Evaluating feedstocks for carbon dioxide removal by enhanced rock weathering and CO2 mineralization

Mineralogically complex feedstocks, including kimberlite, serpentinite, and wollastonite skarns, have vast capacities to sequester carbon dioxide (CO2) through enhanced rock weathering and CO2 mineralization. However, only a small reactive fraction of these feedstocks will be accessible for carbon d...

Full description

Saved in:
Bibliographic Details
Published inApplied geochemistry Vol. 129; p. 104955
Main Authors Paulo, Carlos, Power, Ian M., Stubbs, Amanda R., Wang, Baolin, Zeyen, Nina, Wilson, Sasha
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mineralogically complex feedstocks, including kimberlite, serpentinite, and wollastonite skarns, have vast capacities to sequester carbon dioxide (CO2) through enhanced rock weathering and CO2 mineralization. However, only a small reactive fraction of these feedstocks will be accessible for carbon dioxide removal at Earth's surface conditions. We have developed a new method to evaluate the reactivity of mineral feedstocks that consists of a batch leach test using CO2 coupled with total inorganic carbon (TIC) analysis to quantify easily extractable Mg and Ca from non-carbonate (desirable) cation sources. Kimberlite residues from the Venetia Diamond Mine (South Africa), serpentinites, wollastonite skarn, and brucite ore were tested and the results were compared to those from commercial ammonium acetate (NH4OAc) leach tests. A strong correlation (R2 = 0.99) between leached Ca and TIC showed that carbonate minerals (e.g., calcite in kimberlite) are a substantial and undesirable source of easily extractable cations that must be excluded in calculating CO2 sequestration potential. Silicate dissolution (e.g., serpentine) was inferred from the strong positive correlation (R2 = 0.94) between Mg and Si concentrations leached from kimberlites and serpentinites. Strong correlations between leached Ca and Si were only detected for wollastonite skarns, whereas Mg leaching from samples with high abundances of brucite showed weak or no relationship to TIC or Si. The ability to distinguish between sources (non-carbonate versus carbonate) of easily extractable cations is necessary to accurately assess CO2 sequestration potential. The maximum CO2 storage capacity of the Venetia kimberlites was 268–342 kg CO2/t, and our leach test estimated an accessible potential in the range of 3–9 kg CO2/t when only accounting for non-carbonate sources. Our CO2 batch leach test is useful to evaluate the reactivity of mineralogically complex feedstocks at Earth's surface conditions for the purpose of carbon dioxide removal. •CO2 mineralization at Earth's surface conditions is limited by cation release from mineral feedstocks.•CO2 batch leaching coupled with carbon analysis provides an accurate assessment of feedstock reactivity.•Cation and TIC correlation allows for distinction between non-carbonate and carbonate sources.•Contributions of extractable cations from carbonates leads to overestimation of CO2 sequestration potential.•An offset of 7–20% of the CO2 emissions from the Venetia Diamond Mine is achievable at Earth's surface conditions.
AbstractList Mineralogically complex feedstocks, including kimberlite, serpentinite, and wollastonite skarns, have vast capacities to sequester carbon dioxide (CO2) through enhanced rock weathering and CO2 mineralization. However, only a small reactive fraction of these feedstocks will be accessible for carbon dioxide removal at Earth's surface conditions. We have developed a new method to evaluate the reactivity of mineral feedstocks that consists of a batch leach test using CO2 coupled with total inorganic carbon (TIC) analysis to quantify easily extractable Mg and Ca from non-carbonate (desirable) cation sources. Kimberlite residues from the Venetia Diamond Mine (South Africa), serpentinites, wollastonite skarn, and brucite ore were tested and the results were compared to those from commercial ammonium acetate (NH4OAc) leach tests. A strong correlation (R2 = 0.99) between leached Ca and TIC showed that carbonate minerals (e.g., calcite in kimberlite) are a substantial and undesirable source of easily extractable cations that must be excluded in calculating CO2 sequestration potential. Silicate dissolution (e.g., serpentine) was inferred from the strong positive correlation (R2 = 0.94) between Mg and Si concentrations leached from kimberlites and serpentinites. Strong correlations between leached Ca and Si were only detected for wollastonite skarns, whereas Mg leaching from samples with high abundances of brucite showed weak or no relationship to TIC or Si. The ability to distinguish between sources (non-carbonate versus carbonate) of easily extractable cations is necessary to accurately assess CO2 sequestration potential. The maximum CO2 storage capacity of the Venetia kimberlites was 268–342 kg CO2/t, and our leach test estimated an accessible potential in the range of 3–9 kg CO2/t when only accounting for non-carbonate sources. Our CO2 batch leach test is useful to evaluate the reactivity of mineralogically complex feedstocks at Earth's surface conditions for the purpose of carbon dioxide removal. •CO2 mineralization at Earth's surface conditions is limited by cation release from mineral feedstocks.•CO2 batch leaching coupled with carbon analysis provides an accurate assessment of feedstock reactivity.•Cation and TIC correlation allows for distinction between non-carbonate and carbonate sources.•Contributions of extractable cations from carbonates leads to overestimation of CO2 sequestration potential.•An offset of 7–20% of the CO2 emissions from the Venetia Diamond Mine is achievable at Earth's surface conditions.
Mineralogically complex feedstocks, including kimberlite, serpentinite, and wollastonite skarns, have vast capacities to sequester carbon dioxide (CO₂) through enhanced rock weathering and CO₂ mineralization. However, only a small reactive fraction of these feedstocks will be accessible for carbon dioxide removal at Earth's surface conditions. We have developed a new method to evaluate the reactivity of mineral feedstocks that consists of a batch leach test using CO₂ coupled with total inorganic carbon (TIC) analysis to quantify easily extractable Mg and Ca from non-carbonate (desirable) cation sources. Kimberlite residues from the Venetia Diamond Mine (South Africa), serpentinites, wollastonite skarn, and brucite ore were tested and the results were compared to those from commercial ammonium acetate (NH₄OAc) leach tests. A strong correlation (R² = 0.99) between leached Ca and TIC showed that carbonate minerals (e.g., calcite in kimberlite) are a substantial and undesirable source of easily extractable cations that must be excluded in calculating CO₂ sequestration potential. Silicate dissolution (e.g., serpentine) was inferred from the strong positive correlation (R² = 0.94) between Mg and Si concentrations leached from kimberlites and serpentinites. Strong correlations between leached Ca and Si were only detected for wollastonite skarns, whereas Mg leaching from samples with high abundances of brucite showed weak or no relationship to TIC or Si. The ability to distinguish between sources (non-carbonate versus carbonate) of easily extractable cations is necessary to accurately assess CO₂ sequestration potential. The maximum CO₂ storage capacity of the Venetia kimberlites was 268–342 kg CO₂/t, and our leach test estimated an accessible potential in the range of 3–9 kg CO₂/t when only accounting for non-carbonate sources. Our CO₂ batch leach test is useful to evaluate the reactivity of mineralogically complex feedstocks at Earth's surface conditions for the purpose of carbon dioxide removal.
ArticleNumber 104955
Author Zeyen, Nina
Paulo, Carlos
Wang, Baolin
Power, Ian M.
Wilson, Sasha
Stubbs, Amanda R.
Author_xml – sequence: 1
  givenname: Carlos
  orcidid: 0000-0003-0490-7497
  surname: Paulo
  fullname: Paulo, Carlos
  email: cfernandesesilvapaul@trentu.ca
  organization: Trent School of the Environment, Trent University, Peterborough, Ontario, K9L 0G2, Canada
– sequence: 2
  givenname: Ian M.
  surname: Power
  fullname: Power, Ian M.
  organization: Trent School of the Environment, Trent University, Peterborough, Ontario, K9L 0G2, Canada
– sequence: 3
  givenname: Amanda R.
  orcidid: 0000-0003-1283-2923
  surname: Stubbs
  fullname: Stubbs, Amanda R.
  organization: Trent School of the Environment, Trent University, Peterborough, Ontario, K9L 0G2, Canada
– sequence: 4
  givenname: Baolin
  orcidid: 0000-0003-3492-460X
  surname: Wang
  fullname: Wang, Baolin
  organization: Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
– sequence: 5
  givenname: Nina
  orcidid: 0000-0001-9223-6042
  surname: Zeyen
  fullname: Zeyen, Nina
  organization: Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
– sequence: 6
  givenname: Sasha
  surname: Wilson
  fullname: Wilson, Sasha
  organization: Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
BookMark eNqNkD1PwzAQhi0EEuXjN-CRJcV27DoZGFDFl4TEArN1dc7UJbGLnQLl15NSxMAC00mn93l19xyQ3RADEnLC2ZgzPjlbjGH5hNHOsRsLJviwlbVSO2TEKy2Kmpdyl4xYVZWFqIXeJwc5LxhjSjMxIvbyFdoV9D48UYfY5D7a50xdTNRCmsVAGx_ffYM0YReHLJ2tKYY5BIsNTUOYviH0c0ybBggNnd4L2vmACVr_MRTHcET2HLQZj7_nIXm8unyY3hR399e304u7wpay6guuecNLhVBJV6GSM1cDKx2bSAsgtRtu5rVrkNuKKWTC1RNZa6eRIYJkUB6S023vMsWXFebedD5bbFsIGFfZCKV4rUqmxRDV26hNMeeEziyT7yCtDWdmo9UszI9Ws9FqtloH8vwXaX3_9WafwLf_4C-2PA4mXj0mk63HjU2f0Pamif7Pjk_935zY
CitedBy_id crossref_primary_10_1016_j_gerr_2024_100087
crossref_primary_10_1021_acs_est_1c01570
crossref_primary_10_3390_land13111839
crossref_primary_10_1016_j_ijggc_2025_104315
crossref_primary_10_1016_j_scitotenv_2022_153553
crossref_primary_10_1016_j_apgeochem_2022_105380
crossref_primary_10_3389_feart_2023_1215930
crossref_primary_10_3390_min14010075
crossref_primary_10_1016_j_scitotenv_2024_172053
crossref_primary_10_1016_j_ijggc_2023_103844
crossref_primary_10_1007_s11356_024_32498_5
crossref_primary_10_3389_fclim_2024_1510747
crossref_primary_10_1016_j_apgeochem_2023_105728
crossref_primary_10_3389_fenrg_2024_1450991
crossref_primary_10_1016_j_apgeochem_2022_105285
crossref_primary_10_1016_j_apgeochem_2024_105986
crossref_primary_10_3389_fclim_2024_1346117
crossref_primary_10_1016_j_chemgeo_2023_121674
crossref_primary_10_1016_j_mtsust_2023_100530
crossref_primary_10_1016_j_ijggc_2023_103990
crossref_primary_10_1007_s11157_024_09695_2
crossref_primary_10_1016_j_gca_2024_02_005
crossref_primary_10_1021_acsomega_4c03393
crossref_primary_10_3389_fclim_2022_913632
crossref_primary_10_1016_j_ijggc_2025_104344
crossref_primary_10_1016_j_ijggc_2021_103554
crossref_primary_10_1016_j_scitotenv_2024_177094
crossref_primary_10_3389_fpls_2022_929457
crossref_primary_10_1021_acs_est_3c05081
crossref_primary_10_1021_acs_energyfuels_2c00665
crossref_primary_10_1021_acs_energyfuels_3c03881
Cites_doi 10.1016/j.chemgeo.2009.01.022
10.2138/rmg.2013.77.9
10.1016/j.gca.2014.10.020
10.1002/ceat.201000024
10.3390/min8050209
10.1016/j.gca.2006.06.1557
10.1007/s10450-020-00200-z
10.1016/j.apgeochem.2017.07.005
10.1016/j.apgeochem.2013.04.016
10.1016/j.egypro.2013.06.510
10.1038/s41467-019-10003-8
10.1016/j.ijggc.2020.103017
10.2113/gselements.9.2.115
10.1038/srep08775
10.1016/j.gca.2006.01.001
10.1016/j.fuel.2010.10.040
10.1016/j.cej.2014.02.010
10.5382/econgeo.4710
10.1038/s41893-020-0486-9
10.1016/j.chemgeo.2009.01.013
10.1007/s13762-020-02776-z
10.3390/geosciences8070260
10.1016/j.chemgeo.2013.05.020
10.1016/j.gca.2012.09.030
10.1021/acs.jpca.8b09140
10.1016/0360-5442(95)00071-N
10.2475/08.2009.05
10.1002/ghg3.7
10.1016/j.ces.2006.01.048
10.3390/min9080485
10.1021/es9017656
10.1038/s41529-018-0035-4
10.3390/min4020399
10.1016/j.egypro.2014.11.349
10.1016/j.minpro.2007.04.001
10.1007/s00710-018-0589-4
10.1007/s10230-019-00617-1
10.1016/j.ijggc.2016.06.022
10.3390/min7100191
10.3103/S1068375507050110
10.1016/j.fuproc.2013.12.012
10.1016/j.chemgeo.2006.08.004
10.1016/j.hydromet.2014.12.008
10.1180/0009855033810083
10.1016/j.ijggc.2014.04.002
10.2138/rmg.2009.70.6
10.3389/fclim.2019.00006
10.3390/min8040147
10.1016/j.clay.2017.11.007
10.1016/j.mineng.2013.12.014
10.1016/0016-7037(93)90431-U
10.1016/j.chemgeo.2018.10.008
10.1002/cjce.22066
10.1080/15567036.2018.1548518
10.1002/jpln.200621975
10.1016/S0016-7037(01)00710-4
10.1016/j.ijggc.2019.102895
10.1016/j.gca.2004.08.011
10.1088/1748-9326/aabf9b
10.1007/s00269-014-0659-z
10.1038/s41467-019-09475-5
10.1016/j.jclepro.2016.09.204
10.1021/acsomega.8b02477
10.1021/es202112y
10.1016/j.ijggc.2012.05.009
10.2113/gselements.4.5.333
10.1021/ja01269a023
10.1021/es3012854
10.1051/agro:19970102
10.1039/C4CS00035H
10.1021/la301136w
10.1016/j.apgeochem.2013.09.020
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apgeochem.2021.104955
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-9134
ExternalDocumentID 10_1016_j_apgeochem_2021_104955
S0883292721000871
GeographicLocations South Africa
GeographicLocations_xml – name: South Africa
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
VH1
WUQ
XPP
ZCA
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c348t-171d135ea84f8e54bf9a03f064caa47f00019fde1c805e02f96497f7e0eea40a3
IEDL.DBID .~1
ISSN 0883-2927
IngestDate Fri Jul 11 00:26:56 EDT 2025
Tue Jul 01 01:59:41 EDT 2025
Thu Apr 24 22:57:19 EDT 2025
Fri Feb 23 02:35:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Carbonation feedstock
CO2 mineralization
Enhanced rock weathering
Carbon dioxide removal
Easily extractable cations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-171d135ea84f8e54bf9a03f064caa47f00019fde1c805e02f96497f7e0eea40a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0490-7497
0000-0003-3492-460X
0000-0003-1283-2923
0000-0001-9223-6042
PQID 2551953072
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551953072
crossref_primary_10_1016_j_apgeochem_2021_104955
crossref_citationtrail_10_1016_j_apgeochem_2021_104955
elsevier_sciencedirect_doi_10_1016_j_apgeochem_2021_104955
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Applied geochemistry
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Alshameri, He, Zhu, Xi, Zhu, Ma, Tao (bib1) 2018; 159
Ciesielski, Sterckeman, Santerne, Willery (bib13) 1997; 17
(bib53) 2019
Kandji, Plante, Bussière, Beaudoin, Dupont (bib40) 2017; 84
Komadel (bib43) 2003; 38
McCutcheon, Turvey, Wilson, Hamilton, Southam (bib48) 2017; 7
Assima, Larachi, Molson, Beaudoin (bib3) 2014; 245
Veetil, Hitch (bib78) 2020
Renforth (bib69) 2019; 10
Sanna, Uibu, Caramanna, Kuusik, Maroto-Valer (bib71) 2014; 43
Dudhaiya, Santos (bib86) 2018; 8
Azizi, Larachi (bib7) 2019; 123
Loring, Schaef, Turcu, Thompson, Miller, Martin, Hu, Hoyt, Qafoku, Ilton, Felmy, Rosso (bib47) 2012; 28
Brantley, Olsen (bib11) 2014
Knauss, Nguyen, Weed (bib42) 1993; 57
Raudsepp, Pani, Dipple (bib68) 1999; 37
Ipcc (bib39) 2019
Huijgen, Witkamp, Comans (bib36) 2006; 61
Parkhurst, Appelo (bib59) 2013
Sanna, Lacinska, Styles, Maroto-Valer (bib70) 2014; 120
Power, McCutcheon, Harrison, Wilson, Dipple, Kelly, Southam, Southam (bib66) 2014; 4
Thom, Dipple, Power, Harrison (bib76) 2013; 35
Wilson, Harrison, Dipple, Power, Barker, Ulrich Mayer, Fallon, Raudsepp, Southam (bib81) 2014; 25
Awoh, Plante, Bussière, Mbonimpa (bib5) 2013
Haque, Santos, Chiang (bib29) 2020; 97
Di Lorenzo, Ruiz-Agudo, Ibañez-Velasco, Gil-San Millán, Navarro, Ruiz-Agudo, Rodriguez-Navarro (bib20) 2018; 8
Hamilton, Wilson, Morgan, Harrison, Turvey, Paterson, Dipple, Southam (bib28) 2020; 115
Fajardy, Patrizio, Daggash, Mac Dowell (bib24) 2019; 1
Wang, Maroto-Valer (bib79) 2011; 90
Golubev, Bauer, Pokrovsky (bib25) 2006; 70
Bonfils, Julcour-Lebigue, Guyot, Bodénan, Chiquet, Bourgeois (bib9) 2012; 9
Entezari Zarandi, Larachi, Beaudoin, Plante, Sciortino (bib23) 2016; 52
Pokrovsky, Golubev, Schott, Castillo (bib61) 2009; 265
Declercq, Oelkers (bib19) 2014
Harrison, Dipple, Power, Mayer (bib31) 2015; 148
Horri, Sanz-Pérez, Arencibia, Sanz, Frini-Srasra, Srasra (bib35) 2020; 26
Baena-Moreno, Rodríguez-Galán, Vega, Alonso-Fariñas, Vilches Arenas, Navarrete (bib8) 2019; 41
Brantley (bib10) 2003
Michels, Fossum, Rozynek, Hemmen, Rustenberg, Sobas, Kalantzopoulos, Knudsen, Janek, Plivelic, da Silva (bib50) 2015; 5
Golubev, Pokrovsky (bib26) 2006; 235
Declercq, Bosc, Oelkers (bib18) 2013; 39
Brunauer, Emmett, Teller (bib12) 1938; 60
Wilson, Dipple, Power, Barker, Fallon, Southam (bib80) 2011; 45
Daval, Hellmann, Martinez, Gangloff, Guyot (bib15) 2013; 351
Pogge von Strandmann, Burton, Snæbjörnsdóttir, Sigfússon, Aradóttir, Gunnarsson, Alfredsson, Mesfin, Oelkers, Gislason (bib60) 2019; 10
Schott, Pokrovsky, Spalla, Devreux, Gloter, Mielczarski (bib73) 2012; 98
Haque, Santos, Dutta, Thimmanagari, Chiang (bib30) 2019; 4
Daval (bib14) 2018; 2
Harrison, Power, Dipple (bib32) 2013; 47
Dohrmann (bib22) 2006; 169
Mervine, Wilson, Power, Dipple, Turvey, Hamilton, Vanderzee, Raudsepp, Southam, Matter, Kelemen, Stiefenhofer, Miya, Southam (bib49) 2018; 112
Zhang, Zhang, Geerlings, Bi (bib84) 2010; 33
Vanderzee, Dipple, Bradshaw (bib77) 2019
Ayari, Srasra, Trabelsi-Ayadi (bib6) 2007; 43
Oelkers, Declercq, Saldi, Gislason, Schott (bib56) 2018; 500
Pokrovsky, Shirokova, Bénézeth, Schott, Golubev (bib63) 2009; 309
Kirchofer, Brandt, Krevor, Prigiobbe, Becker, Wilcox (bib41) 2013; 37
Haszeldine, Flude, Johnson, Scott (bib33) 2018; 376
Arce, Soares Neto, Ávila, Luna, Carvalho (bib2) 2017; 141
Teir, Revitzer, Eloneva, Fogelholm, Zevenhoven (bib75) 2007; 83
Oelkers, Gislason, Matter (bib57) 2008; 4
Minx, Lamb, Callaghan, Fuss, Hilaire, Creutzig, Amann, Beringer, de Oliveira Garcia, Hartmann, Khanna, Lenzi, Luderer, Nemet, Rogelj, Smith, Vicente Vicente, Wilcox, del Mar Zamora Dominguez (bib52) 2018; 13
Pan, Chen, Fan, Kim, Gao, Ling, Chiang, Pei, Gu (bib58) 2020; 3
Tait, Brown (bib74) 2008; 9
Ipcc (bib38) 2018
Oelkers (bib55) 2001; 65
Power, Harrison, Dipple, Wilson, Kelemen, Hitch, Southam (bib65) 2013; 77
Inap (bib37) 2009
Lackner, Wendt, Butt, Joyce, Sharp (bib45) 1995; 20
Ding, Fu, Ouyang, Yang (bib21) 2014; 41
Zeyen, Wang, Wilson, Von Gunten, Alessi, Paulo, Stubbs, Power (bib83) 2020
Zevenhoven, Fagerlund, Songok (bib82) 2011; 1
Pokrovsky, Schott, Castillo (bib62) 2005; 69
Power, Dipple, Bradshaw, Harrison (bib64) 2020; 94
Daval, Martinez, Corvisier, Findling, Goffé, Guyot (bib16) 2009; 265
Davis, Whitehead, Lengke, Collord (bib17) 2019; 38
Li, Hitch, Power, Pan (bib46) 2018; 8
Power, Wilson, Dipple (bib67) 2013; 9
Miller, Kaszuba, Schaef, Thompson, Qiu, Bowden, Glezakou, McGrail (bib51) 2014; 63
Zhao, Sang, Chen, Ji, Teng (bib85) 2010; 44
Schott, Pokrovsky, Oelkers (bib72) 2009; 70
Hodson (bib34) 2006; 70
Ndlovu, Morkel, Naudé (bib54) 2014; 57
Kremer, Etzold, Boldt, Blaum, Hahn, Wotruba, Telle (bib44) 2019; 9
Guo, Pei, Wang, Yang, Wang, Xie, Liu (bib27) 2015; 152
Assima, Larachi, Molson, Beaudoin (bib4) 2014; 92
Haque (10.1016/j.apgeochem.2021.104955_bib30) 2019; 4
Huijgen (10.1016/j.apgeochem.2021.104955_bib36) 2006; 61
Harrison (10.1016/j.apgeochem.2021.104955_bib32) 2013; 47
Golubev (10.1016/j.apgeochem.2021.104955_bib25) 2006; 70
Tait (10.1016/j.apgeochem.2021.104955_bib74) 2008; 9
Power (10.1016/j.apgeochem.2021.104955_bib64) 2020; 94
Hamilton (10.1016/j.apgeochem.2021.104955_bib28) 2020; 115
Brantley (10.1016/j.apgeochem.2021.104955_bib11) 2014
Sanna (10.1016/j.apgeochem.2021.104955_bib71) 2014; 43
Wilson (10.1016/j.apgeochem.2021.104955_bib80) 2011; 45
Ndlovu (10.1016/j.apgeochem.2021.104955_bib54) 2014; 57
Golubev (10.1016/j.apgeochem.2021.104955_bib26) 2006; 235
Thom (10.1016/j.apgeochem.2021.104955_bib76) 2013; 35
Wang (10.1016/j.apgeochem.2021.104955_bib79) 2011; 90
Kandji (10.1016/j.apgeochem.2021.104955_bib40) 2017; 84
Brantley (10.1016/j.apgeochem.2021.104955_bib10) 2003
Azizi (10.1016/j.apgeochem.2021.104955_bib7) 2019; 123
Kirchofer (10.1016/j.apgeochem.2021.104955_bib41) 2013; 37
Loring (10.1016/j.apgeochem.2021.104955_bib47) 2012; 28
Parkhurst (10.1016/j.apgeochem.2021.104955_bib59) 2013
Davis (10.1016/j.apgeochem.2021.104955_bib17) 2019; 38
Oelkers (10.1016/j.apgeochem.2021.104955_bib55) 2001; 65
Inap (10.1016/j.apgeochem.2021.104955_bib37) 2009
Li (10.1016/j.apgeochem.2021.104955_bib46) 2018; 8
Assima (10.1016/j.apgeochem.2021.104955_bib4) 2014; 92
Haszeldine (10.1016/j.apgeochem.2021.104955_bib33) 2018; 376
Brunauer (10.1016/j.apgeochem.2021.104955_bib12) 1938; 60
Pan (10.1016/j.apgeochem.2021.104955_bib58) 2020; 3
Sanna (10.1016/j.apgeochem.2021.104955_bib70) 2014; 120
Lackner (10.1016/j.apgeochem.2021.104955_bib45) 1995; 20
Pogge von Strandmann (10.1016/j.apgeochem.2021.104955_bib60) 2019; 10
Declercq (10.1016/j.apgeochem.2021.104955_bib18) 2013; 39
Harrison (10.1016/j.apgeochem.2021.104955_bib31) 2015; 148
Di Lorenzo (10.1016/j.apgeochem.2021.104955_bib20) 2018; 8
Ding (10.1016/j.apgeochem.2021.104955_bib21) 2014; 41
Power (10.1016/j.apgeochem.2021.104955_bib65) 2013; 77
Renforth (10.1016/j.apgeochem.2021.104955_bib69) 2019; 10
Alshameri (10.1016/j.apgeochem.2021.104955_bib1) 2018; 159
Schott (10.1016/j.apgeochem.2021.104955_bib72) 2009; 70
Guo (10.1016/j.apgeochem.2021.104955_bib27) 2015; 152
Ipcc (10.1016/j.apgeochem.2021.104955_bib38) 2018
Dohrmann (10.1016/j.apgeochem.2021.104955_bib22) 2006; 169
Daval (10.1016/j.apgeochem.2021.104955_bib16) 2009; 265
Mervine (10.1016/j.apgeochem.2021.104955_bib49) 2018; 112
Schott (10.1016/j.apgeochem.2021.104955_bib73) 2012; 98
Ciesielski (10.1016/j.apgeochem.2021.104955_bib13) 1997; 17
Power (10.1016/j.apgeochem.2021.104955_bib67) 2013; 9
Kremer (10.1016/j.apgeochem.2021.104955_bib44) 2019; 9
Pokrovsky (10.1016/j.apgeochem.2021.104955_bib63) 2009; 309
Zevenhoven (10.1016/j.apgeochem.2021.104955_bib82) 2011; 1
Zhao (10.1016/j.apgeochem.2021.104955_bib85) 2010; 44
Zhang (10.1016/j.apgeochem.2021.104955_bib84) 2010; 33
Hodson (10.1016/j.apgeochem.2021.104955_bib34) 2006; 70
Pokrovsky (10.1016/j.apgeochem.2021.104955_bib61) 2009; 265
Michels (10.1016/j.apgeochem.2021.104955_bib50) 2015; 5
Minx (10.1016/j.apgeochem.2021.104955_bib52) 2018; 13
Vanderzee (10.1016/j.apgeochem.2021.104955_bib77) 2019
Power (10.1016/j.apgeochem.2021.104955_bib66) 2014; 4
Pokrovsky (10.1016/j.apgeochem.2021.104955_bib62) 2005; 69
Raudsepp (10.1016/j.apgeochem.2021.104955_bib68) 1999; 37
McCutcheon (10.1016/j.apgeochem.2021.104955_bib48) 2017; 7
Dudhaiya (10.1016/j.apgeochem.2021.104955_bib86) 2018; 8
Haque (10.1016/j.apgeochem.2021.104955_bib29) 2020; 97
Ipcc (10.1016/j.apgeochem.2021.104955_bib39) 2019
Entezari Zarandi (10.1016/j.apgeochem.2021.104955_bib23) 2016; 52
Fajardy (10.1016/j.apgeochem.2021.104955_bib24) 2019; 1
Zeyen (10.1016/j.apgeochem.2021.104955_bib83) 2020
Assima (10.1016/j.apgeochem.2021.104955_bib3) 2014; 245
Wilson (10.1016/j.apgeochem.2021.104955_bib81) 2014; 25
Veetil (10.1016/j.apgeochem.2021.104955_bib78) 2020
Awoh (10.1016/j.apgeochem.2021.104955_bib5) 2013
Bonfils (10.1016/j.apgeochem.2021.104955_bib9) 2012; 9
Horri (10.1016/j.apgeochem.2021.104955_bib35) 2020; 26
(10.1016/j.apgeochem.2021.104955_bib53) 2019
Arce (10.1016/j.apgeochem.2021.104955_bib2) 2017; 141
Declercq (10.1016/j.apgeochem.2021.104955_bib19) 2014
Ayari (10.1016/j.apgeochem.2021.104955_bib6) 2007; 43
Oelkers (10.1016/j.apgeochem.2021.104955_bib56) 2018; 500
Daval (10.1016/j.apgeochem.2021.104955_bib15) 2013; 351
Daval (10.1016/j.apgeochem.2021.104955_bib14) 2018; 2
Teir (10.1016/j.apgeochem.2021.104955_bib75) 2007; 83
Miller (10.1016/j.apgeochem.2021.104955_bib51) 2014; 63
Knauss (10.1016/j.apgeochem.2021.104955_bib42) 1993; 57
Baena-Moreno (10.1016/j.apgeochem.2021.104955_bib8) 2019; 41
Oelkers (10.1016/j.apgeochem.2021.104955_bib57) 2008; 4
Komadel (10.1016/j.apgeochem.2021.104955_bib43) 2003; 38
References_xml – volume: 9
  start-page: 115
  year: 2013
  end-page: 121
  ident: bib67
  article-title: Serpentinite carbonation for CO
  publication-title: Elements
– volume: 65
  start-page: 3703
  year: 2001
  end-page: 3719
  ident: bib55
  article-title: General kinetic description of multioxide silicate mineral and glass dissolution
  publication-title: Geochem. Cosmochim. Acta
– volume: 3
  start-page: 399
  year: 2020
  end-page: 405
  ident: bib58
  article-title: CO
  publication-title: Nature Sustainability
– volume: 97
  start-page: 103017
  year: 2020
  ident: bib29
  article-title: CO
  publication-title: International Journal of Greenhouse Gas Control
– volume: 41
  start-page: 1403
  year: 2019
  end-page: 1433
  ident: bib8
  article-title: Carbon capture and utilization technologies: a literature review and recent advances
  publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff.
– volume: 70
  start-page: 1655
  year: 2006
  end-page: 1667
  ident: bib34
  article-title: Does reactive surface area depend on grain size? Results from pH 3, 25°C far-from-equilibrium flow-through dissolution experiments on anorthite and biotite
  publication-title: Geochem. Cosmochim. Acta
– volume: 57
  start-page: 285
  year: 1993
  end-page: 294
  ident: bib42
  article-title: Diopside dissolution kinetics as a function of pH, CO
  publication-title: Geochem. Cosmochim. Acta
– volume: 5
  start-page: 8775
  year: 2015
  ident: bib50
  article-title: Intercalation and retention of carbon dioxide in a smectite clay promoted by interlayer cations
  publication-title: Sci. Rep.
– start-page: 109
  year: 2019
  end-page: 118
  ident: bib77
  article-title: Targeting highly reactive labile magnesium in ultramafic tailings for greenhouse-gas offsets and potential tailings stabilization at the Baptiste deposit, central British Columbia (NTS 093K/13, 14)
  publication-title: Geoscience BC Summary of Activities 2018: Minerals and Mining, Geoscience BC Report 2019-1
– year: 2019
  ident: bib53
  article-title: Negative Emissions Technologies and Reliable Sequestration: A Research Agenda
– volume: 265
  start-page: 20
  year: 2009
  end-page: 32
  ident: bib61
  article-title: Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 °C and 1 to 55 atm pCO
  publication-title: Chem. Geol.
– volume: 123
  start-page: 889
  year: 2019
  end-page: 905
  ident: bib7
  article-title: Surface speciation of brucite dissolution in aqueous mineral carbonation: insights from density-functional theory simulations
  publication-title: J. Phys. Chem.
– volume: 169
  start-page: 330
  year: 2006
  end-page: 334
  ident: bib22
  article-title: Problems in CEC determination of calcareous clayey sediments using the ammonium acetate method
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 120
  start-page: 128
  year: 2014
  end-page: 135
  ident: bib70
  article-title: Silicate rock dissolution by ammonium bisulphate for pH swing mineral CO
  publication-title: Fuel Process. Technol.
– volume: 152
  start-page: 13
  year: 2015
  end-page: 19
  ident: bib27
  article-title: Preparation of Mg(OH)
  publication-title: Hydrometallurgy
– volume: 77
  start-page: 305
  year: 2013
  end-page: 360
  ident: bib65
  article-title: Carbon mineralization: from natural analogues to engineered systems
  publication-title: Rev. Mineral. Geochem.
– volume: 10
  start-page: 1401
  year: 2019
  ident: bib69
  article-title: The negative emission potential of alkaline materials
  publication-title: Nat. Commun.
– volume: 17
  start-page: 9
  year: 1997
  end-page: 16
  ident: bib13
  article-title: A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils
  publication-title: Agronomie
– volume: 9
  start-page: 485
  year: 2019
  ident: bib44
  article-title: Geological mapping and characterization of possible primary input materials for the mineral sequestration of carbon dioxide in europe
  publication-title: Minerals
– volume: 9
  start-page: 334
  year: 2012
  end-page: 346
  ident: bib9
  article-title: Comprehensive analysis of direct aqueous mineral carbonation using dissolution enhancing organic additives
  publication-title: International Journal of Greenhouse Gas Control
– volume: 4
  start-page: 333
  year: 2008
  end-page: 337
  ident: bib57
  article-title: Mineral carbonation of CO2
  publication-title: Elements
– year: 2018
  ident: bib38
  publication-title: IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty
– start-page: 69
  year: 2014
  end-page: 113
  ident: bib11
  article-title: Reaction kinetics of primary rock-forming minerals under ambient conditions
  publication-title: Treatise on Geochemistry
– volume: 8
  start-page: 260
  year: 2018
  ident: bib86
  article-title: How characterization of particle size distribution pre- and post-reaction provides mechanistic insights into mineral carbonation
  publication-title: Geosciences
– year: 2013
  ident: bib5
  article-title: CO
  publication-title: Canadian Géotechnical Conference
– volume: 35
  start-page: 244
  year: 2013
  end-page: 254
  ident: bib76
  article-title: Chrysotile dissolution rates: implications for carbon sequestration
  publication-title: Appl. Geochem.
– volume: 45
  start-page: 7727
  year: 2011
  end-page: 7736
  ident: bib80
  article-title: Subarctic weathering of mineral wastes provides a sink for atmospheric CO(2)
  publication-title: Environ. Sci. Technol.
– volume: 1
  year: 2019
  ident: bib24
  article-title: Negative emissions: priorities for Research and policy design
  publication-title: Frontiers in Climate
– volume: 98
  start-page: 259
  year: 2012
  end-page: 281
  ident: bib73
  article-title: Formation, growth and transformation of leached layers during silicate minerals dissolution: the example of wollastonite
  publication-title: Geochem. Cosmochim. Acta
– volume: 500
  start-page: 1
  year: 2018
  end-page: 19
  ident: bib56
  article-title: Olivine dissolution rates: a critical review
  publication-title: Chem. Geol.
– year: 2019
  ident: bib39
  article-title: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems
  publication-title: In press.Technical Summary, in: Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems
– volume: 38
  start-page: 127
  year: 2003
  end-page: 138
  ident: bib43
  article-title: Chemically modified smectites
  publication-title: Clay Miner.
– volume: 20
  start-page: 1153
  year: 1995
  end-page: 1170
  ident: bib45
  article-title: Carbon dioxide disposal in carbonate minerals
  publication-title: Energy
– year: 2013
  ident: bib59
  article-title: Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations
  publication-title: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p
– volume: 43
  start-page: 369
  year: 2007
  end-page: 378
  ident: bib6
  article-title: Effect of exchangeable cations on the physicochemical properties of smectite
  publication-title: Surf. Eng. Appl. Electrochem.
– volume: 52
  start-page: 110
  year: 2016
  end-page: 119
  ident: bib23
  article-title: Multivariate study of the dynamics of CO
  publication-title: International Journal of Greenhouse Gas Control
– volume: 159
  start-page: 83
  year: 2018
  end-page: 93
  ident: bib1
  article-title: Adsorption of ammonium by different natural clay minerals: characterization, kinetics and adsorption isotherms
  publication-title: Appl. Clay Sci.
– volume: 33
  start-page: 1177
  year: 2010
  end-page: 1183
  ident: bib84
  article-title: A novel indirect wollastonite carbonation route for CO
  publication-title: Chem. Eng. Technol.
– volume: 4
  start-page: 399
  year: 2014
  end-page: 436
  ident: bib66
  article-title: Strategizing carbon-neutral mines: a case for pilot projects
  publication-title: Minerals
– volume: 26
  start-page: 793
  year: 2020
  end-page: 811
  ident: bib35
  article-title: Effect of acid activation on the CO2 adsorption capacity of montmorillonite
  publication-title: Adsorption
– volume: 112
  start-page: 755
  year: 2018
  end-page: 765
  ident: bib49
  article-title: Potential for offsetting diamond mine carbon emissions through mineral carbonation of processed kimberlite: an assessment of De Beers mine sites in South Africa and Canada
  publication-title: Mineral. Petrol.
– volume: 1
  start-page: 48
  year: 2011
  end-page: 57
  ident: bib82
  article-title: CO
  publication-title: Greenhouse Gases: Sci. Technol.
– year: 2020
  ident: bib83
  article-title: Cation Exchange: a New Strategy for Mineral Carbonation of Smectite-Rich Kimberlites
– volume: 94
  start-page: 102895
  year: 2020
  ident: bib64
  article-title: Prospects for CO
  publication-title: International Journal of Greenhouse Gas Control
– volume: 2
  start-page: 11
  year: 2018
  ident: bib14
  article-title: Carbon dioxide sequestration through silicate degradation and carbon mineralisation: promises and uncertainties
  publication-title: npj Materials Degradation
– volume: 37
  start-page: 5858
  year: 2013
  end-page: 5869
  ident: bib41
  article-title: Assessing the potential of mineral carbonation with industrial alkalinity sources in the U.S
  publication-title: Energy Procedia
– volume: 8
  start-page: 209
  year: 2018
  ident: bib20
  article-title: The carbonation of wollastonite: a model reaction to test natural and biomimetic catalysts for enhanced CO
  publication-title: Minerals
– volume: 235
  start-page: 377
  year: 2006
  end-page: 389
  ident: bib26
  article-title: Experimental study of the effect of organic ligands on diopside dissolution kinetics
  publication-title: Chem. Geol.
– start-page: 73
  year: 2003
  end-page: 117
  ident: bib10
  article-title: 5.03 - reaction kinetics of primary rock-forming minerals under ambient conditions
  publication-title: Treatise on Geochemistry
– volume: 63
  start-page: 3225
  year: 2014
  end-page: 3233
  ident: bib51
  article-title: Experimental study of organic ligand transport in supercritical CO
  publication-title: Energy Procedia
– volume: 13
  year: 2018
  ident: bib52
  article-title: Negative emissions—Part 1: Research landscape and synthesis
  publication-title: Environ. Res. Lett.
– volume: 84
  start-page: 262
  year: 2017
  end-page: 276
  ident: bib40
  article-title: Kinetic testing to evaluate the mineral carbonation and metal leaching potential of ultramafic tailings: case study of the Dumont Nickel Project, Amos, Québec
  publication-title: Appl. Geochem.
– year: 2020
  ident: bib78
  article-title: Recent developments and challenges of aqueous mineral carbonation: a review
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 83
  start-page: 36
  year: 2007
  end-page: 46
  ident: bib75
  article-title: Dissolution of natural serpentinite in mineral and organic acids
  publication-title: Int. J. Miner. Process.
– volume: 115
  start-page: 303
  year: 2020
  end-page: 323
  ident: bib28
  article-title: Accelerating mineral carbonation in ultramafic mine tailings via direct CO2 reaction and heap leaching with potential for base metal enrichment and recovery
  publication-title: Econ. Geol.
– volume: 41
  start-page: 489
  year: 2014
  end-page: 496
  ident: bib21
  article-title: CO
  publication-title: Phys. Chem. Miner.
– year: 2009
  ident: bib37
  article-title: Global acid rock drainage guide (GARD guide)
  publication-title: The International Network for Acid Prevention (INAP)
– volume: 351
  start-page: 245
  year: 2013
  end-page: 256
  ident: bib15
  article-title: Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO
  publication-title: Chem. Geol.
– volume: 90
  start-page: 1229
  year: 2011
  end-page: 1237
  ident: bib79
  article-title: Dissolution of serpentine using recyclable ammonium salts for CO
  publication-title: Fuel
– volume: 70
  start-page: 207
  year: 2009
  end-page: 258
  ident: bib72
  article-title: The link between mineral dissolution/precipitation kinetics and solution chemistry
  publication-title: Rev. Mineral. Geochem.
– volume: 61
  start-page: 4242
  year: 2006
  end-page: 4251
  ident: bib36
  article-title: Mechanisms of aqueous wollastonite carbonation as a possible CO
  publication-title: Chem. Eng. Sci.
– volume: 376
  start-page: 20160447
  year: 2018
  ident: bib33
  article-title: Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments
  publication-title: Phil. Trans. Math. Phys. Eng. Sci.
– volume: 141
  start-page: 1324
  year: 2017
  end-page: 1336
  ident: bib2
  article-title: Leaching optimization of mining wastes with lizardite and brucite contents for use in indirect mineral carbonation through the pH swing method
  publication-title: J. Clean. Prod.
– volume: 70
  start-page: 4436
  year: 2006
  end-page: 4451
  ident: bib25
  article-title: Effect of pH and organic ligands on the kinetics of smectite dissolution at 25°C
  publication-title: Geochem. Cosmochim. Acta
– volume: 57
  start-page: 68
  year: 2014
  end-page: 71
  ident: bib54
  article-title: Kimberlite weathering: effects of organic reagents
  publication-title: Miner. Eng.
– volume: 245
  start-page: 56
  year: 2014
  end-page: 64
  ident: bib3
  article-title: Comparative study of five Québec ultramafic mining residues for use in direct ambient carbon dioxide mineral sequestration
  publication-title: Chem. Eng. J.
– volume: 265
  start-page: 63
  year: 2009
  end-page: 78
  ident: bib16
  article-title: Carbonation of Ca-bearing silicates, the case of wollastonite: experimental investigations and kinetic modeling
  publication-title: Chem. Geol.
– volume: 47
  start-page: 126
  year: 2013
  end-page: 134
  ident: bib32
  article-title: Accelerated carbonation of brucite in mine tailings for carbon sequestration
  publication-title: Environ. Sci. Technol.
– volume: 28
  start-page: 7125
  year: 2012
  end-page: 7128
  ident: bib47
  article-title: In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide
  publication-title: Langmuir
– volume: 92
  start-page: 2029
  year: 2014
  end-page: 2038
  ident: bib4
  article-title: New tools for stimulating dissolution and carbonation of ultramafic mining residues
  publication-title: Can. J. Chem. Eng.
– volume: 148
  start-page: 477
  year: 2015
  end-page: 495
  ident: bib31
  article-title: Influence of surface passivation and water content on mineral reactions in unsaturated porous media: implications for brucite carbonation and CO
  publication-title: Geochem. Cosmochim. Acta
– volume: 37
  start-page: 1
  year: 1999
  end-page: 15
  ident: bib68
  article-title: Measuring mineral abundance in skarn; I, the Rietveld method using X-ray powder-diffraction data
  publication-title: Can. Mineral.
– volume: 9
  year: 2008
  ident: bib74
  article-title: Explosive fissure eruption of a large kimberlite pipe: Venetia K01 kimberlite pipe, Limpopo, RSA. International Kimberlite Conference
  publication-title: Extended Abstracts
– volume: 10
  start-page: 1983
  year: 2019
  ident: bib60
  article-title: Rapid CO
  publication-title: Nat. Commun.
– volume: 43
  start-page: 8049
  year: 2014
  end-page: 8080
  ident: bib71
  article-title: A review of mineral carbonation technologies to sequester CO
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 467
  year: 2019
  end-page: 487
  ident: bib17
  article-title: Acid–base accounting tests in combination with humidity cells help to predict waste rock behavior
  publication-title: Mine Water Environ.
– volume: 25
  start-page: 121
  year: 2014
  end-page: 140
  ident: bib81
  article-title: Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining
  publication-title: International Journal of Greenhouse Gas Control
– volume: 4
  start-page: 1425
  year: 2019
  end-page: 1433
  ident: bib30
  article-title: Co-benefits of wollastonite weathering in agriculture: CO
  publication-title: ACS Omega
– volume: 39
  start-page: 69
  year: 2013
  end-page: 77
  ident: bib18
  article-title: Do organic ligands affect forsterite dissolution rates?
  publication-title: Appl. Geochem.
– volume: 44
  start-page: 406
  year: 2010
  end-page: 411
  ident: bib85
  article-title: Aqueous carbonation of natural brucite: relevance to CO
  publication-title: Environ. Sci. Technol.
– volume: 8
  start-page: 147
  year: 2018
  ident: bib46
  article-title: Integrated mineral carbonation of ultramafic mine deposits—a review
  publication-title: Minerals
– volume: 309
  start-page: 731
  year: 2009
  end-page: 772
  ident: bib63
  article-title: Effect of organic ligands and heterotrophic bacteria on wollastonite dissolution kinetics
  publication-title: Am. J. Sci.
– volume: 69
  start-page: 905
  year: 2005
  end-page: 918
  ident: bib62
  article-title: Kinetics of brucite dissolution at 25°C in the presence of organic and inorganic ligands and divalent metals
  publication-title: Geochem. Cosmochim. Acta
– volume: 60
  start-page: 309
  year: 1938
  end-page: 319
  ident: bib12
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
– year: 2014
  ident: bib19
  article-title: CarbFix Report 4 PHREEQC Mineral Dissolution Kinetics Database 5. Kinetics Database Compilation
– volume: 7
  start-page: 191
  year: 2017
  ident: bib48
  article-title: Experimental deployment of microbial mineral carbonation at an asbestos mine: potential applications to carbon storage and tailings stabilization
  publication-title: Minerals
– volume: 265
  start-page: 63
  year: 2009
  ident: 10.1016/j.apgeochem.2021.104955_bib16
  article-title: Carbonation of Ca-bearing silicates, the case of wollastonite: experimental investigations and kinetic modeling
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2009.01.022
– volume: 77
  start-page: 305
  year: 2013
  ident: 10.1016/j.apgeochem.2021.104955_bib65
  article-title: Carbon mineralization: from natural analogues to engineered systems
  publication-title: Rev. Mineral. Geochem.
  doi: 10.2138/rmg.2013.77.9
– volume: 148
  start-page: 477
  year: 2015
  ident: 10.1016/j.apgeochem.2021.104955_bib31
  article-title: Influence of surface passivation and water content on mineral reactions in unsaturated porous media: implications for brucite carbonation and CO2 sequestration
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2014.10.020
– volume: 33
  start-page: 1177
  year: 2010
  ident: 10.1016/j.apgeochem.2021.104955_bib84
  article-title: A novel indirect wollastonite carbonation route for CO2 sequestration
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201000024
– volume: 8
  start-page: 209
  year: 2018
  ident: 10.1016/j.apgeochem.2021.104955_bib20
  article-title: The carbonation of wollastonite: a model reaction to test natural and biomimetic catalysts for enhanced CO2 sequestration
  publication-title: Minerals
  doi: 10.3390/min8050209
– start-page: 109
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104955_bib77
  article-title: Targeting highly reactive labile magnesium in ultramafic tailings for greenhouse-gas offsets and potential tailings stabilization at the Baptiste deposit, central British Columbia (NTS 093K/13, 14)
  publication-title: Geoscience BC Summary of Activities 2018: Minerals and Mining, Geoscience BC Report 2019-1
– volume: 70
  start-page: 4436
  year: 2006
  ident: 10.1016/j.apgeochem.2021.104955_bib25
  article-title: Effect of pH and organic ligands on the kinetics of smectite dissolution at 25°C
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.06.1557
– start-page: 69
  year: 2014
  ident: 10.1016/j.apgeochem.2021.104955_bib11
  article-title: Reaction kinetics of primary rock-forming minerals under ambient conditions
– volume: 26
  start-page: 793
  year: 2020
  ident: 10.1016/j.apgeochem.2021.104955_bib35
  article-title: Effect of acid activation on the CO2 adsorption capacity of montmorillonite
  publication-title: Adsorption
  doi: 10.1007/s10450-020-00200-z
– volume: 84
  start-page: 262
  year: 2017
  ident: 10.1016/j.apgeochem.2021.104955_bib40
  article-title: Kinetic testing to evaluate the mineral carbonation and metal leaching potential of ultramafic tailings: case study of the Dumont Nickel Project, Amos, Québec
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2017.07.005
– volume: 35
  start-page: 244
  year: 2013
  ident: 10.1016/j.apgeochem.2021.104955_bib76
  article-title: Chrysotile dissolution rates: implications for carbon sequestration
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2013.04.016
– volume: 37
  start-page: 5858
  year: 2013
  ident: 10.1016/j.apgeochem.2021.104955_bib41
  article-title: Assessing the potential of mineral carbonation with industrial alkalinity sources in the U.S
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.06.510
– year: 2013
  ident: 10.1016/j.apgeochem.2021.104955_bib59
  article-title: Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations
  publication-title: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p
– volume: 10
  start-page: 1983
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104955_bib60
  article-title: Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10003-8
– volume: 97
  start-page: 103017
  year: 2020
  ident: 10.1016/j.apgeochem.2021.104955_bib29
  article-title: CO2 sequestration by wollastonite-amended agricultural soils – an Ontario field study
  publication-title: International Journal of Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2020.103017
– volume: 376
  start-page: 20160447
  year: 2018
  ident: 10.1016/j.apgeochem.2021.104955_bib33
  article-title: Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments
  publication-title: Phil. Trans. Math. Phys. Eng. Sci.
– volume: 9
  start-page: 115
  year: 2013
  ident: 10.1016/j.apgeochem.2021.104955_bib67
  article-title: Serpentinite carbonation for CO2 sequestration
  publication-title: Elements
  doi: 10.2113/gselements.9.2.115
– volume: 5
  start-page: 8775
  year: 2015
  ident: 10.1016/j.apgeochem.2021.104955_bib50
  article-title: Intercalation and retention of carbon dioxide in a smectite clay promoted by interlayer cations
  publication-title: Sci. Rep.
  doi: 10.1038/srep08775
– volume: 70
  start-page: 1655
  year: 2006
  ident: 10.1016/j.apgeochem.2021.104955_bib34
  article-title: Does reactive surface area depend on grain size? Results from pH 3, 25°C far-from-equilibrium flow-through dissolution experiments on anorthite and biotite
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.01.001
– volume: 90
  start-page: 1229
  year: 2011
  ident: 10.1016/j.apgeochem.2021.104955_bib79
  article-title: Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.10.040
– year: 2018
  ident: 10.1016/j.apgeochem.2021.104955_bib38
– volume: 245
  start-page: 56
  year: 2014
  ident: 10.1016/j.apgeochem.2021.104955_bib3
  article-title: Comparative study of five Québec ultramafic mining residues for use in direct ambient carbon dioxide mineral sequestration
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.02.010
– volume: 115
  start-page: 303
  year: 2020
  ident: 10.1016/j.apgeochem.2021.104955_bib28
  article-title: Accelerating mineral carbonation in ultramafic mine tailings via direct CO2 reaction and heap leaching with potential for base metal enrichment and recovery
  publication-title: Econ. Geol.
  doi: 10.5382/econgeo.4710
– volume: 3
  start-page: 399
  year: 2020
  ident: 10.1016/j.apgeochem.2021.104955_bib58
  article-title: CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction
  publication-title: Nature Sustainability
  doi: 10.1038/s41893-020-0486-9
– volume: 265
  start-page: 20
  year: 2009
  ident: 10.1016/j.apgeochem.2021.104955_bib61
  article-title: Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 °C and 1 to 55 atm pCO2: new constraints on CO2 sequestration in sedimentary basins
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2009.01.013
– year: 2020
  ident: 10.1016/j.apgeochem.2021.104955_bib78
  article-title: Recent developments and challenges of aqueous mineral carbonation: a review
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-020-02776-z
– volume: 8
  start-page: 260
  issue: 7
  year: 2018
  ident: 10.1016/j.apgeochem.2021.104955_bib86
  article-title: How characterization of particle size distribution pre- and post-reaction provides mechanistic insights into mineral carbonation
  publication-title: Geosciences
  doi: 10.3390/geosciences8070260
– volume: 351
  start-page: 245
  year: 2013
  ident: 10.1016/j.apgeochem.2021.104955_bib15
  article-title: Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2013.05.020
– year: 2014
  ident: 10.1016/j.apgeochem.2021.104955_bib19
– volume: 98
  start-page: 259
  year: 2012
  ident: 10.1016/j.apgeochem.2021.104955_bib73
  article-title: Formation, growth and transformation of leached layers during silicate minerals dissolution: the example of wollastonite
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2012.09.030
– year: 2020
  ident: 10.1016/j.apgeochem.2021.104955_bib83
– volume: 123
  start-page: 889
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104955_bib7
  article-title: Surface speciation of brucite dissolution in aqueous mineral carbonation: insights from density-functional theory simulations
  publication-title: J. Phys. Chem.
  doi: 10.1021/acs.jpca.8b09140
– volume: 20
  start-page: 1153
  year: 1995
  ident: 10.1016/j.apgeochem.2021.104955_bib45
  article-title: Carbon dioxide disposal in carbonate minerals
  publication-title: Energy
  doi: 10.1016/0360-5442(95)00071-N
– volume: 309
  start-page: 731
  year: 2009
  ident: 10.1016/j.apgeochem.2021.104955_bib63
  article-title: Effect of organic ligands and heterotrophic bacteria on wollastonite dissolution kinetics
  publication-title: Am. J. Sci.
  doi: 10.2475/08.2009.05
– volume: 1
  start-page: 48
  year: 2011
  ident: 10.1016/j.apgeochem.2021.104955_bib82
  article-title: CO2 mineral sequestration: developments toward large-scale application
  publication-title: Greenhouse Gases: Sci. Technol.
  doi: 10.1002/ghg3.7
– year: 2013
  ident: 10.1016/j.apgeochem.2021.104955_bib5
  article-title: CO2 consumption test for the quantification of the mineral carbonation potential of mine wastes
– volume: 61
  start-page: 4242
  year: 2006
  ident: 10.1016/j.apgeochem.2021.104955_bib36
  article-title: Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2006.01.048
– volume: 9
  start-page: 485
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104955_bib44
  article-title: Geological mapping and characterization of possible primary input materials for the mineral sequestration of carbon dioxide in europe
  publication-title: Minerals
  doi: 10.3390/min9080485
– volume: 44
  start-page: 406
  year: 2010
  ident: 10.1016/j.apgeochem.2021.104955_bib85
  article-title: Aqueous carbonation of natural brucite: relevance to CO2 sequestration
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9017656
– volume: 2
  start-page: 11
  year: 2018
  ident: 10.1016/j.apgeochem.2021.104955_bib14
  article-title: Carbon dioxide sequestration through silicate degradation and carbon mineralisation: promises and uncertainties
  publication-title: npj Materials Degradation
  doi: 10.1038/s41529-018-0035-4
– volume: 4
  start-page: 399
  year: 2014
  ident: 10.1016/j.apgeochem.2021.104955_bib66
  article-title: Strategizing carbon-neutral mines: a case for pilot projects
  publication-title: Minerals
  doi: 10.3390/min4020399
– volume: 63
  start-page: 3225
  year: 2014
  ident: 10.1016/j.apgeochem.2021.104955_bib51
  article-title: Experimental study of organic ligand transport in supercritical CO2 fluids and impacts to silicate reactivity
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.11.349
– volume: 83
  start-page: 36
  year: 2007
  ident: 10.1016/j.apgeochem.2021.104955_bib75
  article-title: Dissolution of natural serpentinite in mineral and organic acids
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2007.04.001
– volume: 112
  start-page: 755
  year: 2018
  ident: 10.1016/j.apgeochem.2021.104955_bib49
  article-title: Potential for offsetting diamond mine carbon emissions through mineral carbonation of processed kimberlite: an assessment of De Beers mine sites in South Africa and Canada
  publication-title: Mineral. Petrol.
  doi: 10.1007/s00710-018-0589-4
– volume: 38
  start-page: 467
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104955_bib17
  article-title: Acid–base accounting tests in combination with humidity cells help to predict waste rock behavior
  publication-title: Mine Water Environ.
  doi: 10.1007/s10230-019-00617-1
– volume: 52
  start-page: 110
  year: 2016
  ident: 10.1016/j.apgeochem.2021.104955_bib23
  article-title: Multivariate study of the dynamics of CO2 reaction with brucite-rich ultramafic mine tailings
  publication-title: International Journal of Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2016.06.022
– volume: 7
  start-page: 191
  year: 2017
  ident: 10.1016/j.apgeochem.2021.104955_bib48
  article-title: Experimental deployment of microbial mineral carbonation at an asbestos mine: potential applications to carbon storage and tailings stabilization
  publication-title: Minerals
  doi: 10.3390/min7100191
– year: 2019
  ident: 10.1016/j.apgeochem.2021.104955_bib53
– volume: 43
  start-page: 369
  year: 2007
  ident: 10.1016/j.apgeochem.2021.104955_bib6
  article-title: Effect of exchangeable cations on the physicochemical properties of smectite
  publication-title: Surf. Eng. Appl. Electrochem.
  doi: 10.3103/S1068375507050110
– volume: 120
  start-page: 128
  year: 2014
  ident: 10.1016/j.apgeochem.2021.104955_bib70
  article-title: Silicate rock dissolution by ammonium bisulphate for pH swing mineral CO2 sequestration
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2013.12.012
– volume: 235
  start-page: 377
  year: 2006
  ident: 10.1016/j.apgeochem.2021.104955_bib26
  article-title: Experimental study of the effect of organic ligands on diopside dissolution kinetics
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2006.08.004
– volume: 152
  start-page: 13
  year: 2015
  ident: 10.1016/j.apgeochem.2021.104955_bib27
  article-title: Preparation of Mg(OH)2 with caustic calcined magnesia through ammonium acetate circulation
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2014.12.008
– year: 2009
  ident: 10.1016/j.apgeochem.2021.104955_bib37
  article-title: Global acid rock drainage guide (GARD guide)
  publication-title: The International Network for Acid Prevention (INAP)
– volume: 38
  start-page: 127
  year: 2003
  ident: 10.1016/j.apgeochem.2021.104955_bib43
  article-title: Chemically modified smectites
  publication-title: Clay Miner.
  doi: 10.1180/0009855033810083
– start-page: 73
  year: 2003
  ident: 10.1016/j.apgeochem.2021.104955_bib10
  article-title: 5.03 - reaction kinetics of primary rock-forming minerals under ambient conditions
– volume: 25
  start-page: 121
  year: 2014
  ident: 10.1016/j.apgeochem.2021.104955_bib81
  article-title: Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining
  publication-title: International Journal of Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2014.04.002
– volume: 70
  start-page: 207
  year: 2009
  ident: 10.1016/j.apgeochem.2021.104955_bib72
  article-title: The link between mineral dissolution/precipitation kinetics and solution chemistry
  publication-title: Rev. Mineral. Geochem.
  doi: 10.2138/rmg.2009.70.6
– volume: 1
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104955_bib24
  article-title: Negative emissions: priorities for Research and policy design
  publication-title: Frontiers in Climate
  doi: 10.3389/fclim.2019.00006
– volume: 8
  start-page: 147
  year: 2018
  ident: 10.1016/j.apgeochem.2021.104955_bib46
  article-title: Integrated mineral carbonation of ultramafic mine deposits—a review
  publication-title: Minerals
  doi: 10.3390/min8040147
– volume: 159
  start-page: 83
  year: 2018
  ident: 10.1016/j.apgeochem.2021.104955_bib1
  article-title: Adsorption of ammonium by different natural clay minerals: characterization, kinetics and adsorption isotherms
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2017.11.007
– volume: 57
  start-page: 68
  year: 2014
  ident: 10.1016/j.apgeochem.2021.104955_bib54
  article-title: Kimberlite weathering: effects of organic reagents
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2013.12.014
– volume: 57
  start-page: 285
  year: 1993
  ident: 10.1016/j.apgeochem.2021.104955_bib42
  article-title: Diopside dissolution kinetics as a function of pH, CO2, temperature, and time
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/0016-7037(93)90431-U
– volume: 500
  start-page: 1
  year: 2018
  ident: 10.1016/j.apgeochem.2021.104955_bib56
  article-title: Olivine dissolution rates: a critical review
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2018.10.008
– volume: 92
  start-page: 2029
  year: 2014
  ident: 10.1016/j.apgeochem.2021.104955_bib4
  article-title: New tools for stimulating dissolution and carbonation of ultramafic mining residues
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.22066
– volume: 41
  start-page: 1403
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104955_bib8
  article-title: Carbon capture and utilization technologies: a literature review and recent advances
  publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff.
  doi: 10.1080/15567036.2018.1548518
– volume: 169
  start-page: 330
  year: 2006
  ident: 10.1016/j.apgeochem.2021.104955_bib22
  article-title: Problems in CEC determination of calcareous clayey sediments using the ammonium acetate method
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200621975
– year: 2019
  ident: 10.1016/j.apgeochem.2021.104955_bib39
  article-title: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems
– volume: 65
  start-page: 3703
  year: 2001
  ident: 10.1016/j.apgeochem.2021.104955_bib55
  article-title: General kinetic description of multioxide silicate mineral and glass dissolution
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/S0016-7037(01)00710-4
– volume: 94
  start-page: 102895
  year: 2020
  ident: 10.1016/j.apgeochem.2021.104955_bib64
  article-title: Prospects for CO2 mineralization and enhanced weathering of ultramafic mine tailings from the Baptiste nickel deposit in British Columbia, Canada
  publication-title: International Journal of Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2019.102895
– volume: 69
  start-page: 905
  year: 2005
  ident: 10.1016/j.apgeochem.2021.104955_bib62
  article-title: Kinetics of brucite dissolution at 25°C in the presence of organic and inorganic ligands and divalent metals
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2004.08.011
– volume: 13
  year: 2018
  ident: 10.1016/j.apgeochem.2021.104955_bib52
  article-title: Negative emissions—Part 1: Research landscape and synthesis
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aabf9b
– volume: 9
  year: 2008
  ident: 10.1016/j.apgeochem.2021.104955_bib74
  article-title: Explosive fissure eruption of a large kimberlite pipe: Venetia K01 kimberlite pipe, Limpopo, RSA. International Kimberlite Conference
  publication-title: Extended Abstracts
– volume: 41
  start-page: 489
  year: 2014
  ident: 10.1016/j.apgeochem.2021.104955_bib21
  article-title: CO2 mineral sequestration by wollastonite carbonation
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/s00269-014-0659-z
– volume: 10
  start-page: 1401
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104955_bib69
  article-title: The negative emission potential of alkaline materials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09475-5
– volume: 141
  start-page: 1324
  year: 2017
  ident: 10.1016/j.apgeochem.2021.104955_bib2
  article-title: Leaching optimization of mining wastes with lizardite and brucite contents for use in indirect mineral carbonation through the pH swing method
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.09.204
– volume: 4
  start-page: 1425
  year: 2019
  ident: 10.1016/j.apgeochem.2021.104955_bib30
  article-title: Co-benefits of wollastonite weathering in agriculture: CO2 sequestration and promoted plant growth
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02477
– volume: 45
  start-page: 7727
  year: 2011
  ident: 10.1016/j.apgeochem.2021.104955_bib80
  article-title: Subarctic weathering of mineral wastes provides a sink for atmospheric CO(2)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202112y
– volume: 9
  start-page: 334
  year: 2012
  ident: 10.1016/j.apgeochem.2021.104955_bib9
  article-title: Comprehensive analysis of direct aqueous mineral carbonation using dissolution enhancing organic additives
  publication-title: International Journal of Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2012.05.009
– volume: 4
  start-page: 333
  year: 2008
  ident: 10.1016/j.apgeochem.2021.104955_bib57
  article-title: Mineral carbonation of CO2
  publication-title: Elements
  doi: 10.2113/gselements.4.5.333
– volume: 60
  start-page: 309
  year: 1938
  ident: 10.1016/j.apgeochem.2021.104955_bib12
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01269a023
– volume: 47
  start-page: 126
  year: 2013
  ident: 10.1016/j.apgeochem.2021.104955_bib32
  article-title: Accelerated carbonation of brucite in mine tailings for carbon sequestration
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3012854
– volume: 17
  start-page: 9
  year: 1997
  ident: 10.1016/j.apgeochem.2021.104955_bib13
  article-title: A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils
  publication-title: Agronomie
  doi: 10.1051/agro:19970102
– volume: 43
  start-page: 8049
  year: 2014
  ident: 10.1016/j.apgeochem.2021.104955_bib71
  article-title: A review of mineral carbonation technologies to sequester CO2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00035H
– volume: 28
  start-page: 7125
  year: 2012
  ident: 10.1016/j.apgeochem.2021.104955_bib47
  article-title: In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide
  publication-title: Langmuir
  doi: 10.1021/la301136w
– volume: 39
  start-page: 69
  year: 2013
  ident: 10.1016/j.apgeochem.2021.104955_bib18
  article-title: Do organic ligands affect forsterite dissolution rates?
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2013.09.020
– volume: 37
  start-page: 1
  year: 1999
  ident: 10.1016/j.apgeochem.2021.104955_bib68
  article-title: Measuring mineral abundance in skarn; I, the Rietveld method using X-ray powder-diffraction data
  publication-title: Can. Mineral.
SSID ssj0005702
Score 2.5107884
Snippet Mineralogically complex feedstocks, including kimberlite, serpentinite, and wollastonite skarns, have vast capacities to sequester carbon dioxide (CO2) through...
Mineralogically complex feedstocks, including kimberlite, serpentinite, and wollastonite skarns, have vast capacities to sequester carbon dioxide (CO₂) through...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104955
SubjectTerms ammonium acetate
calcite
calcium silicate
carbon dioxide
Carbon dioxide removal
carbon sequestration
carbonates
Carbonation feedstock
cations
CO2 mineralization
Easily extractable cations
Enhanced rock weathering
feedstocks
inorganic carbon
mineralization
serpentine
serpentinite
South Africa
Title Evaluating feedstocks for carbon dioxide removal by enhanced rock weathering and CO2 mineralization
URI https://dx.doi.org/10.1016/j.apgeochem.2021.104955
https://www.proquest.com/docview/2551953072
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBVLQqGXkvSDpm0WFXp117Jly-otLEm2Ld0e2kBuQpZGWzeNvWw2JLnkt2cky0tSCjn0aDODzUiaeYPezBDyoSpKRBXWJgZEmXBtWCJB2sQxnTMwtpSh2fO3eTk74V9Oi9MRmQ61MJ5WGX1_79ODt45vJtGak2XTTH7g-cgzmWEK4wNZqCPnXPhd_vH2Hs1DBN6hF0689AOOl14uwA-m8iXpGfP3ndLX_P07Qv3lq0MAOtohzyJypAf9z-2SEbTPyZPjMJn35gUxh7Fvd7ugDkMSgjpzdkERk1KjV3XXUtt0140FuoLzDmVpfUOh_RUYABTD2Bm9glgOuKC6tXT6PaPnTehKHYs1X5KTo8Of01kSJygkJufVOmGCWZYXoCvuKih47aROc4cwxGjNhQsIz1lgpkoLSDMnSy6FE5ACaJ7q_BXZarsWXhOaaysxtymsdHjujasRWdQen1sEVKwUe6QcrKZMbC_up1z8UQOP7LfamFt5c6ve3Hsk3Sgu-w4bj6t8GpZFPdgsCuPA48rvh4VUeJT8_Yhuobu8UJhd-UvFVGRv_ucDb8lT_9Tzyd6RrfXqEvYRuazrcdiaY7J98PnrbH4Hlkzu4g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELZQEdpepo0xrRtsRtpr1Di_zRuqgAJt9wCV-mY59rmErklVioD_fufEYeo0qQ97TXxKdPbdfSd_d0fIjyxOEFVo7SlIEy-SinkcuPYMkyEDpRNeN3sejZPBJLqaxtMd0m9rYSyt0vn-xqfX3to96Tlt9pZF0btB-wgDHmAKYwOZrSPftd2p4g7ZPb28Hoz_MD3Smnpo13tWYIPmJZczsLOpbFV6wOyVJ7dlf_8OUn-56zoGnb8n7xx4pKfN_30gO1Duk72Lejjvy0eizlzr7nJGDUYlxHVq_kARllIlV3lVUl1Uz4UGuoJFhWtp_kKhvKtJABQj2Zw-gasInFFZatr_GdBFUTemdvWaB2RyfnbbH3huiIKnwihbeyxlmoUxyCwyGcRRbrj0Q4NIREkZpaYGeUYDU5kfgx8YnkQ8NSn4ADLyZfiJdMqqhM-EhlJzTG9izQ2avjI5govcQnSNmIolaZckrdaEch3G7aCLX6Klkt2LV3ULq27RqLtL_FfBZdNkY7vISbstYuO8CAwF24WP240UaE32ikSWUD0-CEyw7L2inwZf_ucD38mbwe1oKIaX4-uv5K1909DLDklnvXqEIwQy6_ybO6i_AcZ18ZM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+feedstocks+for+carbon+dioxide+removal+by+enhanced+rock+weathering+and+CO2+mineralization&rft.jtitle=Applied+geochemistry&rft.au=Paulo%2C+Carlos&rft.au=Power%2C+Ian+M.&rft.au=Stubbs%2C+Amanda+R.&rft.au=Wang%2C+Baolin&rft.date=2021-06-01&rft.issn=0883-2927&rft.volume=129&rft.spage=104955&rft_id=info:doi/10.1016%2Fj.apgeochem.2021.104955&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apgeochem_2021_104955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon