Nomination-favoured opinion pool for optical-SAR-synergistic rice mapping in face of weakened flooding signals
Using satellite image data it is possible to distinguish paddy rice from other crops by detecting its unique signals during the initial flooding period for crop mapping and growth monitoring. In recent years Australian rice growers have applied direct drilling sowing method to reduce water usage. Th...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 155; pp. 187 - 205 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using satellite image data it is possible to distinguish paddy rice from other crops by detecting its unique signals during the initial flooding period for crop mapping and growth monitoring. In recent years Australian rice growers have applied direct drilling sowing method to reduce water usage. This effort, however, has challenged existing algorithms for paddy rice planting area mapping, as the flooding signals have become weaker, especially for the newly introduced water-saving variety YRM 70. In order to alleviate this problem, an optical-SAR-synergistic rice mapping approach is proposed in the time domain in this study. Time-series images from both sensor types were collected in the rice growing seasons. Optical indices and SAR (Synthetic-Aperture Radar) features were generated and analysed. Pixel dependent multiple features are developed to reveal the strongest remote sensing signatures. As the information provided by optical and SAR data are complementary, a novel nomination-favoured opinion pool, NF-OP, is constructed where a pixel is identified as rice if either the optical or SAR data (or both) provide a relatively positive such opinion. In the research, mapping experiments were conducted for the Riverina region of Coleambally, New South Wales, Australia, during the 2016–2017 summer season. The experimental results suggest the following: (1) rice crops sown with the direct drilling method show weakened flooding signals due to the practice of flush floodings and the adoption of water-saving management strategies, especially for directly drilled YRM 70 rice; (2) conventional rice mapping algorithms using only optical or SAR data tend to generate high mis-detection rates (i.e., low true positive rates) for direct drilling rice as a result of weakened flooding signals; (3) by fusing the complementary optical and SAR data with the proposed NF-OP, the mis-detection problem is effectively alleviated, with the true positive rate for directly drilled YRM 70 rice being improved to 82.5% as compared to 54.5% or 44.0% obtained with optical or SAR data only; (4) an overall rice mapping accuracy of 94.7% is achieved with the proposed optical-SAR-synergistic approach, which is 9.5% and 11.5% higher than the respective optical-only and SAR-only algorithms. |
---|---|
AbstractList | Using satellite image data it is possible to distinguish paddy rice from other crops by detecting its unique signals during the initial flooding period for crop mapping and growth monitoring. In recent years Australian rice growers have applied direct drilling sowing method to reduce water usage. This effort, however, has challenged existing algorithms for paddy rice planting area mapping, as the flooding signals have become weaker, especially for the newly introduced water-saving variety YRM 70. In order to alleviate this problem, an optical-SAR-synergistic rice mapping approach is proposed in the time domain in this study. Time-series images from both sensor types were collected in the rice growing seasons. Optical indices and SAR (Synthetic-Aperture Radar) features were generated and analysed. Pixel dependent multiple features are developed to reveal the strongest remote sensing signatures. As the information provided by optical and SAR data are complementary, a novel nomination-favoured opinion pool, NF-OP, is constructed where a pixel is identified as rice if either the optical or SAR data (or both) provide a relatively positive such opinion. In the research, mapping experiments were conducted for the Riverina region of Coleambally, New South Wales, Australia, during the 2016–2017 summer season. The experimental results suggest the following: (1) rice crops sown with the direct drilling method show weakened flooding signals due to the practice of flush floodings and the adoption of water-saving management strategies, especially for directly drilled YRM 70 rice; (2) conventional rice mapping algorithms using only optical or SAR data tend to generate high mis-detection rates (i.e., low true positive rates) for direct drilling rice as a result of weakened flooding signals; (3) by fusing the complementary optical and SAR data with the proposed NF-OP, the mis-detection problem is effectively alleviated, with the true positive rate for directly drilled YRM 70 rice being improved to 82.5% as compared to 54.5% or 44.0% obtained with optical or SAR data only; (4) an overall rice mapping accuracy of 94.7% is achieved with the proposed optical-SAR-synergistic approach, which is 9.5% and 11.5% higher than the respective optical-only and SAR-only algorithms. |
Author | Jia, Xiuping Benediktsson, Jón Atli Guo, Yiqing Paull, David |
Author_xml | – sequence: 1 givenname: Yiqing orcidid: 0000-0002-7179-6267 surname: Guo fullname: Guo, Yiqing organization: School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT 2600, Australia – sequence: 2 givenname: Xiuping surname: Jia fullname: Jia, Xiuping email: X.Jia@adfa.edu.au organization: School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT 2600, Australia – sequence: 3 givenname: David surname: Paull fullname: Paull, David organization: School of Science, The University of New South Wales, Canberra, ACT 2600, Australia – sequence: 4 givenname: Jón Atli surname: Benediktsson fullname: Benediktsson, Jón Atli organization: Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavík 101, Iceland |
BookMark | eNqNkM2P0zAQxS20SHQX_gZy5JIwtpPYOXCoVvuBtAKJj7PlOuNqSmpn7XRR_3tcijhwWQ6j0Ty_92T9LtlFiAEZe8uh4cD797uG8pzyrkwjgA8NqAZAv2ArrpWotZDdBVvBINpaKN6_Ypc57wCAd71esfAp7inYhWKovX2Kh4RjFWcKRajmGKfKx1SEhZyd6q_rL3U-BkxbykWpEjms9nYu_m1FofK23NFXP9H-wFCa_BTjeHrMtA12yq_ZS18Wvvmzr9j325tv1_f1w-e7j9frh9rJVi81x9a5dpS9a0X5uOUby-VGOC6s9qPqByEtDrqFjVJKdha8d5th1CP61vNByiv27tw7p_h4wLyYPWWH02QDxkM2QkInoAM9FOuHs9WlmHNCbxwtv4EsydJkOJgTZ7MzfzmbE2cDyhTOJa_-yc-J9jYd_yO5PiexkHgiTCY7wuBwpIRuMWOkZzt-AVKJouc |
CitedBy_id | crossref_primary_10_1016_j_ecolind_2021_108173 crossref_primary_10_3390_rs13224609 crossref_primary_10_1016_j_jag_2024_103725 crossref_primary_10_3390_rs16101775 crossref_primary_10_1016_j_inffus_2020_07_004 crossref_primary_10_1162_dint_a_00145 crossref_primary_10_3390_rs13071360 crossref_primary_10_1080_10106049_2023_2203105 crossref_primary_10_1016_j_isprsjprs_2021_06_018 crossref_primary_10_3390_rs15133384 crossref_primary_10_1016_j_isprsjprs_2021_02_018 crossref_primary_10_1109_TGRS_2025_3534654 crossref_primary_10_5194_essd_15_3203_2023 crossref_primary_10_3390_rs15112785 crossref_primary_10_1016_j_cj_2023_12_010 crossref_primary_10_1016_j_rse_2020_112112 crossref_primary_10_3390_rs14143253 crossref_primary_10_1016_j_jhydrol_2022_127462 crossref_primary_10_1016_j_jag_2020_102164 crossref_primary_10_3390_s20247346 crossref_primary_10_3390_app14188141 crossref_primary_10_1016_j_agwat_2022_107907 crossref_primary_10_1016_j_rse_2021_112808 crossref_primary_10_3390_rs12213539 crossref_primary_10_5194_essd_13_5969_2021 crossref_primary_10_1016_j_ejrs_2021_12_008 crossref_primary_10_3390_agronomy14010137 crossref_primary_10_3390_rs16081464 crossref_primary_10_3390_su13020503 |
Cites_doi | 10.1016/j.rse.2004.12.009 10.1016/j.rse.2016.02.016 10.1080/2150704X.2016.1225172 10.1109/36.602526 10.1109/36.551933 10.1016/j.jvcir.2013.03.019 10.1016/j.isprsjprs.2017.11.006 10.1080/0143116021000009921 10.1016/j.rse.2010.12.014 10.5194/isprs-annals-IV-4-W2-161-2017 10.1016/S0034-4257(02)00096-2 10.1016/j.isprsjprs.2018.08.015 10.3390/rs9020119 10.1016/j.isprsjprs.2016.05.010 10.5589/m11-020 10.1109/TMI.2014.2329603 10.1016/j.isprsjprs.2008.07.006 10.1029/2001GB001425 10.1016/j.isprsjprs.2015.04.008 10.1080/014311699213172 10.1071/EA02182 10.3390/s18010316 10.1016/j.rse.2005.10.004 10.1080/01431161.2017.1404162 10.1016/j.automatica.2018.07.013 10.1109/JSTARS.2010.2091493 10.1071/AR03149 10.1080/01431160500421507 10.3390/s150100769 10.3390/rs71215808 10.1109/JPROC.2015.2449668 10.1016/j.isprsjprs.2018.07.017 10.1109/21.156582 10.1080/01431160110107734 10.1109/TIP.2018.2808767 10.1016/j.jag.2018.02.019 10.3390/rs10030447 |
ContentType | Journal Article |
Copyright | 2019 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2019 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2019.07.008 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 205 |
ExternalDocumentID | 10_1016_j_isprsjprs_2019_07_008 S0924271619301753 |
GeographicLocations | New South Wales |
GeographicLocations_xml | – name: New South Wales |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c348t-1e4cc4d36c42924a1ba13b2c12a8fd76923ae9840b77735a0ffcb9d8def4f1933 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Fri Jul 11 10:30:57 EDT 2025 Tue Jul 01 03:46:42 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Fri Feb 23 02:28:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Synthetic-Aperture Radar (SAR) Sowing method Optical Data fusion Opinion pool Rice mapping Rice variety Consensus theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-1e4cc4d36c42924a1ba13b2c12a8fd76923ae9840b77735a0ffcb9d8def4f1933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7179-6267 |
PQID | 2305205089 |
PQPubID | 24069 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2305205089 crossref_citationtrail_10_1016_j_isprsjprs_2019_07_008 crossref_primary_10_1016_j_isprsjprs_2019_07_008 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2019_07_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2019 2019-09-00 20190901 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
PublicationDecade | 2010 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Smith, L., 2014. Rice growers haven’t given up on exporting to China. Clauss, Ottinger, Künzer (b0045) 2018; 39 Richards (b0165) 2009 McNairn, Champagne, Shang, Holmstrom, Reichert (b0120) 2009; 64 Moreton, Richards (b0125) 1984 Xiao, Boles, Frolking, Salas, Moore, Li, He, Zhao (b0240) 2002; 23 Xiao, Boles, Frolking, Li, Babu, Salas, Moore (b0235) 2006; 100 Park, Im, Park, Yoo, Han, Rhee (b0145) 2018; 10 Guo, Jia, Paull (b0090) 2018; 27 Nguyen, Clauss, Cao, Naeimi, Kuenzer, Wagner (b0135) 2015; 7 Tong, Luo, Liu, Xie, Chao, Liu, Liu, Makhinov, Makhinova, Jiang (b0195) 2018; 136 Chen, McNairn (b0040) 2006; 27 Akhondi-Asl, Hoyte, Lockhart, Warfield (b0005) 2014; 33 Frolking, Qiu, Boles, Xiao, Liu, Zhuang, Li, Qin (b0070) 2002; 16 Torbick, Salas, Xiao, Ingraham, Fearon, Biradar, Zhao, Liu, Li, Zhao (b0205) 2011; 37 Nguyen, Gruber, Wagner (b0140) 2016; 7 Ribbes (b0160) 1999; 20 Van Niel, McVicar (b0225) 2004; 55 Benediktsson, Sveinsson, Swain (b0020) 1997; 35 Lewin, Heenan (b0110) 1987 Dong, Xiao (b0050) 2016; 119 Van Niel, McVicar, Fang, Liang (b0230) 2003; 24 Gallego, Pardàs (b0075) 2014; 25 Le Toan, Ribbes, Wang, Floury, Ding, Kong, Fujita, Kurosu (b0105) 1997; 35 Mosleh, Hassan, Chowdhury (b0130) 2015; 15 Van Niel, McVicar (b0220) 2003; 43 Benediktsson, Benediktsson (b0015) 1999; vol. 5 Xiao, Boles, Liu, Zhuang, Frolking, Li, Salas, Moore (b0245) 2005; 95 Madigan, Guo, Pickering, Held, Jia (b0115) 2018 Bouvet, Le Toan (b0030) 2011; 115 Yang, Pan, Wu, Tai (b0250) 2018; 69 Torbick, Chowdhury, Salas, Qi (b0200) 2017; 9 Dunn, B., Fowler, J., North, S., Simth, A., Stevens, M., Watson, A., Whitlock, A., Troldahl, D., Plunkett, G., Mauger, T., Garnett, L., 2016. Rice growing guide 2016–17. Tech. rep., New South Wales Government Department of Primary Industries. Phan, Le Toan, Bouvet, Nguyen, Pham Duy, Zribi (b0150) 2018; 18 Huete, Didan, Miura, Rodriguez, Gao, Ferreira (b0100) 2002; 83 Troldahl, D., Snell, P., Dunn, B., Ovenden, B., 2017. Rice variety guide 2017–18. Tech. rep., New South Wales Government Department of Primary Industries. Teluguntla, Thenkabail, Oliphant, Xiong, Gumma, Congalton, Yadav, Huete (b0190) 2018; 144 Benediktsson, Swain (b0025) 1992; 22 Rouse, Haas, Schell, Deering (b0175) 1973 Brown, E., 2017. Rice seeders may start technological revolution in Laos agriculture as workforce moves out of farming. Dong, Xiao, Menarguez, Zhang, Qin, Thau, Biradar, Moore (b0060) 2016; 185 Gómez-Chova, Tuia, Moser, Camps-Valls (b0080) 2015; 103 Bandyopadhyay, Chung (b0010) 2018; 97 Guo, Jia, Paull (b0085) 2017; 4 Huang, F., 2017. China’s new rice variety catches global attention. Song, Mansaray, Huang, Huang (b0185) 2018; 144 Torbick, Salas, Hagen, Xiao (b0210) 2011; 4 Richards (b0170) 2013 (accessed: 2018-04-03). Qin, Xiao, Dong, Zhou, Zhu, Zhang, Du, Jin, Kou, Wang (b0155) 2015; 105 Teluguntla (10.1016/j.isprsjprs.2019.07.008_b0190) 2018; 144 Chen (10.1016/j.isprsjprs.2019.07.008_b0040) 2006; 27 Ribbes (10.1016/j.isprsjprs.2019.07.008_b0160) 1999; 20 Moreton (10.1016/j.isprsjprs.2019.07.008_b0125) 1984 Akhondi-Asl (10.1016/j.isprsjprs.2019.07.008_b0005) 2014; 33 Nguyen (10.1016/j.isprsjprs.2019.07.008_b0135) 2015; 7 10.1016/j.isprsjprs.2019.07.008_b0095 Qin (10.1016/j.isprsjprs.2019.07.008_b0155) 2015; 105 Huete (10.1016/j.isprsjprs.2019.07.008_b0100) 2002; 83 Le Toan (10.1016/j.isprsjprs.2019.07.008_b0105) 1997; 35 Yang (10.1016/j.isprsjprs.2019.07.008_b0250) 2018; 69 Guo (10.1016/j.isprsjprs.2019.07.008_b0085) 2017; 4 Bandyopadhyay (10.1016/j.isprsjprs.2019.07.008_b0010) 2018; 97 Benediktsson (10.1016/j.isprsjprs.2019.07.008_b0020) 1997; 35 10.1016/j.isprsjprs.2019.07.008_b0180 Xiao (10.1016/j.isprsjprs.2019.07.008_b0240) 2002; 23 10.1016/j.isprsjprs.2019.07.008_b0065 Guo (10.1016/j.isprsjprs.2019.07.008_b0090) 2018; 27 Xiao (10.1016/j.isprsjprs.2019.07.008_b0235) 2006; 100 10.1016/j.isprsjprs.2019.07.008_b0215 Gómez-Chova (10.1016/j.isprsjprs.2019.07.008_b0080) 2015; 103 Nguyen (10.1016/j.isprsjprs.2019.07.008_b0140) 2016; 7 Torbick (10.1016/j.isprsjprs.2019.07.008_b0205) 2011; 37 Clauss (10.1016/j.isprsjprs.2019.07.008_b0045) 2018; 39 Richards (10.1016/j.isprsjprs.2019.07.008_b0165) 2009 Richards (10.1016/j.isprsjprs.2019.07.008_b0170) 2013 Song (10.1016/j.isprsjprs.2019.07.008_b0185) 2018; 144 Van Niel (10.1016/j.isprsjprs.2019.07.008_b0230) 2003; 24 Torbick (10.1016/j.isprsjprs.2019.07.008_b0210) 2011; 4 10.1016/j.isprsjprs.2019.07.008_b0035 Van Niel (10.1016/j.isprsjprs.2019.07.008_b0220) 2003; 43 McNairn (10.1016/j.isprsjprs.2019.07.008_b0120) 2009; 64 Benediktsson (10.1016/j.isprsjprs.2019.07.008_b0015) 1999; vol. 5 Torbick (10.1016/j.isprsjprs.2019.07.008_b0200) 2017; 9 Gallego (10.1016/j.isprsjprs.2019.07.008_b0075) 2014; 25 Park (10.1016/j.isprsjprs.2019.07.008_b0145) 2018; 10 Dong (10.1016/j.isprsjprs.2019.07.008_b0050) 2016; 119 Bouvet (10.1016/j.isprsjprs.2019.07.008_b0030) 2011; 115 Lewin (10.1016/j.isprsjprs.2019.07.008_b0110) 1987 Tong (10.1016/j.isprsjprs.2019.07.008_b0195) 2018; 136 Phan (10.1016/j.isprsjprs.2019.07.008_b0150) 2018; 18 Madigan (10.1016/j.isprsjprs.2019.07.008_b0115) 2018 Xiao (10.1016/j.isprsjprs.2019.07.008_b0245) 2005; 95 Rouse (10.1016/j.isprsjprs.2019.07.008_b0175) 1973 Dong (10.1016/j.isprsjprs.2019.07.008_b0060) 2016; 185 Van Niel (10.1016/j.isprsjprs.2019.07.008_b0225) 2004; 55 Frolking (10.1016/j.isprsjprs.2019.07.008_b0070) 2002; 16 Benediktsson (10.1016/j.isprsjprs.2019.07.008_b0025) 1992; 22 Mosleh (10.1016/j.isprsjprs.2019.07.008_b0130) 2015; 15 |
References_xml | – volume: 83 start-page: 195 year: 2002 end-page: 213 ident: b0100 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. – volume: 4 start-page: 161 year: 2017 end-page: 165 ident: b0085 article-title: Sequential classifier training for rice mapping with multitemporal remote sensing imagery publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. – volume: 27 start-page: 1367 year: 2006 end-page: 1393 ident: b0040 article-title: A neural network integrated approach for rice crop monitoring publication-title: Int. J. Remote Sens. – volume: 103 start-page: 1560 year: 2015 end-page: 1584 ident: b0080 article-title: Multimodal classification of remote sensing images: a review and future directions publication-title: Proc. IEEE – volume: 35 start-page: 833 year: 1997 end-page: 843 ident: b0020 article-title: Hybrid consensus theoretic classification publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Brown, E., 2017. Rice seeders may start technological revolution in Laos agriculture as workforce moves out of farming. – volume: 16 year: 2002 ident: b0070 article-title: Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China publication-title: Global Biogeochem. Cycles – volume: 115 start-page: 1090 year: 2011 end-page: 1101 ident: b0030 article-title: Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta publication-title: Remote Sens. Environ. – reference: (accessed: 2018-04-03). – volume: 144 start-page: 469 year: 2018 end-page: 482 ident: b0185 article-title: Mapping paddy rice agriculture over China using AMSR-E time series data publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Troldahl, D., Snell, P., Dunn, B., Ovenden, B., 2017. Rice variety guide 2017–18. Tech. rep., New South Wales Government Department of Primary Industries. – reference: Dunn, B., Fowler, J., North, S., Simth, A., Stevens, M., Watson, A., Whitlock, A., Troldahl, D., Plunkett, G., Mauger, T., Garnett, L., 2016. Rice growing guide 2016–17. Tech. rep., New South Wales Government Department of Primary Industries. – volume: 23 start-page: 3009 year: 2002 end-page: 3022 ident: b0240 article-title: Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data publication-title: Int. J. Remote Sens. – volume: 136 start-page: 144 year: 2018 end-page: 153 ident: b0195 article-title: An approach for flood monitoring by the combined use of Landsat 8 optical imagery and COSMO-SkyMed radar imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 37 start-page: 17 year: 2011 end-page: 26 ident: b0205 article-title: Integrating SAR and optical imagery for regional mapping of paddy rice attributes in the Poyang Lake Watershed, China publication-title: Can. J. Remote Sens. – volume: 7 start-page: 15868 year: 2015 end-page: 15893 ident: b0135 article-title: Mapping rice seasonality in the Mekong Delta with multi-year Envisat ASAR WSM data publication-title: Remote Sens. – volume: 9 start-page: 119 year: 2017 ident: b0200 article-title: Monitoring rice agriculture across Myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2 publication-title: Remote Sens. – volume: 22 start-page: 688 year: 1992 end-page: 704 ident: b0025 article-title: Consensus theoretic classification methods publication-title: IEEE Trans. Syst. Man Cybern. – volume: 27 start-page: 3036 year: 2018 end-page: 3048 ident: b0090 article-title: Effective sequential classifier training for SVM-based multitemporal remote sensing image classification publication-title: IEEE Trans. Image Process. – volume: 20 start-page: 745 year: 1999 end-page: 765 ident: b0160 article-title: Rice field mapping and monitoring with RADARSAT data publication-title: Int. J. Remote Sens. – start-page: 309 year: 1973 end-page: 317 ident: b0175 article-title: Monitoring vegetation systems in the Great Plains with ERTS (Earth Resources Technology Satellite) publication-title: Proceedings of 3rd Earth Resources Technology Satellite Symposium – volume: 69 start-page: 226 year: 2018 end-page: 236 ident: b0250 article-title: Field-based rice classification in Wuhua county through integration of multi-temporal Sentinel-1A and Landsat-8 OLI data publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 69 year: 1987 end-page: 80 ident: b0110 article-title: The agronomy of Rice Production in the Riverina Region of Southeastern Australia. Efficiency of Nitrogen Fertilizers for Rice – volume: 43 start-page: 379 year: 2003 end-page: 395 ident: b0220 article-title: A simple method to improve field-level rice identification: toward operational monitoring with satellite remote sensing publication-title: Aust. J. Exp. Agric. – volume: 35 start-page: 41 year: 1997 end-page: 56 ident: b0105 article-title: Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 7 start-page: 1209 year: 2016 end-page: 1218 ident: b0140 article-title: Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data publication-title: Remote Sens. Lett. – volume: 55 start-page: 155 year: 2004 end-page: 185 ident: b0225 article-title: Current and potential uses of optical remote sensing in rice-based irrigation systems: a review publication-title: Aust. J. Agric. Res. – volume: 144 start-page: 325 year: 2018 end-page: 340 ident: b0190 article-title: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Huang, F., 2017. China’s new rice variety catches global attention. – year: 1984 ident: b0125 article-title: Irrigated crop inventory by classification of satellite image data publication-title: Photogramm. Eng. Remote Sens. – reference: Smith, L., 2014. Rice growers haven’t given up on exporting to China. – volume: 18 start-page: 316 year: 2018 ident: b0150 article-title: Mapping of rice varieties and sowing date using X-band SAR data publication-title: Sensors – volume: 4 start-page: 451 year: 2011 end-page: 457 ident: b0210 article-title: Monitoring rice agriculture in the Sacramento Valley, USA with multitemporal PALSAR and MODIS imagery publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 95 start-page: 480 year: 2005 end-page: 492 ident: b0245 article-title: Mapping paddy rice agriculture in southern China using multi-temporal MODIS images publication-title: Remote Sens. Environ. – start-page: 7699 year: 2018 end-page: 7702 ident: b0115 article-title: Quantitative monitoring of complete rice growing seasons using Sentinel 2 time series images publication-title: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium – volume: vol. 5 start-page: 2486 year: 1999 end-page: 2488 ident: b0015 article-title: Hybrid consensus theoretic classification with pruning and regularization publication-title: Geoscience and Remote Sensing Symposium, 1999. IGARSS’99 Proceedings. IEEE 1999 International – volume: 119 start-page: 214 year: 2016 end-page: 227 ident: b0050 article-title: Evolution of regional to global paddy rice mapping methods: a review publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 10 start-page: 447 year: 2018 ident: b0145 article-title: Classification and mapping of paddy rice by combining Landsat and SAR time series data publication-title: Remote Sens. – year: 2009 ident: b0165 article-title: Remote Sensing with Imaging Radar – volume: 105 start-page: 220 year: 2015 end-page: 233 ident: b0155 article-title: Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 25 start-page: 184 year: 2014 end-page: 194 ident: b0075 article-title: Region based foreground segmentation combining color and depth sensors via logarithmic opinion pool decision publication-title: J. Vis. Commun. Image Represent. – volume: 97 start-page: 7 year: 2018 end-page: 17 ident: b0010 article-title: Distributed Bayesian filtering using logarithmic opinion pool for dynamic sensor networks publication-title: Automatica – volume: 24 start-page: 885 year: 2003 end-page: 890 ident: b0230 article-title: Calculating environmental moisture for per-field discrimination of rice crops publication-title: Int. J. Remote Sens. – volume: 185 start-page: 142 year: 2016 end-page: 154 ident: b0060 article-title: Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine publication-title: Remote Sens. Environ. – volume: 15 start-page: 769 year: 2015 end-page: 791 ident: b0130 article-title: Application of remote sensors in mapping rice area and forecasting its production: a review publication-title: Sensors – volume: 100 start-page: 95 year: 2006 end-page: 113 ident: b0235 article-title: Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images publication-title: Remote Sens. Environ. – volume: 64 start-page: 434 year: 2009 end-page: 449 ident: b0120 article-title: Integration of optical and synthetic aperture radar (SAR) imagery for delivering operational annual crop inventories publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 39 start-page: 1399 year: 2018 end-page: 1420 ident: b0045 article-title: Mapping rice areas with Sentinel-1 time series and superpixel segmentation publication-title: Int. J. Remote Sens. – year: 2013 ident: b0170 article-title: Remote Sensing Digital Image Analysis – An Introduction – volume: 33 start-page: 1997 year: 2014 end-page: 2009 ident: b0005 article-title: A logarithmic opinion pool based STAPLE algorithm for the fusion of segmentations with associated reliability weights publication-title: IEEE Trans. Med. Imaging – volume: 95 start-page: 480 issue: 4 year: 2005 ident: 10.1016/j.isprsjprs.2019.07.008_b0245 article-title: Mapping paddy rice agriculture in southern China using multi-temporal MODIS images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.12.009 – volume: 185 start-page: 142 year: 2016 ident: 10.1016/j.isprsjprs.2019.07.008_b0060 article-title: Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.016 – ident: 10.1016/j.isprsjprs.2019.07.008_b0215 – volume: 7 start-page: 1209 issue: 12 year: 2016 ident: 10.1016/j.isprsjprs.2019.07.008_b0140 article-title: Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2016.1225172 – year: 2009 ident: 10.1016/j.isprsjprs.2019.07.008_b0165 – volume: 35 start-page: 833 issue: 4 year: 1997 ident: 10.1016/j.isprsjprs.2019.07.008_b0020 article-title: Hybrid consensus theoretic classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.602526 – volume: 35 start-page: 41 issue: 1 year: 1997 ident: 10.1016/j.isprsjprs.2019.07.008_b0105 article-title: Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.551933 – volume: 25 start-page: 184 issue: 1 year: 2014 ident: 10.1016/j.isprsjprs.2019.07.008_b0075 article-title: Region based foreground segmentation combining color and depth sensors via logarithmic opinion pool decision publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2013.03.019 – year: 1984 ident: 10.1016/j.isprsjprs.2019.07.008_b0125 article-title: Irrigated crop inventory by classification of satellite image data publication-title: Photogramm. Eng. Remote Sens. – volume: 136 start-page: 144 year: 2018 ident: 10.1016/j.isprsjprs.2019.07.008_b0195 article-title: An approach for flood monitoring by the combined use of Landsat 8 optical imagery and COSMO-SkyMed radar imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.006 – volume: 24 start-page: 885 issue: 4 year: 2003 ident: 10.1016/j.isprsjprs.2019.07.008_b0230 article-title: Calculating environmental moisture for per-field discrimination of rice crops publication-title: Int. J. Remote Sens. doi: 10.1080/0143116021000009921 – volume: 115 start-page: 1090 issue: 4 year: 2011 ident: 10.1016/j.isprsjprs.2019.07.008_b0030 article-title: Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.12.014 – volume: 4 start-page: 161 year: 2017 ident: 10.1016/j.isprsjprs.2019.07.008_b0085 article-title: Sequential classifier training for rice mapping with multitemporal remote sensing imagery publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. doi: 10.5194/isprs-annals-IV-4-W2-161-2017 – ident: 10.1016/j.isprsjprs.2019.07.008_b0035 – volume: 83 start-page: 195 issue: 1–2 year: 2002 ident: 10.1016/j.isprsjprs.2019.07.008_b0100 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – volume: 144 start-page: 469 year: 2018 ident: 10.1016/j.isprsjprs.2019.07.008_b0185 article-title: Mapping paddy rice agriculture over China using AMSR-E time series data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.08.015 – volume: 9 start-page: 119 issue: 2 year: 2017 ident: 10.1016/j.isprsjprs.2019.07.008_b0200 article-title: Monitoring rice agriculture across Myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2 publication-title: Remote Sens. doi: 10.3390/rs9020119 – ident: 10.1016/j.isprsjprs.2019.07.008_b0065 – volume: 119 start-page: 214 year: 2016 ident: 10.1016/j.isprsjprs.2019.07.008_b0050 article-title: Evolution of regional to global paddy rice mapping methods: a review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.05.010 – volume: 37 start-page: 17 issue: 1 year: 2011 ident: 10.1016/j.isprsjprs.2019.07.008_b0205 article-title: Integrating SAR and optical imagery for regional mapping of paddy rice attributes in the Poyang Lake Watershed, China publication-title: Can. J. Remote Sens. doi: 10.5589/m11-020 – volume: 33 start-page: 1997 issue: 10 year: 2014 ident: 10.1016/j.isprsjprs.2019.07.008_b0005 article-title: A logarithmic opinion pool based STAPLE algorithm for the fusion of segmentations with associated reliability weights publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2329603 – volume: 64 start-page: 434 issue: 5 year: 2009 ident: 10.1016/j.isprsjprs.2019.07.008_b0120 article-title: Integration of optical and synthetic aperture radar (SAR) imagery for delivering operational annual crop inventories publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2008.07.006 – volume: 16 issue: 4 year: 2002 ident: 10.1016/j.isprsjprs.2019.07.008_b0070 article-title: Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China publication-title: Global Biogeochem. Cycles doi: 10.1029/2001GB001425 – volume: 105 start-page: 220 year: 2015 ident: 10.1016/j.isprsjprs.2019.07.008_b0155 article-title: Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.04.008 – volume: 20 start-page: 745 issue: 4 year: 1999 ident: 10.1016/j.isprsjprs.2019.07.008_b0160 article-title: Rice field mapping and monitoring with RADARSAT data publication-title: Int. J. Remote Sens. doi: 10.1080/014311699213172 – start-page: 69 year: 1987 ident: 10.1016/j.isprsjprs.2019.07.008_b0110 – volume: 43 start-page: 379 issue: 4 year: 2003 ident: 10.1016/j.isprsjprs.2019.07.008_b0220 article-title: A simple method to improve field-level rice identification: toward operational monitoring with satellite remote sensing publication-title: Aust. J. Exp. Agric. doi: 10.1071/EA02182 – ident: 10.1016/j.isprsjprs.2019.07.008_b0095 – volume: vol. 5 start-page: 2486 year: 1999 ident: 10.1016/j.isprsjprs.2019.07.008_b0015 article-title: Hybrid consensus theoretic classification with pruning and regularization – volume: 18 start-page: 316 issue: 1 year: 2018 ident: 10.1016/j.isprsjprs.2019.07.008_b0150 article-title: Mapping of rice varieties and sowing date using X-band SAR data publication-title: Sensors doi: 10.3390/s18010316 – volume: 100 start-page: 95 issue: 1 year: 2006 ident: 10.1016/j.isprsjprs.2019.07.008_b0235 article-title: Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.10.004 – volume: 39 start-page: 1399 issue: 5 year: 2018 ident: 10.1016/j.isprsjprs.2019.07.008_b0045 article-title: Mapping rice areas with Sentinel-1 time series and superpixel segmentation publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1404162 – volume: 97 start-page: 7 year: 2018 ident: 10.1016/j.isprsjprs.2019.07.008_b0010 article-title: Distributed Bayesian filtering using logarithmic opinion pool for dynamic sensor networks publication-title: Automatica doi: 10.1016/j.automatica.2018.07.013 – volume: 4 start-page: 451 issue: 2 year: 2011 ident: 10.1016/j.isprsjprs.2019.07.008_b0210 article-title: Monitoring rice agriculture in the Sacramento Valley, USA with multitemporal PALSAR and MODIS imagery publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2010.2091493 – start-page: 7699 year: 2018 ident: 10.1016/j.isprsjprs.2019.07.008_b0115 article-title: Quantitative monitoring of complete rice growing seasons using Sentinel 2 time series images – volume: 55 start-page: 155 issue: 2 year: 2004 ident: 10.1016/j.isprsjprs.2019.07.008_b0225 article-title: Current and potential uses of optical remote sensing in rice-based irrigation systems: a review publication-title: Aust. J. Agric. Res. doi: 10.1071/AR03149 – volume: 27 start-page: 1367 issue: 7 year: 2006 ident: 10.1016/j.isprsjprs.2019.07.008_b0040 article-title: A neural network integrated approach for rice crop monitoring publication-title: Int. J. Remote Sens. doi: 10.1080/01431160500421507 – start-page: 309 year: 1973 ident: 10.1016/j.isprsjprs.2019.07.008_b0175 article-title: Monitoring vegetation systems in the Great Plains with ERTS (Earth Resources Technology Satellite) – volume: 15 start-page: 769 issue: 1 year: 2015 ident: 10.1016/j.isprsjprs.2019.07.008_b0130 article-title: Application of remote sensors in mapping rice area and forecasting its production: a review publication-title: Sensors doi: 10.3390/s150100769 – ident: 10.1016/j.isprsjprs.2019.07.008_b0180 – volume: 7 start-page: 15868 issue: 12 year: 2015 ident: 10.1016/j.isprsjprs.2019.07.008_b0135 article-title: Mapping rice seasonality in the Mekong Delta with multi-year Envisat ASAR WSM data publication-title: Remote Sens. doi: 10.3390/rs71215808 – volume: 103 start-page: 1560 issue: 9 year: 2015 ident: 10.1016/j.isprsjprs.2019.07.008_b0080 article-title: Multimodal classification of remote sensing images: a review and future directions publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2449668 – year: 2013 ident: 10.1016/j.isprsjprs.2019.07.008_b0170 – volume: 144 start-page: 325 year: 2018 ident: 10.1016/j.isprsjprs.2019.07.008_b0190 article-title: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.07.017 – volume: 22 start-page: 688 issue: 4 year: 1992 ident: 10.1016/j.isprsjprs.2019.07.008_b0025 article-title: Consensus theoretic classification methods publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.156582 – volume: 23 start-page: 3009 issue: 15 year: 2002 ident: 10.1016/j.isprsjprs.2019.07.008_b0240 article-title: Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110107734 – volume: 27 start-page: 3036 issue: 6 year: 2018 ident: 10.1016/j.isprsjprs.2019.07.008_b0090 article-title: Effective sequential classifier training for SVM-based multitemporal remote sensing image classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2808767 – volume: 69 start-page: 226 year: 2018 ident: 10.1016/j.isprsjprs.2019.07.008_b0250 article-title: Field-based rice classification in Wuhua county through integration of multi-temporal Sentinel-1A and Landsat-8 OLI data publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2018.02.019 – volume: 10 start-page: 447 issue: 3 year: 2018 ident: 10.1016/j.isprsjprs.2019.07.008_b0145 article-title: Classification and mapping of paddy rice by combining Landsat and SAR time series data publication-title: Remote Sens. doi: 10.3390/rs10030447 |
SSID | ssj0001568 |
Score | 2.429983 |
Snippet | Using satellite image data it is possible to distinguish paddy rice from other crops by detecting its unique signals during the initial flooding period for... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 187 |
SubjectTerms | algorithms Consensus theory crops Data fusion direct seeding growers growing season monitoring New South Wales Opinion pool Optical Oryza sativa planting remote sensing rice Rice mapping Rice variety Sowing method summer synthetic aperture radar Synthetic-Aperture Radar (SAR) time series analysis water conservation water utilization |
Title | Nomination-favoured opinion pool for optical-SAR-synergistic rice mapping in face of weakened flooding signals |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2019.07.008 https://www.proquest.com/docview/2305205089 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUqOAAHxCp2GYmraRbjxNwqBCogeqBU4hZ5hbKkFS0gLnw7M1nYhNQDhxzs2Eo0Mxk_x29mCNlLE5WkggvmZaoYlyJiUkeOeRMFNkoC64uSLBcd0e7xs-uD6wY5qmNhkFZZ-f7SpxfeuuppVtJsDvv9ZjeArUMEcB8gSID5JjGCnSdo5fvvXzSPsAyHw8EMR__gePVHw6fRHVzI8ZJFFk-sM_n3CvXLVxcL0MkCma-QI22VL7dIGi5fInPf8gkukZmqpPnt2zLJOwNkuaDcmVcvMNtZitFR0EGxsBYFuAodxb9s1m1dstEbxgEWiZspphqijwqTN9zQfk69gvbA01en7sE7WuqR8I43kQACJrxCeifHV0dtVhVXYCbm6ZiFjhvDbSwMFqziKtQqjHVkwkil3iYCgJ9yErZ_OkmS-EAF3hstbWqd5x5EHq-SqXyQuzVCY4Pl56UGsB5yrXhqAdZI7TXsPkSsg3UiaoFmpso8jgUwHrKaYnaXfWoiQ01kAZ6Kp-sk-Jw4LJNvTJ5yWGss-2FHGSwRkyfv1jrO4CvDoxOVu8EzDIqRLwRgVm785wGbZBZbJUdti0yNn57dNoCasd4prHaHTLdOz9udDw_I-jg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH4CegAOqGVRB7oYiauZLCaJuSFUNGWZA4vEzfIKQyEzmhlaceG3970stCAkDhxyiO2nRLbz_Dn-3vsAtopc50UmMh5kobmQWcKlSTwPNolckkcuVJIsJ_2sdyEOL3cuZ2C_jYUhWmXj-2ufXnnrpqTb9GZ3NBh0zyLcOiQI9xGCRJRvchY-CPx8ScZg-_EfzyOu4-GoNafmz0heg8loPLnBi0heskrjSUKTry9RL5x1tQIdfISlBjqyvfrtPsGML5dh8b-Egssw32iaXz-sQNkfEs2FOp4H_RutvWMUHoUFjJS1GOJVLKh-ZvOzvVM-eaBAwCpzM6NcQ-xOU_aGKzYoWdB4Pwzsj9e_0D06FojxTpXEAME5vAoXBz_O93u8UVfgNhXFlMdeWCtcmllSrBI6NjpOTWLjRBfB5RkiP-0l7v9Mnufpjo5CsEa6wvkgAvZ5ugZz5bD0n4GllvTnpUG0HgujReEQ10gTDG4_stREHcjaDlW2ST1OChi3quWY3ainkVA0EiqiY_GiA9GT4ajOvvG2yW47YurZRFK4RrxtvNmOscLPjM5OdOmH99goJcIQolm5_p4HfIf53vnJsTr-2T_agAWqqQlrX2BuOr73XxHhTM23agb_Bbz1-8Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nomination-favoured+opinion+pool+for+optical-SAR-synergistic+rice+mapping+in+face+of+weakened+flooding+signals&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Guo%2C+Yiqing&rft.au=Jia%2C+Xiuping&rft.au=Paull%2C+David&rft.au=Benediktsson%2C+J%C3%B3n+Atli&rft.date=2019-09-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=155&rft.spage=187&rft.epage=205&rft_id=info:doi/10.1016%2Fj.isprsjprs.2019.07.008&rft.externalDocID=S0924271619301753 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |