Multi-strategy ensemble grey wolf optimizer and its application to feature selection
To overcome the limitation of single search strategy of grey wolf optimizer (GWO) in solving various function optimization problems, we propose a multi-strategy ensemble GWO (MEGWO) in this paper. The proposed MEGWO incorporates three different search strategies to update the solutions. Firstly, the...
Saved in:
Published in | Applied soft computing Vol. 76; pp. 16 - 30 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To overcome the limitation of single search strategy of grey wolf optimizer (GWO) in solving various function optimization problems, we propose a multi-strategy ensemble GWO (MEGWO) in this paper. The proposed MEGWO incorporates three different search strategies to update the solutions. Firstly, the enhanced global-best lead strategy can improve the local search ability of GWO by fully exploiting the search space around the current best solution. Secondly, the adaptable cooperative strategy embeds one-dimensional update operation into the framework of GWO to provide a higher population diversity and promote the global search ability. Thirdly, the disperse foraging strategy forces a part of search agents to explore a promising area based on a self-adjusting parameter, which contributes to the balance between the exploitation and exploration. We conducted numerical experiments based on various functions form CEC2014. The obtained results are compared with other three modified GWO and seven state-of-the-art algorithms. Furthermore, feature selection is employed to investigate the effectiveness of MEGWO on real-world applications. The experimental results show that the proposed algorithm which integrate multiple improved search strategies, outperforms other variants of GWO and other algorithms in terms of accuracy and convergence speed. It is validated that MEGWO is an efficient and reliable algorithm not only for optimization of functions with different characteristics but also for real-world optimization problems.
•A multi-strategy ensemble GWO is proposed to boost the precision and efficiency of the original GWO.•A parameter self-adjusting strategy is utilized to balance the exploitation and exploration of the proposed MEGWO.•Wilcoxons signed-rank test and performance profile are used to investigate the significance of the MEGWO.•Feature selection is employed to evaluate the effectiveness of MEGWO on real-world applications. |
---|---|
AbstractList | To overcome the limitation of single search strategy of grey wolf optimizer (GWO) in solving various function optimization problems, we propose a multi-strategy ensemble GWO (MEGWO) in this paper. The proposed MEGWO incorporates three different search strategies to update the solutions. Firstly, the enhanced global-best lead strategy can improve the local search ability of GWO by fully exploiting the search space around the current best solution. Secondly, the adaptable cooperative strategy embeds one-dimensional update operation into the framework of GWO to provide a higher population diversity and promote the global search ability. Thirdly, the disperse foraging strategy forces a part of search agents to explore a promising area based on a self-adjusting parameter, which contributes to the balance between the exploitation and exploration. We conducted numerical experiments based on various functions form CEC2014. The obtained results are compared with other three modified GWO and seven state-of-the-art algorithms. Furthermore, feature selection is employed to investigate the effectiveness of MEGWO on real-world applications. The experimental results show that the proposed algorithm which integrate multiple improved search strategies, outperforms other variants of GWO and other algorithms in terms of accuracy and convergence speed. It is validated that MEGWO is an efficient and reliable algorithm not only for optimization of functions with different characteristics but also for real-world optimization problems.
•A multi-strategy ensemble GWO is proposed to boost the precision and efficiency of the original GWO.•A parameter self-adjusting strategy is utilized to balance the exploitation and exploration of the proposed MEGWO.•Wilcoxons signed-rank test and performance profile are used to investigate the significance of the MEGWO.•Feature selection is employed to evaluate the effectiveness of MEGWO on real-world applications. |
Author | Chen, Xuechen Tu, Qiang Liu, Xingcheng |
Author_xml | – sequence: 1 givenname: Qiang surname: Tu fullname: Tu, Qiang organization: School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, Guangdong, China – sequence: 2 givenname: Xuechen orcidid: 0000-0002-7683-2933 surname: Chen fullname: Chen, Xuechen email: chenxch8@mail.sysu.edu.cn organization: School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, Guangdong, China – sequence: 3 givenname: Xingcheng orcidid: 0000-0003-1836-2205 surname: Liu fullname: Liu, Xingcheng email: isslxc@mail.sysu.edu.cn organization: School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, Guangdong, China |
BookMark | eNp9kMtqwzAQAEVJoUnaH-hJP2BXkmVnDb2U0Bek9JK7kKV1UHAsIykt6dfXbnvqIaddFmZhZkFmve-RkFvOcs54dbfPdfQmF4xDznnO5OqCzDmsRFZXwGfjXlaQyVpWV2QR456NUC1gTrZvxy65LKagE-5OFPuIh6ZDugt4op--a6kfkju4LwxU95a6FKkehs4ZnZzvafK0RZ2OAWnEDs10vCaXre4i3vzNJdk-PW7XL9nm_fl1_bDJTCEhZZxXttSygBoa0TZVUYO1ogRbaGQtykbUrbGcGbCrBkCjsKCtLG1jNZZYLIn4fWuCjzFgq4bgDjqcFGdqyqL2asqipiyKczVmGSH4BxmXflTGBK47j97_ojg6fTgMKhqHvUHrwiiurHfn8G_lyYNi |
CitedBy_id | crossref_primary_10_1007_s00521_023_09202_8 crossref_primary_10_1155_2021_9085617 crossref_primary_10_1142_S0218348X23401424 crossref_primary_10_1016_j_eswa_2022_118267 crossref_primary_10_1155_2022_3082933 crossref_primary_10_1016_j_chemolab_2022_104618 crossref_primary_10_1016_j_eswa_2022_116767 crossref_primary_10_3390_computers12120249 crossref_primary_10_1007_s10462_022_10222_4 crossref_primary_10_1016_j_infrared_2022_104418 crossref_primary_10_1016_j_asoc_2023_110558 crossref_primary_10_1109_ACCESS_2022_3144065 crossref_primary_10_1016_j_eswa_2020_113917 crossref_primary_10_1109_ACCESS_2023_3304889 crossref_primary_10_1016_j_asoc_2023_110959 crossref_primary_10_1080_1062936X_2024_2404853 crossref_primary_10_1109_ACCESS_2019_2919991 crossref_primary_10_1016_j_ins_2024_120924 crossref_primary_10_1109_ACCESS_2022_3203999 crossref_primary_10_1007_s10462_020_09860_3 crossref_primary_10_1016_j_eswa_2024_125863 crossref_primary_10_1109_ACCESS_2021_3060096 crossref_primary_10_1016_j_neucom_2022_04_083 crossref_primary_10_3390_sym13122388 crossref_primary_10_3390_electronics10182183 crossref_primary_10_3390_bios13010092 crossref_primary_10_1007_s40747_025_01846_4 crossref_primary_10_1016_j_asoc_2019_105521 crossref_primary_10_1080_0952813X_2023_2183267 crossref_primary_10_32604_cmes_2025_058473 crossref_primary_10_35378_gujs_820885 crossref_primary_10_48084_etasr_2735 crossref_primary_10_1016_j_asoc_2021_107444 crossref_primary_10_1109_ACCESS_2023_3263584 crossref_primary_10_1016_j_compbiomed_2023_107293 crossref_primary_10_1109_ACCESS_2019_2921793 crossref_primary_10_1109_ACCESS_2019_2926444 crossref_primary_10_3390_su15065470 crossref_primary_10_3390_bioengineering10040475 crossref_primary_10_1007_s10586_024_04455_x crossref_primary_10_1007_s11042_022_12658_w crossref_primary_10_1007_s00521_021_06224_y crossref_primary_10_1007_s13042_020_01202_7 crossref_primary_10_1109_JIOT_2022_3230971 crossref_primary_10_1002_cpe_70034 crossref_primary_10_1016_j_jocs_2023_102201 crossref_primary_10_1080_08839514_2023_2166232 crossref_primary_10_1016_j_asoc_2019_105538 crossref_primary_10_1109_ACCESS_2022_3202894 crossref_primary_10_1049_joe_2019_1174 crossref_primary_10_1038_s41598_024_81100_y crossref_primary_10_3390_s23073714 crossref_primary_10_1016_j_isci_2024_111230 crossref_primary_10_1155_2022_3603607 crossref_primary_10_1016_j_patcog_2020_107470 crossref_primary_10_1016_j_eswa_2019_113103 crossref_primary_10_1016_j_eswa_2022_119327 crossref_primary_10_1016_j_compbiomed_2021_105137 crossref_primary_10_1109_ACCESS_2021_3057707 crossref_primary_10_1109_ACCESS_2023_3285815 crossref_primary_10_1016_j_eswa_2019_07_031 crossref_primary_10_1016_j_apm_2024_04_057 crossref_primary_10_7717_peerj_cs_1760 crossref_primary_10_1007_s10596_020_10030_1 crossref_primary_10_1016_j_compag_2025_109962 crossref_primary_10_1016_j_compbiomed_2023_107197 crossref_primary_10_1109_ACCESS_2024_3362228 crossref_primary_10_1155_2020_7824785 crossref_primary_10_3390_s22186843 crossref_primary_10_1007_s00500_020_04832_9 crossref_primary_10_1007_s11063_023_11332_y crossref_primary_10_1016_j_asoc_2021_107625 crossref_primary_10_1016_j_asoc_2022_108717 crossref_primary_10_1007_s10462_022_10322_1 crossref_primary_10_1002_mma_9791 crossref_primary_10_1016_j_eswa_2021_115620 crossref_primary_10_1016_j_jobe_2024_111307 crossref_primary_10_1080_0952813X_2021_1924868 crossref_primary_10_1016_j_cie_2021_107904 crossref_primary_10_1109_ACCESS_2020_3006469 crossref_primary_10_1002_int_22744 crossref_primary_10_1109_JSEN_2024_3438849 crossref_primary_10_1016_j_asoc_2021_107476 crossref_primary_10_1109_JIOT_2023_3317089 crossref_primary_10_1016_j_asoc_2020_106126 crossref_primary_10_3390_drones9030212 crossref_primary_10_1016_j_asoc_2020_106367 crossref_primary_10_1007_s00500_021_06194_2 crossref_primary_10_1016_j_jestch_2024_101935 crossref_primary_10_1007_s00521_024_10621_4 crossref_primary_10_1007_s10489_022_04201_z crossref_primary_10_1016_j_eswa_2021_114887 crossref_primary_10_3390_drones9030219 crossref_primary_10_1177_14759217221137319 crossref_primary_10_1016_j_saa_2021_120480 crossref_primary_10_1007_s11042_023_15023_7 crossref_primary_10_3233_JIFS_211025 crossref_primary_10_1515_mt_2023_0201 crossref_primary_10_1016_j_asoc_2020_107061 crossref_primary_10_1109_ACCESS_2020_3001151 crossref_primary_10_1016_j_asoc_2022_109005 crossref_primary_10_1016_j_adhoc_2020_102406 crossref_primary_10_1631_FITEE_2200334 crossref_primary_10_1007_s12083_023_01507_8 crossref_primary_10_1016_j_knosys_2020_106131 crossref_primary_10_1016_j_asoc_2020_106996 crossref_primary_10_1093_jcde_qwac095 crossref_primary_10_3390_electronics8101130 crossref_primary_10_1007_s00521_022_07836_8 crossref_primary_10_1016_j_knosys_2022_108517 crossref_primary_10_1016_j_bspc_2023_105423 crossref_primary_10_1016_j_ygeno_2020_07_027 crossref_primary_10_3390_app10113667 crossref_primary_10_3934_mbe_2021192 crossref_primary_10_1007_s10462_021_10009_z crossref_primary_10_1038_s41598_025_92983_w crossref_primary_10_1007_s00500_019_04328_1 crossref_primary_10_1007_s00521_021_06406_8 crossref_primary_10_1007_s42235_024_00579_3 crossref_primary_10_1007_s00500_021_06282_3 crossref_primary_10_1016_j_compbiomed_2023_107544 crossref_primary_10_1016_j_knosys_2022_110088 crossref_primary_10_1016_j_eswa_2023_122147 crossref_primary_10_1016_j_eswa_2024_125055 crossref_primary_10_1177_01423312231167200 crossref_primary_10_1007_s00500_023_08414_3 crossref_primary_10_1016_j_asoc_2021_107574 crossref_primary_10_1093_jcde_qwad053 crossref_primary_10_3233_JIFS_221036 crossref_primary_10_1007_s11047_022_09912_3 crossref_primary_10_1007_s13369_020_04871_2 crossref_primary_10_1007_s12065_024_00909_8 crossref_primary_10_1007_s00366_021_01479_4 crossref_primary_10_1016_j_engappai_2021_104210 crossref_primary_10_3390_biomimetics9100648 crossref_primary_10_1007_s00366_019_00795_0 crossref_primary_10_1007_s11042_023_15146_x crossref_primary_10_1016_j_compbiomed_2023_107838 crossref_primary_10_1109_ACCESS_2020_2986232 crossref_primary_10_3390_math11153312 crossref_primary_10_1016_j_asoc_2023_110031 crossref_primary_10_1109_ACCESS_2020_2981186 crossref_primary_10_3390_s23146529 crossref_primary_10_1007_s11227_022_04930_5 crossref_primary_10_1016_j_eswa_2022_117864 crossref_primary_10_1016_j_eswa_2021_115032 crossref_primary_10_3390_a14110324 crossref_primary_10_1007_s12065_022_00721_2 crossref_primary_10_3233_JIFS_212729 crossref_primary_10_1016_j_asoc_2019_106031 crossref_primary_10_1109_ACCESS_2020_3000040 crossref_primary_10_1177_1748006X221102992 crossref_primary_10_1080_00032719_2022_2155833 crossref_primary_10_1049_ipr2_12830 |
Cites_doi | 10.1016/j.eswa.2018.07.022 10.1109/TEVC.2008.919004 10.1016/j.ins.2018.08.049 10.1016/j.amc.2007.09.004 10.1016/j.ins.2014.11.042 10.1109/4235.996017 10.1214/09-SS054 10.1016/j.soildyn.2015.04.004 10.1016/j.neucom.2017.04.053 10.1016/j.patcog.2012.10.001 10.1016/j.asoc.2018.02.049 10.1016/j.inffus.2018.08.002 10.1109/JSEE.2015.00037 10.1007/s00500-014-1556-6 10.1007/s00500-010-0591-1 10.1016/j.amc.2009.03.090 10.1109/36.124218 10.1108/02644401211235834 10.1016/j.ins.2014.12.043 10.1177/003754970107600201 10.1061/(ASCE)0733-9496(2003)129:3(210) 10.1016/j.asoc.2018.07.040 10.1109/ReTIS.2015.7232842 10.1016/j.neucom.2015.06.083 10.1016/j.eswa.2017.04.029 10.1016/j.asoc.2017.06.044 10.1016/j.ins.2014.04.013 10.1109/TEVC.2004.840144 10.1016/j.enconman.2015.04.005 10.1126/science.220.4598.671 10.1007/s00521-017-3272-5 10.1504/IJBIC.2010.032124 10.1016/j.beproc.2011.09.006 10.1023/A:1008202821328 10.1016/j.compstruc.2014.03.007 10.1016/j.ins.2014.09.053 10.1016/j.asoc.2014.11.003 10.1016/j.advengsoft.2016.01.008 10.1016/j.knosys.2018.05.009 10.1109/TSMCB.2012.2222373 10.1007/s00366-011-0241-y 10.1007/s10489-014-0645-7 10.1007/s101070100263 10.1016/j.eswa.2014.03.016 10.1016/j.asoc.2017.03.048 10.1016/j.knosys.2018.08.003 10.1016/j.knosys.2016.05.052 10.1007/s00521-014-1806-7 10.1016/j.asoc.2016.12.022 10.1016/j.knosys.2017.12.037 10.1016/j.neucom.2016.03.101 10.1007/978-0-387-30164-8_630 10.1016/j.asoc.2015.03.041 10.1007/s00521-015-1962-4 10.1016/j.advengsoft.2013.12.007 10.1049/iet-gtd.2015.1141 10.1016/j.cam.2012.01.013 10.1016/j.swevo.2011.02.002 10.1016/j.enconman.2016.10.062 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2018.11.047 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 30 |
ExternalDocumentID | 10_1016_j_asoc_2018_11_047 S1568494618306793 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c348t-116d5a43898b2fb6398dd258d3ae0fe4b29fcd10c8d7b88ae2d8ad45dbdae5e3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:13:07 EDT 2025 Tue Jul 01 01:50:02 EDT 2025 Fri Feb 23 02:24:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Feature selection Grey wolf optimizer Function optimization Intelligent simulation Multi-strategy ensemble |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-116d5a43898b2fb6398dd258d3ae0fe4b29fcd10c8d7b88ae2d8ad45dbdae5e3 |
ORCID | 0000-0003-1836-2205 0000-0002-7683-2933 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2018_11_047 crossref_citationtrail_10_1016_j_asoc_2018_11_047 elsevier_sciencedirect_doi_10_1016_j_asoc_2018_11_047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Muro, Escobedo, Spector, Coppinger (b41) 2011; 88 Sahoo, Chandra (b27) 2017; 52 Faris, Mafarja, Heidari, Aljarah, Al-Zoubi (b17) 2018; 154 Emary, Zawbaa, Hassanien (b23) 2016; 172 Zhou, Zhu, Zheng, Li (b34) 2016; 10 Wang, Wu, Rahnamayan, Sun, Liu, Pan (b55) 2014; 279 Shi, Pun, Hu, Gao (b47) 2016; 107 Tanweer, Suresh, Sundararajan (b60) 2015; 294 Blake (b65) 1998 Zhang, Huang, Zhang (b59) 2019; 471 Song, Tang, Zhao, Zhang, Li, Huang (b26) 2015; 75 Suganthan, Hansen, Liang, Deb (b42) 2005 Mahdad, Srairi (b33) 2015; 98 Blair, Higgins (b63) 1980; 5 Mirjalili, Mirjalili, Lewis (b15) 2014; 69 Liang, Qu, Suganthan (b50) 2013 Gao, Liu, Huang (b48) 2013; 43 Khairuzzaman, Chaudhury (b28) 2017; 86 Cheng, Prayogo (b51) 2014; 139 Zong, Kim, Loganathan (b8) 2001; 2 Simon (b14) 2008; 12 Omran, Mahdavi (b43) 2008; 198 Al-Aboody, Al-Raweshidy (b25) 2016 . Eusuff, Lansey (b12) 2003; 129 Dolan, Moré (b62) 2002; 91 Mishra (b11) 2005; 9 Xiang, An, Li, He, Zhang (b44) 2014; 41 Kamboj (b38) 2016; 27 Faris, Ala’M, Heidari, Aljarah, Mafarja (b19) 2019; 48 Draa, Bouzoubia, Boukhalfa (b57) 2015; 27 Mirjalili, Lewis (b16) 2016; 95 J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. of 1995 IEEE Int. Conf. Neural Networks, Vol. 4, Perth, Australia), Nov. 27–Dec. (8) 2011, pp. 1942–1948 Yang, Zhang, Yu, Shu, Fang (b36) 2017; 133 Kirkpatrick, Gelatt, Vecchi (b2) 1983; 220 Mirjalili (b40) 2015; 43 Gupta, Deep (b37) 2018 Al-Betar, Awadallah, Faris, Aljarah (b31) 2018; 113 Yang (b7) 2010; 2 Heermann, Khazenie (b4) 1992; 30 Mafarja, Aljarah, Heidari, Hammouri (b18) 2018; 145 Mafarja, Aljarah, Heidari, Faris (b21) 2018 Heidari, Pahlavani (b35) 2017; 60 Li, Yin (b49) 2015; 298 Faris, Aljarah, Al-Betar, Mirjalili (b22) 2018; 30 Sulaiman, Mustaffa, Mohamed, Aliman (b24) 2015; 32 Wang, Cai, Cui, Min, Chen (b1) 2017; PP Aljarah, Mafarja, Heidari, Faris, Zhang (b20) 2018; 71 Liu, Pan, Dezert (b67) 2013; 46 Gandomi, Yang, Alavi (b10) 2013; 29 Storn, Price (b5) 1997; 11 Zhang, Kang, Cheng, Wang (b52) 2018; 67 Zheng, Zhang, Zhang (b58) 2016; 20 Arlot, Celisse (b66) 2010; 4 Gong, Cai, Ling (b54) 2010; 15 Emary, Zawbaa, Hassanien (b64) 2016; 213 Yang, Gandomi (b9) 2012; 29 Karaboga, Akay (b13) 2009; 214 Zhu, Xu, Li, Wu, Liu (b39) 2015; 26 Mafarja, Mirjalili (b61) 2017; 260 Derrac, García, Molina, Herrera (b53) 2011; 1 Kiran, Hakli, Gunduz, Uguz (b46) 2015; 300 Malik, Mohideen, Ali (b29) 2015 Rodríguez, Castillo, Soria, Melin, Valdez (b30) 2017; 57 Saremi, Mirjalili, Mirjalili (b32) 2015; 26 M. Naik, M. Nath, A. Wunnava, A new adaptive cuckoo search algorithm in: 2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS), Vol. 19, 2015, pp. 1–5. Gao, Liu, Huang (b45) 2012; 236 Deb, Pratap, Agarwal, Meyarivan (b3) 2002; 6 Simon (10.1016/j.asoc.2018.11.047_b14) 2008; 12 Draa (10.1016/j.asoc.2018.11.047_b57) 2015; 27 Faris (10.1016/j.asoc.2018.11.047_b22) 2018; 30 Mirjalili (10.1016/j.asoc.2018.11.047_b40) 2015; 43 Omran (10.1016/j.asoc.2018.11.047_b43) 2008; 198 Deb (10.1016/j.asoc.2018.11.047_b3) 2002; 6 Heidari (10.1016/j.asoc.2018.11.047_b35) 2017; 60 Rodríguez (10.1016/j.asoc.2018.11.047_b30) 2017; 57 Mirjalili (10.1016/j.asoc.2018.11.047_b15) 2014; 69 Cheng (10.1016/j.asoc.2018.11.047_b51) 2014; 139 10.1016/j.asoc.2018.11.047_b56 Zhu (10.1016/j.asoc.2018.11.047_b39) 2015; 26 Yang (10.1016/j.asoc.2018.11.047_b36) 2017; 133 Eusuff (10.1016/j.asoc.2018.11.047_b12) 2003; 129 Faris (10.1016/j.asoc.2018.11.047_b19) 2019; 48 Zhang (10.1016/j.asoc.2018.11.047_b59) 2019; 471 Karaboga (10.1016/j.asoc.2018.11.047_b13) 2009; 214 Mafarja (10.1016/j.asoc.2018.11.047_b21) 2018 Zheng (10.1016/j.asoc.2018.11.047_b58) 2016; 20 Emary (10.1016/j.asoc.2018.11.047_b64) 2016; 213 Gong (10.1016/j.asoc.2018.11.047_b54) 2010; 15 Liang (10.1016/j.asoc.2018.11.047_b50) 2013 Wang (10.1016/j.asoc.2018.11.047_b55) 2014; 279 Muro (10.1016/j.asoc.2018.11.047_b41) 2011; 88 Blair (10.1016/j.asoc.2018.11.047_b63) 1980; 5 Shi (10.1016/j.asoc.2018.11.047_b47) 2016; 107 Al-Aboody (10.1016/j.asoc.2018.11.047_b25) 2016 Malik (10.1016/j.asoc.2018.11.047_b29) 2015 Dolan (10.1016/j.asoc.2018.11.047_b62) 2002; 91 Mafarja (10.1016/j.asoc.2018.11.047_b61) 2017; 260 Al-Betar (10.1016/j.asoc.2018.11.047_b31) 2018; 113 Kirkpatrick (10.1016/j.asoc.2018.11.047_b2) 1983; 220 Xiang (10.1016/j.asoc.2018.11.047_b44) 2014; 41 Mishra (10.1016/j.asoc.2018.11.047_b11) 2005; 9 Sahoo (10.1016/j.asoc.2018.11.047_b27) 2017; 52 Kamboj (10.1016/j.asoc.2018.11.047_b38) 2016; 27 Aljarah (10.1016/j.asoc.2018.11.047_b20) 2018; 71 Gupta (10.1016/j.asoc.2018.11.047_b37) 2018 10.1016/j.asoc.2018.11.047_b6 Mahdad (10.1016/j.asoc.2018.11.047_b33) 2015; 98 Gao (10.1016/j.asoc.2018.11.047_b45) 2012; 236 Arlot (10.1016/j.asoc.2018.11.047_b66) 2010; 4 Yang (10.1016/j.asoc.2018.11.047_b7) 2010; 2 Gandomi (10.1016/j.asoc.2018.11.047_b10) 2013; 29 Storn (10.1016/j.asoc.2018.11.047_b5) 1997; 11 Mafarja (10.1016/j.asoc.2018.11.047_b18) 2018; 145 Liu (10.1016/j.asoc.2018.11.047_b67) 2013; 46 Saremi (10.1016/j.asoc.2018.11.047_b32) 2015; 26 Zhou (10.1016/j.asoc.2018.11.047_b34) 2016; 10 Faris (10.1016/j.asoc.2018.11.047_b17) 2018; 154 Sulaiman (10.1016/j.asoc.2018.11.047_b24) 2015; 32 Song (10.1016/j.asoc.2018.11.047_b26) 2015; 75 Zhang (10.1016/j.asoc.2018.11.047_b52) 2018; 67 Suganthan (10.1016/j.asoc.2018.11.047_b42) 2005 Heermann (10.1016/j.asoc.2018.11.047_b4) 1992; 30 Kiran (10.1016/j.asoc.2018.11.047_b46) 2015; 300 Khairuzzaman (10.1016/j.asoc.2018.11.047_b28) 2017; 86 Tanweer (10.1016/j.asoc.2018.11.047_b60) 2015; 294 Mirjalili (10.1016/j.asoc.2018.11.047_b16) 2016; 95 Wang (10.1016/j.asoc.2018.11.047_b1) 2017; PP Zong (10.1016/j.asoc.2018.11.047_b8) 2001; 2 Blake (10.1016/j.asoc.2018.11.047_b65) 1998 Gao (10.1016/j.asoc.2018.11.047_b48) 2013; 43 Li (10.1016/j.asoc.2018.11.047_b49) 2015; 298 Derrac (10.1016/j.asoc.2018.11.047_b53) 2011; 1 Emary (10.1016/j.asoc.2018.11.047_b23) 2016; 172 Yang (10.1016/j.asoc.2018.11.047_b9) 2012; 29 |
References_xml | – volume: 75 start-page: 147 year: 2015 end-page: 157 ident: b26 article-title: Grey wolf optimizer for parameter estimation in surface waves publication-title: Soil Dyn. Earthq. Eng. – year: 2013 ident: b50 article-title: Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization – volume: 26 start-page: 1257 year: 2015 end-page: 1263 ident: b32 article-title: Evolutionary population dynamics and grey wolf optimizer publication-title: Neural Comput. Appl. – volume: 260 start-page: 302 year: 2017 end-page: 312 ident: b61 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing – volume: 213 start-page: 54 year: 2016 end-page: 65 ident: b64 article-title: Binary ant lion approaches for feature selection publication-title: Neurocomputing – volume: 113 start-page: 481 year: 2018 end-page: 498 ident: b31 article-title: Natural selection methods for grey wolf optimizer publication-title: Expert Syst. Appl. – volume: 145 start-page: 25 year: 2018 end-page: 45 ident: b18 article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems publication-title: Knowl.-Based Syst. – volume: 236 start-page: 2741 year: 2012 end-page: 2753 ident: b45 article-title: A global best artificial bee colony algorithm for global optimization publication-title: J. Comput. Appl. Math. – volume: 91 start-page: 201 year: 2002 end-page: 213 ident: b62 article-title: Benchmarking optimization software with performance profiles publication-title: Math. Program. – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: b2 article-title: Optimization by simulated annealing publication-title: Science – volume: 88 start-page: 192 year: 2011 end-page: 197 ident: b41 article-title: Wolf-pack (canis lupus) hunting strategies emerge from simple rules in computational simulations publication-title: Behav. Process. – volume: 20 start-page: 967 year: 2016 end-page: 977 ident: b58 article-title: Biogeographic harmony search for emergency air transportation publication-title: Soft Comput. – volume: 154 start-page: 43 year: 2018 end-page: 67 ident: b17 article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems publication-title: Knowl.-Based Syst. – start-page: 2005 year: 2005 ident: b42 article-title: Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization – reference: M. Naik, M. Nath, A. Wunnava, A new adaptive cuckoo search algorithm in: 2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS), Vol. 19, 2015, pp. 1–5. – volume: 172 start-page: 371 year: 2016 end-page: 381 ident: b23 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing – volume: 57 start-page: 315 year: 2017 end-page: 328 ident: b30 article-title: A fuzzy hierarchical operator in the grey wolf optimizer algorithm publication-title: Appl. Soft Comput. – volume: 279 start-page: 587 year: 2014 end-page: 603 ident: b55 article-title: Multi-strategy ensemble artificial bee colony algorithm publication-title: Inform. Sci. – volume: 107 start-page: 14 year: 2016 end-page: 31 ident: b47 article-title: An improved artificial bee colony and its application publication-title: Knowl.-Based Syst. – volume: 48 start-page: 67 year: 2019 end-page: 83 ident: b19 article-title: An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks publication-title: Inf. Fusion – start-page: 1 year: 2015 end-page: 6 ident: b29 article-title: Weighted distance grey wolf optimizer for global optimization problems publication-title: 2015 IEEE International Conference on Computational Intelligence & Computing Research (ICCIC) – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: b14 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. – year: 2018 ident: b21 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowl.-Based Syst. – volume: 32 start-page: 286 year: 2015 end-page: 292 ident: b24 article-title: Using the gray wolf optimizer for solving optimal reactive power dispatch problem publication-title: Appl. Soft Comput. – volume: 129 start-page: 210 year: 2003 end-page: 225 ident: b12 article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm publication-title: J. Water Resour. Plan. Manag. – volume: 26 start-page: 317 year: 2015 end-page: 328 ident: b39 article-title: Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC publication-title: J. Syst. Eng. Electron. – volume: 60 start-page: 115 year: 2017 end-page: 134 ident: b35 article-title: An efficient modified grey wolf optimizer with lévy flight for optimization tasks publication-title: Appl. Soft Comput. – volume: 98 start-page: 411 year: 2015 end-page: 429 ident: b33 article-title: Blackout risk prevention in a smart grid based flexible optimal strategy using grey wolf-pattern search algorithms publication-title: Energy Convers. Manage. – volume: 139 start-page: 98 year: 2014 end-page: 112 ident: b51 article-title: Symbiotic organisms search: A new metaheuristic optimization algorithm publication-title: Comput. Struct. – volume: PP year: 2017 ident: b1 article-title: High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm publication-title: IEEE Trans. Emerg. Top. Comput. – volume: 71 start-page: 964 year: 2018 end-page: 979 ident: b20 article-title: Asynchronous accelerating multi-leader salp chains for feature selection publication-title: Appl. Soft Comput. – volume: 198 start-page: 643 year: 2008 end-page: 656 ident: b43 article-title: Global-best harmony search publication-title: Appl. Math. Comput. – volume: 214 start-page: 108 year: 2009 end-page: 132 ident: b13 article-title: A comparative study of Artificial Bee Colony algorithm publication-title: Appl. Math. Comput. – volume: 43 start-page: 1011 year: 2013 end-page: 1024 ident: b48 article-title: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning publication-title: IEEE Trans. Cybern. – volume: 298 start-page: 80 year: 2015 end-page: 97 ident: b49 article-title: Modified cuckoo search algorithm with self adaptive parameter method publication-title: Inform. Sci. – volume: 27 start-page: 1643 year: 2016 end-page: 1655 ident: b38 article-title: A novel hybrid PSO-GWO approach for unit commitment problem publication-title: Neural Comput. Appl. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b53 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evolut. Comput. – volume: 133 start-page: 427 year: 2017 end-page: 443 ident: b36 article-title: Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine publication-title: Energy Convers. Manag. – volume: 294 start-page: 182 year: 2015 end-page: 202 ident: b60 article-title: Self regulating particle swarm optimization algorithm publication-title: Inform. Sci. – volume: 5 start-page: 309 year: 1980 end-page: 335 ident: b63 article-title: A comparison of the power of wilcoxon’s rank-sum statistic to that of student’s t statistic under various nonnormal distributions publication-title: J. Educ. Stat. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b3 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-ii publication-title: IEEE Trans. Evol. Comput. – start-page: 101 year: 2016 end-page: 107 ident: b25 article-title: Grey wolf optimization-based energy-efficient routing protocol for heterogeneous wireless sensor networks publication-title: Computational and Business Intelligence (ISCBI), 2016 4th International Symposium on – volume: 300 start-page: 140 year: 2015 end-page: 157 ident: b46 article-title: Artificial bee colony algorithm with variable search strategy for continuous optimization publication-title: Inform. Sci. – volume: 2 start-page: 60 year: 2001 end-page: 68 ident: b8 article-title: A new heuristic optimization algorithm: Harmony search publication-title: Simulation – volume: 9 start-page: 61 year: 2005 end-page: 73 ident: b11 article-title: A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation publication-title: IEEE Trans. Evol. Comput. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b5 article-title: Differential Evolution - A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. – reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. of 1995 IEEE Int. Conf. Neural Networks, Vol. 4, Perth, Australia), Nov. 27–Dec. (8) 2011, pp. 1942–1948, – volume: 30 start-page: 81 year: 1992 end-page: 88 ident: b4 article-title: Classification of multispectral remote sensing data using a back-propagation neural network publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 46 start-page: 834 year: 2013 end-page: 844 ident: b67 article-title: A new belief-based k-nearest neighbor classification method publication-title: Pattern Recognit. – volume: 67 start-page: 197 year: 2018 end-page: 214 ident: b52 article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer publication-title: Appl. Soft Comput. – volume: 15 start-page: 645 year: 2010 end-page: 665 ident: b54 article-title: DE/BBO: A hybrid differential evolution with biogeography-based optimization for global numerical optimization publication-title: Soft Comput. – volume: 29 start-page: 464 year: 2012 end-page: 483 ident: b9 article-title: Bat algorithm: A novel approach for global engineering optimization publication-title: Eng. Comput. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b16 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 4 start-page: 40 year: 2010 end-page: 79 ident: b66 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. – year: 1998 ident: b65 article-title: UCI repository of machine learning databases – volume: 86 start-page: 64 year: 2017 end-page: 76 ident: b28 article-title: Multilevel thresholding using grey wolf optimizer for image segmentation publication-title: Expert Syst. Appl. – year: 2018 ident: b37 article-title: A novel random walk grey wolf optimizer publication-title: Swarm Evolut. Comput. – volume: 2 start-page: 78 year: 2010 end-page: 84 ident: b7 article-title: Firefly algorithm, stochastic test functions and design optimisation publication-title: Int. J. Bio-Inspired Comput. – volume: 471 start-page: 1 year: 2019 end-page: 18 ident: b59 article-title: Enhancing comprehensive learning particle swarm optimization with local optima topology publication-title: Inform. Sci. – volume: 10 start-page: 2108 year: 2016 end-page: 2117 ident: b34 article-title: Precise equivalent model of small hydro generator cluster and its parameter identification using improved Grey Wolf optimizer publication-title: IET Gener. Transm. Distrib. – reference: . – volume: 52 start-page: 64 year: 2017 end-page: 80 ident: b27 article-title: Multi-objective grey wolf optimizer for improved cervix lesion classification publication-title: Appl. Soft Comput. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b15 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 30 start-page: 413 year: 2018 end-page: 435 ident: b22 article-title: Grey wolf optimizer: A review of recent variants and applications publication-title: Neural Comput. Appl. – volume: 43 start-page: 150 year: 2015 end-page: 161 ident: b40 article-title: How effective is the grey wolf optimizer in training multi-layer perceptrons publication-title: Appl. Intell. – volume: 41 start-page: 5788 year: 2014 end-page: 5803 ident: b44 article-title: An improved global-best harmony search algorithm for faster optimization publication-title: Expert Syst. Appl. – volume: 29 start-page: 17 year: 2013 end-page: 35 ident: b10 article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. – volume: 27 start-page: 99 year: 2015 end-page: 126 ident: b57 article-title: A sinusoidal differential evolution algorithm for numerical optimisation publication-title: Appl. Soft Comput. – volume: 113 start-page: 481 year: 2018 ident: 10.1016/j.asoc.2018.11.047_b31 article-title: Natural selection methods for grey wolf optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.07.022 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 10.1016/j.asoc.2018.11.047_b14 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – volume: 471 start-page: 1 year: 2019 ident: 10.1016/j.asoc.2018.11.047_b59 article-title: Enhancing comprehensive learning particle swarm optimization with local optima topology publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.08.049 – volume: 198 start-page: 643 issue: 2 year: 2008 ident: 10.1016/j.asoc.2018.11.047_b43 article-title: Global-best harmony search publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2007.09.004 – volume: 298 start-page: 80 year: 2015 ident: 10.1016/j.asoc.2018.11.047_b49 article-title: Modified cuckoo search algorithm with self adaptive parameter method publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.11.042 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.asoc.2018.11.047_b3 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-ii publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 4 start-page: 40 year: 2010 ident: 10.1016/j.asoc.2018.11.047_b66 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. doi: 10.1214/09-SS054 – volume: 75 start-page: 147 year: 2015 ident: 10.1016/j.asoc.2018.11.047_b26 article-title: Grey wolf optimizer for parameter estimation in surface waves publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2015.04.004 – start-page: 1 year: 2015 ident: 10.1016/j.asoc.2018.11.047_b29 article-title: Weighted distance grey wolf optimizer for global optimization problems – start-page: 101 year: 2016 ident: 10.1016/j.asoc.2018.11.047_b25 article-title: Grey wolf optimization-based energy-efficient routing protocol for heterogeneous wireless sensor networks – volume: 260 start-page: 302 year: 2017 ident: 10.1016/j.asoc.2018.11.047_b61 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – volume: 46 start-page: 834 issue: 3 year: 2013 ident: 10.1016/j.asoc.2018.11.047_b67 article-title: A new belief-based k-nearest neighbor classification method publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.10.001 – volume: 67 start-page: 197 year: 2018 ident: 10.1016/j.asoc.2018.11.047_b52 article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.02.049 – volume: 48 start-page: 67 year: 2019 ident: 10.1016/j.asoc.2018.11.047_b19 article-title: An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.08.002 – volume: 26 start-page: 317 issue: 2 year: 2015 ident: 10.1016/j.asoc.2018.11.047_b39 article-title: Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC publication-title: J. Syst. Eng. Electron. doi: 10.1109/JSEE.2015.00037 – volume: PP issue: 99 year: 2017 ident: 10.1016/j.asoc.2018.11.047_b1 article-title: High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm publication-title: IEEE Trans. Emerg. Top. Comput. – volume: 20 start-page: 967 issue: 3 year: 2016 ident: 10.1016/j.asoc.2018.11.047_b58 article-title: Biogeographic harmony search for emergency air transportation publication-title: Soft Comput. doi: 10.1007/s00500-014-1556-6 – volume: 15 start-page: 645 issue: 4 year: 2010 ident: 10.1016/j.asoc.2018.11.047_b54 article-title: DE/BBO: A hybrid differential evolution with biogeography-based optimization for global numerical optimization publication-title: Soft Comput. doi: 10.1007/s00500-010-0591-1 – volume: 214 start-page: 108 issue: 1 year: 2009 ident: 10.1016/j.asoc.2018.11.047_b13 article-title: A comparative study of Artificial Bee Colony algorithm publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.03.090 – volume: 30 start-page: 81 issue: 1 year: 1992 ident: 10.1016/j.asoc.2018.11.047_b4 article-title: Classification of multispectral remote sensing data using a back-propagation neural network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.124218 – volume: 29 start-page: 464 issue: 5 year: 2012 ident: 10.1016/j.asoc.2018.11.047_b9 article-title: Bat algorithm: A novel approach for global engineering optimization publication-title: Eng. Comput. doi: 10.1108/02644401211235834 – volume: 300 start-page: 140 year: 2015 ident: 10.1016/j.asoc.2018.11.047_b46 article-title: Artificial bee colony algorithm with variable search strategy for continuous optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.12.043 – volume: 2 start-page: 60 issue: 2 year: 2001 ident: 10.1016/j.asoc.2018.11.047_b8 article-title: A new heuristic optimization algorithm: Harmony search publication-title: Simulation doi: 10.1177/003754970107600201 – volume: 129 start-page: 210 issue: 3 year: 2003 ident: 10.1016/j.asoc.2018.11.047_b12 article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2003)129:3(210) – volume: 71 start-page: 964 year: 2018 ident: 10.1016/j.asoc.2018.11.047_b20 article-title: Asynchronous accelerating multi-leader salp chains for feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.040 – ident: 10.1016/j.asoc.2018.11.047_b56 doi: 10.1109/ReTIS.2015.7232842 – volume: 172 start-page: 371 year: 2016 ident: 10.1016/j.asoc.2018.11.047_b23 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: 86 start-page: 64 year: 2017 ident: 10.1016/j.asoc.2018.11.047_b28 article-title: Multilevel thresholding using grey wolf optimizer for image segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.04.029 – volume: 60 start-page: 115 year: 2017 ident: 10.1016/j.asoc.2018.11.047_b35 article-title: An efficient modified grey wolf optimizer with lévy flight for optimization tasks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.06.044 – volume: 279 start-page: 587 year: 2014 ident: 10.1016/j.asoc.2018.11.047_b55 article-title: Multi-strategy ensemble artificial bee colony algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.04.013 – volume: 9 start-page: 61 issue: 1 year: 2005 ident: 10.1016/j.asoc.2018.11.047_b11 article-title: A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.840144 – volume: 98 start-page: 411 year: 2015 ident: 10.1016/j.asoc.2018.11.047_b33 article-title: Blackout risk prevention in a smart grid based flexible optimal strategy using grey wolf-pattern search algorithms publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.04.005 – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10.1016/j.asoc.2018.11.047_b2 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 30 start-page: 413 issue: 2 year: 2018 ident: 10.1016/j.asoc.2018.11.047_b22 article-title: Grey wolf optimizer: A review of recent variants and applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3272-5 – volume: 2 start-page: 78 issue: 2 year: 2010 ident: 10.1016/j.asoc.2018.11.047_b7 article-title: Firefly algorithm, stochastic test functions and design optimisation publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2010.032124 – volume: 88 start-page: 192 issue: 3 year: 2011 ident: 10.1016/j.asoc.2018.11.047_b41 article-title: Wolf-pack (canis lupus) hunting strategies emerge from simple rules in computational simulations publication-title: Behav. Process. doi: 10.1016/j.beproc.2011.09.006 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.asoc.2018.11.047_b5 article-title: Differential Evolution - A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – volume: 139 start-page: 98 year: 2014 ident: 10.1016/j.asoc.2018.11.047_b51 article-title: Symbiotic organisms search: A new metaheuristic optimization algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2014.03.007 – volume: 294 start-page: 182 year: 2015 ident: 10.1016/j.asoc.2018.11.047_b60 article-title: Self regulating particle swarm optimization algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.09.053 – volume: 27 start-page: 99 year: 2015 ident: 10.1016/j.asoc.2018.11.047_b57 article-title: A sinusoidal differential evolution algorithm for numerical optimisation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.11.003 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.asoc.2018.11.047_b16 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 154 start-page: 43 year: 2018 ident: 10.1016/j.asoc.2018.11.047_b17 article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.05.009 – volume: 43 start-page: 1011 issue: 3 year: 2013 ident: 10.1016/j.asoc.2018.11.047_b48 article-title: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2222373 – volume: 29 start-page: 17 issue: 1 year: 2013 ident: 10.1016/j.asoc.2018.11.047_b10 article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-011-0241-y – volume: 43 start-page: 150 issue: 1 year: 2015 ident: 10.1016/j.asoc.2018.11.047_b40 article-title: How effective is the grey wolf optimizer in training multi-layer perceptrons publication-title: Appl. Intell. doi: 10.1007/s10489-014-0645-7 – volume: 91 start-page: 201 issue: 2 year: 2002 ident: 10.1016/j.asoc.2018.11.047_b62 article-title: Benchmarking optimization software with performance profiles publication-title: Math. Program. doi: 10.1007/s101070100263 – year: 2018 ident: 10.1016/j.asoc.2018.11.047_b37 article-title: A novel random walk grey wolf optimizer publication-title: Swarm Evolut. Comput. – volume: 41 start-page: 5788 issue: 13 year: 2014 ident: 10.1016/j.asoc.2018.11.047_b44 article-title: An improved global-best harmony search algorithm for faster optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.03.016 – year: 2013 ident: 10.1016/j.asoc.2018.11.047_b50 – volume: 57 start-page: 315 year: 2017 ident: 10.1016/j.asoc.2018.11.047_b30 article-title: A fuzzy hierarchical operator in the grey wolf optimizer algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.03.048 – year: 2018 ident: 10.1016/j.asoc.2018.11.047_b21 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.08.003 – volume: 107 start-page: 14 year: 2016 ident: 10.1016/j.asoc.2018.11.047_b47 article-title: An improved artificial bee colony and its application publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.05.052 – start-page: 2005 year: 2005 ident: 10.1016/j.asoc.2018.11.047_b42 – volume: 26 start-page: 1257 issue: 5 year: 2015 ident: 10.1016/j.asoc.2018.11.047_b32 article-title: Evolutionary population dynamics and grey wolf optimizer publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1806-7 – volume: 52 start-page: 64 year: 2017 ident: 10.1016/j.asoc.2018.11.047_b27 article-title: Multi-objective grey wolf optimizer for improved cervix lesion classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.022 – volume: 145 start-page: 25 year: 2018 ident: 10.1016/j.asoc.2018.11.047_b18 article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.12.037 – volume: 213 start-page: 54 year: 2016 ident: 10.1016/j.asoc.2018.11.047_b64 article-title: Binary ant lion approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.101 – ident: 10.1016/j.asoc.2018.11.047_b6 doi: 10.1007/978-0-387-30164-8_630 – volume: 32 start-page: 286 year: 2015 ident: 10.1016/j.asoc.2018.11.047_b24 article-title: Using the gray wolf optimizer for solving optimal reactive power dispatch problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.03.041 – year: 1998 ident: 10.1016/j.asoc.2018.11.047_b65 – volume: 27 start-page: 1643 issue: 6 year: 2016 ident: 10.1016/j.asoc.2018.11.047_b38 article-title: A novel hybrid PSO-GWO approach for unit commitment problem publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1962-4 – volume: 69 start-page: 46 issue: 3 year: 2014 ident: 10.1016/j.asoc.2018.11.047_b15 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 10 start-page: 2108 issue: 9 year: 2016 ident: 10.1016/j.asoc.2018.11.047_b34 article-title: Precise equivalent model of small hydro generator cluster and its parameter identification using improved Grey Wolf optimizer publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2015.1141 – volume: 236 start-page: 2741 issue: 11 year: 2012 ident: 10.1016/j.asoc.2018.11.047_b45 article-title: A global best artificial bee colony algorithm for global optimization publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.01.013 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.asoc.2018.11.047_b53 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 133 start-page: 427 year: 2017 ident: 10.1016/j.asoc.2018.11.047_b36 article-title: Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.10.062 – volume: 5 start-page: 309 issue: 4 year: 1980 ident: 10.1016/j.asoc.2018.11.047_b63 article-title: A comparison of the power of wilcoxon’s rank-sum statistic to that of student’s t statistic under various nonnormal distributions publication-title: J. Educ. Stat. |
SSID | ssj0016928 |
Score | 2.5900273 |
Snippet | To overcome the limitation of single search strategy of grey wolf optimizer (GWO) in solving various function optimization problems, we propose a... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 16 |
SubjectTerms | Feature selection Function optimization Grey wolf optimizer Intelligent simulation Multi-strategy ensemble |
Title | Multi-strategy ensemble grey wolf optimizer and its application to feature selection |
URI | https://dx.doi.org/10.1016/j.asoc.2018.11.047 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBahXbr0XZo-goZuxUlkS7Y8htCQvkJpU8hmJEsCl8QOjUtJh_72nvwIKZQMnYxlHZjz6fSddXcfQlcBc7nRrnKMibsOJQrWnDEA5HRg4IkIiLAnuo8jf_hK7yZs0kD9uhbGplVWvr_06YW3rkY6lTY78yTpvEDkwWlIfTBK-zfEdvykNLBW3v5epXkQPyz4Ve1kx86uCmfKHC8BGrDpXbxtO3laipW_Nqe1DWewj3YrpIh75cscoIZOD9FezcKAq0V5hMZFDa2zKNvMLjHEpXompxpDJL3En9nU4Az8wiz5AimRKpzkC7x2bo3zDBtd9PfEi4IVBwaP0XhwM-4PnYorwYk9ynOHEF8xYanMuXSNBNzBlXIZV57QXaOpdEMTK9KNuQok5wI-DxeKMiWV0Ex7J2grzVJ9inAomKeFRwTlIYV4RQIIjAGYANBjsOLdJiK1jqK46iNu6SymUZ0w9hZZvUZWrxBgRKDXJrpeyczLLhobZ7Na9dEvW4jAzW-QO_un3DnagbuwzCy7QFv5-4e-BKiRy1ZhSy203es_PzzZ6-39cPQDxirWQQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PbChtE1iJ86IKqoCbReC1C1yYlsKapOKBqEy8Ns5J05VJNSBNfZJ0Yvv_C4-30Po1qcOU9IRllJJ1yK2AJ9TCoic9BWMcN_m-kR3NPYGr-RpQicN1KvvwuiyShP7q5heRmvzpGPQ7MzTtPMCmQcjAfFgUeq_Ie4W2ibgvlrGoP29qvOwvaAUWNWzLT3d3Jypirw4QKDru1hbt_LUGit_7U5rO07_AO0Zqojvq7c5RA2ZHaH9WoYBG688RmF5idZaVH1mlxgSUzmLpxJDKr3En_lU4RwCwyz9AiueCZwWC7x2cI2LHCtZNvjEi1IWBx6eoLD_EPYGlhFLsBKXsMKybU9QrrXMWeyoGIgHE8KhTLhcdpUksROoRNjdhAk_ZozD92FcECpiwSWV7ilqZnkmzxAOOHUld21OWEAgYYmBBSbATIDpUXB5p4XsGqMoMY3EtZ7FNKorxt4ijWukcYUMIwJcW-huZTOv2mhsnE1r6KNfiyGCOL_B7vyfdjdoZxCOhtHwcfx8gXZhJKjKzC5Rs3j_kFfAO4r4ulxXPx5W1jo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-strategy+ensemble+grey+wolf+optimizer+and+its+application+to+feature+selection&rft.jtitle=Applied+soft+computing&rft.au=Tu%2C+Qiang&rft.au=Chen%2C+Xuechen&rft.au=Liu%2C+Xingcheng&rft.date=2019-03-01&rft.issn=1568-4946&rft.volume=76&rft.spage=16&rft.epage=30&rft_id=info:doi/10.1016%2Fj.asoc.2018.11.047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2018_11_047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |