Nomination-favoured opinion pool for optical-SAR-synergistic rice mapping in face of weakened flooding signals

Using satellite image data it is possible to distinguish paddy rice from other crops by detecting its unique signals during the initial flooding period for crop mapping and growth monitoring. In recent years Australian rice growers have applied direct drilling sowing method to reduce water usage. Th...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 155; pp. 187 - 205
Main Authors Guo, Yiqing, Jia, Xiuping, Paull, David, Benediktsson, Jón Atli
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using satellite image data it is possible to distinguish paddy rice from other crops by detecting its unique signals during the initial flooding period for crop mapping and growth monitoring. In recent years Australian rice growers have applied direct drilling sowing method to reduce water usage. This effort, however, has challenged existing algorithms for paddy rice planting area mapping, as the flooding signals have become weaker, especially for the newly introduced water-saving variety YRM 70. In order to alleviate this problem, an optical-SAR-synergistic rice mapping approach is proposed in the time domain in this study. Time-series images from both sensor types were collected in the rice growing seasons. Optical indices and SAR (Synthetic-Aperture Radar) features were generated and analysed. Pixel dependent multiple features are developed to reveal the strongest remote sensing signatures. As the information provided by optical and SAR data are complementary, a novel nomination-favoured opinion pool, NF-OP, is constructed where a pixel is identified as rice if either the optical or SAR data (or both) provide a relatively positive such opinion. In the research, mapping experiments were conducted for the Riverina region of Coleambally, New South Wales, Australia, during the 2016–2017 summer season. The experimental results suggest the following: (1) rice crops sown with the direct drilling method show weakened flooding signals due to the practice of flush floodings and the adoption of water-saving management strategies, especially for directly drilled YRM 70 rice; (2) conventional rice mapping algorithms using only optical or SAR data tend to generate high mis-detection rates (i.e., low true positive rates) for direct drilling rice as a result of weakened flooding signals; (3) by fusing the complementary optical and SAR data with the proposed NF-OP, the mis-detection problem is effectively alleviated, with the true positive rate for directly drilled YRM 70 rice being improved to 82.5% as compared to 54.5% or 44.0% obtained with optical or SAR data only; (4) an overall rice mapping accuracy of 94.7% is achieved with the proposed optical-SAR-synergistic approach, which is 9.5% and 11.5% higher than the respective optical-only and SAR-only algorithms.
AbstractList Using satellite image data it is possible to distinguish paddy rice from other crops by detecting its unique signals during the initial flooding period for crop mapping and growth monitoring. In recent years Australian rice growers have applied direct drilling sowing method to reduce water usage. This effort, however, has challenged existing algorithms for paddy rice planting area mapping, as the flooding signals have become weaker, especially for the newly introduced water-saving variety YRM 70. In order to alleviate this problem, an optical-SAR-synergistic rice mapping approach is proposed in the time domain in this study. Time-series images from both sensor types were collected in the rice growing seasons. Optical indices and SAR (Synthetic-Aperture Radar) features were generated and analysed. Pixel dependent multiple features are developed to reveal the strongest remote sensing signatures. As the information provided by optical and SAR data are complementary, a novel nomination-favoured opinion pool, NF-OP, is constructed where a pixel is identified as rice if either the optical or SAR data (or both) provide a relatively positive such opinion. In the research, mapping experiments were conducted for the Riverina region of Coleambally, New South Wales, Australia, during the 2016–2017 summer season. The experimental results suggest the following: (1) rice crops sown with the direct drilling method show weakened flooding signals due to the practice of flush floodings and the adoption of water-saving management strategies, especially for directly drilled YRM 70 rice; (2) conventional rice mapping algorithms using only optical or SAR data tend to generate high mis-detection rates (i.e., low true positive rates) for direct drilling rice as a result of weakened flooding signals; (3) by fusing the complementary optical and SAR data with the proposed NF-OP, the mis-detection problem is effectively alleviated, with the true positive rate for directly drilled YRM 70 rice being improved to 82.5% as compared to 54.5% or 44.0% obtained with optical or SAR data only; (4) an overall rice mapping accuracy of 94.7% is achieved with the proposed optical-SAR-synergistic approach, which is 9.5% and 11.5% higher than the respective optical-only and SAR-only algorithms.
Author Jia, Xiuping
Benediktsson, Jón Atli
Guo, Yiqing
Paull, David
Author_xml – sequence: 1
  givenname: Yiqing
  orcidid: 0000-0002-7179-6267
  surname: Guo
  fullname: Guo, Yiqing
  organization: School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT 2600, Australia
– sequence: 2
  givenname: Xiuping
  surname: Jia
  fullname: Jia, Xiuping
  email: X.Jia@adfa.edu.au
  organization: School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT 2600, Australia
– sequence: 3
  givenname: David
  surname: Paull
  fullname: Paull, David
  organization: School of Science, The University of New South Wales, Canberra, ACT 2600, Australia
– sequence: 4
  givenname: Jón Atli
  surname: Benediktsson
  fullname: Benediktsson, Jón Atli
  organization: Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavík 101, Iceland
BookMark eNqNkM2P0zAQxS20SHQX_gZy5JIwtpPYOXCoVvuBtAKJj7PlOuNqSmpn7XRR_3tcijhwWQ6j0Ty_92T9LtlFiAEZe8uh4cD797uG8pzyrkwjgA8NqAZAv2ArrpWotZDdBVvBINpaKN6_Ypc57wCAd71esfAp7inYhWKovX2Kh4RjFWcKRajmGKfKx1SEhZyd6q_rL3U-BkxbykWpEjms9nYu_m1FofK23NFXP9H-wFCa_BTjeHrMtA12yq_ZS18Wvvmzr9j325tv1_f1w-e7j9frh9rJVi81x9a5dpS9a0X5uOUby-VGOC6s9qPqByEtDrqFjVJKdha8d5th1CP61vNByiv27tw7p_h4wLyYPWWH02QDxkM2QkInoAM9FOuHs9WlmHNCbxwtv4EsydJkOJgTZ7MzfzmbE2cDyhTOJa_-yc-J9jYd_yO5PiexkHgiTCY7wuBwpIRuMWOkZzt-AVKJouc
CitedBy_id crossref_primary_10_1016_j_ecolind_2021_108173
crossref_primary_10_3390_rs13224609
crossref_primary_10_1016_j_jag_2024_103725
crossref_primary_10_3390_rs16101775
crossref_primary_10_1016_j_inffus_2020_07_004
crossref_primary_10_1162_dint_a_00145
crossref_primary_10_3390_rs13071360
crossref_primary_10_1080_10106049_2023_2203105
crossref_primary_10_1016_j_isprsjprs_2021_06_018
crossref_primary_10_3390_rs15133384
crossref_primary_10_1016_j_isprsjprs_2021_02_018
crossref_primary_10_1109_TGRS_2025_3534654
crossref_primary_10_5194_essd_15_3203_2023
crossref_primary_10_3390_rs15112785
crossref_primary_10_1016_j_cj_2023_12_010
crossref_primary_10_1016_j_rse_2020_112112
crossref_primary_10_3390_rs14143253
crossref_primary_10_1016_j_jhydrol_2022_127462
crossref_primary_10_1016_j_jag_2020_102164
crossref_primary_10_3390_s20247346
crossref_primary_10_3390_app14188141
crossref_primary_10_1016_j_agwat_2022_107907
crossref_primary_10_1016_j_rse_2021_112808
crossref_primary_10_3390_rs12213539
crossref_primary_10_5194_essd_13_5969_2021
crossref_primary_10_1016_j_ejrs_2021_12_008
crossref_primary_10_3390_agronomy14010137
crossref_primary_10_3390_rs16081464
crossref_primary_10_3390_su13020503
Cites_doi 10.1016/j.rse.2004.12.009
10.1016/j.rse.2016.02.016
10.1080/2150704X.2016.1225172
10.1109/36.602526
10.1109/36.551933
10.1016/j.jvcir.2013.03.019
10.1016/j.isprsjprs.2017.11.006
10.1080/0143116021000009921
10.1016/j.rse.2010.12.014
10.5194/isprs-annals-IV-4-W2-161-2017
10.1016/S0034-4257(02)00096-2
10.1016/j.isprsjprs.2018.08.015
10.3390/rs9020119
10.1016/j.isprsjprs.2016.05.010
10.5589/m11-020
10.1109/TMI.2014.2329603
10.1016/j.isprsjprs.2008.07.006
10.1029/2001GB001425
10.1016/j.isprsjprs.2015.04.008
10.1080/014311699213172
10.1071/EA02182
10.3390/s18010316
10.1016/j.rse.2005.10.004
10.1080/01431161.2017.1404162
10.1016/j.automatica.2018.07.013
10.1109/JSTARS.2010.2091493
10.1071/AR03149
10.1080/01431160500421507
10.3390/s150100769
10.3390/rs71215808
10.1109/JPROC.2015.2449668
10.1016/j.isprsjprs.2018.07.017
10.1109/21.156582
10.1080/01431160110107734
10.1109/TIP.2018.2808767
10.1016/j.jag.2018.02.019
10.3390/rs10030447
ContentType Journal Article
Copyright 2019 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2019 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2019.07.008
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 205
ExternalDocumentID 10_1016_j_isprsjprs_2019_07_008
S0924271619301753
GeographicLocations New South Wales
GeographicLocations_xml – name: New South Wales
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c348t-1e4cc4d36c42924a1ba13b2c12a8fd76923ae9840b77735a0ffcb9d8def4f1933
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Fri Jul 11 10:30:57 EDT 2025
Tue Jul 01 03:46:42 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Fri Feb 23 02:28:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Synthetic-Aperture Radar (SAR)
Sowing method
Optical
Data fusion
Opinion pool
Rice mapping
Rice variety
Consensus theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-1e4cc4d36c42924a1ba13b2c12a8fd76923ae9840b77735a0ffcb9d8def4f1933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7179-6267
PQID 2305205089
PQPubID 24069
PageCount 19
ParticipantIDs proquest_miscellaneous_2305205089
crossref_citationtrail_10_1016_j_isprsjprs_2019_07_008
crossref_primary_10_1016_j_isprsjprs_2019_07_008
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2019_07_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Smith, L., 2014. Rice growers haven’t given up on exporting to China.
Clauss, Ottinger, Künzer (b0045) 2018; 39
Richards (b0165) 2009
McNairn, Champagne, Shang, Holmstrom, Reichert (b0120) 2009; 64
Moreton, Richards (b0125) 1984
Xiao, Boles, Frolking, Salas, Moore, Li, He, Zhao (b0240) 2002; 23
Xiao, Boles, Frolking, Li, Babu, Salas, Moore (b0235) 2006; 100
Park, Im, Park, Yoo, Han, Rhee (b0145) 2018; 10
Guo, Jia, Paull (b0090) 2018; 27
Nguyen, Clauss, Cao, Naeimi, Kuenzer, Wagner (b0135) 2015; 7
Tong, Luo, Liu, Xie, Chao, Liu, Liu, Makhinov, Makhinova, Jiang (b0195) 2018; 136
Chen, McNairn (b0040) 2006; 27
Akhondi-Asl, Hoyte, Lockhart, Warfield (b0005) 2014; 33
Frolking, Qiu, Boles, Xiao, Liu, Zhuang, Li, Qin (b0070) 2002; 16
Torbick, Salas, Xiao, Ingraham, Fearon, Biradar, Zhao, Liu, Li, Zhao (b0205) 2011; 37
Nguyen, Gruber, Wagner (b0140) 2016; 7
Ribbes (b0160) 1999; 20
Van Niel, McVicar (b0225) 2004; 55
Benediktsson, Sveinsson, Swain (b0020) 1997; 35
Lewin, Heenan (b0110) 1987
Dong, Xiao (b0050) 2016; 119
Van Niel, McVicar, Fang, Liang (b0230) 2003; 24
Gallego, Pardàs (b0075) 2014; 25
Le Toan, Ribbes, Wang, Floury, Ding, Kong, Fujita, Kurosu (b0105) 1997; 35
Mosleh, Hassan, Chowdhury (b0130) 2015; 15
Van Niel, McVicar (b0220) 2003; 43
Benediktsson, Benediktsson (b0015) 1999; vol. 5
Xiao, Boles, Liu, Zhuang, Frolking, Li, Salas, Moore (b0245) 2005; 95
Madigan, Guo, Pickering, Held, Jia (b0115) 2018
Bouvet, Le Toan (b0030) 2011; 115
Yang, Pan, Wu, Tai (b0250) 2018; 69
Torbick, Chowdhury, Salas, Qi (b0200) 2017; 9
Dunn, B., Fowler, J., North, S., Simth, A., Stevens, M., Watson, A., Whitlock, A., Troldahl, D., Plunkett, G., Mauger, T., Garnett, L., 2016. Rice growing guide 2016–17. Tech. rep., New South Wales Government Department of Primary Industries.
Phan, Le Toan, Bouvet, Nguyen, Pham Duy, Zribi (b0150) 2018; 18
Huete, Didan, Miura, Rodriguez, Gao, Ferreira (b0100) 2002; 83
Troldahl, D., Snell, P., Dunn, B., Ovenden, B., 2017. Rice variety guide 2017–18. Tech. rep., New South Wales Government Department of Primary Industries.
Teluguntla, Thenkabail, Oliphant, Xiong, Gumma, Congalton, Yadav, Huete (b0190) 2018; 144
Benediktsson, Swain (b0025) 1992; 22
Rouse, Haas, Schell, Deering (b0175) 1973
Brown, E., 2017. Rice seeders may start technological revolution in Laos agriculture as workforce moves out of farming.
Dong, Xiao, Menarguez, Zhang, Qin, Thau, Biradar, Moore (b0060) 2016; 185
Gómez-Chova, Tuia, Moser, Camps-Valls (b0080) 2015; 103
Bandyopadhyay, Chung (b0010) 2018; 97
Guo, Jia, Paull (b0085) 2017; 4
Huang, F., 2017. China’s new rice variety catches global attention.
Song, Mansaray, Huang, Huang (b0185) 2018; 144
Torbick, Salas, Hagen, Xiao (b0210) 2011; 4
Richards (b0170) 2013
(accessed: 2018-04-03).
Qin, Xiao, Dong, Zhou, Zhu, Zhang, Du, Jin, Kou, Wang (b0155) 2015; 105
Teluguntla (10.1016/j.isprsjprs.2019.07.008_b0190) 2018; 144
Chen (10.1016/j.isprsjprs.2019.07.008_b0040) 2006; 27
Ribbes (10.1016/j.isprsjprs.2019.07.008_b0160) 1999; 20
Moreton (10.1016/j.isprsjprs.2019.07.008_b0125) 1984
Akhondi-Asl (10.1016/j.isprsjprs.2019.07.008_b0005) 2014; 33
Nguyen (10.1016/j.isprsjprs.2019.07.008_b0135) 2015; 7
10.1016/j.isprsjprs.2019.07.008_b0095
Qin (10.1016/j.isprsjprs.2019.07.008_b0155) 2015; 105
Huete (10.1016/j.isprsjprs.2019.07.008_b0100) 2002; 83
Le Toan (10.1016/j.isprsjprs.2019.07.008_b0105) 1997; 35
Yang (10.1016/j.isprsjprs.2019.07.008_b0250) 2018; 69
Guo (10.1016/j.isprsjprs.2019.07.008_b0085) 2017; 4
Bandyopadhyay (10.1016/j.isprsjprs.2019.07.008_b0010) 2018; 97
Benediktsson (10.1016/j.isprsjprs.2019.07.008_b0020) 1997; 35
10.1016/j.isprsjprs.2019.07.008_b0180
Xiao (10.1016/j.isprsjprs.2019.07.008_b0240) 2002; 23
10.1016/j.isprsjprs.2019.07.008_b0065
Guo (10.1016/j.isprsjprs.2019.07.008_b0090) 2018; 27
Xiao (10.1016/j.isprsjprs.2019.07.008_b0235) 2006; 100
10.1016/j.isprsjprs.2019.07.008_b0215
Gómez-Chova (10.1016/j.isprsjprs.2019.07.008_b0080) 2015; 103
Nguyen (10.1016/j.isprsjprs.2019.07.008_b0140) 2016; 7
Torbick (10.1016/j.isprsjprs.2019.07.008_b0205) 2011; 37
Clauss (10.1016/j.isprsjprs.2019.07.008_b0045) 2018; 39
Richards (10.1016/j.isprsjprs.2019.07.008_b0165) 2009
Richards (10.1016/j.isprsjprs.2019.07.008_b0170) 2013
Song (10.1016/j.isprsjprs.2019.07.008_b0185) 2018; 144
Van Niel (10.1016/j.isprsjprs.2019.07.008_b0230) 2003; 24
Torbick (10.1016/j.isprsjprs.2019.07.008_b0210) 2011; 4
10.1016/j.isprsjprs.2019.07.008_b0035
Van Niel (10.1016/j.isprsjprs.2019.07.008_b0220) 2003; 43
McNairn (10.1016/j.isprsjprs.2019.07.008_b0120) 2009; 64
Benediktsson (10.1016/j.isprsjprs.2019.07.008_b0015) 1999; vol. 5
Torbick (10.1016/j.isprsjprs.2019.07.008_b0200) 2017; 9
Gallego (10.1016/j.isprsjprs.2019.07.008_b0075) 2014; 25
Park (10.1016/j.isprsjprs.2019.07.008_b0145) 2018; 10
Dong (10.1016/j.isprsjprs.2019.07.008_b0050) 2016; 119
Bouvet (10.1016/j.isprsjprs.2019.07.008_b0030) 2011; 115
Lewin (10.1016/j.isprsjprs.2019.07.008_b0110) 1987
Tong (10.1016/j.isprsjprs.2019.07.008_b0195) 2018; 136
Phan (10.1016/j.isprsjprs.2019.07.008_b0150) 2018; 18
Madigan (10.1016/j.isprsjprs.2019.07.008_b0115) 2018
Xiao (10.1016/j.isprsjprs.2019.07.008_b0245) 2005; 95
Rouse (10.1016/j.isprsjprs.2019.07.008_b0175) 1973
Dong (10.1016/j.isprsjprs.2019.07.008_b0060) 2016; 185
Van Niel (10.1016/j.isprsjprs.2019.07.008_b0225) 2004; 55
Frolking (10.1016/j.isprsjprs.2019.07.008_b0070) 2002; 16
Benediktsson (10.1016/j.isprsjprs.2019.07.008_b0025) 1992; 22
Mosleh (10.1016/j.isprsjprs.2019.07.008_b0130) 2015; 15
References_xml – volume: 83
  start-page: 195
  year: 2002
  end-page: 213
  ident: b0100
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
– volume: 4
  start-page: 161
  year: 2017
  end-page: 165
  ident: b0085
  article-title: Sequential classifier training for rice mapping with multitemporal remote sensing imagery
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci.
– volume: 27
  start-page: 1367
  year: 2006
  end-page: 1393
  ident: b0040
  article-title: A neural network integrated approach for rice crop monitoring
  publication-title: Int. J. Remote Sens.
– volume: 103
  start-page: 1560
  year: 2015
  end-page: 1584
  ident: b0080
  article-title: Multimodal classification of remote sensing images: a review and future directions
  publication-title: Proc. IEEE
– volume: 35
  start-page: 833
  year: 1997
  end-page: 843
  ident: b0020
  article-title: Hybrid consensus theoretic classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Brown, E., 2017. Rice seeders may start technological revolution in Laos agriculture as workforce moves out of farming.
– volume: 16
  year: 2002
  ident: b0070
  article-title: Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China
  publication-title: Global Biogeochem. Cycles
– volume: 115
  start-page: 1090
  year: 2011
  end-page: 1101
  ident: b0030
  article-title: Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta
  publication-title: Remote Sens. Environ.
– reference: (accessed: 2018-04-03).
– volume: 144
  start-page: 469
  year: 2018
  end-page: 482
  ident: b0185
  article-title: Mapping paddy rice agriculture over China using AMSR-E time series data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Troldahl, D., Snell, P., Dunn, B., Ovenden, B., 2017. Rice variety guide 2017–18. Tech. rep., New South Wales Government Department of Primary Industries.
– reference: Dunn, B., Fowler, J., North, S., Simth, A., Stevens, M., Watson, A., Whitlock, A., Troldahl, D., Plunkett, G., Mauger, T., Garnett, L., 2016. Rice growing guide 2016–17. Tech. rep., New South Wales Government Department of Primary Industries.
– volume: 23
  start-page: 3009
  year: 2002
  end-page: 3022
  ident: b0240
  article-title: Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data
  publication-title: Int. J. Remote Sens.
– volume: 136
  start-page: 144
  year: 2018
  end-page: 153
  ident: b0195
  article-title: An approach for flood monitoring by the combined use of Landsat 8 optical imagery and COSMO-SkyMed radar imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 37
  start-page: 17
  year: 2011
  end-page: 26
  ident: b0205
  article-title: Integrating SAR and optical imagery for regional mapping of paddy rice attributes in the Poyang Lake Watershed, China
  publication-title: Can. J. Remote Sens.
– volume: 7
  start-page: 15868
  year: 2015
  end-page: 15893
  ident: b0135
  article-title: Mapping rice seasonality in the Mekong Delta with multi-year Envisat ASAR WSM data
  publication-title: Remote Sens.
– volume: 9
  start-page: 119
  year: 2017
  ident: b0200
  article-title: Monitoring rice agriculture across Myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2
  publication-title: Remote Sens.
– volume: 22
  start-page: 688
  year: 1992
  end-page: 704
  ident: b0025
  article-title: Consensus theoretic classification methods
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 27
  start-page: 3036
  year: 2018
  end-page: 3048
  ident: b0090
  article-title: Effective sequential classifier training for SVM-based multitemporal remote sensing image classification
  publication-title: IEEE Trans. Image Process.
– volume: 20
  start-page: 745
  year: 1999
  end-page: 765
  ident: b0160
  article-title: Rice field mapping and monitoring with RADARSAT data
  publication-title: Int. J. Remote Sens.
– start-page: 309
  year: 1973
  end-page: 317
  ident: b0175
  article-title: Monitoring vegetation systems in the Great Plains with ERTS (Earth Resources Technology Satellite)
  publication-title: Proceedings of 3rd Earth Resources Technology Satellite Symposium
– volume: 69
  start-page: 226
  year: 2018
  end-page: 236
  ident: b0250
  article-title: Field-based rice classification in Wuhua county through integration of multi-temporal Sentinel-1A and Landsat-8 OLI data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 69
  year: 1987
  end-page: 80
  ident: b0110
  article-title: The agronomy of Rice Production in the Riverina Region of Southeastern Australia. Efficiency of Nitrogen Fertilizers for Rice
– volume: 43
  start-page: 379
  year: 2003
  end-page: 395
  ident: b0220
  article-title: A simple method to improve field-level rice identification: toward operational monitoring with satellite remote sensing
  publication-title: Aust. J. Exp. Agric.
– volume: 35
  start-page: 41
  year: 1997
  end-page: 56
  ident: b0105
  article-title: Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 1209
  year: 2016
  end-page: 1218
  ident: b0140
  article-title: Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data
  publication-title: Remote Sens. Lett.
– volume: 55
  start-page: 155
  year: 2004
  end-page: 185
  ident: b0225
  article-title: Current and potential uses of optical remote sensing in rice-based irrigation systems: a review
  publication-title: Aust. J. Agric. Res.
– volume: 144
  start-page: 325
  year: 2018
  end-page: 340
  ident: b0190
  article-title: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Huang, F., 2017. China’s new rice variety catches global attention.
– year: 1984
  ident: b0125
  article-title: Irrigated crop inventory by classification of satellite image data
  publication-title: Photogramm. Eng. Remote Sens.
– reference: Smith, L., 2014. Rice growers haven’t given up on exporting to China.
– volume: 18
  start-page: 316
  year: 2018
  ident: b0150
  article-title: Mapping of rice varieties and sowing date using X-band SAR data
  publication-title: Sensors
– volume: 4
  start-page: 451
  year: 2011
  end-page: 457
  ident: b0210
  article-title: Monitoring rice agriculture in the Sacramento Valley, USA with multitemporal PALSAR and MODIS imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 95
  start-page: 480
  year: 2005
  end-page: 492
  ident: b0245
  article-title: Mapping paddy rice agriculture in southern China using multi-temporal MODIS images
  publication-title: Remote Sens. Environ.
– start-page: 7699
  year: 2018
  end-page: 7702
  ident: b0115
  article-title: Quantitative monitoring of complete rice growing seasons using Sentinel 2 time series images
  publication-title: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium
– volume: vol. 5
  start-page: 2486
  year: 1999
  end-page: 2488
  ident: b0015
  article-title: Hybrid consensus theoretic classification with pruning and regularization
  publication-title: Geoscience and Remote Sensing Symposium, 1999. IGARSS’99 Proceedings. IEEE 1999 International
– volume: 119
  start-page: 214
  year: 2016
  end-page: 227
  ident: b0050
  article-title: Evolution of regional to global paddy rice mapping methods: a review
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 10
  start-page: 447
  year: 2018
  ident: b0145
  article-title: Classification and mapping of paddy rice by combining Landsat and SAR time series data
  publication-title: Remote Sens.
– year: 2009
  ident: b0165
  article-title: Remote Sensing with Imaging Radar
– volume: 105
  start-page: 220
  year: 2015
  end-page: 233
  ident: b0155
  article-title: Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 25
  start-page: 184
  year: 2014
  end-page: 194
  ident: b0075
  article-title: Region based foreground segmentation combining color and depth sensors via logarithmic opinion pool decision
  publication-title: J. Vis. Commun. Image Represent.
– volume: 97
  start-page: 7
  year: 2018
  end-page: 17
  ident: b0010
  article-title: Distributed Bayesian filtering using logarithmic opinion pool for dynamic sensor networks
  publication-title: Automatica
– volume: 24
  start-page: 885
  year: 2003
  end-page: 890
  ident: b0230
  article-title: Calculating environmental moisture for per-field discrimination of rice crops
  publication-title: Int. J. Remote Sens.
– volume: 185
  start-page: 142
  year: 2016
  end-page: 154
  ident: b0060
  article-title: Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine
  publication-title: Remote Sens. Environ.
– volume: 15
  start-page: 769
  year: 2015
  end-page: 791
  ident: b0130
  article-title: Application of remote sensors in mapping rice area and forecasting its production: a review
  publication-title: Sensors
– volume: 100
  start-page: 95
  year: 2006
  end-page: 113
  ident: b0235
  article-title: Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images
  publication-title: Remote Sens. Environ.
– volume: 64
  start-page: 434
  year: 2009
  end-page: 449
  ident: b0120
  article-title: Integration of optical and synthetic aperture radar (SAR) imagery for delivering operational annual crop inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 39
  start-page: 1399
  year: 2018
  end-page: 1420
  ident: b0045
  article-title: Mapping rice areas with Sentinel-1 time series and superpixel segmentation
  publication-title: Int. J. Remote Sens.
– year: 2013
  ident: b0170
  article-title: Remote Sensing Digital Image Analysis – An Introduction
– volume: 33
  start-page: 1997
  year: 2014
  end-page: 2009
  ident: b0005
  article-title: A logarithmic opinion pool based STAPLE algorithm for the fusion of segmentations with associated reliability weights
  publication-title: IEEE Trans. Med. Imaging
– volume: 95
  start-page: 480
  issue: 4
  year: 2005
  ident: 10.1016/j.isprsjprs.2019.07.008_b0245
  article-title: Mapping paddy rice agriculture in southern China using multi-temporal MODIS images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.12.009
– volume: 185
  start-page: 142
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.07.008_b0060
  article-title: Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.016
– ident: 10.1016/j.isprsjprs.2019.07.008_b0215
– volume: 7
  start-page: 1209
  issue: 12
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.07.008_b0140
  article-title: Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2016.1225172
– year: 2009
  ident: 10.1016/j.isprsjprs.2019.07.008_b0165
– volume: 35
  start-page: 833
  issue: 4
  year: 1997
  ident: 10.1016/j.isprsjprs.2019.07.008_b0020
  article-title: Hybrid consensus theoretic classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.602526
– volume: 35
  start-page: 41
  issue: 1
  year: 1997
  ident: 10.1016/j.isprsjprs.2019.07.008_b0105
  article-title: Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.551933
– volume: 25
  start-page: 184
  issue: 1
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.07.008_b0075
  article-title: Region based foreground segmentation combining color and depth sensors via logarithmic opinion pool decision
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2013.03.019
– year: 1984
  ident: 10.1016/j.isprsjprs.2019.07.008_b0125
  article-title: Irrigated crop inventory by classification of satellite image data
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 136
  start-page: 144
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.07.008_b0195
  article-title: An approach for flood monitoring by the combined use of Landsat 8 optical imagery and COSMO-SkyMed radar imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.006
– volume: 24
  start-page: 885
  issue: 4
  year: 2003
  ident: 10.1016/j.isprsjprs.2019.07.008_b0230
  article-title: Calculating environmental moisture for per-field discrimination of rice crops
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116021000009921
– volume: 115
  start-page: 1090
  issue: 4
  year: 2011
  ident: 10.1016/j.isprsjprs.2019.07.008_b0030
  article-title: Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.12.014
– volume: 4
  start-page: 161
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.07.008_b0085
  article-title: Sequential classifier training for rice mapping with multitemporal remote sensing imagery
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci.
  doi: 10.5194/isprs-annals-IV-4-W2-161-2017
– ident: 10.1016/j.isprsjprs.2019.07.008_b0035
– volume: 83
  start-page: 195
  issue: 1–2
  year: 2002
  ident: 10.1016/j.isprsjprs.2019.07.008_b0100
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 144
  start-page: 469
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.07.008_b0185
  article-title: Mapping paddy rice agriculture over China using AMSR-E time series data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.08.015
– volume: 9
  start-page: 119
  issue: 2
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.07.008_b0200
  article-title: Monitoring rice agriculture across Myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2
  publication-title: Remote Sens.
  doi: 10.3390/rs9020119
– ident: 10.1016/j.isprsjprs.2019.07.008_b0065
– volume: 119
  start-page: 214
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.07.008_b0050
  article-title: Evolution of regional to global paddy rice mapping methods: a review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.05.010
– volume: 37
  start-page: 17
  issue: 1
  year: 2011
  ident: 10.1016/j.isprsjprs.2019.07.008_b0205
  article-title: Integrating SAR and optical imagery for regional mapping of paddy rice attributes in the Poyang Lake Watershed, China
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m11-020
– volume: 33
  start-page: 1997
  issue: 10
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.07.008_b0005
  article-title: A logarithmic opinion pool based STAPLE algorithm for the fusion of segmentations with associated reliability weights
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2329603
– volume: 64
  start-page: 434
  issue: 5
  year: 2009
  ident: 10.1016/j.isprsjprs.2019.07.008_b0120
  article-title: Integration of optical and synthetic aperture radar (SAR) imagery for delivering operational annual crop inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2008.07.006
– volume: 16
  issue: 4
  year: 2002
  ident: 10.1016/j.isprsjprs.2019.07.008_b0070
  article-title: Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China
  publication-title: Global Biogeochem. Cycles
  doi: 10.1029/2001GB001425
– volume: 105
  start-page: 220
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.07.008_b0155
  article-title: Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.04.008
– volume: 20
  start-page: 745
  issue: 4
  year: 1999
  ident: 10.1016/j.isprsjprs.2019.07.008_b0160
  article-title: Rice field mapping and monitoring with RADARSAT data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311699213172
– start-page: 69
  year: 1987
  ident: 10.1016/j.isprsjprs.2019.07.008_b0110
– volume: 43
  start-page: 379
  issue: 4
  year: 2003
  ident: 10.1016/j.isprsjprs.2019.07.008_b0220
  article-title: A simple method to improve field-level rice identification: toward operational monitoring with satellite remote sensing
  publication-title: Aust. J. Exp. Agric.
  doi: 10.1071/EA02182
– ident: 10.1016/j.isprsjprs.2019.07.008_b0095
– volume: vol. 5
  start-page: 2486
  year: 1999
  ident: 10.1016/j.isprsjprs.2019.07.008_b0015
  article-title: Hybrid consensus theoretic classification with pruning and regularization
– volume: 18
  start-page: 316
  issue: 1
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.07.008_b0150
  article-title: Mapping of rice varieties and sowing date using X-band SAR data
  publication-title: Sensors
  doi: 10.3390/s18010316
– volume: 100
  start-page: 95
  issue: 1
  year: 2006
  ident: 10.1016/j.isprsjprs.2019.07.008_b0235
  article-title: Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.004
– volume: 39
  start-page: 1399
  issue: 5
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.07.008_b0045
  article-title: Mapping rice areas with Sentinel-1 time series and superpixel segmentation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1404162
– volume: 97
  start-page: 7
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.07.008_b0010
  article-title: Distributed Bayesian filtering using logarithmic opinion pool for dynamic sensor networks
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.07.013
– volume: 4
  start-page: 451
  issue: 2
  year: 2011
  ident: 10.1016/j.isprsjprs.2019.07.008_b0210
  article-title: Monitoring rice agriculture in the Sacramento Valley, USA with multitemporal PALSAR and MODIS imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2010.2091493
– start-page: 7699
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.07.008_b0115
  article-title: Quantitative monitoring of complete rice growing seasons using Sentinel 2 time series images
– volume: 55
  start-page: 155
  issue: 2
  year: 2004
  ident: 10.1016/j.isprsjprs.2019.07.008_b0225
  article-title: Current and potential uses of optical remote sensing in rice-based irrigation systems: a review
  publication-title: Aust. J. Agric. Res.
  doi: 10.1071/AR03149
– volume: 27
  start-page: 1367
  issue: 7
  year: 2006
  ident: 10.1016/j.isprsjprs.2019.07.008_b0040
  article-title: A neural network integrated approach for rice crop monitoring
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500421507
– start-page: 309
  year: 1973
  ident: 10.1016/j.isprsjprs.2019.07.008_b0175
  article-title: Monitoring vegetation systems in the Great Plains with ERTS (Earth Resources Technology Satellite)
– volume: 15
  start-page: 769
  issue: 1
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.07.008_b0130
  article-title: Application of remote sensors in mapping rice area and forecasting its production: a review
  publication-title: Sensors
  doi: 10.3390/s150100769
– ident: 10.1016/j.isprsjprs.2019.07.008_b0180
– volume: 7
  start-page: 15868
  issue: 12
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.07.008_b0135
  article-title: Mapping rice seasonality in the Mekong Delta with multi-year Envisat ASAR WSM data
  publication-title: Remote Sens.
  doi: 10.3390/rs71215808
– volume: 103
  start-page: 1560
  issue: 9
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.07.008_b0080
  article-title: Multimodal classification of remote sensing images: a review and future directions
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2449668
– year: 2013
  ident: 10.1016/j.isprsjprs.2019.07.008_b0170
– volume: 144
  start-page: 325
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.07.008_b0190
  article-title: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.07.017
– volume: 22
  start-page: 688
  issue: 4
  year: 1992
  ident: 10.1016/j.isprsjprs.2019.07.008_b0025
  article-title: Consensus theoretic classification methods
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.156582
– volume: 23
  start-page: 3009
  issue: 15
  year: 2002
  ident: 10.1016/j.isprsjprs.2019.07.008_b0240
  article-title: Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110107734
– volume: 27
  start-page: 3036
  issue: 6
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.07.008_b0090
  article-title: Effective sequential classifier training for SVM-based multitemporal remote sensing image classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2808767
– volume: 69
  start-page: 226
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.07.008_b0250
  article-title: Field-based rice classification in Wuhua county through integration of multi-temporal Sentinel-1A and Landsat-8 OLI data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2018.02.019
– volume: 10
  start-page: 447
  issue: 3
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.07.008_b0145
  article-title: Classification and mapping of paddy rice by combining Landsat and SAR time series data
  publication-title: Remote Sens.
  doi: 10.3390/rs10030447
SSID ssj0001568
Score 2.429983
Snippet Using satellite image data it is possible to distinguish paddy rice from other crops by detecting its unique signals during the initial flooding period for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 187
SubjectTerms algorithms
Consensus theory
crops
Data fusion
direct seeding
growers
growing season
monitoring
New South Wales
Opinion pool
Optical
Oryza sativa
planting
remote sensing
rice
Rice mapping
Rice variety
Sowing method
summer
synthetic aperture radar
Synthetic-Aperture Radar (SAR)
time series analysis
water conservation
water utilization
Title Nomination-favoured opinion pool for optical-SAR-synergistic rice mapping in face of weakened flooding signals
URI https://dx.doi.org/10.1016/j.isprsjprs.2019.07.008
https://www.proquest.com/docview/2305205089
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUqOAAHxCp2GYmraRbjxNwqBCogeqBU4hZ5hbKkFS0gLnw7M1nYhNQDhxzs2Eo0Mxk_x29mCNlLE5WkggvmZaoYlyJiUkeOeRMFNkoC64uSLBcd0e7xs-uD6wY5qmNhkFZZ-f7SpxfeuuppVtJsDvv9ZjeArUMEcB8gSID5JjGCnSdo5fvvXzSPsAyHw8EMR__gePVHw6fRHVzI8ZJFFk-sM_n3CvXLVxcL0MkCma-QI22VL7dIGi5fInPf8gkukZmqpPnt2zLJOwNkuaDcmVcvMNtZitFR0EGxsBYFuAodxb9s1m1dstEbxgEWiZspphqijwqTN9zQfk69gvbA01en7sE7WuqR8I43kQACJrxCeifHV0dtVhVXYCbm6ZiFjhvDbSwMFqziKtQqjHVkwkil3iYCgJ9yErZ_OkmS-EAF3hstbWqd5x5EHq-SqXyQuzVCY4Pl56UGsB5yrXhqAdZI7TXsPkSsg3UiaoFmpso8jgUwHrKaYnaXfWoiQ01kAZ6Kp-sk-Jw4LJNvTJ5yWGss-2FHGSwRkyfv1jrO4CvDoxOVu8EzDIqRLwRgVm785wGbZBZbJUdti0yNn57dNoCasd4prHaHTLdOz9udDw_I-jg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH4CegAOqGVRB7oYiauZLCaJuSFUNGWZA4vEzfIKQyEzmhlaceG3970stCAkDhxyiO2nRLbz_Dn-3vsAtopc50UmMh5kobmQWcKlSTwPNolckkcuVJIsJ_2sdyEOL3cuZ2C_jYUhWmXj-2ufXnnrpqTb9GZ3NBh0zyLcOiQI9xGCRJRvchY-CPx8ScZg-_EfzyOu4-GoNafmz0heg8loPLnBi0heskrjSUKTry9RL5x1tQIdfISlBjqyvfrtPsGML5dh8b-Egssw32iaXz-sQNkfEs2FOp4H_RutvWMUHoUFjJS1GOJVLKh-ZvOzvVM-eaBAwCpzM6NcQ-xOU_aGKzYoWdB4Pwzsj9e_0D06FojxTpXEAME5vAoXBz_O93u8UVfgNhXFlMdeWCtcmllSrBI6NjpOTWLjRBfB5RkiP-0l7v9Mnufpjo5CsEa6wvkgAvZ5ugZz5bD0n4GllvTnpUG0HgujReEQ10gTDG4_stREHcjaDlW2ST1OChi3quWY3ainkVA0EiqiY_GiA9GT4ajOvvG2yW47YurZRFK4RrxtvNmOscLPjM5OdOmH99goJcIQolm5_p4HfIf53vnJsTr-2T_agAWqqQlrX2BuOr73XxHhTM23agb_Bbz1-8Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nomination-favoured+opinion+pool+for+optical-SAR-synergistic+rice+mapping+in+face+of+weakened+flooding+signals&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Guo%2C+Yiqing&rft.au=Jia%2C+Xiuping&rft.au=Paull%2C+David&rft.au=Benediktsson%2C+J%C3%B3n+Atli&rft.date=2019-09-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=155&rft.spage=187&rft.epage=205&rft_id=info:doi/10.1016%2Fj.isprsjprs.2019.07.008&rft.externalDocID=S0924271619301753
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon