Evaluating feedstocks for carbon dioxide removal by enhanced rock weathering and CO2 mineralization
Mineralogically complex feedstocks, including kimberlite, serpentinite, and wollastonite skarns, have vast capacities to sequester carbon dioxide (CO2) through enhanced rock weathering and CO2 mineralization. However, only a small reactive fraction of these feedstocks will be accessible for carbon d...
Saved in:
Published in | Applied geochemistry Vol. 129; p. 104955 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mineralogically complex feedstocks, including kimberlite, serpentinite, and wollastonite skarns, have vast capacities to sequester carbon dioxide (CO2) through enhanced rock weathering and CO2 mineralization. However, only a small reactive fraction of these feedstocks will be accessible for carbon dioxide removal at Earth's surface conditions. We have developed a new method to evaluate the reactivity of mineral feedstocks that consists of a batch leach test using CO2 coupled with total inorganic carbon (TIC) analysis to quantify easily extractable Mg and Ca from non-carbonate (desirable) cation sources. Kimberlite residues from the Venetia Diamond Mine (South Africa), serpentinites, wollastonite skarn, and brucite ore were tested and the results were compared to those from commercial ammonium acetate (NH4OAc) leach tests. A strong correlation (R2 = 0.99) between leached Ca and TIC showed that carbonate minerals (e.g., calcite in kimberlite) are a substantial and undesirable source of easily extractable cations that must be excluded in calculating CO2 sequestration potential. Silicate dissolution (e.g., serpentine) was inferred from the strong positive correlation (R2 = 0.94) between Mg and Si concentrations leached from kimberlites and serpentinites. Strong correlations between leached Ca and Si were only detected for wollastonite skarns, whereas Mg leaching from samples with high abundances of brucite showed weak or no relationship to TIC or Si. The ability to distinguish between sources (non-carbonate versus carbonate) of easily extractable cations is necessary to accurately assess CO2 sequestration potential. The maximum CO2 storage capacity of the Venetia kimberlites was 268–342 kg CO2/t, and our leach test estimated an accessible potential in the range of 3–9 kg CO2/t when only accounting for non-carbonate sources. Our CO2 batch leach test is useful to evaluate the reactivity of mineralogically complex feedstocks at Earth's surface conditions for the purpose of carbon dioxide removal.
•CO2 mineralization at Earth's surface conditions is limited by cation release from mineral feedstocks.•CO2 batch leaching coupled with carbon analysis provides an accurate assessment of feedstock reactivity.•Cation and TIC correlation allows for distinction between non-carbonate and carbonate sources.•Contributions of extractable cations from carbonates leads to overestimation of CO2 sequestration potential.•An offset of 7–20% of the CO2 emissions from the Venetia Diamond Mine is achievable at Earth's surface conditions. |
---|---|
AbstractList | Mineralogically complex feedstocks, including kimberlite, serpentinite, and wollastonite skarns, have vast capacities to sequester carbon dioxide (CO2) through enhanced rock weathering and CO2 mineralization. However, only a small reactive fraction of these feedstocks will be accessible for carbon dioxide removal at Earth's surface conditions. We have developed a new method to evaluate the reactivity of mineral feedstocks that consists of a batch leach test using CO2 coupled with total inorganic carbon (TIC) analysis to quantify easily extractable Mg and Ca from non-carbonate (desirable) cation sources. Kimberlite residues from the Venetia Diamond Mine (South Africa), serpentinites, wollastonite skarn, and brucite ore were tested and the results were compared to those from commercial ammonium acetate (NH4OAc) leach tests. A strong correlation (R2 = 0.99) between leached Ca and TIC showed that carbonate minerals (e.g., calcite in kimberlite) are a substantial and undesirable source of easily extractable cations that must be excluded in calculating CO2 sequestration potential. Silicate dissolution (e.g., serpentine) was inferred from the strong positive correlation (R2 = 0.94) between Mg and Si concentrations leached from kimberlites and serpentinites. Strong correlations between leached Ca and Si were only detected for wollastonite skarns, whereas Mg leaching from samples with high abundances of brucite showed weak or no relationship to TIC or Si. The ability to distinguish between sources (non-carbonate versus carbonate) of easily extractable cations is necessary to accurately assess CO2 sequestration potential. The maximum CO2 storage capacity of the Venetia kimberlites was 268–342 kg CO2/t, and our leach test estimated an accessible potential in the range of 3–9 kg CO2/t when only accounting for non-carbonate sources. Our CO2 batch leach test is useful to evaluate the reactivity of mineralogically complex feedstocks at Earth's surface conditions for the purpose of carbon dioxide removal.
•CO2 mineralization at Earth's surface conditions is limited by cation release from mineral feedstocks.•CO2 batch leaching coupled with carbon analysis provides an accurate assessment of feedstock reactivity.•Cation and TIC correlation allows for distinction between non-carbonate and carbonate sources.•Contributions of extractable cations from carbonates leads to overestimation of CO2 sequestration potential.•An offset of 7–20% of the CO2 emissions from the Venetia Diamond Mine is achievable at Earth's surface conditions. Mineralogically complex feedstocks, including kimberlite, serpentinite, and wollastonite skarns, have vast capacities to sequester carbon dioxide (CO₂) through enhanced rock weathering and CO₂ mineralization. However, only a small reactive fraction of these feedstocks will be accessible for carbon dioxide removal at Earth's surface conditions. We have developed a new method to evaluate the reactivity of mineral feedstocks that consists of a batch leach test using CO₂ coupled with total inorganic carbon (TIC) analysis to quantify easily extractable Mg and Ca from non-carbonate (desirable) cation sources. Kimberlite residues from the Venetia Diamond Mine (South Africa), serpentinites, wollastonite skarn, and brucite ore were tested and the results were compared to those from commercial ammonium acetate (NH₄OAc) leach tests. A strong correlation (R² = 0.99) between leached Ca and TIC showed that carbonate minerals (e.g., calcite in kimberlite) are a substantial and undesirable source of easily extractable cations that must be excluded in calculating CO₂ sequestration potential. Silicate dissolution (e.g., serpentine) was inferred from the strong positive correlation (R² = 0.94) between Mg and Si concentrations leached from kimberlites and serpentinites. Strong correlations between leached Ca and Si were only detected for wollastonite skarns, whereas Mg leaching from samples with high abundances of brucite showed weak or no relationship to TIC or Si. The ability to distinguish between sources (non-carbonate versus carbonate) of easily extractable cations is necessary to accurately assess CO₂ sequestration potential. The maximum CO₂ storage capacity of the Venetia kimberlites was 268–342 kg CO₂/t, and our leach test estimated an accessible potential in the range of 3–9 kg CO₂/t when only accounting for non-carbonate sources. Our CO₂ batch leach test is useful to evaluate the reactivity of mineralogically complex feedstocks at Earth's surface conditions for the purpose of carbon dioxide removal. |
ArticleNumber | 104955 |
Author | Zeyen, Nina Paulo, Carlos Wang, Baolin Power, Ian M. Wilson, Sasha Stubbs, Amanda R. |
Author_xml | – sequence: 1 givenname: Carlos orcidid: 0000-0003-0490-7497 surname: Paulo fullname: Paulo, Carlos email: cfernandesesilvapaul@trentu.ca organization: Trent School of the Environment, Trent University, Peterborough, Ontario, K9L 0G2, Canada – sequence: 2 givenname: Ian M. surname: Power fullname: Power, Ian M. organization: Trent School of the Environment, Trent University, Peterborough, Ontario, K9L 0G2, Canada – sequence: 3 givenname: Amanda R. orcidid: 0000-0003-1283-2923 surname: Stubbs fullname: Stubbs, Amanda R. organization: Trent School of the Environment, Trent University, Peterborough, Ontario, K9L 0G2, Canada – sequence: 4 givenname: Baolin orcidid: 0000-0003-3492-460X surname: Wang fullname: Wang, Baolin organization: Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada – sequence: 5 givenname: Nina orcidid: 0000-0001-9223-6042 surname: Zeyen fullname: Zeyen, Nina organization: Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada – sequence: 6 givenname: Sasha surname: Wilson fullname: Wilson, Sasha organization: Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada |
BookMark | eNqNkD1PwzAQhi0EEuXjN-CRJcV27DoZGFDFl4TEArN1dc7UJbGLnQLl15NSxMAC00mn93l19xyQ3RADEnLC2ZgzPjlbjGH5hNHOsRsLJviwlbVSO2TEKy2Kmpdyl4xYVZWFqIXeJwc5LxhjSjMxIvbyFdoV9D48UYfY5D7a50xdTNRCmsVAGx_ffYM0YReHLJ2tKYY5BIsNTUOYviH0c0ybBggNnd4L2vmACVr_MRTHcET2HLQZj7_nIXm8unyY3hR399e304u7wpay6guuecNLhVBJV6GSM1cDKx2bSAsgtRtu5rVrkNuKKWTC1RNZa6eRIYJkUB6S023vMsWXFebedD5bbFsIGFfZCKV4rUqmxRDV26hNMeeEziyT7yCtDWdmo9UszI9Ws9FqtloH8vwXaX3_9WafwLf_4C-2PA4mXj0mk63HjU2f0Pamif7Pjk_935zY |
CitedBy_id | crossref_primary_10_1016_j_gerr_2024_100087 crossref_primary_10_1021_acs_est_1c01570 crossref_primary_10_3390_land13111839 crossref_primary_10_1016_j_ijggc_2025_104315 crossref_primary_10_1016_j_scitotenv_2022_153553 crossref_primary_10_1016_j_apgeochem_2022_105380 crossref_primary_10_3389_feart_2023_1215930 crossref_primary_10_3390_min14010075 crossref_primary_10_1016_j_scitotenv_2024_172053 crossref_primary_10_1016_j_ijggc_2023_103844 crossref_primary_10_1007_s11356_024_32498_5 crossref_primary_10_3389_fclim_2024_1510747 crossref_primary_10_1016_j_apgeochem_2023_105728 crossref_primary_10_3389_fenrg_2024_1450991 crossref_primary_10_1016_j_apgeochem_2022_105285 crossref_primary_10_1016_j_apgeochem_2024_105986 crossref_primary_10_3389_fclim_2024_1346117 crossref_primary_10_1016_j_chemgeo_2023_121674 crossref_primary_10_1016_j_mtsust_2023_100530 crossref_primary_10_1016_j_ijggc_2023_103990 crossref_primary_10_1007_s11157_024_09695_2 crossref_primary_10_1016_j_gca_2024_02_005 crossref_primary_10_1021_acsomega_4c03393 crossref_primary_10_3389_fclim_2022_913632 crossref_primary_10_1016_j_ijggc_2025_104344 crossref_primary_10_1016_j_ijggc_2021_103554 crossref_primary_10_1016_j_scitotenv_2024_177094 crossref_primary_10_3389_fpls_2022_929457 crossref_primary_10_1021_acs_est_3c05081 crossref_primary_10_1021_acs_energyfuels_2c00665 crossref_primary_10_1021_acs_energyfuels_3c03881 |
Cites_doi | 10.1016/j.chemgeo.2009.01.022 10.2138/rmg.2013.77.9 10.1016/j.gca.2014.10.020 10.1002/ceat.201000024 10.3390/min8050209 10.1016/j.gca.2006.06.1557 10.1007/s10450-020-00200-z 10.1016/j.apgeochem.2017.07.005 10.1016/j.apgeochem.2013.04.016 10.1016/j.egypro.2013.06.510 10.1038/s41467-019-10003-8 10.1016/j.ijggc.2020.103017 10.2113/gselements.9.2.115 10.1038/srep08775 10.1016/j.gca.2006.01.001 10.1016/j.fuel.2010.10.040 10.1016/j.cej.2014.02.010 10.5382/econgeo.4710 10.1038/s41893-020-0486-9 10.1016/j.chemgeo.2009.01.013 10.1007/s13762-020-02776-z 10.3390/geosciences8070260 10.1016/j.chemgeo.2013.05.020 10.1016/j.gca.2012.09.030 10.1021/acs.jpca.8b09140 10.1016/0360-5442(95)00071-N 10.2475/08.2009.05 10.1002/ghg3.7 10.1016/j.ces.2006.01.048 10.3390/min9080485 10.1021/es9017656 10.1038/s41529-018-0035-4 10.3390/min4020399 10.1016/j.egypro.2014.11.349 10.1016/j.minpro.2007.04.001 10.1007/s00710-018-0589-4 10.1007/s10230-019-00617-1 10.1016/j.ijggc.2016.06.022 10.3390/min7100191 10.3103/S1068375507050110 10.1016/j.fuproc.2013.12.012 10.1016/j.chemgeo.2006.08.004 10.1016/j.hydromet.2014.12.008 10.1180/0009855033810083 10.1016/j.ijggc.2014.04.002 10.2138/rmg.2009.70.6 10.3389/fclim.2019.00006 10.3390/min8040147 10.1016/j.clay.2017.11.007 10.1016/j.mineng.2013.12.014 10.1016/0016-7037(93)90431-U 10.1016/j.chemgeo.2018.10.008 10.1002/cjce.22066 10.1080/15567036.2018.1548518 10.1002/jpln.200621975 10.1016/S0016-7037(01)00710-4 10.1016/j.ijggc.2019.102895 10.1016/j.gca.2004.08.011 10.1088/1748-9326/aabf9b 10.1007/s00269-014-0659-z 10.1038/s41467-019-09475-5 10.1016/j.jclepro.2016.09.204 10.1021/acsomega.8b02477 10.1021/es202112y 10.1016/j.ijggc.2012.05.009 10.2113/gselements.4.5.333 10.1021/ja01269a023 10.1021/es3012854 10.1051/agro:19970102 10.1039/C4CS00035H 10.1021/la301136w 10.1016/j.apgeochem.2013.09.020 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apgeochem.2021.104955 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-9134 |
ExternalDocumentID | 10_1016_j_apgeochem_2021_104955 S0883292721000871 |
GeographicLocations | South Africa |
GeographicLocations_xml | – name: South Africa |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABEFU ABFNM ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 VH1 WUQ XPP ZCA ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c348t-171d135ea84f8e54bf9a03f064caa47f00019fde1c805e02f96497f7e0eea40a3 |
IEDL.DBID | .~1 |
ISSN | 0883-2927 |
IngestDate | Fri Jul 11 00:26:56 EDT 2025 Tue Jul 01 01:59:41 EDT 2025 Thu Apr 24 22:57:19 EDT 2025 Fri Feb 23 02:35:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Carbonation feedstock CO2 mineralization Enhanced rock weathering Carbon dioxide removal Easily extractable cations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-171d135ea84f8e54bf9a03f064caa47f00019fde1c805e02f96497f7e0eea40a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0490-7497 0000-0003-3492-460X 0000-0003-1283-2923 0000-0001-9223-6042 |
PQID | 2551953072 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2551953072 crossref_primary_10_1016_j_apgeochem_2021_104955 crossref_citationtrail_10_1016_j_apgeochem_2021_104955 elsevier_sciencedirect_doi_10_1016_j_apgeochem_2021_104955 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied geochemistry |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Alshameri, He, Zhu, Xi, Zhu, Ma, Tao (bib1) 2018; 159 Ciesielski, Sterckeman, Santerne, Willery (bib13) 1997; 17 (bib53) 2019 Kandji, Plante, Bussière, Beaudoin, Dupont (bib40) 2017; 84 Komadel (bib43) 2003; 38 McCutcheon, Turvey, Wilson, Hamilton, Southam (bib48) 2017; 7 Assima, Larachi, Molson, Beaudoin (bib3) 2014; 245 Veetil, Hitch (bib78) 2020 Renforth (bib69) 2019; 10 Sanna, Uibu, Caramanna, Kuusik, Maroto-Valer (bib71) 2014; 43 Dudhaiya, Santos (bib86) 2018; 8 Azizi, Larachi (bib7) 2019; 123 Loring, Schaef, Turcu, Thompson, Miller, Martin, Hu, Hoyt, Qafoku, Ilton, Felmy, Rosso (bib47) 2012; 28 Brantley, Olsen (bib11) 2014 Knauss, Nguyen, Weed (bib42) 1993; 57 Raudsepp, Pani, Dipple (bib68) 1999; 37 Ipcc (bib39) 2019 Huijgen, Witkamp, Comans (bib36) 2006; 61 Parkhurst, Appelo (bib59) 2013 Sanna, Lacinska, Styles, Maroto-Valer (bib70) 2014; 120 Power, McCutcheon, Harrison, Wilson, Dipple, Kelly, Southam, Southam (bib66) 2014; 4 Thom, Dipple, Power, Harrison (bib76) 2013; 35 Wilson, Harrison, Dipple, Power, Barker, Ulrich Mayer, Fallon, Raudsepp, Southam (bib81) 2014; 25 Awoh, Plante, Bussière, Mbonimpa (bib5) 2013 Haque, Santos, Chiang (bib29) 2020; 97 Di Lorenzo, Ruiz-Agudo, Ibañez-Velasco, Gil-San Millán, Navarro, Ruiz-Agudo, Rodriguez-Navarro (bib20) 2018; 8 Hamilton, Wilson, Morgan, Harrison, Turvey, Paterson, Dipple, Southam (bib28) 2020; 115 Fajardy, Patrizio, Daggash, Mac Dowell (bib24) 2019; 1 Wang, Maroto-Valer (bib79) 2011; 90 Golubev, Bauer, Pokrovsky (bib25) 2006; 70 Bonfils, Julcour-Lebigue, Guyot, Bodénan, Chiquet, Bourgeois (bib9) 2012; 9 Entezari Zarandi, Larachi, Beaudoin, Plante, Sciortino (bib23) 2016; 52 Pokrovsky, Golubev, Schott, Castillo (bib61) 2009; 265 Declercq, Oelkers (bib19) 2014 Harrison, Dipple, Power, Mayer (bib31) 2015; 148 Horri, Sanz-Pérez, Arencibia, Sanz, Frini-Srasra, Srasra (bib35) 2020; 26 Baena-Moreno, Rodríguez-Galán, Vega, Alonso-Fariñas, Vilches Arenas, Navarrete (bib8) 2019; 41 Brantley (bib10) 2003 Michels, Fossum, Rozynek, Hemmen, Rustenberg, Sobas, Kalantzopoulos, Knudsen, Janek, Plivelic, da Silva (bib50) 2015; 5 Golubev, Pokrovsky (bib26) 2006; 235 Declercq, Bosc, Oelkers (bib18) 2013; 39 Brunauer, Emmett, Teller (bib12) 1938; 60 Wilson, Dipple, Power, Barker, Fallon, Southam (bib80) 2011; 45 Daval, Hellmann, Martinez, Gangloff, Guyot (bib15) 2013; 351 Pogge von Strandmann, Burton, Snæbjörnsdóttir, Sigfússon, Aradóttir, Gunnarsson, Alfredsson, Mesfin, Oelkers, Gislason (bib60) 2019; 10 Schott, Pokrovsky, Spalla, Devreux, Gloter, Mielczarski (bib73) 2012; 98 Haque, Santos, Dutta, Thimmanagari, Chiang (bib30) 2019; 4 Daval (bib14) 2018; 2 Harrison, Power, Dipple (bib32) 2013; 47 Dohrmann (bib22) 2006; 169 Mervine, Wilson, Power, Dipple, Turvey, Hamilton, Vanderzee, Raudsepp, Southam, Matter, Kelemen, Stiefenhofer, Miya, Southam (bib49) 2018; 112 Zhang, Zhang, Geerlings, Bi (bib84) 2010; 33 Vanderzee, Dipple, Bradshaw (bib77) 2019 Ayari, Srasra, Trabelsi-Ayadi (bib6) 2007; 43 Oelkers, Declercq, Saldi, Gislason, Schott (bib56) 2018; 500 Pokrovsky, Shirokova, Bénézeth, Schott, Golubev (bib63) 2009; 309 Kirchofer, Brandt, Krevor, Prigiobbe, Becker, Wilcox (bib41) 2013; 37 Haszeldine, Flude, Johnson, Scott (bib33) 2018; 376 Arce, Soares Neto, Ávila, Luna, Carvalho (bib2) 2017; 141 Teir, Revitzer, Eloneva, Fogelholm, Zevenhoven (bib75) 2007; 83 Oelkers, Gislason, Matter (bib57) 2008; 4 Minx, Lamb, Callaghan, Fuss, Hilaire, Creutzig, Amann, Beringer, de Oliveira Garcia, Hartmann, Khanna, Lenzi, Luderer, Nemet, Rogelj, Smith, Vicente Vicente, Wilcox, del Mar Zamora Dominguez (bib52) 2018; 13 Pan, Chen, Fan, Kim, Gao, Ling, Chiang, Pei, Gu (bib58) 2020; 3 Tait, Brown (bib74) 2008; 9 Ipcc (bib38) 2018 Oelkers (bib55) 2001; 65 Power, Harrison, Dipple, Wilson, Kelemen, Hitch, Southam (bib65) 2013; 77 Inap (bib37) 2009 Lackner, Wendt, Butt, Joyce, Sharp (bib45) 1995; 20 Ding, Fu, Ouyang, Yang (bib21) 2014; 41 Zeyen, Wang, Wilson, Von Gunten, Alessi, Paulo, Stubbs, Power (bib83) 2020 Zevenhoven, Fagerlund, Songok (bib82) 2011; 1 Pokrovsky, Schott, Castillo (bib62) 2005; 69 Power, Dipple, Bradshaw, Harrison (bib64) 2020; 94 Daval, Martinez, Corvisier, Findling, Goffé, Guyot (bib16) 2009; 265 Davis, Whitehead, Lengke, Collord (bib17) 2019; 38 Li, Hitch, Power, Pan (bib46) 2018; 8 Power, Wilson, Dipple (bib67) 2013; 9 Miller, Kaszuba, Schaef, Thompson, Qiu, Bowden, Glezakou, McGrail (bib51) 2014; 63 Zhao, Sang, Chen, Ji, Teng (bib85) 2010; 44 Schott, Pokrovsky, Oelkers (bib72) 2009; 70 Hodson (bib34) 2006; 70 Ndlovu, Morkel, Naudé (bib54) 2014; 57 Kremer, Etzold, Boldt, Blaum, Hahn, Wotruba, Telle (bib44) 2019; 9 Guo, Pei, Wang, Yang, Wang, Xie, Liu (bib27) 2015; 152 Assima, Larachi, Molson, Beaudoin (bib4) 2014; 92 Haque (10.1016/j.apgeochem.2021.104955_bib30) 2019; 4 Huijgen (10.1016/j.apgeochem.2021.104955_bib36) 2006; 61 Harrison (10.1016/j.apgeochem.2021.104955_bib32) 2013; 47 Golubev (10.1016/j.apgeochem.2021.104955_bib25) 2006; 70 Tait (10.1016/j.apgeochem.2021.104955_bib74) 2008; 9 Power (10.1016/j.apgeochem.2021.104955_bib64) 2020; 94 Hamilton (10.1016/j.apgeochem.2021.104955_bib28) 2020; 115 Brantley (10.1016/j.apgeochem.2021.104955_bib11) 2014 Sanna (10.1016/j.apgeochem.2021.104955_bib71) 2014; 43 Wilson (10.1016/j.apgeochem.2021.104955_bib80) 2011; 45 Ndlovu (10.1016/j.apgeochem.2021.104955_bib54) 2014; 57 Golubev (10.1016/j.apgeochem.2021.104955_bib26) 2006; 235 Thom (10.1016/j.apgeochem.2021.104955_bib76) 2013; 35 Wang (10.1016/j.apgeochem.2021.104955_bib79) 2011; 90 Kandji (10.1016/j.apgeochem.2021.104955_bib40) 2017; 84 Brantley (10.1016/j.apgeochem.2021.104955_bib10) 2003 Azizi (10.1016/j.apgeochem.2021.104955_bib7) 2019; 123 Kirchofer (10.1016/j.apgeochem.2021.104955_bib41) 2013; 37 Loring (10.1016/j.apgeochem.2021.104955_bib47) 2012; 28 Parkhurst (10.1016/j.apgeochem.2021.104955_bib59) 2013 Davis (10.1016/j.apgeochem.2021.104955_bib17) 2019; 38 Oelkers (10.1016/j.apgeochem.2021.104955_bib55) 2001; 65 Inap (10.1016/j.apgeochem.2021.104955_bib37) 2009 Li (10.1016/j.apgeochem.2021.104955_bib46) 2018; 8 Assima (10.1016/j.apgeochem.2021.104955_bib4) 2014; 92 Haszeldine (10.1016/j.apgeochem.2021.104955_bib33) 2018; 376 Brunauer (10.1016/j.apgeochem.2021.104955_bib12) 1938; 60 Pan (10.1016/j.apgeochem.2021.104955_bib58) 2020; 3 Sanna (10.1016/j.apgeochem.2021.104955_bib70) 2014; 120 Lackner (10.1016/j.apgeochem.2021.104955_bib45) 1995; 20 Pogge von Strandmann (10.1016/j.apgeochem.2021.104955_bib60) 2019; 10 Declercq (10.1016/j.apgeochem.2021.104955_bib18) 2013; 39 Harrison (10.1016/j.apgeochem.2021.104955_bib31) 2015; 148 Di Lorenzo (10.1016/j.apgeochem.2021.104955_bib20) 2018; 8 Ding (10.1016/j.apgeochem.2021.104955_bib21) 2014; 41 Power (10.1016/j.apgeochem.2021.104955_bib65) 2013; 77 Renforth (10.1016/j.apgeochem.2021.104955_bib69) 2019; 10 Alshameri (10.1016/j.apgeochem.2021.104955_bib1) 2018; 159 Schott (10.1016/j.apgeochem.2021.104955_bib72) 2009; 70 Guo (10.1016/j.apgeochem.2021.104955_bib27) 2015; 152 Ipcc (10.1016/j.apgeochem.2021.104955_bib38) 2018 Dohrmann (10.1016/j.apgeochem.2021.104955_bib22) 2006; 169 Daval (10.1016/j.apgeochem.2021.104955_bib16) 2009; 265 Mervine (10.1016/j.apgeochem.2021.104955_bib49) 2018; 112 Schott (10.1016/j.apgeochem.2021.104955_bib73) 2012; 98 Ciesielski (10.1016/j.apgeochem.2021.104955_bib13) 1997; 17 Power (10.1016/j.apgeochem.2021.104955_bib67) 2013; 9 Kremer (10.1016/j.apgeochem.2021.104955_bib44) 2019; 9 Pokrovsky (10.1016/j.apgeochem.2021.104955_bib63) 2009; 309 Zevenhoven (10.1016/j.apgeochem.2021.104955_bib82) 2011; 1 Zhao (10.1016/j.apgeochem.2021.104955_bib85) 2010; 44 Zhang (10.1016/j.apgeochem.2021.104955_bib84) 2010; 33 Hodson (10.1016/j.apgeochem.2021.104955_bib34) 2006; 70 Pokrovsky (10.1016/j.apgeochem.2021.104955_bib61) 2009; 265 Michels (10.1016/j.apgeochem.2021.104955_bib50) 2015; 5 Minx (10.1016/j.apgeochem.2021.104955_bib52) 2018; 13 Vanderzee (10.1016/j.apgeochem.2021.104955_bib77) 2019 Power (10.1016/j.apgeochem.2021.104955_bib66) 2014; 4 Pokrovsky (10.1016/j.apgeochem.2021.104955_bib62) 2005; 69 Raudsepp (10.1016/j.apgeochem.2021.104955_bib68) 1999; 37 McCutcheon (10.1016/j.apgeochem.2021.104955_bib48) 2017; 7 Dudhaiya (10.1016/j.apgeochem.2021.104955_bib86) 2018; 8 Haque (10.1016/j.apgeochem.2021.104955_bib29) 2020; 97 Ipcc (10.1016/j.apgeochem.2021.104955_bib39) 2019 Entezari Zarandi (10.1016/j.apgeochem.2021.104955_bib23) 2016; 52 Fajardy (10.1016/j.apgeochem.2021.104955_bib24) 2019; 1 Zeyen (10.1016/j.apgeochem.2021.104955_bib83) 2020 Assima (10.1016/j.apgeochem.2021.104955_bib3) 2014; 245 Wilson (10.1016/j.apgeochem.2021.104955_bib81) 2014; 25 Veetil (10.1016/j.apgeochem.2021.104955_bib78) 2020 Awoh (10.1016/j.apgeochem.2021.104955_bib5) 2013 Bonfils (10.1016/j.apgeochem.2021.104955_bib9) 2012; 9 Horri (10.1016/j.apgeochem.2021.104955_bib35) 2020; 26 (10.1016/j.apgeochem.2021.104955_bib53) 2019 Arce (10.1016/j.apgeochem.2021.104955_bib2) 2017; 141 Declercq (10.1016/j.apgeochem.2021.104955_bib19) 2014 Ayari (10.1016/j.apgeochem.2021.104955_bib6) 2007; 43 Oelkers (10.1016/j.apgeochem.2021.104955_bib56) 2018; 500 Daval (10.1016/j.apgeochem.2021.104955_bib15) 2013; 351 Daval (10.1016/j.apgeochem.2021.104955_bib14) 2018; 2 Teir (10.1016/j.apgeochem.2021.104955_bib75) 2007; 83 Miller (10.1016/j.apgeochem.2021.104955_bib51) 2014; 63 Knauss (10.1016/j.apgeochem.2021.104955_bib42) 1993; 57 Baena-Moreno (10.1016/j.apgeochem.2021.104955_bib8) 2019; 41 Oelkers (10.1016/j.apgeochem.2021.104955_bib57) 2008; 4 Komadel (10.1016/j.apgeochem.2021.104955_bib43) 2003; 38 |
References_xml | – volume: 9 start-page: 115 year: 2013 end-page: 121 ident: bib67 article-title: Serpentinite carbonation for CO publication-title: Elements – volume: 65 start-page: 3703 year: 2001 end-page: 3719 ident: bib55 article-title: General kinetic description of multioxide silicate mineral and glass dissolution publication-title: Geochem. Cosmochim. Acta – volume: 3 start-page: 399 year: 2020 end-page: 405 ident: bib58 article-title: CO publication-title: Nature Sustainability – volume: 97 start-page: 103017 year: 2020 ident: bib29 article-title: CO publication-title: International Journal of Greenhouse Gas Control – volume: 41 start-page: 1403 year: 2019 end-page: 1433 ident: bib8 article-title: Carbon capture and utilization technologies: a literature review and recent advances publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff. – volume: 70 start-page: 1655 year: 2006 end-page: 1667 ident: bib34 article-title: Does reactive surface area depend on grain size? Results from pH 3, 25°C far-from-equilibrium flow-through dissolution experiments on anorthite and biotite publication-title: Geochem. Cosmochim. Acta – volume: 57 start-page: 285 year: 1993 end-page: 294 ident: bib42 article-title: Diopside dissolution kinetics as a function of pH, CO publication-title: Geochem. Cosmochim. Acta – volume: 5 start-page: 8775 year: 2015 ident: bib50 article-title: Intercalation and retention of carbon dioxide in a smectite clay promoted by interlayer cations publication-title: Sci. Rep. – start-page: 109 year: 2019 end-page: 118 ident: bib77 article-title: Targeting highly reactive labile magnesium in ultramafic tailings for greenhouse-gas offsets and potential tailings stabilization at the Baptiste deposit, central British Columbia (NTS 093K/13, 14) publication-title: Geoscience BC Summary of Activities 2018: Minerals and Mining, Geoscience BC Report 2019-1 – year: 2019 ident: bib53 article-title: Negative Emissions Technologies and Reliable Sequestration: A Research Agenda – volume: 265 start-page: 20 year: 2009 end-page: 32 ident: bib61 article-title: Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 °C and 1 to 55 atm pCO publication-title: Chem. Geol. – volume: 123 start-page: 889 year: 2019 end-page: 905 ident: bib7 article-title: Surface speciation of brucite dissolution in aqueous mineral carbonation: insights from density-functional theory simulations publication-title: J. Phys. Chem. – volume: 169 start-page: 330 year: 2006 end-page: 334 ident: bib22 article-title: Problems in CEC determination of calcareous clayey sediments using the ammonium acetate method publication-title: J. Plant Nutr. Soil Sci. – volume: 120 start-page: 128 year: 2014 end-page: 135 ident: bib70 article-title: Silicate rock dissolution by ammonium bisulphate for pH swing mineral CO publication-title: Fuel Process. Technol. – volume: 152 start-page: 13 year: 2015 end-page: 19 ident: bib27 article-title: Preparation of Mg(OH) publication-title: Hydrometallurgy – volume: 77 start-page: 305 year: 2013 end-page: 360 ident: bib65 article-title: Carbon mineralization: from natural analogues to engineered systems publication-title: Rev. Mineral. Geochem. – volume: 10 start-page: 1401 year: 2019 ident: bib69 article-title: The negative emission potential of alkaline materials publication-title: Nat. Commun. – volume: 17 start-page: 9 year: 1997 end-page: 16 ident: bib13 article-title: A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils publication-title: Agronomie – volume: 9 start-page: 485 year: 2019 ident: bib44 article-title: Geological mapping and characterization of possible primary input materials for the mineral sequestration of carbon dioxide in europe publication-title: Minerals – volume: 9 start-page: 334 year: 2012 end-page: 346 ident: bib9 article-title: Comprehensive analysis of direct aqueous mineral carbonation using dissolution enhancing organic additives publication-title: International Journal of Greenhouse Gas Control – volume: 4 start-page: 333 year: 2008 end-page: 337 ident: bib57 article-title: Mineral carbonation of CO2 publication-title: Elements – year: 2018 ident: bib38 publication-title: IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty – start-page: 69 year: 2014 end-page: 113 ident: bib11 article-title: Reaction kinetics of primary rock-forming minerals under ambient conditions publication-title: Treatise on Geochemistry – volume: 8 start-page: 260 year: 2018 ident: bib86 article-title: How characterization of particle size distribution pre- and post-reaction provides mechanistic insights into mineral carbonation publication-title: Geosciences – year: 2013 ident: bib5 article-title: CO publication-title: Canadian Géotechnical Conference – volume: 35 start-page: 244 year: 2013 end-page: 254 ident: bib76 article-title: Chrysotile dissolution rates: implications for carbon sequestration publication-title: Appl. Geochem. – volume: 45 start-page: 7727 year: 2011 end-page: 7736 ident: bib80 article-title: Subarctic weathering of mineral wastes provides a sink for atmospheric CO(2) publication-title: Environ. Sci. Technol. – volume: 1 year: 2019 ident: bib24 article-title: Negative emissions: priorities for Research and policy design publication-title: Frontiers in Climate – volume: 98 start-page: 259 year: 2012 end-page: 281 ident: bib73 article-title: Formation, growth and transformation of leached layers during silicate minerals dissolution: the example of wollastonite publication-title: Geochem. Cosmochim. Acta – volume: 500 start-page: 1 year: 2018 end-page: 19 ident: bib56 article-title: Olivine dissolution rates: a critical review publication-title: Chem. Geol. – year: 2019 ident: bib39 article-title: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems publication-title: In press.Technical Summary, in: Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems – volume: 38 start-page: 127 year: 2003 end-page: 138 ident: bib43 article-title: Chemically modified smectites publication-title: Clay Miner. – volume: 20 start-page: 1153 year: 1995 end-page: 1170 ident: bib45 article-title: Carbon dioxide disposal in carbonate minerals publication-title: Energy – year: 2013 ident: bib59 article-title: Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations publication-title: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p – volume: 43 start-page: 369 year: 2007 end-page: 378 ident: bib6 article-title: Effect of exchangeable cations on the physicochemical properties of smectite publication-title: Surf. Eng. Appl. Electrochem. – volume: 52 start-page: 110 year: 2016 end-page: 119 ident: bib23 article-title: Multivariate study of the dynamics of CO publication-title: International Journal of Greenhouse Gas Control – volume: 159 start-page: 83 year: 2018 end-page: 93 ident: bib1 article-title: Adsorption of ammonium by different natural clay minerals: characterization, kinetics and adsorption isotherms publication-title: Appl. Clay Sci. – volume: 33 start-page: 1177 year: 2010 end-page: 1183 ident: bib84 article-title: A novel indirect wollastonite carbonation route for CO publication-title: Chem. Eng. Technol. – volume: 4 start-page: 399 year: 2014 end-page: 436 ident: bib66 article-title: Strategizing carbon-neutral mines: a case for pilot projects publication-title: Minerals – volume: 26 start-page: 793 year: 2020 end-page: 811 ident: bib35 article-title: Effect of acid activation on the CO2 adsorption capacity of montmorillonite publication-title: Adsorption – volume: 112 start-page: 755 year: 2018 end-page: 765 ident: bib49 article-title: Potential for offsetting diamond mine carbon emissions through mineral carbonation of processed kimberlite: an assessment of De Beers mine sites in South Africa and Canada publication-title: Mineral. Petrol. – volume: 1 start-page: 48 year: 2011 end-page: 57 ident: bib82 article-title: CO publication-title: Greenhouse Gases: Sci. Technol. – year: 2020 ident: bib83 article-title: Cation Exchange: a New Strategy for Mineral Carbonation of Smectite-Rich Kimberlites – volume: 94 start-page: 102895 year: 2020 ident: bib64 article-title: Prospects for CO publication-title: International Journal of Greenhouse Gas Control – volume: 2 start-page: 11 year: 2018 ident: bib14 article-title: Carbon dioxide sequestration through silicate degradation and carbon mineralisation: promises and uncertainties publication-title: npj Materials Degradation – volume: 37 start-page: 5858 year: 2013 end-page: 5869 ident: bib41 article-title: Assessing the potential of mineral carbonation with industrial alkalinity sources in the U.S publication-title: Energy Procedia – volume: 8 start-page: 209 year: 2018 ident: bib20 article-title: The carbonation of wollastonite: a model reaction to test natural and biomimetic catalysts for enhanced CO publication-title: Minerals – volume: 235 start-page: 377 year: 2006 end-page: 389 ident: bib26 article-title: Experimental study of the effect of organic ligands on diopside dissolution kinetics publication-title: Chem. Geol. – start-page: 73 year: 2003 end-page: 117 ident: bib10 article-title: 5.03 - reaction kinetics of primary rock-forming minerals under ambient conditions publication-title: Treatise on Geochemistry – volume: 63 start-page: 3225 year: 2014 end-page: 3233 ident: bib51 article-title: Experimental study of organic ligand transport in supercritical CO publication-title: Energy Procedia – volume: 13 year: 2018 ident: bib52 article-title: Negative emissions—Part 1: Research landscape and synthesis publication-title: Environ. Res. Lett. – volume: 84 start-page: 262 year: 2017 end-page: 276 ident: bib40 article-title: Kinetic testing to evaluate the mineral carbonation and metal leaching potential of ultramafic tailings: case study of the Dumont Nickel Project, Amos, Québec publication-title: Appl. Geochem. – year: 2020 ident: bib78 article-title: Recent developments and challenges of aqueous mineral carbonation: a review publication-title: Int. J. Environ. Sci. Technol. – volume: 83 start-page: 36 year: 2007 end-page: 46 ident: bib75 article-title: Dissolution of natural serpentinite in mineral and organic acids publication-title: Int. J. Miner. Process. – volume: 115 start-page: 303 year: 2020 end-page: 323 ident: bib28 article-title: Accelerating mineral carbonation in ultramafic mine tailings via direct CO2 reaction and heap leaching with potential for base metal enrichment and recovery publication-title: Econ. Geol. – volume: 41 start-page: 489 year: 2014 end-page: 496 ident: bib21 article-title: CO publication-title: Phys. Chem. Miner. – year: 2009 ident: bib37 article-title: Global acid rock drainage guide (GARD guide) publication-title: The International Network for Acid Prevention (INAP) – volume: 351 start-page: 245 year: 2013 end-page: 256 ident: bib15 article-title: Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO publication-title: Chem. Geol. – volume: 90 start-page: 1229 year: 2011 end-page: 1237 ident: bib79 article-title: Dissolution of serpentine using recyclable ammonium salts for CO publication-title: Fuel – volume: 70 start-page: 207 year: 2009 end-page: 258 ident: bib72 article-title: The link between mineral dissolution/precipitation kinetics and solution chemistry publication-title: Rev. Mineral. Geochem. – volume: 61 start-page: 4242 year: 2006 end-page: 4251 ident: bib36 article-title: Mechanisms of aqueous wollastonite carbonation as a possible CO publication-title: Chem. Eng. Sci. – volume: 376 start-page: 20160447 year: 2018 ident: bib33 article-title: Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments publication-title: Phil. Trans. Math. Phys. Eng. Sci. – volume: 141 start-page: 1324 year: 2017 end-page: 1336 ident: bib2 article-title: Leaching optimization of mining wastes with lizardite and brucite contents for use in indirect mineral carbonation through the pH swing method publication-title: J. Clean. Prod. – volume: 70 start-page: 4436 year: 2006 end-page: 4451 ident: bib25 article-title: Effect of pH and organic ligands on the kinetics of smectite dissolution at 25°C publication-title: Geochem. Cosmochim. Acta – volume: 57 start-page: 68 year: 2014 end-page: 71 ident: bib54 article-title: Kimberlite weathering: effects of organic reagents publication-title: Miner. Eng. – volume: 245 start-page: 56 year: 2014 end-page: 64 ident: bib3 article-title: Comparative study of five Québec ultramafic mining residues for use in direct ambient carbon dioxide mineral sequestration publication-title: Chem. Eng. J. – volume: 265 start-page: 63 year: 2009 end-page: 78 ident: bib16 article-title: Carbonation of Ca-bearing silicates, the case of wollastonite: experimental investigations and kinetic modeling publication-title: Chem. Geol. – volume: 47 start-page: 126 year: 2013 end-page: 134 ident: bib32 article-title: Accelerated carbonation of brucite in mine tailings for carbon sequestration publication-title: Environ. Sci. Technol. – volume: 28 start-page: 7125 year: 2012 end-page: 7128 ident: bib47 article-title: In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide publication-title: Langmuir – volume: 92 start-page: 2029 year: 2014 end-page: 2038 ident: bib4 article-title: New tools for stimulating dissolution and carbonation of ultramafic mining residues publication-title: Can. J. Chem. Eng. – volume: 148 start-page: 477 year: 2015 end-page: 495 ident: bib31 article-title: Influence of surface passivation and water content on mineral reactions in unsaturated porous media: implications for brucite carbonation and CO publication-title: Geochem. Cosmochim. Acta – volume: 37 start-page: 1 year: 1999 end-page: 15 ident: bib68 article-title: Measuring mineral abundance in skarn; I, the Rietveld method using X-ray powder-diffraction data publication-title: Can. Mineral. – volume: 9 year: 2008 ident: bib74 article-title: Explosive fissure eruption of a large kimberlite pipe: Venetia K01 kimberlite pipe, Limpopo, RSA. International Kimberlite Conference publication-title: Extended Abstracts – volume: 10 start-page: 1983 year: 2019 ident: bib60 article-title: Rapid CO publication-title: Nat. Commun. – volume: 43 start-page: 8049 year: 2014 end-page: 8080 ident: bib71 article-title: A review of mineral carbonation technologies to sequester CO publication-title: Chem. Soc. Rev. – volume: 38 start-page: 467 year: 2019 end-page: 487 ident: bib17 article-title: Acid–base accounting tests in combination with humidity cells help to predict waste rock behavior publication-title: Mine Water Environ. – volume: 25 start-page: 121 year: 2014 end-page: 140 ident: bib81 article-title: Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining publication-title: International Journal of Greenhouse Gas Control – volume: 4 start-page: 1425 year: 2019 end-page: 1433 ident: bib30 article-title: Co-benefits of wollastonite weathering in agriculture: CO publication-title: ACS Omega – volume: 39 start-page: 69 year: 2013 end-page: 77 ident: bib18 article-title: Do organic ligands affect forsterite dissolution rates? publication-title: Appl. Geochem. – volume: 44 start-page: 406 year: 2010 end-page: 411 ident: bib85 article-title: Aqueous carbonation of natural brucite: relevance to CO publication-title: Environ. Sci. Technol. – volume: 8 start-page: 147 year: 2018 ident: bib46 article-title: Integrated mineral carbonation of ultramafic mine deposits—a review publication-title: Minerals – volume: 309 start-page: 731 year: 2009 end-page: 772 ident: bib63 article-title: Effect of organic ligands and heterotrophic bacteria on wollastonite dissolution kinetics publication-title: Am. J. Sci. – volume: 69 start-page: 905 year: 2005 end-page: 918 ident: bib62 article-title: Kinetics of brucite dissolution at 25°C in the presence of organic and inorganic ligands and divalent metals publication-title: Geochem. Cosmochim. Acta – volume: 60 start-page: 309 year: 1938 end-page: 319 ident: bib12 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. – year: 2014 ident: bib19 article-title: CarbFix Report 4 PHREEQC Mineral Dissolution Kinetics Database 5. Kinetics Database Compilation – volume: 7 start-page: 191 year: 2017 ident: bib48 article-title: Experimental deployment of microbial mineral carbonation at an asbestos mine: potential applications to carbon storage and tailings stabilization publication-title: Minerals – volume: 265 start-page: 63 year: 2009 ident: 10.1016/j.apgeochem.2021.104955_bib16 article-title: Carbonation of Ca-bearing silicates, the case of wollastonite: experimental investigations and kinetic modeling publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2009.01.022 – volume: 77 start-page: 305 year: 2013 ident: 10.1016/j.apgeochem.2021.104955_bib65 article-title: Carbon mineralization: from natural analogues to engineered systems publication-title: Rev. Mineral. Geochem. doi: 10.2138/rmg.2013.77.9 – volume: 148 start-page: 477 year: 2015 ident: 10.1016/j.apgeochem.2021.104955_bib31 article-title: Influence of surface passivation and water content on mineral reactions in unsaturated porous media: implications for brucite carbonation and CO2 sequestration publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2014.10.020 – volume: 33 start-page: 1177 year: 2010 ident: 10.1016/j.apgeochem.2021.104955_bib84 article-title: A novel indirect wollastonite carbonation route for CO2 sequestration publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201000024 – volume: 8 start-page: 209 year: 2018 ident: 10.1016/j.apgeochem.2021.104955_bib20 article-title: The carbonation of wollastonite: a model reaction to test natural and biomimetic catalysts for enhanced CO2 sequestration publication-title: Minerals doi: 10.3390/min8050209 – start-page: 109 year: 2019 ident: 10.1016/j.apgeochem.2021.104955_bib77 article-title: Targeting highly reactive labile magnesium in ultramafic tailings for greenhouse-gas offsets and potential tailings stabilization at the Baptiste deposit, central British Columbia (NTS 093K/13, 14) publication-title: Geoscience BC Summary of Activities 2018: Minerals and Mining, Geoscience BC Report 2019-1 – volume: 70 start-page: 4436 year: 2006 ident: 10.1016/j.apgeochem.2021.104955_bib25 article-title: Effect of pH and organic ligands on the kinetics of smectite dissolution at 25°C publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2006.06.1557 – start-page: 69 year: 2014 ident: 10.1016/j.apgeochem.2021.104955_bib11 article-title: Reaction kinetics of primary rock-forming minerals under ambient conditions – volume: 26 start-page: 793 year: 2020 ident: 10.1016/j.apgeochem.2021.104955_bib35 article-title: Effect of acid activation on the CO2 adsorption capacity of montmorillonite publication-title: Adsorption doi: 10.1007/s10450-020-00200-z – volume: 84 start-page: 262 year: 2017 ident: 10.1016/j.apgeochem.2021.104955_bib40 article-title: Kinetic testing to evaluate the mineral carbonation and metal leaching potential of ultramafic tailings: case study of the Dumont Nickel Project, Amos, Québec publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2017.07.005 – volume: 35 start-page: 244 year: 2013 ident: 10.1016/j.apgeochem.2021.104955_bib76 article-title: Chrysotile dissolution rates: implications for carbon sequestration publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2013.04.016 – volume: 37 start-page: 5858 year: 2013 ident: 10.1016/j.apgeochem.2021.104955_bib41 article-title: Assessing the potential of mineral carbonation with industrial alkalinity sources in the U.S publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.06.510 – year: 2013 ident: 10.1016/j.apgeochem.2021.104955_bib59 article-title: Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations publication-title: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p – volume: 10 start-page: 1983 year: 2019 ident: 10.1016/j.apgeochem.2021.104955_bib60 article-title: Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes publication-title: Nat. Commun. doi: 10.1038/s41467-019-10003-8 – volume: 97 start-page: 103017 year: 2020 ident: 10.1016/j.apgeochem.2021.104955_bib29 article-title: CO2 sequestration by wollastonite-amended agricultural soils – an Ontario field study publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2020.103017 – volume: 376 start-page: 20160447 year: 2018 ident: 10.1016/j.apgeochem.2021.104955_bib33 article-title: Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments publication-title: Phil. Trans. Math. Phys. Eng. Sci. – volume: 9 start-page: 115 year: 2013 ident: 10.1016/j.apgeochem.2021.104955_bib67 article-title: Serpentinite carbonation for CO2 sequestration publication-title: Elements doi: 10.2113/gselements.9.2.115 – volume: 5 start-page: 8775 year: 2015 ident: 10.1016/j.apgeochem.2021.104955_bib50 article-title: Intercalation and retention of carbon dioxide in a smectite clay promoted by interlayer cations publication-title: Sci. Rep. doi: 10.1038/srep08775 – volume: 70 start-page: 1655 year: 2006 ident: 10.1016/j.apgeochem.2021.104955_bib34 article-title: Does reactive surface area depend on grain size? Results from pH 3, 25°C far-from-equilibrium flow-through dissolution experiments on anorthite and biotite publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2006.01.001 – volume: 90 start-page: 1229 year: 2011 ident: 10.1016/j.apgeochem.2021.104955_bib79 article-title: Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation publication-title: Fuel doi: 10.1016/j.fuel.2010.10.040 – year: 2018 ident: 10.1016/j.apgeochem.2021.104955_bib38 – volume: 245 start-page: 56 year: 2014 ident: 10.1016/j.apgeochem.2021.104955_bib3 article-title: Comparative study of five Québec ultramafic mining residues for use in direct ambient carbon dioxide mineral sequestration publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.02.010 – volume: 115 start-page: 303 year: 2020 ident: 10.1016/j.apgeochem.2021.104955_bib28 article-title: Accelerating mineral carbonation in ultramafic mine tailings via direct CO2 reaction and heap leaching with potential for base metal enrichment and recovery publication-title: Econ. Geol. doi: 10.5382/econgeo.4710 – volume: 3 start-page: 399 year: 2020 ident: 10.1016/j.apgeochem.2021.104955_bib58 article-title: CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction publication-title: Nature Sustainability doi: 10.1038/s41893-020-0486-9 – volume: 265 start-page: 20 year: 2009 ident: 10.1016/j.apgeochem.2021.104955_bib61 article-title: Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 °C and 1 to 55 atm pCO2: new constraints on CO2 sequestration in sedimentary basins publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2009.01.013 – year: 2020 ident: 10.1016/j.apgeochem.2021.104955_bib78 article-title: Recent developments and challenges of aqueous mineral carbonation: a review publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-020-02776-z – volume: 8 start-page: 260 issue: 7 year: 2018 ident: 10.1016/j.apgeochem.2021.104955_bib86 article-title: How characterization of particle size distribution pre- and post-reaction provides mechanistic insights into mineral carbonation publication-title: Geosciences doi: 10.3390/geosciences8070260 – volume: 351 start-page: 245 year: 2013 ident: 10.1016/j.apgeochem.2021.104955_bib15 article-title: Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2013.05.020 – year: 2014 ident: 10.1016/j.apgeochem.2021.104955_bib19 – volume: 98 start-page: 259 year: 2012 ident: 10.1016/j.apgeochem.2021.104955_bib73 article-title: Formation, growth and transformation of leached layers during silicate minerals dissolution: the example of wollastonite publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2012.09.030 – year: 2020 ident: 10.1016/j.apgeochem.2021.104955_bib83 – volume: 123 start-page: 889 year: 2019 ident: 10.1016/j.apgeochem.2021.104955_bib7 article-title: Surface speciation of brucite dissolution in aqueous mineral carbonation: insights from density-functional theory simulations publication-title: J. Phys. Chem. doi: 10.1021/acs.jpca.8b09140 – volume: 20 start-page: 1153 year: 1995 ident: 10.1016/j.apgeochem.2021.104955_bib45 article-title: Carbon dioxide disposal in carbonate minerals publication-title: Energy doi: 10.1016/0360-5442(95)00071-N – volume: 309 start-page: 731 year: 2009 ident: 10.1016/j.apgeochem.2021.104955_bib63 article-title: Effect of organic ligands and heterotrophic bacteria on wollastonite dissolution kinetics publication-title: Am. J. Sci. doi: 10.2475/08.2009.05 – volume: 1 start-page: 48 year: 2011 ident: 10.1016/j.apgeochem.2021.104955_bib82 article-title: CO2 mineral sequestration: developments toward large-scale application publication-title: Greenhouse Gases: Sci. Technol. doi: 10.1002/ghg3.7 – year: 2013 ident: 10.1016/j.apgeochem.2021.104955_bib5 article-title: CO2 consumption test for the quantification of the mineral carbonation potential of mine wastes – volume: 61 start-page: 4242 year: 2006 ident: 10.1016/j.apgeochem.2021.104955_bib36 article-title: Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.01.048 – volume: 9 start-page: 485 year: 2019 ident: 10.1016/j.apgeochem.2021.104955_bib44 article-title: Geological mapping and characterization of possible primary input materials for the mineral sequestration of carbon dioxide in europe publication-title: Minerals doi: 10.3390/min9080485 – volume: 44 start-page: 406 year: 2010 ident: 10.1016/j.apgeochem.2021.104955_bib85 article-title: Aqueous carbonation of natural brucite: relevance to CO2 sequestration publication-title: Environ. Sci. Technol. doi: 10.1021/es9017656 – volume: 2 start-page: 11 year: 2018 ident: 10.1016/j.apgeochem.2021.104955_bib14 article-title: Carbon dioxide sequestration through silicate degradation and carbon mineralisation: promises and uncertainties publication-title: npj Materials Degradation doi: 10.1038/s41529-018-0035-4 – volume: 4 start-page: 399 year: 2014 ident: 10.1016/j.apgeochem.2021.104955_bib66 article-title: Strategizing carbon-neutral mines: a case for pilot projects publication-title: Minerals doi: 10.3390/min4020399 – volume: 63 start-page: 3225 year: 2014 ident: 10.1016/j.apgeochem.2021.104955_bib51 article-title: Experimental study of organic ligand transport in supercritical CO2 fluids and impacts to silicate reactivity publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.11.349 – volume: 83 start-page: 36 year: 2007 ident: 10.1016/j.apgeochem.2021.104955_bib75 article-title: Dissolution of natural serpentinite in mineral and organic acids publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2007.04.001 – volume: 112 start-page: 755 year: 2018 ident: 10.1016/j.apgeochem.2021.104955_bib49 article-title: Potential for offsetting diamond mine carbon emissions through mineral carbonation of processed kimberlite: an assessment of De Beers mine sites in South Africa and Canada publication-title: Mineral. Petrol. doi: 10.1007/s00710-018-0589-4 – volume: 38 start-page: 467 year: 2019 ident: 10.1016/j.apgeochem.2021.104955_bib17 article-title: Acid–base accounting tests in combination with humidity cells help to predict waste rock behavior publication-title: Mine Water Environ. doi: 10.1007/s10230-019-00617-1 – volume: 52 start-page: 110 year: 2016 ident: 10.1016/j.apgeochem.2021.104955_bib23 article-title: Multivariate study of the dynamics of CO2 reaction with brucite-rich ultramafic mine tailings publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2016.06.022 – volume: 7 start-page: 191 year: 2017 ident: 10.1016/j.apgeochem.2021.104955_bib48 article-title: Experimental deployment of microbial mineral carbonation at an asbestos mine: potential applications to carbon storage and tailings stabilization publication-title: Minerals doi: 10.3390/min7100191 – year: 2019 ident: 10.1016/j.apgeochem.2021.104955_bib53 – volume: 43 start-page: 369 year: 2007 ident: 10.1016/j.apgeochem.2021.104955_bib6 article-title: Effect of exchangeable cations on the physicochemical properties of smectite publication-title: Surf. Eng. Appl. Electrochem. doi: 10.3103/S1068375507050110 – volume: 120 start-page: 128 year: 2014 ident: 10.1016/j.apgeochem.2021.104955_bib70 article-title: Silicate rock dissolution by ammonium bisulphate for pH swing mineral CO2 sequestration publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2013.12.012 – volume: 235 start-page: 377 year: 2006 ident: 10.1016/j.apgeochem.2021.104955_bib26 article-title: Experimental study of the effect of organic ligands on diopside dissolution kinetics publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2006.08.004 – volume: 152 start-page: 13 year: 2015 ident: 10.1016/j.apgeochem.2021.104955_bib27 article-title: Preparation of Mg(OH)2 with caustic calcined magnesia through ammonium acetate circulation publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2014.12.008 – year: 2009 ident: 10.1016/j.apgeochem.2021.104955_bib37 article-title: Global acid rock drainage guide (GARD guide) publication-title: The International Network for Acid Prevention (INAP) – volume: 38 start-page: 127 year: 2003 ident: 10.1016/j.apgeochem.2021.104955_bib43 article-title: Chemically modified smectites publication-title: Clay Miner. doi: 10.1180/0009855033810083 – start-page: 73 year: 2003 ident: 10.1016/j.apgeochem.2021.104955_bib10 article-title: 5.03 - reaction kinetics of primary rock-forming minerals under ambient conditions – volume: 25 start-page: 121 year: 2014 ident: 10.1016/j.apgeochem.2021.104955_bib81 article-title: Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2014.04.002 – volume: 70 start-page: 207 year: 2009 ident: 10.1016/j.apgeochem.2021.104955_bib72 article-title: The link between mineral dissolution/precipitation kinetics and solution chemistry publication-title: Rev. Mineral. Geochem. doi: 10.2138/rmg.2009.70.6 – volume: 1 year: 2019 ident: 10.1016/j.apgeochem.2021.104955_bib24 article-title: Negative emissions: priorities for Research and policy design publication-title: Frontiers in Climate doi: 10.3389/fclim.2019.00006 – volume: 8 start-page: 147 year: 2018 ident: 10.1016/j.apgeochem.2021.104955_bib46 article-title: Integrated mineral carbonation of ultramafic mine deposits—a review publication-title: Minerals doi: 10.3390/min8040147 – volume: 159 start-page: 83 year: 2018 ident: 10.1016/j.apgeochem.2021.104955_bib1 article-title: Adsorption of ammonium by different natural clay minerals: characterization, kinetics and adsorption isotherms publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2017.11.007 – volume: 57 start-page: 68 year: 2014 ident: 10.1016/j.apgeochem.2021.104955_bib54 article-title: Kimberlite weathering: effects of organic reagents publication-title: Miner. Eng. doi: 10.1016/j.mineng.2013.12.014 – volume: 57 start-page: 285 year: 1993 ident: 10.1016/j.apgeochem.2021.104955_bib42 article-title: Diopside dissolution kinetics as a function of pH, CO2, temperature, and time publication-title: Geochem. Cosmochim. Acta doi: 10.1016/0016-7037(93)90431-U – volume: 500 start-page: 1 year: 2018 ident: 10.1016/j.apgeochem.2021.104955_bib56 article-title: Olivine dissolution rates: a critical review publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2018.10.008 – volume: 92 start-page: 2029 year: 2014 ident: 10.1016/j.apgeochem.2021.104955_bib4 article-title: New tools for stimulating dissolution and carbonation of ultramafic mining residues publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.22066 – volume: 41 start-page: 1403 year: 2019 ident: 10.1016/j.apgeochem.2021.104955_bib8 article-title: Carbon capture and utilization technologies: a literature review and recent advances publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff. doi: 10.1080/15567036.2018.1548518 – volume: 169 start-page: 330 year: 2006 ident: 10.1016/j.apgeochem.2021.104955_bib22 article-title: Problems in CEC determination of calcareous clayey sediments using the ammonium acetate method publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200621975 – year: 2019 ident: 10.1016/j.apgeochem.2021.104955_bib39 article-title: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems – volume: 65 start-page: 3703 year: 2001 ident: 10.1016/j.apgeochem.2021.104955_bib55 article-title: General kinetic description of multioxide silicate mineral and glass dissolution publication-title: Geochem. Cosmochim. Acta doi: 10.1016/S0016-7037(01)00710-4 – volume: 94 start-page: 102895 year: 2020 ident: 10.1016/j.apgeochem.2021.104955_bib64 article-title: Prospects for CO2 mineralization and enhanced weathering of ultramafic mine tailings from the Baptiste nickel deposit in British Columbia, Canada publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2019.102895 – volume: 69 start-page: 905 year: 2005 ident: 10.1016/j.apgeochem.2021.104955_bib62 article-title: Kinetics of brucite dissolution at 25°C in the presence of organic and inorganic ligands and divalent metals publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2004.08.011 – volume: 13 year: 2018 ident: 10.1016/j.apgeochem.2021.104955_bib52 article-title: Negative emissions—Part 1: Research landscape and synthesis publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aabf9b – volume: 9 year: 2008 ident: 10.1016/j.apgeochem.2021.104955_bib74 article-title: Explosive fissure eruption of a large kimberlite pipe: Venetia K01 kimberlite pipe, Limpopo, RSA. International Kimberlite Conference publication-title: Extended Abstracts – volume: 41 start-page: 489 year: 2014 ident: 10.1016/j.apgeochem.2021.104955_bib21 article-title: CO2 mineral sequestration by wollastonite carbonation publication-title: Phys. Chem. Miner. doi: 10.1007/s00269-014-0659-z – volume: 10 start-page: 1401 year: 2019 ident: 10.1016/j.apgeochem.2021.104955_bib69 article-title: The negative emission potential of alkaline materials publication-title: Nat. Commun. doi: 10.1038/s41467-019-09475-5 – volume: 141 start-page: 1324 year: 2017 ident: 10.1016/j.apgeochem.2021.104955_bib2 article-title: Leaching optimization of mining wastes with lizardite and brucite contents for use in indirect mineral carbonation through the pH swing method publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.09.204 – volume: 4 start-page: 1425 year: 2019 ident: 10.1016/j.apgeochem.2021.104955_bib30 article-title: Co-benefits of wollastonite weathering in agriculture: CO2 sequestration and promoted plant growth publication-title: ACS Omega doi: 10.1021/acsomega.8b02477 – volume: 45 start-page: 7727 year: 2011 ident: 10.1016/j.apgeochem.2021.104955_bib80 article-title: Subarctic weathering of mineral wastes provides a sink for atmospheric CO(2) publication-title: Environ. Sci. Technol. doi: 10.1021/es202112y – volume: 9 start-page: 334 year: 2012 ident: 10.1016/j.apgeochem.2021.104955_bib9 article-title: Comprehensive analysis of direct aqueous mineral carbonation using dissolution enhancing organic additives publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2012.05.009 – volume: 4 start-page: 333 year: 2008 ident: 10.1016/j.apgeochem.2021.104955_bib57 article-title: Mineral carbonation of CO2 publication-title: Elements doi: 10.2113/gselements.4.5.333 – volume: 60 start-page: 309 year: 1938 ident: 10.1016/j.apgeochem.2021.104955_bib12 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01269a023 – volume: 47 start-page: 126 year: 2013 ident: 10.1016/j.apgeochem.2021.104955_bib32 article-title: Accelerated carbonation of brucite in mine tailings for carbon sequestration publication-title: Environ. Sci. Technol. doi: 10.1021/es3012854 – volume: 17 start-page: 9 year: 1997 ident: 10.1016/j.apgeochem.2021.104955_bib13 article-title: A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils publication-title: Agronomie doi: 10.1051/agro:19970102 – volume: 43 start-page: 8049 year: 2014 ident: 10.1016/j.apgeochem.2021.104955_bib71 article-title: A review of mineral carbonation technologies to sequester CO2 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00035H – volume: 28 start-page: 7125 year: 2012 ident: 10.1016/j.apgeochem.2021.104955_bib47 article-title: In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide publication-title: Langmuir doi: 10.1021/la301136w – volume: 39 start-page: 69 year: 2013 ident: 10.1016/j.apgeochem.2021.104955_bib18 article-title: Do organic ligands affect forsterite dissolution rates? publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2013.09.020 – volume: 37 start-page: 1 year: 1999 ident: 10.1016/j.apgeochem.2021.104955_bib68 article-title: Measuring mineral abundance in skarn; I, the Rietveld method using X-ray powder-diffraction data publication-title: Can. Mineral. |
SSID | ssj0005702 |
Score | 2.5107884 |
Snippet | Mineralogically complex feedstocks, including kimberlite, serpentinite, and wollastonite skarns, have vast capacities to sequester carbon dioxide (CO2) through... Mineralogically complex feedstocks, including kimberlite, serpentinite, and wollastonite skarns, have vast capacities to sequester carbon dioxide (CO₂) through... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104955 |
SubjectTerms | ammonium acetate calcite calcium silicate carbon dioxide Carbon dioxide removal carbon sequestration carbonates Carbonation feedstock cations CO2 mineralization Easily extractable cations Enhanced rock weathering feedstocks inorganic carbon mineralization serpentine serpentinite South Africa |
Title | Evaluating feedstocks for carbon dioxide removal by enhanced rock weathering and CO2 mineralization |
URI | https://dx.doi.org/10.1016/j.apgeochem.2021.104955 https://www.proquest.com/docview/2551953072 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBVLQqGXkvSDpm0WFXp117Jly-otLEm2Ld0e2kBuQpZGWzeNvWw2JLnkt2cky0tSCjn0aDODzUiaeYPezBDyoSpKRBXWJgZEmXBtWCJB2sQxnTMwtpSh2fO3eTk74V9Oi9MRmQ61MJ5WGX1_79ODt45vJtGak2XTTH7g-cgzmWEK4wNZqCPnXPhd_vH2Hs1DBN6hF0689AOOl14uwA-m8iXpGfP3ndLX_P07Qv3lq0MAOtohzyJypAf9z-2SEbTPyZPjMJn35gUxh7Fvd7ugDkMSgjpzdkERk1KjV3XXUtt0140FuoLzDmVpfUOh_RUYABTD2Bm9glgOuKC6tXT6PaPnTehKHYs1X5KTo8Of01kSJygkJufVOmGCWZYXoCvuKih47aROc4cwxGjNhQsIz1lgpkoLSDMnSy6FE5ACaJ7q_BXZarsWXhOaaysxtymsdHjujasRWdQen1sEVKwUe6QcrKZMbC_up1z8UQOP7LfamFt5c6ve3Hsk3Sgu-w4bj6t8GpZFPdgsCuPA48rvh4VUeJT8_Yhuobu8UJhd-UvFVGRv_ucDb8lT_9Tzyd6RrfXqEvYRuazrcdiaY7J98PnrbH4Hlkzu4g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELZQEdpepo0xrRtsRtpr1Di_zRuqgAJt9wCV-mY59rmErklVioD_fufEYeo0qQ97TXxKdPbdfSd_d0fIjyxOEFVo7SlIEy-SinkcuPYMkyEDpRNeN3sejZPBJLqaxtMd0m9rYSyt0vn-xqfX3to96Tlt9pZF0btB-wgDHmAKYwOZrSPftd2p4g7ZPb28Hoz_MD3Smnpo13tWYIPmJZczsLOpbFV6wOyVJ7dlf_8OUn-56zoGnb8n7xx4pKfN_30gO1Duk72Lejjvy0eizlzr7nJGDUYlxHVq_kARllIlV3lVUl1Uz4UGuoJFhWtp_kKhvKtJABQj2Zw-gasInFFZatr_GdBFUTemdvWaB2RyfnbbH3huiIKnwihbeyxlmoUxyCwyGcRRbrj0Q4NIREkZpaYGeUYDU5kfgx8YnkQ8NSn4ADLyZfiJdMqqhM-EhlJzTG9izQ2avjI5govcQnSNmIolaZckrdaEch3G7aCLX6Klkt2LV3ULq27RqLtL_FfBZdNkY7vISbstYuO8CAwF24WP240UaE32ikSWUD0-CEyw7L2inwZf_ucD38mbwe1oKIaX4-uv5K1909DLDklnvXqEIwQy6_ybO6i_AcZ18ZM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+feedstocks+for+carbon+dioxide+removal+by+enhanced+rock+weathering+and+CO2+mineralization&rft.jtitle=Applied+geochemistry&rft.au=Paulo%2C+Carlos&rft.au=Power%2C+Ian+M.&rft.au=Stubbs%2C+Amanda+R.&rft.au=Wang%2C+Baolin&rft.date=2021-06-01&rft.issn=0883-2927&rft.volume=129&rft.spage=104955&rft_id=info:doi/10.1016%2Fj.apgeochem.2021.104955&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apgeochem_2021_104955 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon |