Anisotropy and deformation of triply periodic minimal surface based lattices with skew transformation
[Display omitted] •Skew transformation (ST) was applied to modify standard lattices with constant volume fraction.•The maximum direction-dependent Young’s modulus of the ST lattice can approach or exceed the Hashin–Shtrikman upper bound.•ST was used to guide structural shear deformation and create a...
Saved in:
Published in | Materials & design Vol. 225; p. 111595 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Skew transformation (ST) was applied to modify standard lattices with constant volume fraction.•The maximum direction-dependent Young’s modulus of the ST lattice can approach or exceed the Hashin–Shtrikman upper bound.•ST was used to guide structural shear deformation and create a hybrid lattice with a nominal negative Poisson’s ratio.•Stress and failure patterns were textured in hybrid structures that consist of ST and non-ST units.
Triply periodic minimal surfaces (TPMSs) are common in energy, aerospace, optics, and medical fields. Although many works focus on substantially tuning the anisotropy for a hybrid lattice with various TPMS types, tuning the anisotropy for a single TPMS type has not been sufficiently investigated. This study proposes a skew transformation (ST) to distort TPMS lattices at the design stage, to modify their mechanical anisotropies and tailor their deformations under uniaxial loading. The ST method enables a standard TPMS lattice to increase the direction-dependent modulus without changing the lattice’s volume fraction, which is 38% higher than the theoretical Hashin–Shtrikman upper (HSU) bound for a sheet lattice. Accordingly, three-dimensional (3D) modulus surfaces were generated for ST lattices with different ST angles. Shear deformation under uniaxial compression was generated to obtain a nominal negative Poisson’s ratio of −0.66 with the combination of ST and hole design. Furthermore, the ST method was used to texture the local deformation, stress distribution, and failure form by constructing a cellular mechanical metamaterial, by combining ST and standard unit cells in a targeted texture pattern. This design concept is not limited to TPMS lattices and can be applied to other types of strut- and sheet-based lattices. |
---|---|
AbstractList | Triply periodic minimal surfaces (TPMSs) are common in energy, aerospace, optics, and medical fields. Although many works focus on substantially tuning the anisotropy for a hybrid lattice with various TPMS types, tuning the anisotropy for a single TPMS type has not been sufficiently investigated. This study proposes a skew transformation (ST) to distort TPMS lattices at the design stage, to modify their mechanical anisotropies and tailor their deformations under uniaxial loading. The ST method enables a standard TPMS lattice to increase the direction-dependent modulus without changing the lattice’s volume fraction, which is 38% higher than the theoretical Hashin–Shtrikman upper (HSU) bound for a sheet lattice. Accordingly, three-dimensional (3D) modulus surfaces were generated for ST lattices with different ST angles. Shear deformation under uniaxial compression was generated to obtain a nominal negative Poisson’s ratio of −0.66 with the combination of ST and hole design. Furthermore, the ST method was used to texture the local deformation, stress distribution, and failure form by constructing a cellular mechanical metamaterial, by combining ST and standard unit cells in a targeted texture pattern. This design concept is not limited to TPMS lattices and can be applied to other types of strut- and sheet-based lattices. [Display omitted] •Skew transformation (ST) was applied to modify standard lattices with constant volume fraction.•The maximum direction-dependent Young’s modulus of the ST lattice can approach or exceed the Hashin–Shtrikman upper bound.•ST was used to guide structural shear deformation and create a hybrid lattice with a nominal negative Poisson’s ratio.•Stress and failure patterns were textured in hybrid structures that consist of ST and non-ST units. Triply periodic minimal surfaces (TPMSs) are common in energy, aerospace, optics, and medical fields. Although many works focus on substantially tuning the anisotropy for a hybrid lattice with various TPMS types, tuning the anisotropy for a single TPMS type has not been sufficiently investigated. This study proposes a skew transformation (ST) to distort TPMS lattices at the design stage, to modify their mechanical anisotropies and tailor their deformations under uniaxial loading. The ST method enables a standard TPMS lattice to increase the direction-dependent modulus without changing the lattice’s volume fraction, which is 38% higher than the theoretical Hashin–Shtrikman upper (HSU) bound for a sheet lattice. Accordingly, three-dimensional (3D) modulus surfaces were generated for ST lattices with different ST angles. Shear deformation under uniaxial compression was generated to obtain a nominal negative Poisson’s ratio of −0.66 with the combination of ST and hole design. Furthermore, the ST method was used to texture the local deformation, stress distribution, and failure form by constructing a cellular mechanical metamaterial, by combining ST and standard unit cells in a targeted texture pattern. This design concept is not limited to TPMS lattices and can be applied to other types of strut- and sheet-based lattices. |
ArticleNumber | 111595 |
Author | Qian, Zheng Wei, Huaxian Zhao, Miao Yang, Nan |
Author_xml | – sequence: 1 givenname: Nan surname: Yang fullname: Yang, Nan email: nyang@stu.edu.cn organization: Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China – sequence: 2 givenname: Zheng surname: Qian fullname: Qian, Zheng organization: Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China – sequence: 3 givenname: Huaxian surname: Wei fullname: Wei, Huaxian organization: Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China – sequence: 4 givenname: Miao surname: Zhao fullname: Zhao, Miao organization: Chongqing Key Laboratory of Metal Additive Manufacturing (3D Printing), Chongqing University, Chongqing 400044, China |
BookMark | eNqFkMtqGzEYhUVwILaTN-hCLzCObnProhBCL4ZANsla_CP9SuWMR0ZSG_z2lTNpF1k0CyEQOh_nfCuymMKEhHzibMMZb653mz1ki2kjmJAbznnd12dkybtWVor37YIsmWhUxUVbX5BVSjvGhGilWhK8mXwKOYbDkcJkqUUXYqH5MNHgaI7-MB7pAaMP1hu695Pfw0jTr-jAIB0goaUj5OwNJvri80-anvGlBGFK_1CX5NzBmPDq7V6Tx29fH25_VHf337e3N3eVkarLFXeyByGtlb3oGyVYDYM04LBtFXeDUEpIw20nrWos74WS0kocBoGufACUa7KduTbATh9i6RqPOoDXrw8hPmmIpeqIWgjWC4Z136BSnA0Aje2UOp2udS0vrM8zy8SQUkSnjc-va8o2P2rO9Em-3ulZvj7J17P8Elbvwn_LfBD7MsewSPrtMepkPE4GrY9oclnh_w_4AymVo_E |
CitedBy_id | crossref_primary_10_1088_1402_4896_ad406e crossref_primary_10_1016_j_addma_2023_103865 crossref_primary_10_1016_j_compstruct_2025_118894 crossref_primary_10_1016_j_compstruct_2024_118266 crossref_primary_10_1007_s10237_024_01912_9 crossref_primary_10_3390_biomimetics9110651 crossref_primary_10_1016_j_jmapro_2024_08_019 crossref_primary_10_1016_j_tws_2024_111842 crossref_primary_10_1016_j_tws_2024_112845 crossref_primary_10_1016_j_ijmecsci_2024_109090 crossref_primary_10_1016_j_matdes_2025_113866 crossref_primary_10_1016_j_matdes_2024_113336 crossref_primary_10_1016_j_slast_2023_04_004 |
Cites_doi | 10.1016/j.matdes.2021.109706 10.1016/j.actbio.2019.06.040 10.1016/j.matdes.2021.110074 10.1016/j.matdes.2017.11.037 10.1016/j.ijmecsci.2021.106679 10.1038/nature21075 10.1016/j.simpa.2021.100167 10.1016/j.matdes.2018.05.058 10.1016/j.ijsolstr.2021.111418 10.1016/j.matdes.2018.02.032 10.1016/j.tws.2021.108642 10.1016/j.ijsolstr.2008.09.031 10.1016/j.compositesa.2016.02.009 10.1016/j.actamat.2019.04.061 10.1016/j.matdes.2021.109955 10.1038/s41467-020-15434-2 10.1021/acsami.0c20751 10.1016/j.ijsolstr.2016.01.011 10.1007/s12541-015-0263-2 10.1088/2631-7990/ac5be6 10.1016/S0045-7949(98)00131-X 10.1016/j.jmbbm.2019.07.012 10.1016/j.mechmat.2016.01.004 10.1016/j.cad.2014.06.006 10.1016/S0020-7683(03)00024-6 10.1021/acsabm.8b00052 10.1016/j.matdes.2021.110050 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2023.111595 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4197 |
ExternalDocumentID | oai_doaj_org_article_220920e596e4410baa6d844d84487f71 10_1016_j_matdes_2023_111595 S0264127523000102 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1~. 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 NCXOZ O9- OAUVE OK1 P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEW SMS SPC SSM SST SSZ T5K WUQ ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c348t-1f39a23dd392964205ab3cafe7741fb24423c1d83d46d192433d3ebb2ef741ae3 |
IEDL.DBID | AIKHN |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:30:48 EDT 2025 Thu Apr 24 23:00:52 EDT 2025 Tue Jul 01 02:24:13 EDT 2025 Fri Feb 23 02:38:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Young’s modulus Skew transformation Deformation Anisotropy TPMS lattice |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-1f39a23dd392964205ab3cafe7741fb24423c1d83d46d192433d3ebb2ef741ae3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0264127523000102 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_220920e596e4410baa6d844d84487f71 crossref_citationtrail_10_1016_j_matdes_2023_111595 crossref_primary_10_1016_j_matdes_2023_111595 elsevier_sciencedirect_doi_10_1016_j_matdes_2023_111595 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Yang, Song, Huang, Chen, Maskery (b0055) 2021; 209 Ma (b0085) 2021; 47 Xia, Zhang, Ellyin (b0135) 2003; 40 Feng (b0040) 2022; 4 Mirabolghasemi, Akbarzadeh, Rodrigue, Therriault (b0025) 2019; 174 Cai, Ma, Deng (b0120) 2022; 170 Maskery, Aremu, Parry, Wildman, Tuck, Ashcroft (b0075) 2018; 155 Maskery, Ashcroft (b0080) 2020; 36 Yoo, Kim (b0060) 2015; 16 Elmadih, Syam, Maskery, Chronopoulos, Leach (b0015) 2019; 25 Al-Ketan, Rowshan, Abu Al-Rub (b0035) 2018; 19 Ngim, Liu, Soar (b0125) 2009; 46 Lu (b0045) 2019; 99 A.S. Dalaq et al., Mechanical properties of 3D printed interpenetrating phase composites with novel architectured 3D solid-sheet reinforcements, Composites: Part A 84 (2016) 266–280. Abueidda, Jasiuk, Sobh (b0020) 2018; 145 Khaleghi, Dehnavi, Baghani (b0070) 2021; 210 Zhang, Jiang, Zhao (b0115) 2021; 208 Crook (b0140) 2020; 11 Vijayavenkataraman, Zhang, Zhang, Hsi Fuh, Lu (b0065) 2018; 1 Jones, Leary, Bateman (b0150) 2021; 10 Hassani, Hinton (b0130) 1998; 69 Peng, Huang, Zhang (b0110) 2021; 205 Davoodi, Montazerian, Esmaeilizadeh, Darabi, Rashidi, Kadkhodapour, Jahed, Hoorfar, Milani, Weiss, Khademhosseini, Toyserkani (b0005) 2021; 13 Krishnan (b0090) 2022; 238 Dalaq (b0105) 2016; 83 Montazerian, Mohamed, Montazeri, Kheiri, Milani, Kim, Hoorfar (b0030) 2019; 96 Mohsenizadeh, Gasbarri, Munther, Beheshti, Davami (b0010) 2018; 139 Abueidda (b0100) 2016; 95 Yang, Quan, Zhang, Tian (b0050) 2014; 56 Feng, Liu, Lin (b0095) 2021; 210 Berger, Wadley, McMeeking (b0145) 2017; 543 Ma (10.1016/j.matdes.2023.111595_b0085) 2021; 47 Hassani (10.1016/j.matdes.2023.111595_b0130) 1998; 69 Crook (10.1016/j.matdes.2023.111595_b0140) 2020; 11 Zhang (10.1016/j.matdes.2023.111595_b0115) 2021; 208 Berger (10.1016/j.matdes.2023.111595_b0145) 2017; 543 Khaleghi (10.1016/j.matdes.2023.111595_b0070) 2021; 210 Dalaq (10.1016/j.matdes.2023.111595_b0105) 2016; 83 Al-Ketan (10.1016/j.matdes.2023.111595_b0035) 2018; 19 Elmadih (10.1016/j.matdes.2023.111595_b0015) 2019; 25 Mirabolghasemi (10.1016/j.matdes.2023.111595_b0025) 2019; 174 Feng (10.1016/j.matdes.2023.111595_b0040) 2022; 4 Yang (10.1016/j.matdes.2023.111595_b0050) 2014; 56 Feng (10.1016/j.matdes.2023.111595_b0095) 2021; 210 Xia (10.1016/j.matdes.2023.111595_b0135) 2003; 40 Jones (10.1016/j.matdes.2023.111595_b0150) 2021; 10 Davoodi (10.1016/j.matdes.2023.111595_b0005) 2021; 13 Montazerian (10.1016/j.matdes.2023.111595_b0030) 2019; 96 Mohsenizadeh (10.1016/j.matdes.2023.111595_b0010) 2018; 139 Krishnan (10.1016/j.matdes.2023.111595_b0090) 2022; 238 Abueidda (10.1016/j.matdes.2023.111595_b0020) 2018; 145 10.1016/j.matdes.2023.111595_b0155 Yang (10.1016/j.matdes.2023.111595_b0055) 2021; 209 Yoo (10.1016/j.matdes.2023.111595_b0060) 2015; 16 Lu (10.1016/j.matdes.2023.111595_b0045) 2019; 99 Cai (10.1016/j.matdes.2023.111595_b0120) 2022; 170 Vijayavenkataraman (10.1016/j.matdes.2023.111595_b0065) 2018; 1 Maskery (10.1016/j.matdes.2023.111595_b0080) 2020; 36 Abueidda (10.1016/j.matdes.2023.111595_b0100) 2016; 95 Maskery (10.1016/j.matdes.2023.111595_b0075) 2018; 155 Peng (10.1016/j.matdes.2023.111595_b0110) 2021; 205 Ngim (10.1016/j.matdes.2023.111595_b0125) 2009; 46 |
References_xml | – volume: 16 start-page: 2021 year: 2015 end-page: 2032 ident: b0060 article-title: An advanced multi-morphology porous scaffold design method using volumetric distance field and beta growth function publication-title: Int. J. Precis. Eng. Manuf. – volume: 11 start-page: 1579 year: 2020 ident: b0140 article-title: Plate-nanolattices at the theoretical limit of stiffness and strength publication-title: Nat. Commun. – volume: 170 year: 2022 ident: b0120 article-title: On the effective elastic modulus of the ribbed structure based on Schwarz Primitive triply periodic minimal surface publication-title: Thin-Walled Struct. – volume: 13 start-page: 22110 year: 2021 end-page: 22123 ident: b0005 article-title: Additively manufactured gradient porous Ti-6Al-4V Hip replacement implants embedded with cell-laden gelatin methacryloyl hydrogels publication-title: ACS Appl. Mater. Interfaces – reference: A.S. Dalaq et al., Mechanical properties of 3D printed interpenetrating phase composites with novel architectured 3D solid-sheet reinforcements, Composites: Part A 84 (2016) 266–280. – volume: 210 year: 2021 ident: b0070 article-title: On the directional elastic modulus of the TPMS structures and a novel hybridization method to control anisotropy publication-title: Mater. Des. – volume: 69 start-page: 707 year: 1998 end-page: 717 ident: b0130 article-title: A review of homogenization and topology optimization Ihomogenization theory for media with periodic structure publication-title: Comput. Struct. – volume: 96 start-page: 149 year: 2019 end-page: 160 ident: b0030 article-title: Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces publication-title: Acta Biomater. – volume: 56 start-page: 11 year: 2014 end-page: 21 ident: b0050 article-title: Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering publication-title: CAD Computer Aided Design – volume: 155 start-page: 220 year: 2018 end-page: 232 ident: b0075 article-title: Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading publication-title: Mater. Des. – volume: 47 year: 2021 ident: b0085 article-title: Elastically-isotropic open-cell minimal surface shell lattices with superior stiffness via variable thickness design publication-title: Addit. Manuf. – volume: 210 year: 2021 ident: b0095 article-title: Isotropic porous structure design methods based on triply periodic minimal surfaces publication-title: Mater. Des. – volume: 139 start-page: 521 year: 2018 end-page: 530 ident: b0010 article-title: Additivelymanufactured lightweight Metamaterials for energy absorption publication-title: Mater. Des. – volume: 145 start-page: 20 year: 2018 end-page: 27 ident: b0020 article-title: Acoustic band gaps and elastic stiffness of PMMA cellular solids based on triply periodic minimal surfaces publication-title: Mater. Des. – volume: 209 year: 2021 ident: b0055 article-title: Combinational design of heterogeneous lattices with hybrid region stiffness tuning for additive manufacturing publication-title: Mater. Des. – volume: 46 start-page: 726 year: 2009 end-page: 740 ident: b0125 article-title: Design optimization of consolidated granular-solid polymer prismatic beam using metamorphic development publication-title: Int. J. Solids Struct. – volume: 174 start-page: 61 year: 2019 end-page: 80 ident: b0025 article-title: Thermal conductivity of architected cellular metamaterials publication-title: Acta Mater. – volume: 205 year: 2021 ident: b0110 article-title: Elastic response of anisotropic Gyroid cellular structures under compression: Parametric analysis publication-title: Mater. Des. – volume: 238 year: 2022 ident: b0090 article-title: Effective stiffness, strength, buckling and anisotropy of foams based on nine unique triple periodic minimal surfaces publication-title: Int. J. Solids Struct. – volume: 10 year: 2021 ident: b0150 article-title: TPMS Designer: A tool for generating and analyzing triply periodic minimal Surfaces publication-title: Software Impacts – volume: 1 start-page: 259 year: 2018 end-page: 269 ident: b0065 article-title: Triply periodic minimal surfaces sheet scaffolds for tissue engineering applications: an optimization approach toward biomimetic scaffold design publication-title: ACS Applied Bio Materials – volume: 25 start-page: 421 year: 2019 end-page: 429 ident: b0015 article-title: Mechanical vibration bandgaps in surface-based lattices publication-title: Addit. Manuf. – volume: 99 start-page: 56 year: 2019 end-page: 65 ident: b0045 article-title: The anisotropic elastic behavior of the widely-used triply-periodic minimal surface based scaffolds publication-title: J. Mech. Behav. Biomed. Mater. – volume: 95 start-page: 102 year: 2016 end-page: 115 ident: b0100 article-title: Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces publication-title: Mech. Mater. – volume: 83 start-page: 169 year: 2016 end-page: 182 ident: b0105 article-title: Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements publication-title: Int. J. Solids Struct. – volume: 19 start-page: 167 year: 2018 end-page: 183 ident: b0035 article-title: Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials publication-title: Addit. Manuf. – volume: 4 year: 2022 ident: b0040 article-title: Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications publication-title: International Journal of Extreme Manufacturing – volume: 208 year: 2021 ident: b0115 article-title: Mechanical characteristics and deformation mechanism of functionally graded triply periodic minimal surface structures fabricated using stereolithography publication-title: Int. J. Mech. Sci. – volume: 543 start-page: 533 year: 2017 end-page: 537 ident: b0145 article-title: Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness publication-title: Nature – volume: 36 year: 2020 ident: b0080 article-title: The deformation and elastic anisotropy of a new gyroid-based honeycomb made by laser sintering publication-title: Addit. Manuf. – volume: 40 start-page: 1907 year: 2003 end-page: 1921 ident: b0135 article-title: A unified periodical boundary conditions for representative volume elements of composites and applications publication-title: Int. J. Solids Struct. – volume: 205 year: 2021 ident: 10.1016/j.matdes.2023.111595_b0110 article-title: Elastic response of anisotropic Gyroid cellular structures under compression: Parametric analysis publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109706 – volume: 36 year: 2020 ident: 10.1016/j.matdes.2023.111595_b0080 article-title: The deformation and elastic anisotropy of a new gyroid-based honeycomb made by laser sintering publication-title: Addit. Manuf. – volume: 96 start-page: 149 year: 2019 ident: 10.1016/j.matdes.2023.111595_b0030 article-title: Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.06.040 – volume: 210 year: 2021 ident: 10.1016/j.matdes.2023.111595_b0070 article-title: On the directional elastic modulus of the TPMS structures and a novel hybridization method to control anisotropy publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.110074 – volume: 139 start-page: 521 year: 2018 ident: 10.1016/j.matdes.2023.111595_b0010 article-title: Additivelymanufactured lightweight Metamaterials for energy absorption publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.11.037 – volume: 208 year: 2021 ident: 10.1016/j.matdes.2023.111595_b0115 article-title: Mechanical characteristics and deformation mechanism of functionally graded triply periodic minimal surface structures fabricated using stereolithography publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2021.106679 – volume: 543 start-page: 533 year: 2017 ident: 10.1016/j.matdes.2023.111595_b0145 article-title: Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness publication-title: Nature doi: 10.1038/nature21075 – volume: 10 year: 2021 ident: 10.1016/j.matdes.2023.111595_b0150 article-title: TPMS Designer: A tool for generating and analyzing triply periodic minimal Surfaces publication-title: Software Impacts doi: 10.1016/j.simpa.2021.100167 – volume: 155 start-page: 220 year: 2018 ident: 10.1016/j.matdes.2023.111595_b0075 article-title: Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.05.058 – volume: 238 year: 2022 ident: 10.1016/j.matdes.2023.111595_b0090 article-title: Effective stiffness, strength, buckling and anisotropy of foams based on nine unique triple periodic minimal surfaces publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2021.111418 – volume: 145 start-page: 20 year: 2018 ident: 10.1016/j.matdes.2023.111595_b0020 article-title: Acoustic band gaps and elastic stiffness of PMMA cellular solids based on triply periodic minimal surfaces publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.02.032 – volume: 170 year: 2022 ident: 10.1016/j.matdes.2023.111595_b0120 article-title: On the effective elastic modulus of the ribbed structure based on Schwarz Primitive triply periodic minimal surface publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2021.108642 – volume: 46 start-page: 726 year: 2009 ident: 10.1016/j.matdes.2023.111595_b0125 article-title: Design optimization of consolidated granular-solid polymer prismatic beam using metamorphic development publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2008.09.031 – ident: 10.1016/j.matdes.2023.111595_b0155 doi: 10.1016/j.compositesa.2016.02.009 – volume: 174 start-page: 61 year: 2019 ident: 10.1016/j.matdes.2023.111595_b0025 article-title: Thermal conductivity of architected cellular metamaterials publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.04.061 – volume: 209 year: 2021 ident: 10.1016/j.matdes.2023.111595_b0055 article-title: Combinational design of heterogeneous lattices with hybrid region stiffness tuning for additive manufacturing publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109955 – volume: 11 start-page: 1579 year: 2020 ident: 10.1016/j.matdes.2023.111595_b0140 article-title: Plate-nanolattices at the theoretical limit of stiffness and strength publication-title: Nat. Commun. doi: 10.1038/s41467-020-15434-2 – volume: 13 start-page: 22110 year: 2021 ident: 10.1016/j.matdes.2023.111595_b0005 article-title: Additively manufactured gradient porous Ti-6Al-4V Hip replacement implants embedded with cell-laden gelatin methacryloyl hydrogels publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c20751 – volume: 25 start-page: 421 year: 2019 ident: 10.1016/j.matdes.2023.111595_b0015 article-title: Mechanical vibration bandgaps in surface-based lattices publication-title: Addit. Manuf. – volume: 83 start-page: 169 year: 2016 ident: 10.1016/j.matdes.2023.111595_b0105 article-title: Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2016.01.011 – volume: 16 start-page: 2021 year: 2015 ident: 10.1016/j.matdes.2023.111595_b0060 article-title: An advanced multi-morphology porous scaffold design method using volumetric distance field and beta growth function publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-015-0263-2 – volume: 4 year: 2022 ident: 10.1016/j.matdes.2023.111595_b0040 article-title: Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications publication-title: International Journal of Extreme Manufacturing doi: 10.1088/2631-7990/ac5be6 – volume: 69 start-page: 707 year: 1998 ident: 10.1016/j.matdes.2023.111595_b0130 article-title: A review of homogenization and topology optimization Ihomogenization theory for media with periodic structure publication-title: Comput. Struct. doi: 10.1016/S0045-7949(98)00131-X – volume: 19 start-page: 167 year: 2018 ident: 10.1016/j.matdes.2023.111595_b0035 article-title: Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials publication-title: Addit. Manuf. – volume: 47 year: 2021 ident: 10.1016/j.matdes.2023.111595_b0085 article-title: Elastically-isotropic open-cell minimal surface shell lattices with superior stiffness via variable thickness design publication-title: Addit. Manuf. – volume: 99 start-page: 56 year: 2019 ident: 10.1016/j.matdes.2023.111595_b0045 article-title: The anisotropic elastic behavior of the widely-used triply-periodic minimal surface based scaffolds publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2019.07.012 – volume: 95 start-page: 102 year: 2016 ident: 10.1016/j.matdes.2023.111595_b0100 article-title: Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2016.01.004 – volume: 56 start-page: 11 year: 2014 ident: 10.1016/j.matdes.2023.111595_b0050 article-title: Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering publication-title: CAD Computer Aided Design doi: 10.1016/j.cad.2014.06.006 – volume: 40 start-page: 1907 year: 2003 ident: 10.1016/j.matdes.2023.111595_b0135 article-title: A unified periodical boundary conditions for representative volume elements of composites and applications publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(03)00024-6 – volume: 1 start-page: 259 year: 2018 ident: 10.1016/j.matdes.2023.111595_b0065 article-title: Triply periodic minimal surfaces sheet scaffolds for tissue engineering applications: an optimization approach toward biomimetic scaffold design publication-title: ACS Applied Bio Materials doi: 10.1021/acsabm.8b00052 – volume: 210 year: 2021 ident: 10.1016/j.matdes.2023.111595_b0095 article-title: Isotropic porous structure design methods based on triply periodic minimal surfaces publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.110050 |
SSID | ssj0022734 |
Score | 2.4548364 |
Snippet | [Display omitted]
•Skew transformation (ST) was applied to modify standard lattices with constant volume fraction.•The maximum direction-dependent Young’s... Triply periodic minimal surfaces (TPMSs) are common in energy, aerospace, optics, and medical fields. Although many works focus on substantially tuning the... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 111595 |
SubjectTerms | Anisotropy Deformation Skew transformation TPMS lattice Young’s modulus |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sAakcSJm4wFUSEkmKjULbJzZ6lQkqpJhfrv8cVJyUQXhizR2Y7OF3931t13jN0RBZXydejJEaZepDR4WiXCS3UgklyCBSWqRn59k8_T6GUWz3qtvignzNEDO8Xdh6Gfhj7GqUSL3L5WSkISRfQkI9NUj1uJoAum2lCLSFvc7Qqx8o3irmiuyeyyriAgUXWHgk6MmHpL9ECp4e7vYVMPbyZH7LB1FPnYfeAx28PihB306ANPGY6LeVXWq3K54aoADrgtReSl4bU9DxYbTlTGJcxzTiwiX3bKar0yKkdOAAZ8oWrKf6s43cjy6hO_7cBfZ7Yszth08vT--Oy1bRO8XERJ7QVGpCoUAOT62PDCj5UWuTJoPb3AaIvnocgDSAREEij-EgIEah2isQIKxTkbFGWBF4z7ubT_rDZEyhMZ6evEJBbQfRAgASUOmej0luUtpzi1tlhkXfLYR-a0nZG2M6ftIfO2o5aOU2OH_ANtyVaWGLGbF9ZOstZOsl12MmSjbkOz1rlwToOdav7n8pf_sfwV26cp3eXNNRvUqzXeWHem1reN5f4ADuPwdw priority: 102 providerName: Directory of Open Access Journals |
Title | Anisotropy and deformation of triply periodic minimal surface based lattices with skew transformation |
URI | https://dx.doi.org/10.1016/j.matdes.2023.111595 https://doaj.org/article/220920e596e4410baa6d844d84487f71 |
Volume | 225 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QUOiPIQy6PygWu0jp04yXGpqJZW9AKVeovsjI0CS7LaTVX13zOTx7JcQOohh0S2E42d-T6PZj4DfGAJKiudikzmiyixDiNncx0VLtZ5ZZBAiauRv1yZ1XVycZPeHMHZVAvDaZWj7x98eu-txyeL0ZqLTV0vvtLuIWF5ciLRvTLaIzhWhK5yBsfLz5erq_2-ixVchlALS_Rl6VRB16d5ES9Ez7rdSrP7SPmgiQOE6oX8D4DqAHzOn8HTkTWK5fBhJ3Dkm-fw5EBL8AX4ZVPv2m7bbu6FbVCg39clijaIjpzD-l6wrnGLdSVYUuQXDbm73QZbecFohmJtO06G2wkOz4rdT39HHf8w27Z5Cdfnn76draLxDIWo0kneRXHQhVUakXkQ7TVkap2ubPBE--LgCNyVrmLMNSYGeTOmNWrvnPKBGlivX8GsaRv_GoSsDP3ALrBCTxKMdHnICd0lajTojZ-DnuxWVqPAOJ9zsS6nTLIf5WDtkq1dDtaeQ7TvtRkENv7T_iNPyb4ty2P3D9rt93JcH6VSslDSp4XxRPeks9ZgniR85VnI4jlk04SWf602Gqr-5-vfPLjnW3jMd0P45h3Muu2tf0-EpnOn44I97QMCvwHaJ_UV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOFU-xQMEHOEab2ImTHDgslGqXbfdCK_Vm7NiuAkuy2qSq9nf1DzKTOMtyAQmph1wcP6SxPfONNfMNIe-QgkqFmgUitXkQK20CrTIe5DriWSEMGCXMRj5biOlF_OUyudwjt0MuDIZVet3f6_ROW_uWsZfmeFWW46_gPcRITw4gumNG85GVc7u5Ab-t-TA7hk1-z9jJ5_NP08CXFggKHmdtEDmeK8aNQXgAEDxMlOaFchbQUOQ02DzGi8hk3MTCoI_CueFWa2YddFCWw7z3yAGyYcG1OpjM5tPF1s9Dxpj-aQcpAdNkyNjrwsoAhxqLPOGMo7pKsLDFjkXsCgfsGMYdY3fyiBx6lEonvSAekz1bPSEPd7gLnxI7qcqmbtf1akNVZaix2zxIWjvagjJabijyKNemLChSmPyEKZvrtVOFpWg9DV2qFoPvGorPwbT5YW9g4G8kXVfPyMWdCPY52a_qyr4gNCwEKAztkBEodiLUmcsATYSGG2GssCPCB7nJwhOaY12NpRwi177LXtoSpS17aY9IsB216gk9_tH_I27Jti_ScXcN9fpK-vMoGQtzFtokFxbgZaiVEiaLY_yy1KXRiKTDhso_TjdMVf51-Zf_PfItuT89PzuVp7PF_BV5gH_6p6PXZL9dX9sjAFOtfuMPLyXf7vq-_AIS7DDW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropy+and+deformation+of+triply+periodic+minimal+surface+based+lattices+with+skew+transformation&rft.jtitle=Materials+%26+design&rft.au=Yang%2C+Nan&rft.au=Qian%2C+Zheng&rft.au=Wei%2C+Huaxian&rft.au=Zhao%2C+Miao&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0264-1275&rft.eissn=1873-4197&rft.volume=225&rft_id=info:doi/10.1016%2Fj.matdes.2023.111595&rft.externalDocID=S0264127523000102 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |