes, Thorogood, Valkonen, Karttunen, Salmi, Rowland (b9) 2020; 31 Summers, Speed, Blount, Stuckert (b27) 2015; 28 Teichmann, Broom, Alonso (b31) 2014; 9 McLean (b13) 2011 Broom, Speed, Ruxton (b3) 2006; 242 Poulton (b15) 1890 Rojas, Nokelainen, Valkonen (b16) 2021 Wang (b34) 2011; 65 Maan, Cummings (b11) 2012; 179 Santos, Coloma, Cannatella (b23) 2003; 100 WolframAlpha (b35) 2022 Scaramangas, Broom (b24) 2022; 85 Broom, Ruxton, Speed (b2) 2008 Darst, Cummings, Cannatella (b7) 2006; 103 Caro (b4) 2005 Corless, Gonnet, Hare, Jeffrey, Knuth (b6) 1996; 5 Rowland, Ruxton, Skelhorn (b17) 2013; 24 Vences, Kosuch, Boistel, Haddad, La Marca, Lötters, Veith (b32) 2003; 3 Speed, Ruxton (b25) 2005; 59 Ruxton, Speed, Broom (b21) 2009; 23 Teichmann, Alonso, Broom (b30) 2015 Zakharova, Meyer, Seifan (b36) 2019; 407 Balogh, Leimar (b1) 2005; 272 Roy (b18) 1997 Ruxton, Allen, Sherratt, Speed (b19) 2019 Tarvin, Borghese, Sachs, Santos, Lu, O’connell, Cannatella, Harris, Zakon (b28) 2017; 357 Pointer (10.1016/j.tpb.2023.03.001_b14) 2021; 126 Rowland (10.1016/j.tpb.2023.03.001_b17) 2013; 24 Wang (10.1016/j.tpb.2023.03.001_b34) 2011; 65 Maan (10.1016/j.tpb.2023.03.001_b11) 2012; 179 Roy (10.1016/j.tpb.2023.03.001_b18) 1997 Cole (10.1016/j.tpb.2023.03.001_b5) 1946; 27 Santos (10.1016/j.tpb.2023.03.001_b22) 2011; 108 Wallace (10.1016/j.tpb.2023.03.001_b33) 1877; 11 Zakharova (10.1016/j.tpb.2023.03.001_b36) 2019; 407 Caro (10.1016/j.tpb.2023.03.001_b4) 2005 Teichmann (10.1016/j.tpb.2023.03.001_b30) 2015 Balogh (10.1016/j.tpb.2023.03.001_b1) 2005; 272 Broom (10.1016/j.tpb.2023.03.001_b3) 2006; 242 Mappes (10.1016/j.tpb.2023.03.001_b12) 2005; 20 Vences (10.1016/j.tpb.2023.03.001_b32) 2003; 3 WolframAlpha (10.1016/j.tpb.2023.03.001_b35) 2022 Hämäläinen (10.1016/j.tpb.2023.03.001_b9) 2020; 31 Ruxton (10.1016/j.tpb.2023.03.001_b19) 2019 Leimar (10.1016/j.tpb.2023.03.001_b10) 1986; 128 Scaramangas (10.1016/j.tpb.2023.03.001_b24) 2022; 85 Santos (10.1016/j.tpb.2023.03.001_b23) 2003; 100 Darst (10.1016/j.tpb.2023.03.001_b7) 2006; 103 Taylor (10.1016/j.tpb.2023.03.001_b29) 1984; 29 Endler (10.1016/j.tpb.2023.03.001_b8) 1978 Corless (10.1016/j.tpb.2023.03.001_b6) 1996; 5 Ruxton (10.1016/j.tpb.2023.03.001_b21) 2009; 23 Poulton (10.1016/j.tpb.2023.03.001_b15) 1890 Summers (10.1016/j.tpb.2023.03.001_b26) 2001; 98 Broom (10.1016/j.tpb.2023.03.001_b2) 2008 Summers (10.1016/j.tpb.2023.03.001_b27) 2015; 28 Ruxton (10.1016/j.tpb.2023.03.001_b20) 2008; 250 McLean (10.1016/j.tpb.2023.03.001_b13) 2011 Teichmann (10.1016/j.tpb.2023.03.001_b31) 2014; 9 Rojas (10.1016/j.tpb.2023.03.001_b16) 2021 Speed (10.1016/j.tpb.2023.03.001_b25) 2005; 59 Tarvin (10.1016/j.tpb.2023.03.001_b28) 2017; 357 |
References_xml | – volume: 100 start-page: 12792 year: 2003 end-page: 12797 ident: b23 article-title: Multiple, recurring origins of aposematism and diet specialization in poison frogs publication-title: Proc. Natl. Acad. Sci. – year: 2011 ident: b13 article-title: The Relationship Between Chemical Defence and Death Feigning in the Red Flour Beetle (Tribolium Castaneum) – volume: 28 start-page: 1583 year: 2015 end-page: 1599 ident: b27 article-title: Are aposematic signals honest? A review publication-title: J. Evol. Biol. – volume: 272 start-page: 2269 year: 2005 end-page: 2275 ident: b1 article-title: Müllerian mimicry: an examination of Fisher’s theory of gradual evolutionary change publication-title: Proc. R. Soc. B Biol. Sci. – volume: 242 start-page: 32 year: 2006 end-page: 43 ident: b3 article-title: Evolutionarily stable defence and signalling of that defence publication-title: J. Theoret. Biol. – volume: 5 start-page: 329 year: 1996 end-page: 359 ident: b6 article-title: On the LambertW function publication-title: Adv. Comput. Math. – volume: 128 start-page: 469 year: 1986 end-page: 490 ident: b10 article-title: Evolutionary stability of aposematic coloration and prey unprofitability: a theoretical analysis publication-title: Amer. Nat. – volume: 103 start-page: 5852 year: 2006 end-page: 5857 ident: b7 article-title: A mechanism for diversity in warning signals: conspicuousness versus toxicity in poison frogs publication-title: Proc. Natl. Acad. Sci. – start-page: 319 year: 1978 end-page: 364 ident: b8 article-title: A predator’s view of animal color patterns publication-title: Evolutionary Biology – start-page: 923 year: 1997 end-page: 927 ident: b18 article-title: Communication signals and sexual selection in amphibians publication-title: Current Sci. – volume: 31 start-page: 383 year: 2020 end-page: 392 ident: b9 article-title: Predators’ consumption of unpalatable prey does not vary as a function of bitter taste perception publication-title: Behav. Ecol. – start-page: 345 year: 2021 end-page: 349 ident: b16 article-title: Aposematism publication-title: Encyclopedia of Evolutionary Psychological Science – volume: 250 start-page: 435 year: 2008 end-page: 448 ident: b20 article-title: The application of genetic algorithms in behavioural ecology, illustrated with a model of anti-predator vigilance publication-title: J. Theoret. Biol. – volume: 27 start-page: 329 year: 1946 end-page: 341 ident: b5 article-title: A theory of analyzing contagiously distributed populations publication-title: Ecology – volume: 85 start-page: 1 year: 2022 end-page: 35 ident: b24 article-title: Aposematic signalling in prey-predator systems: determining evolutionary stability when prey populations consist of a single species publication-title: J. Math. Biol. – volume: 179 start-page: E1 year: 2012 end-page: E14 ident: b11 article-title: Poison frog colors are honest signals of toxicity, particularly for bird predators publication-title: Amer. Nat. – volume: 3 start-page: 215 year: 2003 end-page: 226 ident: b32 article-title: Convergent evolution of aposematic coloration in neotropical poison frogs: a molecular phylogenetic perspective publication-title: Org. Divers. Evol. – volume: 29 start-page: 321 year: 1984 end-page: 357 ident: b29 article-title: Assessing and interpreting the spatial distributions of insect populations publication-title: Annu. Rev. Entomol. – volume: 126 start-page: 869 year: 2021 end-page: 883 ident: b14 article-title: Tribolium beetles as a model system in evolution and ecology publication-title: Heredity – volume: 98 start-page: 6227 year: 2001 end-page: 6232 ident: b26 article-title: The evolution of coloration and toxicity in the poison frog family (Dendrobatidae) publication-title: Proc. Natl. Acad. Sci. – year: 1890 ident: b15 article-title: The Colours of Animals: Their Meaning and Use, Especially Considered in the Case of Insects – start-page: 174 year: 2015 end-page: 179 ident: b30 article-title: A reward-driven model of darwinian fitness publication-title: 2015 7th International Joint Conference on Computational Intelligence, Vol. 1 – volume: 11 start-page: 641 year: 1877 end-page: 662 ident: b33 article-title: The colors of animals and plants publication-title: Amer. Nat. – volume: 65 start-page: 1637 year: 2011 end-page: 1649 ident: b34 article-title: Inversely related aposematic traits: reduced conspicuousness evolves with increased toxicity in a polymorphic poison-dart frog publication-title: Evol. Int. J. Org. Evol. – volume: 24 start-page: 942 year: 2013 end-page: 948 ident: b17 article-title: Bitter taste enhances predatory biases against aggregations of prey with warning coloration publication-title: Behav. Ecol. – volume: 108 start-page: 6175 year: 2011 end-page: 6180 ident: b22 article-title: Phenotypic integration emerges from aposematism and scale in poison frogs publication-title: Proc. Natl. Acad. Sci. – volume: 9 start-page: 148 year: 2014 end-page: 164 ident: b31 article-title: The evolutionary dynamics of aposematism: a numerical analysis of co-evolution in finite populations publication-title: Math. Model. Nat. Phenom. – year: 2022 ident: b35 article-title: Nearest Integer Function – start-page: 37 year: 2008 end-page: 48 ident: b2 article-title: Evolutionarily stable investment in anti-predatory defences and aposematic signalling publication-title: Mathematical Modeling of Biological Systems, Vol. II – volume: 59 start-page: 2499 year: 2005 end-page: 2508 ident: b25 article-title: Warning displays in spiny animals: one (more) evolutionary route to aposematism publication-title: Evolution – year: 2005 ident: b4 article-title: Antipredator Defenses in Birds and Mammals – volume: 357 start-page: 1261 year: 2017 end-page: 1266 ident: b28 article-title: Interacting amino acid replacements allow poison frogs to evolve epibatidine resistance publication-title: Science – volume: 407 year: 2019 ident: b36 article-title: Trait-based modelling in ecology: a review of two decades of research publication-title: Ecol. Model. – year: 2019 ident: b19 article-title: Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry – volume: 20 start-page: 598 year: 2005 end-page: 603 ident: b12 article-title: The complex business of survival by aposematism publication-title: Trends Ecol. Evol. – volume: 23 start-page: 491 year: 2009 end-page: 501 ident: b21 article-title: Identifying the ecological conditions that select for intermediate levels of aposematic signalling publication-title: Evol. Ecol. – volume: 9 start-page: 148 issue: 3 year: 2014 ident: 10.1016/j.tpb.2023.03.001_b31 article-title: The evolutionary dynamics of aposematism: a numerical analysis of co-evolution in finite populations publication-title: Math. Model. Nat. Phenom. doi: 10.1051/mmnp/20149310 – volume: 128 start-page: 469 issue: 4 year: 1986 ident: 10.1016/j.tpb.2023.03.001_b10 article-title: Evolutionary stability of aposematic coloration and prey unprofitability: a theoretical analysis publication-title: Amer. Nat. doi: 10.1086/284581 – year: 1890 ident: 10.1016/j.tpb.2023.03.001_b15 – volume: 3 start-page: 215 issue: 3 year: 2003 ident: 10.1016/j.tpb.2023.03.001_b32 article-title: Convergent evolution of aposematic coloration in neotropical poison frogs: a molecular phylogenetic perspective publication-title: Org. Divers. Evol. doi: 10.1078/1439-6092-00076 – volume: 28 start-page: 1583 issue: 9 year: 2015 ident: 10.1016/j.tpb.2023.03.001_b27 article-title: Are aposematic signals honest? A review publication-title: J. Evol. Biol. doi: 10.1111/jeb.12676 – volume: 407 year: 2019 ident: 10.1016/j.tpb.2023.03.001_b36 article-title: Trait-based modelling in ecology: a review of two decades of research publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2019.05.008 – volume: 23 start-page: 491 issue: 4 year: 2009 ident: 10.1016/j.tpb.2023.03.001_b21 article-title: Identifying the ecological conditions that select for intermediate levels of aposematic signalling publication-title: Evol. Ecol. doi: 10.1007/s10682-008-9247-3 – start-page: 923 year: 1997 ident: 10.1016/j.tpb.2023.03.001_b18 article-title: Communication signals and sexual selection in amphibians publication-title: Current Sci. – volume: 85 start-page: 1 issue: 2 year: 2022 ident: 10.1016/j.tpb.2023.03.001_b24 article-title: Aposematic signalling in prey-predator systems: determining evolutionary stability when prey populations consist of a single species publication-title: J. Math. Biol. doi: 10.1007/s00285-022-01762-y – start-page: 174 year: 2015 ident: 10.1016/j.tpb.2023.03.001_b30 article-title: A reward-driven model of darwinian fitness – volume: 65 start-page: 1637 issue: 6 year: 2011 ident: 10.1016/j.tpb.2023.03.001_b34 article-title: Inversely related aposematic traits: reduced conspicuousness evolves with increased toxicity in a polymorphic poison-dart frog publication-title: Evol. Int. J. Org. Evol. doi: 10.1111/j.1558-5646.2011.01257.x – volume: 20 start-page: 598 issue: 11 year: 2005 ident: 10.1016/j.tpb.2023.03.001_b12 article-title: The complex business of survival by aposematism publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2005.07.011 – year: 2005 ident: 10.1016/j.tpb.2023.03.001_b4 – volume: 103 start-page: 5852 issue: 15 year: 2006 ident: 10.1016/j.tpb.2023.03.001_b7 article-title: A mechanism for diversity in warning signals: conspicuousness versus toxicity in poison frogs publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0600625103 – volume: 100 start-page: 12792 issue: 22 year: 2003 ident: 10.1016/j.tpb.2023.03.001_b23 article-title: Multiple, recurring origins of aposematism and diet specialization in poison frogs publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2133521100 – start-page: 37 year: 2008 ident: 10.1016/j.tpb.2023.03.001_b2 article-title: Evolutionarily stable investment in anti-predatory defences and aposematic signalling – volume: 27 start-page: 329 issue: 4 year: 1946 ident: 10.1016/j.tpb.2023.03.001_b5 article-title: A theory of analyzing contagiously distributed populations publication-title: Ecology doi: 10.2307/1933543 – volume: 126 start-page: 869 issue: 6 year: 2021 ident: 10.1016/j.tpb.2023.03.001_b14 article-title: Tribolium beetles as a model system in evolution and ecology publication-title: Heredity doi: 10.1038/s41437-021-00420-1 – volume: 59 start-page: 2499 issue: 12 year: 2005 ident: 10.1016/j.tpb.2023.03.001_b25 article-title: Warning displays in spiny animals: one (more) evolutionary route to aposematism publication-title: Evolution – year: 2011 ident: 10.1016/j.tpb.2023.03.001_b13 – start-page: 345 year: 2021 ident: 10.1016/j.tpb.2023.03.001_b16 article-title: Aposematism – volume: 31 start-page: 383 issue: 2 year: 2020 ident: 10.1016/j.tpb.2023.03.001_b9 article-title: Predators’ consumption of unpalatable prey does not vary as a function of bitter taste perception publication-title: Behav. Ecol. doi: 10.1093/beheco/arz199 – volume: 24 start-page: 942 issue: 4 year: 2013 ident: 10.1016/j.tpb.2023.03.001_b17 article-title: Bitter taste enhances predatory biases against aggregations of prey with warning coloration publication-title: Behav. Ecol. doi: 10.1093/beheco/art013 – volume: 250 start-page: 435 issue: 3 year: 2008 ident: 10.1016/j.tpb.2023.03.001_b20 article-title: The application of genetic algorithms in behavioural ecology, illustrated with a model of anti-predator vigilance publication-title: J. Theoret. Biol. doi: 10.1016/j.jtbi.2007.10.022 – year: 2022 ident: 10.1016/j.tpb.2023.03.001_b35 – volume: 357 start-page: 1261 issue: 6357 year: 2017 ident: 10.1016/j.tpb.2023.03.001_b28 article-title: Interacting amino acid replacements allow poison frogs to evolve epibatidine resistance publication-title: Science doi: 10.1126/science.aan5061 – volume: 179 start-page: E1 issue: 1 year: 2012 ident: 10.1016/j.tpb.2023.03.001_b11 article-title: Poison frog colors are honest signals of toxicity, particularly for bird predators publication-title: Amer. Nat. doi: 10.1086/663197 – year: 2019 ident: 10.1016/j.tpb.2023.03.001_b19 – volume: 272 start-page: 2269 issue: 1578 year: 2005 ident: 10.1016/j.tpb.2023.03.001_b1 article-title: Müllerian mimicry: an examination of Fisher’s theory of gradual evolutionary change publication-title: Proc. R. Soc. B Biol. Sci. doi: 10.1098/rspb.2005.3227 – volume: 242 start-page: 32 issue: 1 year: 2006 ident: 10.1016/j.tpb.2023.03.001_b3 article-title: Evolutionarily stable defence and signalling of that defence publication-title: J. Theoret. Biol. doi: 10.1016/j.jtbi.2006.01.032 – volume: 108 start-page: 6175 issue: 15 year: 2011 ident: 10.1016/j.tpb.2023.03.001_b22 article-title: Phenotypic integration emerges from aposematism and scale in poison frogs publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1010952108 – volume: 29 start-page: 321 issue: 1 year: 1984 ident: 10.1016/j.tpb.2023.03.001_b29 article-title: Assessing and interpreting the spatial distributions of insect populations publication-title: Annu. Rev. Entomol. doi: 10.1146/annurev.en.29.010184.001541 – volume: 5 start-page: 329 issue: 1 year: 1996 ident: 10.1016/j.tpb.2023.03.001_b6 article-title: On the LambertW function publication-title: Adv. Comput. Math. doi: 10.1007/BF02124750 – volume: 98 start-page: 6227 issue: 11 year: 2001 ident: 10.1016/j.tpb.2023.03.001_b26 article-title: The evolution of coloration and toxicity in the poison frog family (Dendrobatidae) publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.101134898 – volume: 11 start-page: 641 issue: 11 year: 1877 ident: 10.1016/j.tpb.2023.03.001_b33 article-title: The colors of animals and plants publication-title: Amer. Nat. doi: 10.1086/271979 – start-page: 319 year: 1978 ident: 10.1016/j.tpb.2023.03.001_b8 article-title: A predator’s view of animal color patterns |
SSID | ssj0008133 |
Score | 2.3843539 |
Snippet | Our understanding of aposematism (the conspicuous signalling of a defence for the deterrence of predators) has advanced notably since its first observation in... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 15 |
SubjectTerms | Aposematism Chemical defence ESS Numerical simulation |
Title | Evolutionarily stable levels of aposematic defence in prey populations |
URI | https://dx.doi.org/10.1016/j.tpb.2023.03.001 https://www.ncbi.nlm.nih.gov/pubmed/37044181 https://www.proquest.com/docview/2800622841 |
Volume | 153 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KInoRra_6KCt4EtJus5tkcyylpSr2ZKG3JfsIVEoSTCr04m93No-Kh3rwloRdspkZZr7NfjOD0EOsfa2Jxx1DDHWYDJTDqYIrAzOkT4yv7X_I15k_nbPnhbdooVGTC2NplbXvr3x66a3rJ_1amv1subQ5vgA2OAGEUgIbWxOUscBaee_rh-bBB3TLnLOjm5PNkuNVZLJn-4dXdU4Hu2LTLuxZxqDJCTquwSMeVus7RS2TtNFB1U5y00aHTZZxfoYm48_aqGAzvNpgAIFyZfDKcoRynMY4ytK8qteKtYntd-NlgjPQLM62Tb3yczSfjN9GU6fumeAoynjhuFTLUAHqCiGyczeKiZYkMCoIVcR8pcLQ44pLVw2kVJ7HAeD4TJKYURq7DHbWF2gvSRNzhbDSEOxBVYAYNJM65GGkI0ZdyaiSHg866LGRlsiq0hii4Yy9CxCtsKIVhFreXAexRp7il34FuO6_pt03shdg9_YwI0pMus6Fy236JwRXGHNZKWW7ChoQQHl8cP2_l96gI3tXUfZu0V7xsTZ3AD0K2S1tq4v2h08v09k3TKzXSA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qRepFfL91BU9C7Da7STZHKZbW1p4Ueluyj0ClpMG0Qv-9s01S8KAHbyHJks3MMPPt7jczAPepCY2hgfAstczjKtKeYBqvLI5QIbWhcfuQr-Ow_85fJsGkAd06F8bRKivfX_r0tbeu7rQrabbz6dTl-CLYEBQRyhrY8C3YdtWpgiZsPw2G_fHGIYsO25Dn3ID6cHNN81rk6tG1EC9LnXZ-C0-_wc91GOrtw16FH8lTOcUDaNjsEHbKjpKrQ2jVicbFEfSevyq7wvXwbEUQB6qZJTNHEyrIPCVJPi_Kkq3E2NT9OplmJEflknzT16s4hvfe81u371VtEzzNuFh4PjMq1gi8Ygzuwk9SahSNrI5infBQ6zgOhBbK1x2ldBAIxDghVzTljKU-x8X1CTSzeWbPgGiD8R61haDBcGViEScm4cxXnGkViOgcHmppybysjiFr2tiHRNFKJ1pJmaPOnQOv5Sl_qFii9_5r2F0te4mm784zkszOl4X0hcsAxfiK75yWStnMgkUUgZ7oXPzvo7fQ6r-9juRoMB5ewq57UjL4rqC5-Fzaa0QiC3VTWdo3v_DZ-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionarily+stable+levels+of+aposematic+defence+in+prey+populations&rft.jtitle=Theoretical+population+biology&rft.au=Scaramangas%2C+Alan&rft.au=Broom%2C+Mark&rft.au=Ruxton%2C+Graeme+D&rft.au=Rouviere%2C+Anna&rft.date=2023-10-01&rft.eissn=1096-0325&rft.volume=153&rft.spage=15&rft_id=info:doi/10.1016%2Fj.tpb.2023.03.001&rft_id=info%3Apmid%2F37044181&rft.externalDocID=37044181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5809&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5809&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5809&client=summon |