Unravelling the relationship between plant diversity and vegetation structural complexity: A review and theoretical framework

Vegetation structural complexity (VSC)—the three‐dimensional distribution of plants within an ecosystem—is an important ecological trait. To date, research has focused primarily on the effects of VSC on ecological patterns and processes, but comparatively little is known about what drives variation...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of ecology Vol. 111; no. 7; pp. 1378 - 1395
Main Authors Coverdale, Tyler C., Davies, Andrew B.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vegetation structural complexity (VSC)—the three‐dimensional distribution of plants within an ecosystem—is an important ecological trait. To date, research has focused primarily on the effects of VSC on ecological patterns and processes, but comparatively little is known about what drives variation in VSC. Recent advances in active remote sensing technology, particularly light detection and ranging and radio detection and ranging, have allowed the measurement of VSC at unprecedented spatial scales and resolutions. Out of this and earlier work has emerged evidence that VSC is typically associated with greater ecosystem functioning (especially microclimate regulation, productivity, faunal diversity and habitat provisioning), making restoration of vegetation complexity a potentially powerful restoration tool. Recent studies of VSC across natural and experimental gradients of plant diversity have also revealed that more diverse plant communities tend to be more structurally complex. However, the shape and generality of this relationship—and the mechanism(s) by which phytodiversity might contribute to structural complexity—remain poorly understood. Here, we review how active remote sensing has facilitated recent VSC research and shaped our understanding of the relationship between vegetation complexity and ecosystem function. We then present a theoretical framework for the relationship between phytodiversity and VSC based on classic biodiversity‐ecosystem functioning principles. Finally, we evaluate the evidence for the notion that diverse plant assemblages tend to be more structurally complex and explore the shape of the relationship between phytodiversity and VSC using data from 13 recent remote sensing studies. Synthesis. The relationship between phytodiversity and VSC appears to be almost universally positive. Preliminary evidence further suggests that the most common relationships between phytodiversity and VSC are linear or saturating, indicating that the extent of functional redundancy between species varies across plant communities and ecosystems. In contrast, we find little evidence for exponential or negative relationships between plant diversity and VSC, suggesting that even modest increases in plant diversity could markedly increase structural complexity. Additional investigations of phytodiversity‐VSC relationships are necessary to establish whether the observed positive relationships are causal (and, if so, in which direction) and to clarify the potential impact of plant community restoration on structural complexity and broader ecosystem function. Vegetation structural complexity (VSC) is an important ecosystem trait that is typically associated with greater ecological functioning. Recent studies have also revealed that more diverse plant communities tend to be more structurally complex. However, the shape and generality of this relationship—and the mechanism(s) by which phytodiversity might contribute to structural complexity—remain poorly understood. We propose a theoretical framework for the relationship between phytodiversity and VSC based on classic biodiversity‐ecosystem functioning principles. Using data from recently published studies that compare VSC across phytodiversity gradients, we find that the relationship between phytodiversity and VSC appears to be almost universally positive.
AbstractList Vegetation structural complexity (VSC)—the three‐dimensional distribution of plants within an ecosystem—is an important ecological trait. To date, research has focused primarily on the effects of VSC on ecological patterns and processes, but comparatively little is known about what drives variation in VSC. Recent advances in active remote sensing technology, particularly light detection and ranging and radio detection and ranging, have allowed the measurement of VSC at unprecedented spatial scales and resolutions. Out of this and earlier work has emerged evidence that VSC is typically associated with greater ecosystem functioning (especially microclimate regulation, productivity, faunal diversity and habitat provisioning), making restoration of vegetation complexity a potentially powerful restoration tool. Recent studies of VSC across natural and experimental gradients of plant diversity have also revealed that more diverse plant communities tend to be more structurally complex. However, the shape and generality of this relationship—and the mechanism(s) by which phytodiversity might contribute to structural complexity—remain poorly understood. Here, we review how active remote sensing has facilitated recent VSC research and shaped our understanding of the relationship between vegetation complexity and ecosystem function. We then present a theoretical framework for the relationship between phytodiversity and VSC based on classic biodiversity‐ecosystem functioning principles. Finally, we evaluate the evidence for the notion that diverse plant assemblages tend to be more structurally complex and explore the shape of the relationship between phytodiversity and VSC using data from 13 recent remote sensing studies. Synthesis . The relationship between phytodiversity and VSC appears to be almost universally positive. Preliminary evidence further suggests that the most common relationships between phytodiversity and VSC are linear or saturating, indicating that the extent of functional redundancy between species varies across plant communities and ecosystems. In contrast, we find little evidence for exponential or negative relationships between plant diversity and VSC, suggesting that even modest increases in plant diversity could markedly increase structural complexity. Additional investigations of phytodiversity‐VSC relationships are necessary to establish whether the observed positive relationships are causal (and, if so, in which direction) and to clarify the potential impact of plant community restoration on structural complexity and broader ecosystem function.
Vegetation structural complexity (VSC)—the three‐dimensional distribution of plants within an ecosystem—is an important ecological trait. To date, research has focused primarily on the effects of VSC on ecological patterns and processes, but comparatively little is known about what drives variation in VSC. Recent advances in active remote sensing technology, particularly light detection and ranging and radio detection and ranging, have allowed the measurement of VSC at unprecedented spatial scales and resolutions. Out of this and earlier work has emerged evidence that VSC is typically associated with greater ecosystem functioning (especially microclimate regulation, productivity, faunal diversity and habitat provisioning), making restoration of vegetation complexity a potentially powerful restoration tool. Recent studies of VSC across natural and experimental gradients of plant diversity have also revealed that more diverse plant communities tend to be more structurally complex. However, the shape and generality of this relationship—and the mechanism(s) by which phytodiversity might contribute to structural complexity—remain poorly understood. Here, we review how active remote sensing has facilitated recent VSC research and shaped our understanding of the relationship between vegetation complexity and ecosystem function. We then present a theoretical framework for the relationship between phytodiversity and VSC based on classic biodiversity‐ecosystem functioning principles. Finally, we evaluate the evidence for the notion that diverse plant assemblages tend to be more structurally complex and explore the shape of the relationship between phytodiversity and VSC using data from 13 recent remote sensing studies. Synthesis. The relationship between phytodiversity and VSC appears to be almost universally positive. Preliminary evidence further suggests that the most common relationships between phytodiversity and VSC are linear or saturating, indicating that the extent of functional redundancy between species varies across plant communities and ecosystems. In contrast, we find little evidence for exponential or negative relationships between plant diversity and VSC, suggesting that even modest increases in plant diversity could markedly increase structural complexity. Additional investigations of phytodiversity‐VSC relationships are necessary to establish whether the observed positive relationships are causal (and, if so, in which direction) and to clarify the potential impact of plant community restoration on structural complexity and broader ecosystem function. Vegetation structural complexity (VSC) is an important ecosystem trait that is typically associated with greater ecological functioning. Recent studies have also revealed that more diverse plant communities tend to be more structurally complex. However, the shape and generality of this relationship—and the mechanism(s) by which phytodiversity might contribute to structural complexity—remain poorly understood. We propose a theoretical framework for the relationship between phytodiversity and VSC based on classic biodiversity‐ecosystem functioning principles. Using data from recently published studies that compare VSC across phytodiversity gradients, we find that the relationship between phytodiversity and VSC appears to be almost universally positive.
Vegetation structural complexity (VSC)—the three‐dimensional distribution of plants within an ecosystem—is an important ecological trait. To date, research has focused primarily on the effects of VSC on ecological patterns and processes, but comparatively little is known about what drives variation in VSC.Recent advances in active remote sensing technology, particularly light detection and ranging and radio detection and ranging, have allowed the measurement of VSC at unprecedented spatial scales and resolutions. Out of this and earlier work has emerged evidence that VSC is typically associated with greater ecosystem functioning (especially microclimate regulation, productivity, faunal diversity and habitat provisioning), making restoration of vegetation complexity a potentially powerful restoration tool.Recent studies of VSC across natural and experimental gradients of plant diversity have also revealed that more diverse plant communities tend to be more structurally complex. However, the shape and generality of this relationship—and the mechanism(s) by which phytodiversity might contribute to structural complexity—remain poorly understood.Here, we review how active remote sensing has facilitated recent VSC research and shaped our understanding of the relationship between vegetation complexity and ecosystem function. We then present a theoretical framework for the relationship between phytodiversity and VSC based on classic biodiversity‐ecosystem functioning principles. Finally, we evaluate the evidence for the notion that diverse plant assemblages tend to be more structurally complex and explore the shape of the relationship between phytodiversity and VSC using data from 13 recent remote sensing studies.Synthesis. The relationship between phytodiversity and VSC appears to be almost universally positive. Preliminary evidence further suggests that the most common relationships between phytodiversity and VSC are linear or saturating, indicating that the extent of functional redundancy between species varies across plant communities and ecosystems. In contrast, we find little evidence for exponential or negative relationships between plant diversity and VSC, suggesting that even modest increases in plant diversity could markedly increase structural complexity. Additional investigations of phytodiversity‐VSC relationships are necessary to establish whether the observed positive relationships are causal (and, if so, in which direction) and to clarify the potential impact of plant community restoration on structural complexity and broader ecosystem function.
Author Coverdale, Tyler C.
Davies, Andrew B.
Author_xml – sequence: 1
  givenname: Tyler C.
  orcidid: 0000-0003-0910-9187
  surname: Coverdale
  fullname: Coverdale, Tyler C.
  email: tyler_coverdale@nd.edu
  organization: University of Notre Dame
– sequence: 2
  givenname: Andrew B.
  orcidid: 0000-0002-0003-1435
  surname: Davies
  fullname: Davies, Andrew B.
  organization: Harvard University
BookMark eNqFkbFvGyEYxVGVSnXczl2RsmQ5hwPuuMsWWUmbKFKXZkYYvktIMVyBs-Oh_3uxHXXI0LwFCf3e4_t4p-jEBw8Ifa3Joi66qFnbVFTwZlFz0nYf0OzfzQmaEUJpRbgQn9BpSs-EkFY0ZIb-PPioNuCc9Y84PwGO4FS2wacnO-IV5C2Ax6NTPmNjNxCTzTusvMEbeIR8QHHKcdJ5isphHdajg5cCXeKrEraxsD3gJTtEyFYXaIhqDdsQf31GHwflEnx5Pefo4eb65_J7df_j2-3y6r7SjHdd1dTarFYrRVVLWqOM0LweqBhaw_peDANVSqgeWG8MN03PaW0Y140SgouBmY7N0fkxd4zh9wQpy7VNumytPIQpSdrxvus7RmlBz96gz2GKvkxXKEZ7yvaao-ZI6RhSijBIbY-fkaOyTtZE7kuR-wrkvgJ5KKX4Lt74xmjXKu7-43h9aWsd7N7D5d318uj7C_EXogU
CitedBy_id crossref_primary_10_1016_j_rse_2024_114317
crossref_primary_10_1126_sciadv_adi2362
crossref_primary_10_1016_j_ecolind_2024_113061
crossref_primary_10_1002_ece3_70623
crossref_primary_10_1016_j_agee_2024_109453
crossref_primary_10_1016_j_ecoinf_2024_102813
crossref_primary_10_1126_science_ado1629
crossref_primary_10_1016_j_rama_2024_09_001
crossref_primary_10_1016_j_ecolind_2025_113085
crossref_primary_10_1016_j_scs_2024_106012
crossref_primary_10_1016_j_landurbplan_2025_105318
crossref_primary_10_1016_j_ecolind_2024_111827
crossref_primary_10_1016_j_ufug_2024_128647
crossref_primary_10_1002_rse2_398
crossref_primary_10_1016_j_scitotenv_2024_175438
crossref_primary_10_1016_j_ecolind_2024_112367
crossref_primary_10_3390_f15091670
crossref_primary_10_1038_s41467_024_52468_2
crossref_primary_10_1111_ecog_06833
crossref_primary_10_1002_ecy_4500
crossref_primary_10_1016_j_foreco_2023_121627
crossref_primary_10_1038_s41586_023_06086_5
crossref_primary_10_1016_j_ecolind_2025_113374
crossref_primary_10_1016_j_ecolind_2024_111816
crossref_primary_10_1016_j_rse_2024_114545
crossref_primary_10_1016_j_scitotenv_2023_166201
crossref_primary_10_1016_j_ecolind_2024_112306
crossref_primary_10_1002_ecm_1624
Cites_doi 10.1016/j.agrformet.2019.107655
10.1016/S0378-1127(99)00140-1
10.1046/j.0305-0270.2003.00994.x
10.1111/ecog.02813
10.1111/btp.12814
10.1007/s00442-004-1497-3
10.1111/j.1461-0248.2006.00924.x
10.1890/120150
10.1002/eap.1791
10.1111/1365-2745.13631
10.1038/scientificamerican0575-90
10.1016/S0034-4257(99)00052-8
10.1038/s41598-019-45068-4
10.1371/journal.pone.0167771
10.1016/j.foreco.2022.120539
10.3390/rs70708348
10.1111/geb.13380
10.1007/s00442-006-0467-3
10.1016/j.foreco.2018.04.049
10.1093/oso/9780198515708.003.0001
10.1046/j.1461-0248.2003.00471.x
10.1111/1365-2664.14095
10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2
10.1007/BF00323530
10.1093/biosci/biu189
10.1046/j.1461-0248.2001.00230.x
10.1016/j.agrformet.2017.04.012
10.1111/een.12251
10.1088/1748-9326/ab2dcd
10.1109/LGRS.2010.2079913
10.1016/j.biocon.2019.01.032
10.1002/ecy.2864
10.1016/j.ecolind.2021.108156
10.1038/s41467-020-20767-z
10.1016/j.scitotenv.2017.08.018
10.1890/08-0939.1
10.1007/s00468-018-1704-1
10.1890/11.WB.009
10.1016/j.rse.2012.06.012
10.1111/geb.13516
10.3390/f5061374
10.1890/0012-9658(2000)081[0887:BAEFIO]2.0.CO;2
10.1016/j.foreco.2013.07.023
10.1126/sciadv.1501392
10.1007/s00442-004-1644-x
10.1016/j.tree.2018.12.012
10.1890/ES15-00121.1
10.1186/s41610-016-0020-1
10.1016/j.jag.2018.07.001
10.1016/j.rse.2011.01.026
10.1111/j.1466-8238.2007.00379.x
10.1038/nature15374
10.1111/nph.15934
10.1016/j.foreco.2021.119093
10.1038/s41467-019-09448-8
10.1111/1365-2435.13983
10.2307/1932254
10.1002/ece3.6062
10.1146/annurev.ecolsys.36.102003.152636
10.1016/j.rse.2021.112764
10.1890/10-2192.1
10.1016/j.agrformet.2017.12.251
10.3390/rs3112346
10.1890/10-1245.1
10.1139/X10-024
10.3390/s101109647
10.1016/j.foreco.2018.10.035
10.2307/2256497
10.1007/s00442-016-3623-4
10.1007/978-3-642-58001-7
10.1007/s11676-018-0746-y
10.1016/j.foreco.2018.10.024
10.1111/2041-210X.13726
10.1111/rec.13218
10.1016/j.tree.2014.10.005
10.1890/14-1593.1
10.1038/s41467-019-12737-x
10.1016/j.foreco.2021.119641
10.1038/35075055
10.1016/j.rse.2012.08.014
10.1890/04-0922
10.1086/303340
10.1071/WR07100
10.1371/journal.pone.0149098
10.2307/1948549
10.1007/s11056-019-09754-5
10.1111/1365-2664.12607
10.1016/j.ecss.2015.04.008
10.1111/oik.01549
10.1038/s41559-020-1245-z
10.1016/j.tree.2009.03.018
10.1007/s10980-018-0639-7
10.3390/rs11192222
10.1029/2010GL043622
10.1111/oik.04972
10.1111/brv.12135
10.1111/1365-2435.13585
10.1111/1365-2745.13837
10.1111/jvs.12451
10.1111/2041-210X.12214
10.1007/s10980-021-01195-w
10.1016/S0378-1127(97)00192-8
10.1002/ecs2.3390
10.1080/2150704X.2015.1088671
10.1146/annurev-ecolsys-120213-091917
10.1111/j.1365-2664.2011.02048.x
10.1111/j.1654-1103.2004.tb02233.x
10.1016/j.foreco.2013.10.014
10.1016/j.agee.2019.06.003
10.3390/f10020145
10.7882/FS.2004.004
10.1088/1748-9326/ab49bb
10.1126/science.1064088
10.1016/j.agrformet.2019.02.015
10.1111/j.0030-1299.2008.16401.x
10.1073/pnas.2001823117
10.1016/j.rse.2009.10.006
10.1111/2041-210X.13061
10.1111/1365-2664.13973
10.3390/rs10040629
10.1636/0161-8202(2001)029[0227:DTSCOA]2.0.CO;2
10.1111/cobi.12397
10.1007/s11676-019-01013-9
10.1007/s00468-010-0452-7
10.1016/j.gecco.2022.e02092
10.1007/BF00378225
10.1111/2041-210X.12385
10.1007/s10980-016-0367-9
10.1111/geb.13038
10.1093/forestscience/50.3.342
10.1002/2017JG004256
10.1146/annurev-ecolsys-120213-091540
10.1016/j.ecolind.2021.107757
10.1111/j.1523-1739.2012.01869.x
10.1016/S0921-8009(02)00089-7
10.3389/fevo.2016.00066
10.1016/B0-12-226865-2/00132-2
10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2
10.1016/j.foreco.2005.08.034
10.1111/1365-2664.13895
10.1111/btp.12627
ContentType Journal Article
Copyright 2023 The Authors. Journal of Ecology © 2023 British Ecological Society.
Journal of Ecology © 2023 British Ecological Society
Copyright_xml – notice: 2023 The Authors. Journal of Ecology © 2023 British Ecological Society.
– notice: Journal of Ecology © 2023 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
DOI 10.1111/1365-2745.14068
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Botany
EISSN 1365-2745
EndPage 1395
ExternalDocumentID 10_1111_1365_2745_14068
JEC14068
Genre reviewArticle
GrantInformation_xml – fundername: Star‐Friedman Challenge for Promising Scientific Research, Harvard University
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29K
2AX
2WC
3-9
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABPVW
ABTAH
ABTLG
ABXSQ
ABYAD
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHIC
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACTWD
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFXHP
AFZJQ
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CUYZI
D-E
D-F
D-I
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAU
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FVMVE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
V8K
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
Y6R
YF5
YQT
YXE
YZZ
ZCA
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABAWQ
ABSQW
ACHJO
AEYWJ
AGHNM
AGUYK
AGYGG
CITATION
7QG
7SN
7SS
7ST
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c3488-51cdbbba2a606dad7c41f27f6d3997ff2aa7a9e39dd4d59421d34c5a7747f3d83
IEDL.DBID DR2
ISSN 0022-0477
IngestDate Fri Jul 11 18:33:10 EDT 2025
Fri Jul 25 10:50:44 EDT 2025
Tue Jul 01 03:13:55 EDT 2025
Thu Apr 24 23:10:52 EDT 2025
Wed Jan 22 16:20:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3488-51cdbbba2a606dad7c41f27f6d3997ff2aa7a9e39dd4d59421d34c5a7747f3d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0910-9187
0000-0002-0003-1435
PQID 2832923333
PQPubID 37508
PageCount 18
ParticipantIDs proquest_miscellaneous_2849898322
proquest_journals_2832923333
crossref_citationtrail_10_1111_1365_2745_14068
crossref_primary_10_1111_1365_2745_14068
wiley_primary_10_1111_1365_2745_14068_JEC14068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The Journal of ecology
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2011; 115
2010; 10
1960; 30
2012; 124
2019; 11
2019; 10
2019; 14
2005; 218
2016; 31
2008; 35
2018; 41
1975; 232
2014; 29
2020; 10
2019; 283
2012; 127
2009; 114
2018; 610–611
2018; 9
2004; 31
2010; 24
2020; 93
2010; 114
2000; 129
2022; 35
2019; 432
2022; 36
2005; 75
2019; 278
2008; 117
2019; 433
2022; 31
2012; 26
2015; 90
2018; 33
2009; 19
2018; 32
2001; 411
2022; 110
2018; 28
2019; 9
2019; 269–270
2010; 37
2015; 124
2004; 141
2019; 34
2019; 224
2015; 526
2020; 34
1993
2001; 29
2011; 3
2014; 45
2019; 100
2011; 8
2014; 312
2010; 40
2016; 11
2011; 9
2004; 54
2021; 58
2016; 4
2004; 50
2016; 2
2020; 31
2011; 92
2015; 65
2020; 28
2021; 490
2022; 13
2000; 81
2021; 131
2016; 27
2018; 10
2020; 29
2017; 41
2019; 51
2018; 127
2018; 123
2021; 127
2016; 182
2021; 30
1983; 56
2021; 36
2014; 5
2020; 4
2001; 294
2013; 11
2002; 41
1997; 99
2001
2020; 52
1947; 35
2020; 51
2015; 40
2003; 6
2018; 250–251
2018; 73
1961; 42
2017; 242
2004; 139
2022; 525
2019; 232
2005; 36
2021; 109
2009; 24
2015; 161
2015; 6
2013; 307
2018; 424
2021; 500
2006; 9
2008; 17
2016; 53
2005
2004
2000; 155
2002
2015; 7
1990; 82
2015; 25
2021; 12
2015; 29
2001; 4
2004; 15
1997; 78
2020; 117
2022; 59
2015
2011; 48
2006; 149
1999; 70
2022; 268
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_131_1
R Core Development Team (e_1_2_10_108_1) 2015
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_135_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_147_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_132_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
Juchheim J. (e_1_2_10_59_1) 2020; 93
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_91_1
Bergen K. M. (e_1_2_10_13_1) 2009; 114
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_80_1
Scherer‐Lorenzen M. (e_1_2_10_118_1) 2005
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_43_1
Ishii H. T. (e_1_2_10_56_1) 2004; 50
e_1_2_10_20_1
e_1_2_10_130_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
Ricklefs R. E. (e_1_2_10_114_1) 1993
e_1_2_10_123_1
e_1_2_10_142_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 28
  start-page: 2024
  issue: 8
  year: 2018
  end-page: 2032
  article-title: Direct and cascading effects of landscape structure on tropical forest and non‐forest frugivorous birds
  publication-title: Ecological Applications
– volume: 232
  start-page: 90
  issue: 5
  year: 1975
  end-page: 101
  article-title: Forest succession
  publication-title: Scientific American
– start-page: 23
  year: 2004
  end-page: 35
– volume: 307
  start-page: 303
  year: 2013
  end-page: 312
  article-title: Remotely sensed forest structural complexity predicts multi species occurence at the landscape scale
  publication-title: Forest Ecology and Management
– volume: 4
  start-page: 1204
  issue: 9
  year: 2020
  end-page: 1212
  article-title: Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests
  publication-title: Nature Ecology and Evolution
– volume: 14
  start-page: 094013
  issue: 9
  year: 2019
  article-title: Exploring the relation between remotely sensed vertical canopy structure and tree species diversity in Gabon
  publication-title: Environmental Research Letters
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  end-page: 12
  article-title: Global patterns and climatic controls of forest structural complexity
  publication-title: Nature Communications
– volume: 70
  start-page: 339
  issue: 3
  year: 1999
  end-page: 361
  article-title: Lidar remote sensing of the canopy structure and biophysical properties of Douglas‐fir western hemlock forests
  publication-title: Remote Sensing of Environment
– volume: 37
  issue: 15
  year: 2010
  article-title: A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system
  publication-title: Geophysical Research Letters
– volume: 127
  start-page: 98
  year: 2012
  end-page: 105
  article-title: LiDAR measurements of canopy structure predict spatial distribution of a tropical mature forest primate
  publication-title: Remote Sensing of Environment
– year: 2005
– volume: 9
  start-page: 2057
  issue: 10
  year: 2018
  end-page: 2066
  article-title: Quantifying vegetation and canopy structural complexity from terrestrial LiDAR data using the forestr r package
  publication-title: Methods in Ecology and Evolution
– volume: 92
  start-page: 1818
  issue: 9
  year: 2011
  end-page: 1827
  article-title: The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest
  publication-title: Ecology
– volume: 10
  start-page: 1
  issue: 2
  year: 2019
  end-page: 26
  article-title: Comparison of UAV LiDAR and digital aerial photogrammetry point clouds for estimating forest structural attributes in subtropical planted forests
  publication-title: Forests
– volume: 13
  start-page: 121
  year: 2022
  end-page: 132
  article-title: Tracking the temporal dynamics of insect defoliation by high‐resolution radar satellite data
  publication-title: Methods in Ecology and Evolution
– volume: 155
  start-page: 473
  issue: 4
  year: 2000
  end-page: 484
  article-title: Forest canopy stratification—Is it useful?
  publication-title: American Naturalist
– volume: 29
  start-page: 681
  issue: 12
  year: 2014
  end-page: 691
  article-title: Advances in animal ecology from 3D‐LiDAR ecosystem mapping
  publication-title: Trends in Ecology and Evolution
– volume: 433
  start-page: 85
  year: 2019
  end-page: 92
  article-title: Mammal functional diversity increases with vegetation structural complexity in two forest types
  publication-title: Forest Ecology and Management
– volume: 45
  start-page: 471
  year: 2014
  end-page: 493
  article-title: Biodiversity and ecosystem functioning
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 29
  start-page: 789
  issue: 5
  year: 2020
  end-page: 802
  article-title: Structural diversity underpins carbon storage in Australian temperate forests
  publication-title: Global Ecology and Biogeography
– volume: 3
  start-page: 2346
  issue: 11
  year: 2011
  end-page: 2363
  article-title: Estimating crown variables of individual trees using airborne and terrestrial laser scanners
  publication-title: Remote Sensing
– volume: 114
  start-page: 1
  issue: 4
  year: 2009
  end-page: 13
  article-title: Remote sensing of vegetation 3‐D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 131
  year: 2021
  article-title: Characterizing vegetation complexity with unmanned aerial systems (UAS)—A framework and synthesis
  publication-title: Ecological Indicators
– volume: 11
  start-page: 2222
  issue: 19
  year: 2019
  article-title: LiDAR prediction of small mammal diversity in Wisconsin, USA
  publication-title: Remote Sensing
– volume: 6
  start-page: 1
  issue: 8
  year: 2015
  end-page: 25
  article-title: Advances in restoration ecology: Rising to the challenges of the coming decades
  publication-title: Ecosphere
– volume: 17
  start-page: 327
  issue: 3
  year: 2008
  end-page: 339
  article-title: Spatial patterns of woody plant and bird diversity: Functional relationships or environmental effects?
  publication-title: Global Ecology and Biogeography
– volume: 9
  start-page: 261
  issue: 5
  year: 2011
  end-page: 262
  article-title: LiDAR: Providing structure
  publication-title: Frontiers in Ecology and the Environment
– volume: 123
  start-page: 1387
  issue: 4
  year: 2018
  end-page: 1405
  article-title: Forest canopy structural complexity and light absorption relationships at the subcontinental scale
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 73
  start-page: 420
  year: 2018
  end-page: 427
  article-title: Linking Landsat to terrestrial LiDAR: Vegetation metrics of forest greenness are correlated with canopy structural complexity
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 24
  start-page: 505
  issue: 9
  year: 2009
  end-page: 514
  article-title: Emerging horizons in biodiversity and ecosystem functioning research
  publication-title: Trends in Ecology & Evolution
– volume: 218
  start-page: 1
  issue: 1–3
  year: 2005
  end-page: 24
  article-title: Forest and woodland stand structural complexity: Its definition and measurement
  publication-title: Forest Ecology and Management
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 11
  article-title: Multiple plant diversity components drive consumer communities across ecosystems
  publication-title: Nature Communications
– volume: 250–251
  start-page: 181
  year: 2018
  end-page: 191
  article-title: Forest structure in space and time: Biotic and abiotic determinants of canopy complexity and their effects on net primary productivity
  publication-title: Agricultural and Forest Meteorology
– volume: 8
  start-page: 426
  issue: 3
  year: 2011
  end-page: 430
  article-title: Mini‐UAV‐borne LIDAR for fine‐scale mapping
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 42
  start-page: 594
  issue: 3
  year: 1961
  end-page: 598
  article-title: On bird species diversity
  publication-title: Ecology
– volume: 36
  start-page: 713
  issue: 3
  year: 2022
  end-page: 726
  article-title: Power law scaling relationships link canopy structural complexity and height across forest types
  publication-title: Functional Ecology
– volume: 31
  start-page: 1849
  issue: 8
  year: 2016
  end-page: 1862
  article-title: Movement patterns of three arboreal primates in a Neotropical moist forest explained by LiDAR‐estimated canopy structure
  publication-title: Landscape Ecology
– volume: 124
  start-page: 252
  issue: 3
  year: 2015
  end-page: 265
  article-title: Marine biodiversity and ecosystem functioning: What's known and what's next?
  publication-title: Oikos
– volume: 109
  start-page: 1969
  issue: 5
  year: 2021
  end-page: 1985
  article-title: Biodiversity facets affect community surface temperature via 3D canopy structure in grassland communities
  publication-title: Journal of Ecology
– year: 1993
– volume: 81
  start-page: 887
  issue: 4
  year: 2000
  end-page: 892
  article-title: Biodiversity and ecosystem functioning: Importance of species evenness in an old field
  publication-title: Ecology
– volume: 33
  start-page: 895
  issue: 6
  year: 2018
  end-page: 910
  article-title: Living on the edge: Utilising lidar data to assess the importance of vegetation structure for avian diversity in fragmented woodlands and their edges
  publication-title: Landscape Ecology
– volume: 31
  start-page: 79
  issue: 1
  year: 2004
  end-page: 92
  article-title: Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures
  publication-title: Journal of Biogeography
– volume: 35
  year: 2022
  article-title: Compositional attributes of invaded forests drive the diversity of insect functional groups
  publication-title: Global Ecology and Conservation
– volume: 31
  start-page: 1440
  issue: 7
  year: 2022
  end-page: 1460
  article-title: Towards mapping biodiversity from above: Can fusing lidar and hyperspectral remote sensing predict taxonomic, functional, and phylogenetic tree diversity in temperate forests?
  publication-title: Global Ecology and Biogeography
– volume: 52
  start-page: 1155
  issue: 6
  year: 2020
  end-page: 1167
  article-title: Detecting successional changes in tropical forest structure using GatorEye drone‐borne lidar
  publication-title: Biotropica
– volume: 127
  year: 2021
  article-title: Co‐occurrence patterns of tree‐related microhabitats: A method to simplify routine monitoring
  publication-title: Ecological Indicators
– volume: 9
  start-page: 741
  issue: 6
  year: 2006
  end-page: 758
  article-title: Functional diversity: Back to basics and looking forward
  publication-title: Ecology Letters
– volume: 24
  start-page: 819
  issue: 5
  year: 2010
  end-page: 832
  article-title: Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas‐fir dominated forest stand
  publication-title: Trees
– volume: 50
  start-page: 342
  issue: 3
  year: 2004
  end-page: 355
  article-title: Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems
  publication-title: Forest Science
– volume: 11
  start-page: 1
  issue: 12
  year: 2016
  end-page: 13
  article-title: Tree diversity enhances stand carbon storage but not leaf area in a subtropical forest
  publication-title: PLoS One
– volume: 294
  start-page: 804
  issue: 5543
  year: 2001
  end-page: 808
  article-title: Biodiversity and ecosystem functioning: Current knowledge and future challenges
  publication-title: Science
– volume: 34
  start-page: 1731
  issue: 8
  year: 2020
  end-page: 1745
  article-title: Structural complexity and large‐sized trees explain shifting species richness and carbon relationship across vegetation types
  publication-title: Functional Ecology
– volume: 82
  start-page: 162
  issue: 2
  year: 1990
  end-page: 165
  article-title: Plant structural complexity and host‐finding by a parasitoid
  publication-title: Oecologia
– volume: 117
  start-page: 488
  issue: 4
  year: 2008
  end-page: 493
  article-title: On the importance of the negative selection effect for the relationship between biodiversity and ecosystem functioning
  publication-title: Oikos
– volume: 312
  start-page: 129
  year: 2014
  end-page: 137
  article-title: Airborne LiDAR reveals context dependence in the effects of canopy architecture on arthropod diversity
  publication-title: Forest Ecology and Management
– volume: 182
  start-page: 319
  issue: 2
  year: 2016
  end-page: 333
  article-title: Structural diversity promotes productivity of mixed, uneven‐aged forests in southwestern Germany
  publication-title: Oecologia
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 10
  article-title: Radar vision in the mapping of forest biodiversity from space
  publication-title: Nature Communications
– volume: 2
  issue: 4
  year: 2016
  article-title: Spatial models reveal the microclimatic buffering capacity of old‐growth forests
  publication-title: Science Advances
– volume: 41
  start-page: 393
  issue: 3
  year: 2002
  end-page: 408
  article-title: A typology for the classification, description and valuation of ecosystem functions, goods and services
  publication-title: Ecological Economics
– volume: 424
  start-page: 216
  year: 2018
  end-page: 227
  article-title: Tree monocultures in a biodiversity hotspot: Impact of pine plantations on mammal and bird assemblages in the Atlantic Forest
  publication-title: Forest Ecology and Management
– volume: 610–611
  start-page: 926
  year: 2018
  end-page: 936
  article-title: The effect of grazing exclusion over time on structure, biodiversity, and regeneration of high nature value farmland ecosystems in Europe
  publication-title: Science of the Total Environment
– volume: 56
  start-page: 109
  issue: 1
  year: 1983
  end-page: 116
  article-title: The structural complexity of old field vegetation and the recruitment of bird‐dispersed plant species
  publication-title: Oecologia
– volume: 99
  start-page: 21
  issue: 1–2
  year: 1997
  end-page: 42
  article-title: Development of floristic diversity in 10‐year‐old restoration forests on a bauxite mined site in Amazonia
  publication-title: Forest Ecology and Management
– volume: 29
  start-page: 350
  issue: 2
  year: 2015
  end-page: 359
  article-title: Ten ways remote sensing can contribute to conservation
  publication-title: Conservation Biology
– volume: 10
  start-page: 9647
  year: 2010
  end-page: 9667
  article-title: Remote sensing of ecology, biodiversity and conservation: A review from the perspective of remote sensing specialists
  publication-title: Sensors
– volume: 232
  start-page: 97
  year: 2019
  end-page: 107
  article-title: Combining behavioural and LiDAR data to reveal relationships between canopy structure and orangutan nest site selection in disturbed forests
  publication-title: Biological Conservation
– volume: 36
  start-page: 1197
  issue: 4
  year: 2021
  end-page: 1213
  article-title: Understory vegetation contributes to microclimatic buffering of near‐surface temperatures in temperate deciduous forests
  publication-title: Landscape Ecology
– volume: 41
  start-page: 1
  issue: 1
  year: 2017
  end-page: 8
  article-title: Effects of vegetation structure and human impact on understory honey plant richness: Implications for pollinator visitation
  publication-title: Journal of Ecology and Environment
– volume: 268
  year: 2022
  article-title: Large scale multi‐layer fuel load characterization in tropical savanna using GEDI spaceborne lidar data
  publication-title: Remote Sensing of Environment
– volume: 93
  start-page: 75
  issue: 1
  year: 2020
  end-page: 83
  article-title: Effect of tree species mixing on stand structural complexity
  publication-title: Forestry
– volume: 7
  start-page: 8348
  issue: 7
  year: 2015
  end-page: 8367
  article-title: Airborne LiDAR detects selectively logged tropical forest even in an advanced stage of recovery
  publication-title: Remote Sensing
– volume: 10
  start-page: 1
  year: 2018
  end-page: 19
  article-title: Topography and three‐dimensional structure can estimate tree diversity along a tropical elevational gradient in Costa Rice
  publication-title: Remote Sensing
– volume: 51
  start-page: 245
  issue: 2
  year: 2019
  end-page: 252
  article-title: Lowland tapirs facilitate seed dispersal in degraded Amazonian forests
  publication-title: Biotropica
– volume: 54
  start-page: 535
  issue: 6
  year: 2004
  end-page: 545
  article-title: Landsat's role in ecological applications of remote sensing
  publication-title: Bioscience
– volume: 141
  start-page: 171
  issue: 1
  year: 2004
  end-page: 178
  article-title: Habitat structural complexity mediates the foraging success of multiple predator species
  publication-title: Oecologia
– volume: 115
  start-page: 2786
  issue: 11
  year: 2011
  end-page: 2797
  article-title: Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level
  publication-title: Remote Sensing of Environment
– volume: 27
  start-page: 1151
  year: 2016
  end-page: 1163
  article-title: Forest structure as a predictor of tree species diversity in the North Carolina Piedmont
  publication-title: Journal of Vegetation Science
– volume: 4
  start-page: 379
  issue: 4
  year: 2001
  end-page: 391
  article-title: Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness
  publication-title: Ecology Letters
– volume: 78
  start-page: 1946
  issue: 7
  year: 1997
  end-page: 1957
  article-title: Positive and negative effects of organisms as physical ecosystem engineers
  publication-title: Ecology
– volume: 9
  start-page: 8779
  issue: 1
  year: 2019
  article-title: Management of ecosystems alters vector dynamics and haemosporidian infections
  publication-title: Scientific Reports
– volume: 4
  start-page: 1
  year: 2016
  end-page: 12
  article-title: Variation in vegetation structure and composition across urban green space types
  publication-title: Frontiers in Ecology and Evolution
– volume: 149
  start-page: 493
  issue: 3
  year: 2006
  end-page: 504
  article-title: Habitat structure, trophic structure and ecosystem function: Interactive effects in a bromeliad‐insect community
  publication-title: Oecologia
– volume: 432
  start-page: 823
  year: 2019
  end-page: 831
  article-title: Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests
  publication-title: Forest Ecology and Management
– start-page: 109
  year: 2001
  end-page: 120
– volume: 500
  issue: May
  year: 2021
  article-title: Accelerating the development of structural complexity: Lidar analysis supports restoration as a tool in coastal Pacific northwest forests
  publication-title: Forest Ecology and Management
– volume: 35
  start-page: 19
  issue: 1
  year: 2008
  end-page: 32
  article-title: Colonisation of native tree and shrub plantings by woodland birds in an agricultural landscape
  publication-title: Wildlife Research
– volume: 32
  start-page: 1219
  issue: 5
  year: 2018
  end-page: 1231
  article-title: Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling
  publication-title: Trees—Structure and Function
– volume: 224
  start-page: 570
  issue: 2
  year: 2019
  end-page: 584
  article-title: Flux towers in the sky: Global ecology from space
  publication-title: New Phytologist
– volume: 26
  start-page: 840
  issue: 5
  year: 2012
  end-page: 850
  article-title: Use of an airborne Lidar system to model plant species composition and diversity of Mediterranean oak forests
  publication-title: Conservation Biology
– volume: 51
  start-page: 573
  issue: 4
  year: 2020
  end-page: 596
  article-title: Monitoring forest structure to guide adaptive management of forest restoration: A review of remote sensing approaches
  publication-title: New Forests
– volume: 34
  start-page: 327
  issue: 4
  year: 2019
  end-page: 341
  article-title: Advances in microclimate ecology arising from remote sensing
  publication-title: Trends in Ecology and Evolution
– volume: 100
  issue: 10
  year: 2019
  article-title: High rates of primary production in structurally complex forests
  publication-title: Ecology
– volume: 242
  start-page: 1
  year: 2017
  end-page: 9
  article-title: Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate
  publication-title: Agricultural and Forest Meteorology
– volume: 45
  start-page: 297
  year: 2014
  end-page: 324
  article-title: Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 31
  start-page: 2347
  issue: 6
  year: 2020
  end-page: 2357
  article-title: Small‐scale edaphic heterogeneity as a floristic–structural complexity driver in seasonally dry tropical forests tree communities
  publication-title: Journal of Forestry Research
– volume: 31
  start-page: 397
  issue: 2
  year: 2020
  end-page: 414
  article-title: Disturbance history, species diversity, and structural complexity of a temperate deciduous forest
  publication-title: Journal of Forestry Research
– volume: 117
  start-page: 26254
  issue: 42
  year: 2020
  end-page: 26262
  article-title: Maximizing the value of forest restoration for tropical mammals by detecting three‐dimensional habitat associations
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 40
  start-page: 748
  issue: 6
  year: 2015
  end-page: 758
  article-title: Effects of plant diversity and structural complexity on parasitoid behaviour in a field experiment
  publication-title: Ecological Entomology
– volume: 161
  start-page: 46
  year: 2015
  end-page: 64
  article-title: Marine biodiversity and ecosystem function relationships: The potential for practical monitoring applications
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 28
  start-page: 1087
  issue: 5
  year: 2020
  end-page: 1099
  article-title: Restoration for variability: Emergence of the habitat diversity paradigm in terrestrial ecosystem restoration
  publication-title: Restoration Ecology
– volume: 6
  start-page: 924
  issue: 12
  year: 2015
  end-page: 932
  article-title: Using LiDAR and remote microclimate loggers to downscale near‐surface air temperatures for site‐level studies
  publication-title: Remote Sensing Letters
– volume: 269–270
  start-page: 192
  year: 2019
  end-page: 202
  article-title: LiDAR‐derived topography and forest structure predict fine‐scale variation in daily surface temperatures in oak savanna and conifer forest landscapes
  publication-title: Agricultural and Forest Meteorology
– year: 2015
– volume: 124
  start-page: 454
  year: 2012
  end-page: 465
  article-title: Carnegie Airborne Observatory‐2: Increasing science data dimensionality via high‐fidelity multi‐sensor fusion
  publication-title: Remote Sensing of Environment
– volume: 283
  year: 2019
  article-title: Mixed‐species tree plantings enhance structural complexity in oil palm plantations
  publication-title: Agriculture, Ecosystems and Environment
– start-page: 3
  year: 2002
  end-page: 11
– volume: 139
  start-page: 1
  issue: 1
  year: 2004
  end-page: 10
  article-title: Responses of invertebrate natural enemies to complex‐structured habitats: A meta‐analytical synthesis
  publication-title: Oecologia
– volume: 6
  start-page: 567
  issue: 6
  year: 2003
  end-page: 579
  article-title: Disentangling biodiversity effects on ecosystem functioning: Deriving solutions to a seemingly insurmountable problem
  publication-title: Ecology Letters
– volume: 41
  start-page: 1147
  issue: 7
  year: 2018
  end-page: 1160
  article-title: Disentangling vegetation and climate as drivers of Australian vertebrate richness
  publication-title: Ecography
– volume: 90
  start-page: 815
  issue: 3
  year: 2015
  end-page: 836
  article-title: Terminology and quantification of environmental heterogeneity in species‐richness research
  publication-title: Biological Reviews
– volume: 110
  start-page: 282
  year: 2022
  end-page: 300
  article-title: Unveil the unseen: Using LiDAR to capture time‐lag dynamics in the herbaceous layer of European temperate forests
  publication-title: Journal of Ecology
– volume: 65
  start-page: 74
  issue: 1
  year: 2015
  end-page: 80
  article-title: Fearscapes: Mapping functional properties of cover for prey with terrestrial LiDAR
  publication-title: Bioscience
– volume: 11
  start-page: 138
  issue: 3
  year: 2013
  end-page: 146
  article-title: Lightweight unmanned aerial vehicles will revolutionize spatial ecology
  publication-title: Frontiers in Ecology and the Environment
– volume: 75
  start-page: 3
  issue: 1
  year: 2005
  end-page: 35
  article-title: Effects of biodiversity on ecosystem functioning: A consensus of current knowledge
  publication-title: Ecological Monographs
– volume: 40
  start-page: 761
  issue: 4
  year: 2010
  end-page: 773
  article-title: Comparisons between field‐ and LiDAR‐based measures of stand structural complexity
  publication-title: Canadian Journal of Forest Research
– volume: 29
  start-page: 227
  issue: 2
  year: 2001
  end-page: 237
  article-title: Does the structural complexity of aquatic macrophytes explain the diversity of associated spider assemblages?
  publication-title: Journal of Arachnology
– volume: 58
  start-page: 1764
  year: 2021
  end-page: 1775
  article-title: The impact of logging on vertical canopy structure across a gradient of tropical forest degradation intensity in Borneo
  publication-title: Journal of Applied Ecology
– volume: 6
  start-page: 772
  issue: 7
  year: 2015
  end-page: 781
  article-title: The relative value of field survey and remote sensing for biodiversity assessment
  publication-title: Methods in Ecology and Evolution
– volume: 53
  start-page: 934
  issue: 3
  year: 2016
  end-page: 943
  article-title: Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood
  publication-title: Journal of Applied Ecology
– volume: 12
  start-page: 1
  issue: 3
  year: 2021
  end-page: 15
  article-title: Vegetation structural complexity and biodiversity in the Great Smoky Mountains
  publication-title: Ecosphere
– volume: 30
  start-page: 2245
  issue: 11
  year: 2021
  end-page: 2258
  article-title: Climate mediates the relationship between plant biodiversity and forest structure across the United States
  publication-title: Global Ecology and Biogeography
– volume: 36
  start-page: 267
  year: 2005
  end-page: 294
  article-title: Biodiversity‐ecosystem function research: Is it relevant to conservation?
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 525
  issue: June
  year: 2022
  article-title: Management trade‐offs between forest carbon stocks, sequestration rates and structural complexity in the Central Adirondacks
  publication-title: Forest Ecology and Management
– volume: 25
  start-page: 1776
  issue: 7
  year: 2015
  end-page: 1789
  article-title: Predicting spatial variations of tree species richness in tropical forests from high‐resolution remote sensing
  publication-title: Ecological Applications
– volume: 411
  start-page: 73
  issue: 6833
  year: 2001
  end-page: 77
  article-title: Consistent patterns and the idiosyncratic effects of biodiversity in marine ecosystems
  publication-title: Nature
– volume: 490
  year: 2021
  article-title: The structural complexity index SCI is useful for quantifying structural diversity of Estonian hemiboreal forests
  publication-title: Forest Ecology and Management
– volume: 278
  year: 2019
  article-title: Light interception in experimental forests affected by tree diversity and structural complexity of dominant canopy
  publication-title: Agricultural and Forest Meteorology
– volume: 15
  start-page: 21
  issue: 1
  year: 2004
  end-page: 32
  article-title: Plant functional trait responses to grassland succession over 25 years
  publication-title: Journal of Vegetation Science
– volume: 58
  start-page: 2305
  issue: 10
  year: 2021
  end-page: 2314
  article-title: Tree species richness promotes an early increase of stand structural complexity in young subtropical plantations
  publication-title: Journal of Applied Ecology
– volume: 92
  start-page: 1573
  issue: 8
  year: 2011
  end-page: 1581
  article-title: Functional and phylogenetic diversity as predictors of biodiversity‐ecosystem‐function relationships
  publication-title: Ecology
– volume: 14
  year: 2019
  article-title: Structural diversity as a predictor of ecosystem function
  publication-title: Environmental Research Letters
– volume: 30
  start-page: 129
  issue: 2
  year: 1960
  end-page: 164
  article-title: Changes in vegetation, structure, and growth of southwestern pine forests since white settlement
  publication-title: Ecological Monographs
– volume: 526
  start-page: 574
  issue: 7574
  year: 2015
  end-page: 577
  article-title: Biodiversity increases the resistance of ecosystem productivity to climate extremes
  publication-title: Nature
– volume: 10
  start-page: 2238
  year: 2020
  end-page: 2252
  article-title: Remotely sensed forest understory density and nest predator occurrence interact to predict suitable breeding habitat and the occurrence of a resident boreal bird species
  publication-title: Ecology and Evolution
– volume: 5
  start-page: 1374
  issue: 6
  year: 2014
  end-page: 1390
  article-title: LiDAR remote sensing of forest structure and GPS telemetry data provide insights on winter habitat selection of European roe deer
  publication-title: Forests
– volume: 114
  start-page: 490
  issue: 3
  year: 2010
  end-page: 495
  article-title: Composition versus physiognomy of vegetation as predictors of bird assemblages: The role of lidar
  publication-title: Remote Sensing of Environment
– volume: 5
  start-page: 730
  issue: 8
  year: 2014
  end-page: 738
  article-title: An introduction to radar image processing in ecology
  publication-title: Methods in Ecology and Evolution
– volume: 35
  start-page: 1
  issue: 1
  year: 1947
  end-page: 22
  article-title: Pattern and process in the plant community
  publication-title: Journal of Ecology
– volume: 59
  start-page: 812
  issue: 3
  year: 2022
  end-page: 821
  article-title: The long‐term impacts of deer herbivory in determining temperate forest stand and canopy structural complexity
  publication-title: Journal of Applied Ecology
– volume: 127
  start-page: 814
  issue: 6
  year: 2018
  end-page: 824
  article-title: LiDAR‐derived canopy structure supports the more‐individuals hypothesis for arthropod diversity in temperate forests
  publication-title: Oikos
– volume: 48
  start-page: 1079
  issue: 5
  year: 2011
  end-page: 1087
  article-title: Beyond species: Functional diversity and the maintenance of ecological processes and services
  publication-title: Journal of Applied Ecology
– volume: 19
  start-page: 1197
  issue: 5
  year: 2009
  end-page: 1210
  article-title: Revegetation in agricultural areas: The development of structural complexity and floristic diversity
  publication-title: Ecological Applications
– volume: 129
  start-page: 75
  year: 2000
  end-page: 87
  article-title: A new method for modeling the heterogeneity of forest structure
  publication-title: Forest Ecology and Management
– volume: 11
  start-page: 1
  issue: 2
  year: 2016
  end-page: 20
  article-title: Effects of vegetation structure on the location of lion kill sites in African thicket
  publication-title: PLoS One
– ident: e_1_2_10_115_1
  doi: 10.1016/j.agrformet.2019.107655
– ident: e_1_2_10_147_1
  doi: 10.1016/S0378-1127(99)00140-1
– ident: e_1_2_10_132_1
  doi: 10.1046/j.0305-0270.2003.00994.x
– ident: e_1_2_10_23_1
  doi: 10.1111/ecog.02813
– ident: e_1_2_10_29_1
  doi: 10.1111/btp.12814
– ident: e_1_2_10_68_1
  doi: 10.1007/s00442-004-1497-3
– ident: e_1_2_10_105_1
  doi: 10.1111/j.1461-0248.2006.00924.x
– ident: e_1_2_10_3_1
  doi: 10.1890/120150
– ident: e_1_2_10_89_1
  doi: 10.1002/eap.1791
– ident: e_1_2_10_46_1
  doi: 10.1111/1365-2745.13631
– ident: e_1_2_10_53_1
  doi: 10.1038/scientificamerican0575-90
– ident: e_1_2_10_74_1
  doi: 10.1016/S0034-4257(99)00052-8
– ident: e_1_2_10_137_1
  doi: 10.1038/s41598-019-45068-4
– ident: e_1_2_10_17_1
  doi: 10.1371/journal.pone.0167771
– ident: e_1_2_10_102_1
  doi: 10.1016/j.foreco.2022.120539
– ident: e_1_2_10_64_1
  doi: 10.3390/rs70708348
– ident: e_1_2_10_47_1
  doi: 10.1111/geb.13380
– ident: e_1_2_10_125_1
  doi: 10.1007/s00442-006-0467-3
– ident: e_1_2_10_54_1
  doi: 10.1016/j.foreco.2018.04.049
– ident: e_1_2_10_95_1
  doi: 10.1093/oso/9780198515708.003.0001
– ident: e_1_2_10_96_1
  doi: 10.1046/j.1461-0248.2003.00471.x
– ident: e_1_2_10_111_1
  doi: 10.1111/1365-2664.14095
– ident: e_1_2_10_58_1
  doi: 10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2
– ident: e_1_2_10_4_1
  doi: 10.1007/BF00323530
– ident: e_1_2_10_97_1
  doi: 10.1093/biosci/biu189
– ident: e_1_2_10_44_1
  doi: 10.1046/j.1461-0248.2001.00230.x
– ident: e_1_2_10_33_1
  doi: 10.1016/j.agrformet.2017.04.012
– ident: e_1_2_10_67_1
  doi: 10.1111/een.12251
– ident: e_1_2_10_82_1
  doi: 10.1088/1748-9326/ab2dcd
– ident: e_1_2_10_78_1
  doi: 10.1109/LGRS.2010.2079913
– ident: e_1_2_10_26_1
  doi: 10.1016/j.biocon.2019.01.032
– ident: e_1_2_10_45_1
  doi: 10.1002/ecy.2864
– ident: e_1_2_10_93_1
  doi: 10.1016/j.ecolind.2021.108156
– ident: e_1_2_10_34_1
  doi: 10.1038/s41467-020-20767-z
– ident: e_1_2_10_79_1
  doi: 10.1016/j.scitotenv.2017.08.018
– ident: e_1_2_10_94_1
  doi: 10.1890/08-0939.1
– ident: e_1_2_10_72_1
  doi: 10.1007/s00468-018-1704-1
– ident: e_1_2_10_138_1
  doi: 10.1890/11.WB.009
– ident: e_1_2_10_6_1
  doi: 10.1016/j.rse.2012.06.012
– ident: e_1_2_10_62_1
  doi: 10.1111/geb.13516
– ident: e_1_2_10_36_1
  doi: 10.3390/f5061374
– ident: e_1_2_10_143_1
  doi: 10.1890/0012-9658(2000)081[0887:BAEFIO]2.0.CO;2
– ident: e_1_2_10_144_1
  doi: 10.1016/j.foreco.2013.07.023
– ident: e_1_2_10_39_1
  doi: 10.1126/sciadv.1501392
– ident: e_1_2_10_141_1
  doi: 10.1007/s00442-004-1644-x
– ident: e_1_2_10_145_1
  doi: 10.1016/j.tree.2018.12.012
– ident: e_1_2_10_104_1
  doi: 10.1890/ES15-00121.1
– ident: e_1_2_10_20_1
  doi: 10.1186/s41610-016-0020-1
– ident: e_1_2_10_70_1
  doi: 10.1016/j.jag.2018.07.001
– ident: e_1_2_10_107_1
  doi: 10.1016/j.rse.2011.01.026
– volume-title: Species diversity in ecological communities: Historical and geographical perspectives
  year: 1993
  ident: e_1_2_10_114_1
– ident: e_1_2_10_65_1
  doi: 10.1111/j.1466-8238.2007.00379.x
– ident: e_1_2_10_55_1
  doi: 10.1038/nature15374
– ident: e_1_2_10_119_1
  doi: 10.1111/nph.15934
– ident: e_1_2_10_106_1
  doi: 10.1016/j.foreco.2021.119093
– ident: e_1_2_10_121_1
  doi: 10.1038/s41467-019-09448-8
– ident: e_1_2_10_9_1
  doi: 10.1111/1365-2435.13983
– ident: e_1_2_10_81_1
  doi: 10.2307/1932254
– ident: e_1_2_10_66_1
  doi: 10.1002/ece3.6062
– volume-title: R: A language and environment for statistical computing
  year: 2015
  ident: e_1_2_10_108_1
– ident: e_1_2_10_126_1
  doi: 10.1146/annurev.ecolsys.36.102003.152636
– ident: e_1_2_10_75_1
  doi: 10.1016/j.rse.2021.112764
– volume: 114
  start-page: 1
  issue: 4
  year: 2009
  ident: e_1_2_10_13_1
  article-title: Remote sensing of vegetation 3‐D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions
  publication-title: Journal of Geophysical Research: Biogeosciences
– ident: e_1_2_10_49_1
  doi: 10.1890/10-2192.1
– ident: e_1_2_10_38_1
  doi: 10.1016/j.agrformet.2017.12.251
– ident: e_1_2_10_60_1
  doi: 10.3390/rs3112346
– ident: e_1_2_10_37_1
  doi: 10.1890/10-1245.1
– ident: e_1_2_10_63_1
  doi: 10.1139/X10-024
– ident: e_1_2_10_140_1
  doi: 10.3390/s101109647
– ident: e_1_2_10_131_1
  doi: 10.1016/j.foreco.2018.10.035
– ident: e_1_2_10_142_1
  doi: 10.2307/2256497
– ident: e_1_2_10_24_1
  doi: 10.1007/s00442-016-3623-4
– ident: e_1_2_10_122_1
  doi: 10.1007/978-3-642-58001-7
– ident: e_1_2_10_43_1
  doi: 10.1007/s11676-018-0746-y
– volume: 93
  start-page: 75
  issue: 1
  year: 2020
  ident: e_1_2_10_59_1
  article-title: Effect of tree species mixing on stand structural complexity
  publication-title: Forestry
– ident: e_1_2_10_2_1
  doi: 10.1016/j.foreco.2018.10.024
– ident: e_1_2_10_11_1
  doi: 10.1111/2041-210X.13726
– ident: e_1_2_10_76_1
  doi: 10.1111/rec.13218
– ident: e_1_2_10_25_1
  doi: 10.1016/j.tree.2014.10.005
– ident: e_1_2_10_40_1
  doi: 10.1890/14-1593.1
– ident: e_1_2_10_10_1
  doi: 10.1038/s41467-019-12737-x
– ident: e_1_2_10_18_1
  doi: 10.1016/j.foreco.2021.119641
– ident: e_1_2_10_35_1
  doi: 10.1038/35075055
– ident: e_1_2_10_98_1
  doi: 10.1016/j.rse.2012.08.014
– ident: e_1_2_10_52_1
  doi: 10.1890/04-0922
– ident: e_1_2_10_100_1
  doi: 10.1086/303340
– ident: e_1_2_10_12_1
  doi: 10.1071/WR07100
– ident: e_1_2_10_27_1
  doi: 10.1371/journal.pone.0149098
– ident: e_1_2_10_22_1
  doi: 10.2307/1948549
– ident: e_1_2_10_15_1
  doi: 10.1007/s11056-019-09754-5
– ident: e_1_2_10_123_1
  doi: 10.1111/1365-2664.12607
– ident: e_1_2_10_130_1
  doi: 10.1016/j.ecss.2015.04.008
– ident: e_1_2_10_41_1
  doi: 10.1111/oik.01549
– ident: e_1_2_10_50_1
  doi: 10.1038/s41559-020-1245-z
– ident: e_1_2_10_112_1
  doi: 10.1016/j.tree.2009.03.018
– ident: e_1_2_10_86_1
  doi: 10.1007/s10980-018-0639-7
– ident: e_1_2_10_120_1
  doi: 10.3390/rs11192222
– ident: e_1_2_10_73_1
  doi: 10.1029/2010GL043622
– ident: e_1_2_10_91_1
  doi: 10.1111/oik.04972
– ident: e_1_2_10_127_1
  doi: 10.1111/brv.12135
– ident: e_1_2_10_87_1
  doi: 10.1111/1365-2435.13585
– ident: e_1_2_10_77_1
  doi: 10.1111/1365-2745.13837
– ident: e_1_2_10_48_1
  doi: 10.1111/jvs.12451
– ident: e_1_2_10_128_1
  doi: 10.1111/2041-210X.12214
– ident: e_1_2_10_129_1
  doi: 10.1007/s10980-021-01195-w
– ident: e_1_2_10_101_1
  doi: 10.1016/S0378-1127(97)00192-8
– ident: e_1_2_10_139_1
  doi: 10.1002/ecs2.3390
– ident: e_1_2_10_42_1
  doi: 10.1080/2150704X.2015.1088671
– ident: e_1_2_10_135_1
  doi: 10.1146/annurev-ecolsys-120213-091917
– ident: e_1_2_10_14_1
  doi: 10.1111/j.1365-2664.2011.02048.x
– ident: e_1_2_10_61_1
  doi: 10.1111/j.1654-1103.2004.tb02233.x
– ident: e_1_2_10_90_1
  doi: 10.1016/j.foreco.2013.10.014
– ident: e_1_2_10_146_1
  doi: 10.1016/j.agee.2019.06.003
– ident: e_1_2_10_16_1
  doi: 10.3390/f10020145
– ident: e_1_2_10_110_1
  doi: 10.7882/FS.2004.004
– ident: e_1_2_10_71_1
  doi: 10.1088/1748-9326/ab49bb
– ident: e_1_2_10_80_1
  doi: 10.1126/science.1064088
– volume-title: Biodiversity: Structure and function. Encyclopedia of life support systems (EOLSS)
  year: 2005
  ident: e_1_2_10_118_1
– ident: e_1_2_10_28_1
  doi: 10.1016/j.agrformet.2019.02.015
– ident: e_1_2_10_57_1
  doi: 10.1111/j.0030-1299.2008.16401.x
– ident: e_1_2_10_32_1
  doi: 10.1073/pnas.2001823117
– ident: e_1_2_10_92_1
  doi: 10.1016/j.rse.2009.10.006
– ident: e_1_2_10_7_1
  doi: 10.1111/2041-210X.13061
– ident: e_1_2_10_103_1
  doi: 10.1111/1365-2664.13973
– ident: e_1_2_10_116_1
  doi: 10.3390/rs10040629
– ident: e_1_2_10_109_1
  doi: 10.1636/0161-8202(2001)029[0227:DTSCOA]2.0.CO;2
– ident: e_1_2_10_117_1
  doi: 10.1111/cobi.12397
– ident: e_1_2_10_31_1
  doi: 10.1007/s11676-019-01013-9
– ident: e_1_2_10_51_1
  doi: 10.1007/s00468-010-0452-7
– ident: e_1_2_10_136_1
  doi: 10.1016/j.gecco.2022.e02092
– ident: e_1_2_10_83_1
  doi: 10.1007/BF00378225
– ident: e_1_2_10_113_1
  doi: 10.1111/2041-210X.12385
– ident: e_1_2_10_85_1
  doi: 10.1007/s10980-016-0367-9
– ident: e_1_2_10_5_1
  doi: 10.1111/geb.13038
– volume: 50
  start-page: 342
  issue: 3
  year: 2004
  ident: e_1_2_10_56_1
  article-title: Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems
  publication-title: Forest Science
  doi: 10.1093/forestscience/50.3.342
– ident: e_1_2_10_8_1
  doi: 10.1002/2017JG004256
– ident: e_1_2_10_19_1
  doi: 10.1146/annurev-ecolsys-120213-091540
– ident: e_1_2_10_69_1
  doi: 10.1016/j.ecolind.2021.107757
– ident: e_1_2_10_124_1
  doi: 10.1111/j.1523-1739.2012.01869.x
– ident: e_1_2_10_30_1
  doi: 10.1016/S0921-8009(02)00089-7
– ident: e_1_2_10_133_1
  doi: 10.3389/fevo.2016.00066
– ident: e_1_2_10_134_1
  doi: 10.1016/B0-12-226865-2/00132-2
– ident: e_1_2_10_21_1
  doi: 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2
– ident: e_1_2_10_84_1
  doi: 10.1016/j.foreco.2005.08.034
– ident: e_1_2_10_88_1
  doi: 10.1111/1365-2664.13895
– ident: e_1_2_10_99_1
  doi: 10.1111/btp.12627
SSID ssj0006750
Score 2.596983
SecondaryResourceType review_article
Snippet Vegetation structural complexity (VSC)—the three‐dimensional distribution of plants within an ecosystem—is an important ecological trait. To date, research has...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1378
SubjectTerms active remote sensing
Biodiversity
biodiversity‐ecosystem functioning
canopy structural complexity
Complexity
Detection
Ecological effects
Ecological function
ecosystem function and services
Ecosystems
Environmental restoration
fauna
habitats
LiDAR
Microclimate
Plant communities
plant community ecology
Plant diversity
Plants
Plants (botany)
Provisioning
RADAR
radio
Redundancy
Remote sensing
Restoration
restoration and management
Shape
species diversity
Vegetation
Title Unravelling the relationship between plant diversity and vegetation structural complexity: A review and theoretical framework
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.14068
https://www.proquest.com/docview/2832923333
https://www.proquest.com/docview/2849898322
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4iDnzxMhWnUyL44EtHL2nT-jZlIgN9EAe-ldyq4uiGOnGC_91z0mZOQUTsS0Ob0DTJSb603_kOIYcq1TJIfO3BWXosUtITOkm8TAF6L6QQgUIH54vL5HzA-jexYxOiL0ylDzH74IaWYedrNHAhn-aMvPamYjEYu5-guy9eQVh09SkgBXDYd3rhPuO8FvdBLs-38l_XpU-wOQ9Z7Zpztkqkq21FNXnoTJ5lR719E3L81-uskZUakdJuNYTWyYIpm6RRxaicNsnSyQjwIyQaPStwPd0g74MSgxZZNW8KAJI-Okbd3f2Y1swvOh5Cp1HteB9UlJq-mNua3kgr4VoU_aCW1m5eIdMx7dLKmcZmn_OypIVjkW2SwVnv-vTcq8M4eCqC6cGLAwXjQIpQwGZJC80VC4qQF4kGcMSLIhSCi8xEmdZMxxkLAx0xFQsApryIdBptkcVyVJptQsMC5kQW6oTrmMk4kDw2wmjBE1_JNEpbpOM6MVe1xjmG2hjmbq-DzZxjM-e2mVvkaFZgXMl7_Jy17UZFXtv5U46BngAiw9EiB7PbYKH420WUZjTBPAyDdMLMCdWzQ-C3R-X93qlN7Py1wC5ZDgGFVXziNlmErjR7gJqe5b41jA-ZHQ2l
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VQtVeeJRWbGmLkUDiklXiOHEWqYc-tto-D6gr9Rb8ClStsiv6YpH4U_wV_lDHjr3dVkKIQw_kkkhxspZnxv6c_eYbgHeq0DLJYx3hWUYsVTISOs-jjkL0XkkhEmUTnA8O816f7R5nx1PwK-TCNPoQ4w9uNjLcfG0D3H6Qnohyn07FMoz2OC88sXLPjK5x23a-trOFNn5P6Xb3aLMX-coCkUrRY6MsUdg1KahA_K6F5oolFeVVrnG95lVFheCiY9KO1kxnHUYTnTKVCcRKvEp1keJ7H8FjW0fc6vVvfbqVrEIAHgeF8phx7uWELHvoXofvroS38HYSJLtVbvsZ_A7j05BbTtuXF7KtftyTjvy_BvA5PPWgm6w3UfICpkw9DzNNGc7RPDzZGCBExouZrtPwHr2En_3a1mVyguUEMTL5FkiDX0-GxJPbyPAM_ZLoQG0hotbkynzxDE7SaPNaXRPimPvmOzb6SNZJky_kmk8kkpIqEOUWoP8gw7EI0_WgNq-A0AqnfUZ1znXGZJZInhlhtOB5rGSRFi1oB68plZdxt9VEzsqwnbNmLa1ZS2fWFnwYPzBsFEz-3HQ5uGHpp7Lz0taywl0AHi14O76Nk5D9Z0nUZnBp2zBbhxQXB-ye87m__VS52910F0v_-sAbmO0dHeyX-zuHe69hjiLobOjTyzCNZjUrCBIv5KqLSgKfH9qLbwCAkm1V
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VQhEXHgXEQgEjgcQlq8Rx4gSJQ-nuqg-oEGKl3lI_aUWVXdEWWCR-FH-FX8TYsbdLJYQ49EAuiRQnsTwz9ufdb74BeKoqLbMy1QmeZcJyJROhyzKpFaJ3K4XIlEtwfrNbbo7Z9l6xtwQ_Yi5Mpw8x_8HNRYafr12AT7VdCPKQTcUKDPa0rAKvcsfMvuCu7fjl1gBN_IzS0fD9xmYSCgskKkeHTYpMYc-koALhuxaaK5ZZym2pcbnm1lIhuKhNXmvNdFEzmumcqUIgVOI211WO770El1mZ1q5axODdmWIV4u80CpSnjPOgJuTIQ-c6_PtCeIZuFzGyX-RGN-BnHJ6O2_Kxf3oi--rbOeXI_2r8bsL1ALnJehcjt2DJtKuw0hXhnK3ClVcTBMh4sTL0Ct6z2_B93LqqTF6unCBCJp8iZfDgcEoCtY1Mj9AriY7EFiJaTT6bD4G_STplXqdqQjxv33zFRi_IOumyhXzzhTRSYiNN7g6ML2Q47sJyO2nNPSDU4qTPqC65LpgsMskLI4wWvEyVrPKqB_3oNI0KIu6ulshREzdzzqyNM2vjzdqD5_MHpp1-yZ-brkUvbMJEdty4Sla4B8CjB0_mt3EKcv8ridZMTl0b5qqQ4tKA3fMu97dPNdvDDX9x_18feAxX3w5Gzeut3Z0HcI0i4uy402uwjFY1DxEhnshHPiYJ7F-0E_8CrctsBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unravelling+the+relationship+between+plant+diversity+and+vegetation+structural+complexity%3A+A+review+and+theoretical+framework&rft.jtitle=The+Journal+of+ecology&rft.au=Coverdale%2C+Tyler+C&rft.au=Davies%2C+Andrew+B&rft.date=2023-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=111&rft.issue=7&rft.spage=1378&rft.epage=1395&rft_id=info:doi/10.1111%2F1365-2745.14068&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon