Multi-strategy ensemble grey wolf optimizer and its application to feature selection

To overcome the limitation of single search strategy of grey wolf optimizer (GWO) in solving various function optimization problems, we propose a multi-strategy ensemble GWO (MEGWO) in this paper. The proposed MEGWO incorporates three different search strategies to update the solutions. Firstly, the...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 76; pp. 16 - 30
Main Authors Tu, Qiang, Chen, Xuechen, Liu, Xingcheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To overcome the limitation of single search strategy of grey wolf optimizer (GWO) in solving various function optimization problems, we propose a multi-strategy ensemble GWO (MEGWO) in this paper. The proposed MEGWO incorporates three different search strategies to update the solutions. Firstly, the enhanced global-best lead strategy can improve the local search ability of GWO by fully exploiting the search space around the current best solution. Secondly, the adaptable cooperative strategy embeds one-dimensional update operation into the framework of GWO to provide a higher population diversity and promote the global search ability. Thirdly, the disperse foraging strategy forces a part of search agents to explore a promising area based on a self-adjusting parameter, which contributes to the balance between the exploitation and exploration. We conducted numerical experiments based on various functions form CEC2014. The obtained results are compared with other three modified GWO and seven state-of-the-art algorithms. Furthermore, feature selection is employed to investigate the effectiveness of MEGWO on real-world applications. The experimental results show that the proposed algorithm which integrate multiple improved search strategies, outperforms other variants of GWO and other algorithms in terms of accuracy and convergence speed. It is validated that MEGWO is an efficient and reliable algorithm not only for optimization of functions with different characteristics but also for real-world optimization problems. •A multi-strategy ensemble GWO is proposed to boost the precision and efficiency of the original GWO.•A parameter self-adjusting strategy is utilized to balance the exploitation and exploration of the proposed MEGWO.•Wilcoxons signed-rank test and performance profile are used to investigate the significance of the MEGWO.•Feature selection is employed to evaluate the effectiveness of MEGWO on real-world applications.
AbstractList To overcome the limitation of single search strategy of grey wolf optimizer (GWO) in solving various function optimization problems, we propose a multi-strategy ensemble GWO (MEGWO) in this paper. The proposed MEGWO incorporates three different search strategies to update the solutions. Firstly, the enhanced global-best lead strategy can improve the local search ability of GWO by fully exploiting the search space around the current best solution. Secondly, the adaptable cooperative strategy embeds one-dimensional update operation into the framework of GWO to provide a higher population diversity and promote the global search ability. Thirdly, the disperse foraging strategy forces a part of search agents to explore a promising area based on a self-adjusting parameter, which contributes to the balance between the exploitation and exploration. We conducted numerical experiments based on various functions form CEC2014. The obtained results are compared with other three modified GWO and seven state-of-the-art algorithms. Furthermore, feature selection is employed to investigate the effectiveness of MEGWO on real-world applications. The experimental results show that the proposed algorithm which integrate multiple improved search strategies, outperforms other variants of GWO and other algorithms in terms of accuracy and convergence speed. It is validated that MEGWO is an efficient and reliable algorithm not only for optimization of functions with different characteristics but also for real-world optimization problems. •A multi-strategy ensemble GWO is proposed to boost the precision and efficiency of the original GWO.•A parameter self-adjusting strategy is utilized to balance the exploitation and exploration of the proposed MEGWO.•Wilcoxons signed-rank test and performance profile are used to investigate the significance of the MEGWO.•Feature selection is employed to evaluate the effectiveness of MEGWO on real-world applications.
Author Chen, Xuechen
Tu, Qiang
Liu, Xingcheng
Author_xml – sequence: 1
  givenname: Qiang
  surname: Tu
  fullname: Tu, Qiang
  organization: School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, Guangdong, China
– sequence: 2
  givenname: Xuechen
  orcidid: 0000-0002-7683-2933
  surname: Chen
  fullname: Chen, Xuechen
  email: chenxch8@mail.sysu.edu.cn
  organization: School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, Guangdong, China
– sequence: 3
  givenname: Xingcheng
  orcidid: 0000-0003-1836-2205
  surname: Liu
  fullname: Liu, Xingcheng
  email: isslxc@mail.sysu.edu.cn
  organization: School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, Guangdong, China
BookMark eNp9kMtqwzAQAEVJoUnaH-hJP2BXkmVnDb2U0Bek9JK7kKV1UHAsIykt6dfXbnvqIaddFmZhZkFmve-RkFvOcs54dbfPdfQmF4xDznnO5OqCzDmsRFZXwGfjXlaQyVpWV2QR456NUC1gTrZvxy65LKagE-5OFPuIh6ZDugt4op--a6kfkju4LwxU95a6FKkehs4ZnZzvafK0RZ2OAWnEDs10vCaXre4i3vzNJdk-PW7XL9nm_fl1_bDJTCEhZZxXttSygBoa0TZVUYO1ogRbaGQtykbUrbGcGbCrBkCjsKCtLG1jNZZYLIn4fWuCjzFgq4bgDjqcFGdqyqL2asqipiyKczVmGSH4BxmXflTGBK47j97_ojg6fTgMKhqHvUHrwiiurHfn8G_lyYNi
CitedBy_id crossref_primary_10_1007_s00521_023_09202_8
crossref_primary_10_1155_2021_9085617
crossref_primary_10_1142_S0218348X23401424
crossref_primary_10_1016_j_eswa_2022_118267
crossref_primary_10_1155_2022_3082933
crossref_primary_10_1016_j_chemolab_2022_104618
crossref_primary_10_1016_j_eswa_2022_116767
crossref_primary_10_3390_computers12120249
crossref_primary_10_1007_s10462_022_10222_4
crossref_primary_10_1016_j_infrared_2022_104418
crossref_primary_10_1016_j_asoc_2023_110558
crossref_primary_10_1109_ACCESS_2022_3144065
crossref_primary_10_1016_j_eswa_2020_113917
crossref_primary_10_1109_ACCESS_2023_3304889
crossref_primary_10_1016_j_asoc_2023_110959
crossref_primary_10_1080_1062936X_2024_2404853
crossref_primary_10_1109_ACCESS_2019_2919991
crossref_primary_10_1016_j_ins_2024_120924
crossref_primary_10_1109_ACCESS_2022_3203999
crossref_primary_10_1007_s10462_020_09860_3
crossref_primary_10_1016_j_eswa_2024_125863
crossref_primary_10_1109_ACCESS_2021_3060096
crossref_primary_10_1016_j_neucom_2022_04_083
crossref_primary_10_3390_sym13122388
crossref_primary_10_3390_electronics10182183
crossref_primary_10_3390_bios13010092
crossref_primary_10_1007_s40747_025_01846_4
crossref_primary_10_1016_j_asoc_2019_105521
crossref_primary_10_1080_0952813X_2023_2183267
crossref_primary_10_32604_cmes_2025_058473
crossref_primary_10_35378_gujs_820885
crossref_primary_10_48084_etasr_2735
crossref_primary_10_1016_j_asoc_2021_107444
crossref_primary_10_1109_ACCESS_2023_3263584
crossref_primary_10_1016_j_compbiomed_2023_107293
crossref_primary_10_1109_ACCESS_2019_2921793
crossref_primary_10_1109_ACCESS_2019_2926444
crossref_primary_10_3390_su15065470
crossref_primary_10_3390_bioengineering10040475
crossref_primary_10_1007_s10586_024_04455_x
crossref_primary_10_1007_s11042_022_12658_w
crossref_primary_10_1007_s00521_021_06224_y
crossref_primary_10_1007_s13042_020_01202_7
crossref_primary_10_1109_JIOT_2022_3230971
crossref_primary_10_1002_cpe_70034
crossref_primary_10_1016_j_jocs_2023_102201
crossref_primary_10_1080_08839514_2023_2166232
crossref_primary_10_1016_j_asoc_2019_105538
crossref_primary_10_1109_ACCESS_2022_3202894
crossref_primary_10_1049_joe_2019_1174
crossref_primary_10_1038_s41598_024_81100_y
crossref_primary_10_3390_s23073714
crossref_primary_10_1016_j_isci_2024_111230
crossref_primary_10_1155_2022_3603607
crossref_primary_10_1016_j_patcog_2020_107470
crossref_primary_10_1016_j_eswa_2019_113103
crossref_primary_10_1016_j_eswa_2022_119327
crossref_primary_10_1016_j_compbiomed_2021_105137
crossref_primary_10_1109_ACCESS_2021_3057707
crossref_primary_10_1109_ACCESS_2023_3285815
crossref_primary_10_1016_j_eswa_2019_07_031
crossref_primary_10_1016_j_apm_2024_04_057
crossref_primary_10_7717_peerj_cs_1760
crossref_primary_10_1007_s10596_020_10030_1
crossref_primary_10_1016_j_compag_2025_109962
crossref_primary_10_1016_j_compbiomed_2023_107197
crossref_primary_10_1109_ACCESS_2024_3362228
crossref_primary_10_1155_2020_7824785
crossref_primary_10_3390_s22186843
crossref_primary_10_1007_s00500_020_04832_9
crossref_primary_10_1007_s11063_023_11332_y
crossref_primary_10_1016_j_asoc_2021_107625
crossref_primary_10_1016_j_asoc_2022_108717
crossref_primary_10_1007_s10462_022_10322_1
crossref_primary_10_1002_mma_9791
crossref_primary_10_1016_j_eswa_2021_115620
crossref_primary_10_1016_j_jobe_2024_111307
crossref_primary_10_1080_0952813X_2021_1924868
crossref_primary_10_1016_j_cie_2021_107904
crossref_primary_10_1109_ACCESS_2020_3006469
crossref_primary_10_1002_int_22744
crossref_primary_10_1109_JSEN_2024_3438849
crossref_primary_10_1016_j_asoc_2021_107476
crossref_primary_10_1109_JIOT_2023_3317089
crossref_primary_10_1016_j_asoc_2020_106126
crossref_primary_10_3390_drones9030212
crossref_primary_10_1016_j_asoc_2020_106367
crossref_primary_10_1007_s00500_021_06194_2
crossref_primary_10_1016_j_jestch_2024_101935
crossref_primary_10_1007_s00521_024_10621_4
crossref_primary_10_1007_s10489_022_04201_z
crossref_primary_10_1016_j_eswa_2021_114887
crossref_primary_10_3390_drones9030219
crossref_primary_10_1177_14759217221137319
crossref_primary_10_1016_j_saa_2021_120480
crossref_primary_10_1007_s11042_023_15023_7
crossref_primary_10_3233_JIFS_211025
crossref_primary_10_1515_mt_2023_0201
crossref_primary_10_1016_j_asoc_2020_107061
crossref_primary_10_1109_ACCESS_2020_3001151
crossref_primary_10_1016_j_asoc_2022_109005
crossref_primary_10_1016_j_adhoc_2020_102406
crossref_primary_10_1631_FITEE_2200334
crossref_primary_10_1007_s12083_023_01507_8
crossref_primary_10_1016_j_knosys_2020_106131
crossref_primary_10_1016_j_asoc_2020_106996
crossref_primary_10_1093_jcde_qwac095
crossref_primary_10_3390_electronics8101130
crossref_primary_10_1007_s00521_022_07836_8
crossref_primary_10_1016_j_knosys_2022_108517
crossref_primary_10_1016_j_bspc_2023_105423
crossref_primary_10_1016_j_ygeno_2020_07_027
crossref_primary_10_3390_app10113667
crossref_primary_10_3934_mbe_2021192
crossref_primary_10_1007_s10462_021_10009_z
crossref_primary_10_1038_s41598_025_92983_w
crossref_primary_10_1007_s00500_019_04328_1
crossref_primary_10_1007_s00521_021_06406_8
crossref_primary_10_1007_s42235_024_00579_3
crossref_primary_10_1007_s00500_021_06282_3
crossref_primary_10_1016_j_compbiomed_2023_107544
crossref_primary_10_1016_j_knosys_2022_110088
crossref_primary_10_1016_j_eswa_2023_122147
crossref_primary_10_1016_j_eswa_2024_125055
crossref_primary_10_1177_01423312231167200
crossref_primary_10_1007_s00500_023_08414_3
crossref_primary_10_1016_j_asoc_2021_107574
crossref_primary_10_1093_jcde_qwad053
crossref_primary_10_3233_JIFS_221036
crossref_primary_10_1007_s11047_022_09912_3
crossref_primary_10_1007_s13369_020_04871_2
crossref_primary_10_1007_s12065_024_00909_8
crossref_primary_10_1007_s00366_021_01479_4
crossref_primary_10_1016_j_engappai_2021_104210
crossref_primary_10_3390_biomimetics9100648
crossref_primary_10_1007_s00366_019_00795_0
crossref_primary_10_1007_s11042_023_15146_x
crossref_primary_10_1016_j_compbiomed_2023_107838
crossref_primary_10_1109_ACCESS_2020_2986232
crossref_primary_10_3390_math11153312
crossref_primary_10_1016_j_asoc_2023_110031
crossref_primary_10_1109_ACCESS_2020_2981186
crossref_primary_10_3390_s23146529
crossref_primary_10_1007_s11227_022_04930_5
crossref_primary_10_1016_j_eswa_2022_117864
crossref_primary_10_1016_j_eswa_2021_115032
crossref_primary_10_3390_a14110324
crossref_primary_10_1007_s12065_022_00721_2
crossref_primary_10_3233_JIFS_212729
crossref_primary_10_1016_j_asoc_2019_106031
crossref_primary_10_1109_ACCESS_2020_3000040
crossref_primary_10_1177_1748006X221102992
crossref_primary_10_1080_00032719_2022_2155833
crossref_primary_10_1049_ipr2_12830
Cites_doi 10.1016/j.eswa.2018.07.022
10.1109/TEVC.2008.919004
10.1016/j.ins.2018.08.049
10.1016/j.amc.2007.09.004
10.1016/j.ins.2014.11.042
10.1109/4235.996017
10.1214/09-SS054
10.1016/j.soildyn.2015.04.004
10.1016/j.neucom.2017.04.053
10.1016/j.patcog.2012.10.001
10.1016/j.asoc.2018.02.049
10.1016/j.inffus.2018.08.002
10.1109/JSEE.2015.00037
10.1007/s00500-014-1556-6
10.1007/s00500-010-0591-1
10.1016/j.amc.2009.03.090
10.1109/36.124218
10.1108/02644401211235834
10.1016/j.ins.2014.12.043
10.1177/003754970107600201
10.1061/(ASCE)0733-9496(2003)129:3(210)
10.1016/j.asoc.2018.07.040
10.1109/ReTIS.2015.7232842
10.1016/j.neucom.2015.06.083
10.1016/j.eswa.2017.04.029
10.1016/j.asoc.2017.06.044
10.1016/j.ins.2014.04.013
10.1109/TEVC.2004.840144
10.1016/j.enconman.2015.04.005
10.1126/science.220.4598.671
10.1007/s00521-017-3272-5
10.1504/IJBIC.2010.032124
10.1016/j.beproc.2011.09.006
10.1023/A:1008202821328
10.1016/j.compstruc.2014.03.007
10.1016/j.ins.2014.09.053
10.1016/j.asoc.2014.11.003
10.1016/j.advengsoft.2016.01.008
10.1016/j.knosys.2018.05.009
10.1109/TSMCB.2012.2222373
10.1007/s00366-011-0241-y
10.1007/s10489-014-0645-7
10.1007/s101070100263
10.1016/j.eswa.2014.03.016
10.1016/j.asoc.2017.03.048
10.1016/j.knosys.2018.08.003
10.1016/j.knosys.2016.05.052
10.1007/s00521-014-1806-7
10.1016/j.asoc.2016.12.022
10.1016/j.knosys.2017.12.037
10.1016/j.neucom.2016.03.101
10.1007/978-0-387-30164-8_630
10.1016/j.asoc.2015.03.041
10.1007/s00521-015-1962-4
10.1016/j.advengsoft.2013.12.007
10.1049/iet-gtd.2015.1141
10.1016/j.cam.2012.01.013
10.1016/j.swevo.2011.02.002
10.1016/j.enconman.2016.10.062
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2018.11.047
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 30
ExternalDocumentID 10_1016_j_asoc_2018_11_047
S1568494618306793
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c348t-116d5a43898b2fb6398dd258d3ae0fe4b29fcd10c8d7b88ae2d8ad45dbdae5e3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:13:07 EDT 2025
Tue Jul 01 01:50:02 EDT 2025
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature selection
Grey wolf optimizer
Function optimization
Intelligent simulation
Multi-strategy ensemble
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-116d5a43898b2fb6398dd258d3ae0fe4b29fcd10c8d7b88ae2d8ad45dbdae5e3
ORCID 0000-0003-1836-2205
0000-0002-7683-2933
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_asoc_2018_11_047
crossref_citationtrail_10_1016_j_asoc_2018_11_047
elsevier_sciencedirect_doi_10_1016_j_asoc_2018_11_047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Muro, Escobedo, Spector, Coppinger (b41) 2011; 88
Sahoo, Chandra (b27) 2017; 52
Faris, Mafarja, Heidari, Aljarah, Al-Zoubi (b17) 2018; 154
Emary, Zawbaa, Hassanien (b23) 2016; 172
Zhou, Zhu, Zheng, Li (b34) 2016; 10
Wang, Wu, Rahnamayan, Sun, Liu, Pan (b55) 2014; 279
Shi, Pun, Hu, Gao (b47) 2016; 107
Tanweer, Suresh, Sundararajan (b60) 2015; 294
Blake (b65) 1998
Zhang, Huang, Zhang (b59) 2019; 471
Song, Tang, Zhao, Zhang, Li, Huang (b26) 2015; 75
Suganthan, Hansen, Liang, Deb (b42) 2005
Mahdad, Srairi (b33) 2015; 98
Blair, Higgins (b63) 1980; 5
Mirjalili, Mirjalili, Lewis (b15) 2014; 69
Liang, Qu, Suganthan (b50) 2013
Gao, Liu, Huang (b48) 2013; 43
Khairuzzaman, Chaudhury (b28) 2017; 86
Cheng, Prayogo (b51) 2014; 139
Zong, Kim, Loganathan (b8) 2001; 2
Simon (b14) 2008; 12
Omran, Mahdavi (b43) 2008; 198
Al-Aboody, Al-Raweshidy (b25) 2016
.
Eusuff, Lansey (b12) 2003; 129
Dolan, Moré (b62) 2002; 91
Mishra (b11) 2005; 9
Xiang, An, Li, He, Zhang (b44) 2014; 41
Kamboj (b38) 2016; 27
Faris, Ala’M, Heidari, Aljarah, Mafarja (b19) 2019; 48
Draa, Bouzoubia, Boukhalfa (b57) 2015; 27
Mirjalili, Lewis (b16) 2016; 95
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. of 1995 IEEE Int. Conf. Neural Networks, Vol. 4, Perth, Australia), Nov. 27–Dec. (8) 2011, pp. 1942–1948
Yang, Zhang, Yu, Shu, Fang (b36) 2017; 133
Kirkpatrick, Gelatt, Vecchi (b2) 1983; 220
Mirjalili (b40) 2015; 43
Gupta, Deep (b37) 2018
Al-Betar, Awadallah, Faris, Aljarah (b31) 2018; 113
Yang (b7) 2010; 2
Heermann, Khazenie (b4) 1992; 30
Mafarja, Aljarah, Heidari, Hammouri (b18) 2018; 145
Mafarja, Aljarah, Heidari, Faris (b21) 2018
Heidari, Pahlavani (b35) 2017; 60
Li, Yin (b49) 2015; 298
Faris, Aljarah, Al-Betar, Mirjalili (b22) 2018; 30
Sulaiman, Mustaffa, Mohamed, Aliman (b24) 2015; 32
Wang, Cai, Cui, Min, Chen (b1) 2017; PP
Aljarah, Mafarja, Heidari, Faris, Zhang (b20) 2018; 71
Liu, Pan, Dezert (b67) 2013; 46
Gandomi, Yang, Alavi (b10) 2013; 29
Storn, Price (b5) 1997; 11
Zhang, Kang, Cheng, Wang (b52) 2018; 67
Zheng, Zhang, Zhang (b58) 2016; 20
Arlot, Celisse (b66) 2010; 4
Gong, Cai, Ling (b54) 2010; 15
Emary, Zawbaa, Hassanien (b64) 2016; 213
Yang, Gandomi (b9) 2012; 29
Karaboga, Akay (b13) 2009; 214
Zhu, Xu, Li, Wu, Liu (b39) 2015; 26
Mafarja, Mirjalili (b61) 2017; 260
Derrac, García, Molina, Herrera (b53) 2011; 1
Kiran, Hakli, Gunduz, Uguz (b46) 2015; 300
Malik, Mohideen, Ali (b29) 2015
Rodríguez, Castillo, Soria, Melin, Valdez (b30) 2017; 57
Saremi, Mirjalili, Mirjalili (b32) 2015; 26
M. Naik, M. Nath, A. Wunnava, A new adaptive cuckoo search algorithm in: 2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS), Vol. 19, 2015, pp. 1–5.
Gao, Liu, Huang (b45) 2012; 236
Deb, Pratap, Agarwal, Meyarivan (b3) 2002; 6
Simon (10.1016/j.asoc.2018.11.047_b14) 2008; 12
Draa (10.1016/j.asoc.2018.11.047_b57) 2015; 27
Faris (10.1016/j.asoc.2018.11.047_b22) 2018; 30
Mirjalili (10.1016/j.asoc.2018.11.047_b40) 2015; 43
Omran (10.1016/j.asoc.2018.11.047_b43) 2008; 198
Deb (10.1016/j.asoc.2018.11.047_b3) 2002; 6
Heidari (10.1016/j.asoc.2018.11.047_b35) 2017; 60
Rodríguez (10.1016/j.asoc.2018.11.047_b30) 2017; 57
Mirjalili (10.1016/j.asoc.2018.11.047_b15) 2014; 69
Cheng (10.1016/j.asoc.2018.11.047_b51) 2014; 139
10.1016/j.asoc.2018.11.047_b56
Zhu (10.1016/j.asoc.2018.11.047_b39) 2015; 26
Yang (10.1016/j.asoc.2018.11.047_b36) 2017; 133
Eusuff (10.1016/j.asoc.2018.11.047_b12) 2003; 129
Faris (10.1016/j.asoc.2018.11.047_b19) 2019; 48
Zhang (10.1016/j.asoc.2018.11.047_b59) 2019; 471
Karaboga (10.1016/j.asoc.2018.11.047_b13) 2009; 214
Mafarja (10.1016/j.asoc.2018.11.047_b21) 2018
Zheng (10.1016/j.asoc.2018.11.047_b58) 2016; 20
Emary (10.1016/j.asoc.2018.11.047_b64) 2016; 213
Gong (10.1016/j.asoc.2018.11.047_b54) 2010; 15
Liang (10.1016/j.asoc.2018.11.047_b50) 2013
Wang (10.1016/j.asoc.2018.11.047_b55) 2014; 279
Muro (10.1016/j.asoc.2018.11.047_b41) 2011; 88
Blair (10.1016/j.asoc.2018.11.047_b63) 1980; 5
Shi (10.1016/j.asoc.2018.11.047_b47) 2016; 107
Al-Aboody (10.1016/j.asoc.2018.11.047_b25) 2016
Malik (10.1016/j.asoc.2018.11.047_b29) 2015
Dolan (10.1016/j.asoc.2018.11.047_b62) 2002; 91
Mafarja (10.1016/j.asoc.2018.11.047_b61) 2017; 260
Al-Betar (10.1016/j.asoc.2018.11.047_b31) 2018; 113
Kirkpatrick (10.1016/j.asoc.2018.11.047_b2) 1983; 220
Xiang (10.1016/j.asoc.2018.11.047_b44) 2014; 41
Mishra (10.1016/j.asoc.2018.11.047_b11) 2005; 9
Sahoo (10.1016/j.asoc.2018.11.047_b27) 2017; 52
Kamboj (10.1016/j.asoc.2018.11.047_b38) 2016; 27
Aljarah (10.1016/j.asoc.2018.11.047_b20) 2018; 71
Gupta (10.1016/j.asoc.2018.11.047_b37) 2018
10.1016/j.asoc.2018.11.047_b6
Mahdad (10.1016/j.asoc.2018.11.047_b33) 2015; 98
Gao (10.1016/j.asoc.2018.11.047_b45) 2012; 236
Arlot (10.1016/j.asoc.2018.11.047_b66) 2010; 4
Yang (10.1016/j.asoc.2018.11.047_b7) 2010; 2
Gandomi (10.1016/j.asoc.2018.11.047_b10) 2013; 29
Storn (10.1016/j.asoc.2018.11.047_b5) 1997; 11
Mafarja (10.1016/j.asoc.2018.11.047_b18) 2018; 145
Liu (10.1016/j.asoc.2018.11.047_b67) 2013; 46
Saremi (10.1016/j.asoc.2018.11.047_b32) 2015; 26
Zhou (10.1016/j.asoc.2018.11.047_b34) 2016; 10
Faris (10.1016/j.asoc.2018.11.047_b17) 2018; 154
Sulaiman (10.1016/j.asoc.2018.11.047_b24) 2015; 32
Song (10.1016/j.asoc.2018.11.047_b26) 2015; 75
Zhang (10.1016/j.asoc.2018.11.047_b52) 2018; 67
Suganthan (10.1016/j.asoc.2018.11.047_b42) 2005
Heermann (10.1016/j.asoc.2018.11.047_b4) 1992; 30
Kiran (10.1016/j.asoc.2018.11.047_b46) 2015; 300
Khairuzzaman (10.1016/j.asoc.2018.11.047_b28) 2017; 86
Tanweer (10.1016/j.asoc.2018.11.047_b60) 2015; 294
Mirjalili (10.1016/j.asoc.2018.11.047_b16) 2016; 95
Wang (10.1016/j.asoc.2018.11.047_b1) 2017; PP
Zong (10.1016/j.asoc.2018.11.047_b8) 2001; 2
Blake (10.1016/j.asoc.2018.11.047_b65) 1998
Gao (10.1016/j.asoc.2018.11.047_b48) 2013; 43
Li (10.1016/j.asoc.2018.11.047_b49) 2015; 298
Derrac (10.1016/j.asoc.2018.11.047_b53) 2011; 1
Emary (10.1016/j.asoc.2018.11.047_b23) 2016; 172
Yang (10.1016/j.asoc.2018.11.047_b9) 2012; 29
References_xml – volume: 75
  start-page: 147
  year: 2015
  end-page: 157
  ident: b26
  article-title: Grey wolf optimizer for parameter estimation in surface waves
  publication-title: Soil Dyn. Earthq. Eng.
– year: 2013
  ident: b50
  article-title: Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization
– volume: 26
  start-page: 1257
  year: 2015
  end-page: 1263
  ident: b32
  article-title: Evolutionary population dynamics and grey wolf optimizer
  publication-title: Neural Comput. Appl.
– volume: 260
  start-page: 302
  year: 2017
  end-page: 312
  ident: b61
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
– volume: 213
  start-page: 54
  year: 2016
  end-page: 65
  ident: b64
  article-title: Binary ant lion approaches for feature selection
  publication-title: Neurocomputing
– volume: 113
  start-page: 481
  year: 2018
  end-page: 498
  ident: b31
  article-title: Natural selection methods for grey wolf optimizer
  publication-title: Expert Syst. Appl.
– volume: 145
  start-page: 25
  year: 2018
  end-page: 45
  ident: b18
  article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems
  publication-title: Knowl.-Based Syst.
– volume: 236
  start-page: 2741
  year: 2012
  end-page: 2753
  ident: b45
  article-title: A global best artificial bee colony algorithm for global optimization
  publication-title: J. Comput. Appl. Math.
– volume: 91
  start-page: 201
  year: 2002
  end-page: 213
  ident: b62
  article-title: Benchmarking optimization software with performance profiles
  publication-title: Math. Program.
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b2
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 88
  start-page: 192
  year: 2011
  end-page: 197
  ident: b41
  article-title: Wolf-pack (canis lupus) hunting strategies emerge from simple rules in computational simulations
  publication-title: Behav. Process.
– volume: 20
  start-page: 967
  year: 2016
  end-page: 977
  ident: b58
  article-title: Biogeographic harmony search for emergency air transportation
  publication-title: Soft Comput.
– volume: 154
  start-page: 43
  year: 2018
  end-page: 67
  ident: b17
  article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems
  publication-title: Knowl.-Based Syst.
– start-page: 2005
  year: 2005
  ident: b42
  article-title: Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization
– reference: M. Naik, M. Nath, A. Wunnava, A new adaptive cuckoo search algorithm in: 2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS), Vol. 19, 2015, pp. 1–5.
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: b23
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
– volume: 57
  start-page: 315
  year: 2017
  end-page: 328
  ident: b30
  article-title: A fuzzy hierarchical operator in the grey wolf optimizer algorithm
  publication-title: Appl. Soft Comput.
– volume: 279
  start-page: 587
  year: 2014
  end-page: 603
  ident: b55
  article-title: Multi-strategy ensemble artificial bee colony algorithm
  publication-title: Inform. Sci.
– volume: 107
  start-page: 14
  year: 2016
  end-page: 31
  ident: b47
  article-title: An improved artificial bee colony and its application
  publication-title: Knowl.-Based Syst.
– volume: 48
  start-page: 67
  year: 2019
  end-page: 83
  ident: b19
  article-title: An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks
  publication-title: Inf. Fusion
– start-page: 1
  year: 2015
  end-page: 6
  ident: b29
  article-title: Weighted distance grey wolf optimizer for global optimization problems
  publication-title: 2015 IEEE International Conference on Computational Intelligence & Computing Research (ICCIC)
– volume: 12
  start-page: 702
  year: 2008
  end-page: 713
  ident: b14
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2018
  ident: b21
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowl.-Based Syst.
– volume: 32
  start-page: 286
  year: 2015
  end-page: 292
  ident: b24
  article-title: Using the gray wolf optimizer for solving optimal reactive power dispatch problem
  publication-title: Appl. Soft Comput.
– volume: 129
  start-page: 210
  year: 2003
  end-page: 225
  ident: b12
  article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm
  publication-title: J. Water Resour. Plan. Manag.
– volume: 26
  start-page: 317
  year: 2015
  end-page: 328
  ident: b39
  article-title: Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC
  publication-title: J. Syst. Eng. Electron.
– volume: 60
  start-page: 115
  year: 2017
  end-page: 134
  ident: b35
  article-title: An efficient modified grey wolf optimizer with lévy flight for optimization tasks
  publication-title: Appl. Soft Comput.
– volume: 98
  start-page: 411
  year: 2015
  end-page: 429
  ident: b33
  article-title: Blackout risk prevention in a smart grid based flexible optimal strategy using grey wolf-pattern search algorithms
  publication-title: Energy Convers. Manage.
– volume: 139
  start-page: 98
  year: 2014
  end-page: 112
  ident: b51
  article-title: Symbiotic organisms search: A new metaheuristic optimization algorithm
  publication-title: Comput. Struct.
– volume: PP
  year: 2017
  ident: b1
  article-title: High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm
  publication-title: IEEE Trans. Emerg. Top. Comput.
– volume: 71
  start-page: 964
  year: 2018
  end-page: 979
  ident: b20
  article-title: Asynchronous accelerating multi-leader salp chains for feature selection
  publication-title: Appl. Soft Comput.
– volume: 198
  start-page: 643
  year: 2008
  end-page: 656
  ident: b43
  article-title: Global-best harmony search
  publication-title: Appl. Math. Comput.
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: b13
  article-title: A comparative study of Artificial Bee Colony algorithm
  publication-title: Appl. Math. Comput.
– volume: 43
  start-page: 1011
  year: 2013
  end-page: 1024
  ident: b48
  article-title: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning
  publication-title: IEEE Trans. Cybern.
– volume: 298
  start-page: 80
  year: 2015
  end-page: 97
  ident: b49
  article-title: Modified cuckoo search algorithm with self adaptive parameter method
  publication-title: Inform. Sci.
– volume: 27
  start-page: 1643
  year: 2016
  end-page: 1655
  ident: b38
  article-title: A novel hybrid PSO-GWO approach for unit commitment problem
  publication-title: Neural Comput. Appl.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b53
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evolut. Comput.
– volume: 133
  start-page: 427
  year: 2017
  end-page: 443
  ident: b36
  article-title: Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine
  publication-title: Energy Convers. Manag.
– volume: 294
  start-page: 182
  year: 2015
  end-page: 202
  ident: b60
  article-title: Self regulating particle swarm optimization algorithm
  publication-title: Inform. Sci.
– volume: 5
  start-page: 309
  year: 1980
  end-page: 335
  ident: b63
  article-title: A comparison of the power of wilcoxon’s rank-sum statistic to that of student’s t statistic under various nonnormal distributions
  publication-title: J. Educ. Stat.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b3
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-ii
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 101
  year: 2016
  end-page: 107
  ident: b25
  article-title: Grey wolf optimization-based energy-efficient routing protocol for heterogeneous wireless sensor networks
  publication-title: Computational and Business Intelligence (ISCBI), 2016 4th International Symposium on
– volume: 300
  start-page: 140
  year: 2015
  end-page: 157
  ident: b46
  article-title: Artificial bee colony algorithm with variable search strategy for continuous optimization
  publication-title: Inform. Sci.
– volume: 2
  start-page: 60
  year: 2001
  end-page: 68
  ident: b8
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: Simulation
– volume: 9
  start-page: 61
  year: 2005
  end-page: 73
  ident: b11
  article-title: A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation
  publication-title: IEEE Trans. Evol. Comput.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b5
  article-title: Differential Evolution - A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. of 1995 IEEE Int. Conf. Neural Networks, Vol. 4, Perth, Australia), Nov. 27–Dec. (8) 2011, pp. 1942–1948,
– volume: 30
  start-page: 81
  year: 1992
  end-page: 88
  ident: b4
  article-title: Classification of multispectral remote sensing data using a back-propagation neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 46
  start-page: 834
  year: 2013
  end-page: 844
  ident: b67
  article-title: A new belief-based k-nearest neighbor classification method
  publication-title: Pattern Recognit.
– volume: 67
  start-page: 197
  year: 2018
  end-page: 214
  ident: b52
  article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer
  publication-title: Appl. Soft Comput.
– volume: 15
  start-page: 645
  year: 2010
  end-page: 665
  ident: b54
  article-title: DE/BBO: A hybrid differential evolution with biogeography-based optimization for global numerical optimization
  publication-title: Soft Comput.
– volume: 29
  start-page: 464
  year: 2012
  end-page: 483
  ident: b9
  article-title: Bat algorithm: A novel approach for global engineering optimization
  publication-title: Eng. Comput.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b16
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 4
  start-page: 40
  year: 2010
  end-page: 79
  ident: b66
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
– year: 1998
  ident: b65
  article-title: UCI repository of machine learning databases
– volume: 86
  start-page: 64
  year: 2017
  end-page: 76
  ident: b28
  article-title: Multilevel thresholding using grey wolf optimizer for image segmentation
  publication-title: Expert Syst. Appl.
– year: 2018
  ident: b37
  article-title: A novel random walk grey wolf optimizer
  publication-title: Swarm Evolut. Comput.
– volume: 2
  start-page: 78
  year: 2010
  end-page: 84
  ident: b7
  article-title: Firefly algorithm, stochastic test functions and design optimisation
  publication-title: Int. J. Bio-Inspired Comput.
– volume: 471
  start-page: 1
  year: 2019
  end-page: 18
  ident: b59
  article-title: Enhancing comprehensive learning particle swarm optimization with local optima topology
  publication-title: Inform. Sci.
– volume: 10
  start-page: 2108
  year: 2016
  end-page: 2117
  ident: b34
  article-title: Precise equivalent model of small hydro generator cluster and its parameter identification using improved Grey Wolf optimizer
  publication-title: IET Gener. Transm. Distrib.
– reference: .
– volume: 52
  start-page: 64
  year: 2017
  end-page: 80
  ident: b27
  article-title: Multi-objective grey wolf optimizer for improved cervix lesion classification
  publication-title: Appl. Soft Comput.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b15
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 30
  start-page: 413
  year: 2018
  end-page: 435
  ident: b22
  article-title: Grey wolf optimizer: A review of recent variants and applications
  publication-title: Neural Comput. Appl.
– volume: 43
  start-page: 150
  year: 2015
  end-page: 161
  ident: b40
  article-title: How effective is the grey wolf optimizer in training multi-layer perceptrons
  publication-title: Appl. Intell.
– volume: 41
  start-page: 5788
  year: 2014
  end-page: 5803
  ident: b44
  article-title: An improved global-best harmony search algorithm for faster optimization
  publication-title: Expert Syst. Appl.
– volume: 29
  start-page: 17
  year: 2013
  end-page: 35
  ident: b10
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
– volume: 27
  start-page: 99
  year: 2015
  end-page: 126
  ident: b57
  article-title: A sinusoidal differential evolution algorithm for numerical optimisation
  publication-title: Appl. Soft Comput.
– volume: 113
  start-page: 481
  year: 2018
  ident: 10.1016/j.asoc.2018.11.047_b31
  article-title: Natural selection methods for grey wolf optimizer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.07.022
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 10.1016/j.asoc.2018.11.047_b14
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– volume: 471
  start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2018.11.047_b59
  article-title: Enhancing comprehensive learning particle swarm optimization with local optima topology
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.08.049
– volume: 198
  start-page: 643
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2018.11.047_b43
  article-title: Global-best harmony search
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.09.004
– volume: 298
  start-page: 80
  year: 2015
  ident: 10.1016/j.asoc.2018.11.047_b49
  article-title: Modified cuckoo search algorithm with self adaptive parameter method
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.11.042
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2018.11.047_b3
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-ii
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 4
  start-page: 40
  year: 2010
  ident: 10.1016/j.asoc.2018.11.047_b66
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
  doi: 10.1214/09-SS054
– volume: 75
  start-page: 147
  year: 2015
  ident: 10.1016/j.asoc.2018.11.047_b26
  article-title: Grey wolf optimizer for parameter estimation in surface waves
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2015.04.004
– start-page: 1
  year: 2015
  ident: 10.1016/j.asoc.2018.11.047_b29
  article-title: Weighted distance grey wolf optimizer for global optimization problems
– start-page: 101
  year: 2016
  ident: 10.1016/j.asoc.2018.11.047_b25
  article-title: Grey wolf optimization-based energy-efficient routing protocol for heterogeneous wireless sensor networks
– volume: 260
  start-page: 302
  year: 2017
  ident: 10.1016/j.asoc.2018.11.047_b61
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– volume: 46
  start-page: 834
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2018.11.047_b67
  article-title: A new belief-based k-nearest neighbor classification method
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.10.001
– volume: 67
  start-page: 197
  year: 2018
  ident: 10.1016/j.asoc.2018.11.047_b52
  article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.02.049
– volume: 48
  start-page: 67
  year: 2019
  ident: 10.1016/j.asoc.2018.11.047_b19
  article-title: An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.08.002
– volume: 26
  start-page: 317
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2018.11.047_b39
  article-title: Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC
  publication-title: J. Syst. Eng. Electron.
  doi: 10.1109/JSEE.2015.00037
– volume: PP
  issue: 99
  year: 2017
  ident: 10.1016/j.asoc.2018.11.047_b1
  article-title: High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm
  publication-title: IEEE Trans. Emerg. Top. Comput.
– volume: 20
  start-page: 967
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2018.11.047_b58
  article-title: Biogeographic harmony search for emergency air transportation
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1556-6
– volume: 15
  start-page: 645
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2018.11.047_b54
  article-title: DE/BBO: A hybrid differential evolution with biogeography-based optimization for global numerical optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0591-1
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2018.11.047_b13
  article-title: A comparative study of Artificial Bee Colony algorithm
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.03.090
– volume: 30
  start-page: 81
  issue: 1
  year: 1992
  ident: 10.1016/j.asoc.2018.11.047_b4
  article-title: Classification of multispectral remote sensing data using a back-propagation neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.124218
– volume: 29
  start-page: 464
  issue: 5
  year: 2012
  ident: 10.1016/j.asoc.2018.11.047_b9
  article-title: Bat algorithm: A novel approach for global engineering optimization
  publication-title: Eng. Comput.
  doi: 10.1108/02644401211235834
– volume: 300
  start-page: 140
  year: 2015
  ident: 10.1016/j.asoc.2018.11.047_b46
  article-title: Artificial bee colony algorithm with variable search strategy for continuous optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.12.043
– volume: 2
  start-page: 60
  issue: 2
  year: 2001
  ident: 10.1016/j.asoc.2018.11.047_b8
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– volume: 129
  start-page: 210
  issue: 3
  year: 2003
  ident: 10.1016/j.asoc.2018.11.047_b12
  article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2003)129:3(210)
– volume: 71
  start-page: 964
  year: 2018
  ident: 10.1016/j.asoc.2018.11.047_b20
  article-title: Asynchronous accelerating multi-leader salp chains for feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.040
– ident: 10.1016/j.asoc.2018.11.047_b56
  doi: 10.1109/ReTIS.2015.7232842
– volume: 172
  start-page: 371
  year: 2016
  ident: 10.1016/j.asoc.2018.11.047_b23
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 86
  start-page: 64
  year: 2017
  ident: 10.1016/j.asoc.2018.11.047_b28
  article-title: Multilevel thresholding using grey wolf optimizer for image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.029
– volume: 60
  start-page: 115
  year: 2017
  ident: 10.1016/j.asoc.2018.11.047_b35
  article-title: An efficient modified grey wolf optimizer with lévy flight for optimization tasks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.044
– volume: 279
  start-page: 587
  year: 2014
  ident: 10.1016/j.asoc.2018.11.047_b55
  article-title: Multi-strategy ensemble artificial bee colony algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.04.013
– volume: 9
  start-page: 61
  issue: 1
  year: 2005
  ident: 10.1016/j.asoc.2018.11.047_b11
  article-title: A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.840144
– volume: 98
  start-page: 411
  year: 2015
  ident: 10.1016/j.asoc.2018.11.047_b33
  article-title: Blackout risk prevention in a smart grid based flexible optimal strategy using grey wolf-pattern search algorithms
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.04.005
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.asoc.2018.11.047_b2
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 30
  start-page: 413
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2018.11.047_b22
  article-title: Grey wolf optimizer: A review of recent variants and applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3272-5
– volume: 2
  start-page: 78
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2018.11.047_b7
  article-title: Firefly algorithm, stochastic test functions and design optimisation
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2010.032124
– volume: 88
  start-page: 192
  issue: 3
  year: 2011
  ident: 10.1016/j.asoc.2018.11.047_b41
  article-title: Wolf-pack (canis lupus) hunting strategies emerge from simple rules in computational simulations
  publication-title: Behav. Process.
  doi: 10.1016/j.beproc.2011.09.006
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.asoc.2018.11.047_b5
  article-title: Differential Evolution - A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 139
  start-page: 98
  year: 2014
  ident: 10.1016/j.asoc.2018.11.047_b51
  article-title: Symbiotic organisms search: A new metaheuristic optimization algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2014.03.007
– volume: 294
  start-page: 182
  year: 2015
  ident: 10.1016/j.asoc.2018.11.047_b60
  article-title: Self regulating particle swarm optimization algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.09.053
– volume: 27
  start-page: 99
  year: 2015
  ident: 10.1016/j.asoc.2018.11.047_b57
  article-title: A sinusoidal differential evolution algorithm for numerical optimisation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.11.003
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.asoc.2018.11.047_b16
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 154
  start-page: 43
  year: 2018
  ident: 10.1016/j.asoc.2018.11.047_b17
  article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.05.009
– volume: 43
  start-page: 1011
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2018.11.047_b48
  article-title: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2222373
– volume: 29
  start-page: 17
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2018.11.047_b10
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-011-0241-y
– volume: 43
  start-page: 150
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2018.11.047_b40
  article-title: How effective is the grey wolf optimizer in training multi-layer perceptrons
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-014-0645-7
– volume: 91
  start-page: 201
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2018.11.047_b62
  article-title: Benchmarking optimization software with performance profiles
  publication-title: Math. Program.
  doi: 10.1007/s101070100263
– year: 2018
  ident: 10.1016/j.asoc.2018.11.047_b37
  article-title: A novel random walk grey wolf optimizer
  publication-title: Swarm Evolut. Comput.
– volume: 41
  start-page: 5788
  issue: 13
  year: 2014
  ident: 10.1016/j.asoc.2018.11.047_b44
  article-title: An improved global-best harmony search algorithm for faster optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.03.016
– year: 2013
  ident: 10.1016/j.asoc.2018.11.047_b50
– volume: 57
  start-page: 315
  year: 2017
  ident: 10.1016/j.asoc.2018.11.047_b30
  article-title: A fuzzy hierarchical operator in the grey wolf optimizer algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.03.048
– year: 2018
  ident: 10.1016/j.asoc.2018.11.047_b21
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.08.003
– volume: 107
  start-page: 14
  year: 2016
  ident: 10.1016/j.asoc.2018.11.047_b47
  article-title: An improved artificial bee colony and its application
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.05.052
– start-page: 2005
  year: 2005
  ident: 10.1016/j.asoc.2018.11.047_b42
– volume: 26
  start-page: 1257
  issue: 5
  year: 2015
  ident: 10.1016/j.asoc.2018.11.047_b32
  article-title: Evolutionary population dynamics and grey wolf optimizer
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1806-7
– volume: 52
  start-page: 64
  year: 2017
  ident: 10.1016/j.asoc.2018.11.047_b27
  article-title: Multi-objective grey wolf optimizer for improved cervix lesion classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.12.022
– volume: 145
  start-page: 25
  year: 2018
  ident: 10.1016/j.asoc.2018.11.047_b18
  article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.12.037
– volume: 213
  start-page: 54
  year: 2016
  ident: 10.1016/j.asoc.2018.11.047_b64
  article-title: Binary ant lion approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.101
– ident: 10.1016/j.asoc.2018.11.047_b6
  doi: 10.1007/978-0-387-30164-8_630
– volume: 32
  start-page: 286
  year: 2015
  ident: 10.1016/j.asoc.2018.11.047_b24
  article-title: Using the gray wolf optimizer for solving optimal reactive power dispatch problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.03.041
– year: 1998
  ident: 10.1016/j.asoc.2018.11.047_b65
– volume: 27
  start-page: 1643
  issue: 6
  year: 2016
  ident: 10.1016/j.asoc.2018.11.047_b38
  article-title: A novel hybrid PSO-GWO approach for unit commitment problem
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1962-4
– volume: 69
  start-page: 46
  issue: 3
  year: 2014
  ident: 10.1016/j.asoc.2018.11.047_b15
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 10
  start-page: 2108
  issue: 9
  year: 2016
  ident: 10.1016/j.asoc.2018.11.047_b34
  article-title: Precise equivalent model of small hydro generator cluster and its parameter identification using improved Grey Wolf optimizer
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2015.1141
– volume: 236
  start-page: 2741
  issue: 11
  year: 2012
  ident: 10.1016/j.asoc.2018.11.047_b45
  article-title: A global best artificial bee colony algorithm for global optimization
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.01.013
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2018.11.047_b53
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 133
  start-page: 427
  year: 2017
  ident: 10.1016/j.asoc.2018.11.047_b36
  article-title: Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.10.062
– volume: 5
  start-page: 309
  issue: 4
  year: 1980
  ident: 10.1016/j.asoc.2018.11.047_b63
  article-title: A comparison of the power of wilcoxon’s rank-sum statistic to that of student’s t statistic under various nonnormal distributions
  publication-title: J. Educ. Stat.
SSID ssj0016928
Score 2.5900273
Snippet To overcome the limitation of single search strategy of grey wolf optimizer (GWO) in solving various function optimization problems, we propose a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 16
SubjectTerms Feature selection
Function optimization
Grey wolf optimizer
Intelligent simulation
Multi-strategy ensemble
Title Multi-strategy ensemble grey wolf optimizer and its application to feature selection
URI https://dx.doi.org/10.1016/j.asoc.2018.11.047
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBahXbr0XZo-goZuxUlkS7Y8htCQvkJpU8hmJEsCl8QOjUtJh_72nvwIKZQMnYxlHZjz6fSddXcfQlcBc7nRrnKMibsOJQrWnDEA5HRg4IkIiLAnuo8jf_hK7yZs0kD9uhbGplVWvr_06YW3rkY6lTY78yTpvEDkwWlIfTBK-zfEdvykNLBW3v5epXkQPyz4Ve1kx86uCmfKHC8BGrDpXbxtO3laipW_Nqe1DWewj3YrpIh75cscoIZOD9FezcKAq0V5hMZFDa2zKNvMLjHEpXompxpDJL3En9nU4Az8wiz5AimRKpzkC7x2bo3zDBtd9PfEi4IVBwaP0XhwM-4PnYorwYk9ynOHEF8xYanMuXSNBNzBlXIZV57QXaOpdEMTK9KNuQok5wI-DxeKMiWV0Ex7J2grzVJ9inAomKeFRwTlIYV4RQIIjAGYANBjsOLdJiK1jqK46iNu6SymUZ0w9hZZvUZWrxBgRKDXJrpeyczLLhobZ7Na9dEvW4jAzW-QO_un3DnagbuwzCy7QFv5-4e-BKiRy1ZhSy203es_PzzZ6-39cPQDxirWQQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PbChtE1iJ86IKqoCbReC1C1yYlsKapOKBqEy8Ns5J05VJNSBNfZJ0Yvv_C4-30Po1qcOU9IRllJJ1yK2AJ9TCoic9BWMcN_m-kR3NPYGr-RpQicN1KvvwuiyShP7q5heRmvzpGPQ7MzTtPMCmQcjAfFgUeq_Ie4W2ibgvlrGoP29qvOwvaAUWNWzLT3d3Jypirw4QKDru1hbt_LUGit_7U5rO07_AO0Zqojvq7c5RA2ZHaH9WoYBG688RmF5idZaVH1mlxgSUzmLpxJDKr3En_lU4RwCwyz9AiueCZwWC7x2cI2LHCtZNvjEi1IWBx6eoLD_EPYGlhFLsBKXsMKybU9QrrXMWeyoGIgHE8KhTLhcdpUksROoRNjdhAk_ZozD92FcECpiwSWV7ilqZnkmzxAOOHUld21OWEAgYYmBBSbATIDpUXB5p4XsGqMoMY3EtZ7FNKorxt4ijWukcYUMIwJcW-huZTOv2mhsnE1r6KNfiyGCOL_B7vyfdjdoZxCOhtHwcfx8gXZhJKjKzC5Rs3j_kFfAO4r4ulxXPx5W1jo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-strategy+ensemble+grey+wolf+optimizer+and+its+application+to+feature+selection&rft.jtitle=Applied+soft+computing&rft.au=Tu%2C+Qiang&rft.au=Chen%2C+Xuechen&rft.au=Liu%2C+Xingcheng&rft.date=2019-03-01&rft.issn=1568-4946&rft.volume=76&rft.spage=16&rft.epage=30&rft_id=info:doi/10.1016%2Fj.asoc.2018.11.047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2018_11_047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon