Unravelling the relationship between plant diversity and vegetation structural complexity: A review and theoretical framework
Vegetation structural complexity (VSC)—the three‐dimensional distribution of plants within an ecosystem—is an important ecological trait. To date, research has focused primarily on the effects of VSC on ecological patterns and processes, but comparatively little is known about what drives variation...
Saved in:
Published in | The Journal of ecology Vol. 111; no. 7; pp. 1378 - 1395 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vegetation structural complexity (VSC)—the three‐dimensional distribution of plants within an ecosystem—is an important ecological trait. To date, research has focused primarily on the effects of VSC on ecological patterns and processes, but comparatively little is known about what drives variation in VSC.
Recent advances in active remote sensing technology, particularly light detection and ranging and radio detection and ranging, have allowed the measurement of VSC at unprecedented spatial scales and resolutions. Out of this and earlier work has emerged evidence that VSC is typically associated with greater ecosystem functioning (especially microclimate regulation, productivity, faunal diversity and habitat provisioning), making restoration of vegetation complexity a potentially powerful restoration tool.
Recent studies of VSC across natural and experimental gradients of plant diversity have also revealed that more diverse plant communities tend to be more structurally complex. However, the shape and generality of this relationship—and the mechanism(s) by which phytodiversity might contribute to structural complexity—remain poorly understood.
Here, we review how active remote sensing has facilitated recent VSC research and shaped our understanding of the relationship between vegetation complexity and ecosystem function. We then present a theoretical framework for the relationship between phytodiversity and VSC based on classic biodiversity‐ecosystem functioning principles. Finally, we evaluate the evidence for the notion that diverse plant assemblages tend to be more structurally complex and explore the shape of the relationship between phytodiversity and VSC using data from 13 recent remote sensing studies.
Synthesis. The relationship between phytodiversity and VSC appears to be almost universally positive. Preliminary evidence further suggests that the most common relationships between phytodiversity and VSC are linear or saturating, indicating that the extent of functional redundancy between species varies across plant communities and ecosystems. In contrast, we find little evidence for exponential or negative relationships between plant diversity and VSC, suggesting that even modest increases in plant diversity could markedly increase structural complexity. Additional investigations of phytodiversity‐VSC relationships are necessary to establish whether the observed positive relationships are causal (and, if so, in which direction) and to clarify the potential impact of plant community restoration on structural complexity and broader ecosystem function.
Vegetation structural complexity (VSC) is an important ecosystem trait that is typically associated with greater ecological functioning. Recent studies have also revealed that more diverse plant communities tend to be more structurally complex. However, the shape and generality of this relationship—and the mechanism(s) by which phytodiversity might contribute to structural complexity—remain poorly understood. We propose a theoretical framework for the relationship between phytodiversity and VSC based on classic biodiversity‐ecosystem functioning principles. Using data from recently published studies that compare VSC across phytodiversity gradients, we find that the relationship between phytodiversity and VSC appears to be almost universally positive. |
---|---|
AbstractList | Vegetation structural complexity (VSC)—the three‐dimensional distribution of plants within an ecosystem—is an important ecological trait. To date, research has focused primarily on the
effects
of VSC on ecological patterns and processes, but comparatively little is known about what drives variation in VSC.
Recent advances in active remote sensing technology, particularly light detection and ranging and radio detection and ranging, have allowed the measurement of VSC at unprecedented spatial scales and resolutions. Out of this and earlier work has emerged evidence that VSC is typically associated with greater ecosystem functioning (especially microclimate regulation, productivity, faunal diversity and habitat provisioning), making restoration of vegetation complexity a potentially powerful restoration tool.
Recent studies of VSC across natural and experimental gradients of plant diversity have also revealed that more diverse plant communities tend to be more structurally complex. However, the shape and generality of this relationship—and the mechanism(s) by which phytodiversity might contribute to structural complexity—remain poorly understood.
Here, we review how active remote sensing has facilitated recent VSC research and shaped our understanding of the relationship between vegetation complexity and ecosystem function. We then present a theoretical framework for the relationship between phytodiversity and VSC based on classic biodiversity‐ecosystem functioning principles. Finally, we evaluate the evidence for the notion that diverse plant assemblages tend to be more structurally complex and explore the shape of the relationship between phytodiversity and VSC using data from 13 recent remote sensing studies.
Synthesis
. The relationship between phytodiversity and VSC appears to be almost universally positive. Preliminary evidence further suggests that the most common relationships between phytodiversity and VSC are linear or saturating, indicating that the extent of functional redundancy between species varies across plant communities and ecosystems. In contrast, we find little evidence for exponential or negative relationships between plant diversity and VSC, suggesting that even modest increases in plant diversity could markedly increase structural complexity. Additional investigations of phytodiversity‐VSC relationships are necessary to establish whether the observed positive relationships are causal (and, if so, in which direction) and to clarify the potential impact of plant community restoration on structural complexity and broader ecosystem function. Vegetation structural complexity (VSC)—the three‐dimensional distribution of plants within an ecosystem—is an important ecological trait. To date, research has focused primarily on the effects of VSC on ecological patterns and processes, but comparatively little is known about what drives variation in VSC. Recent advances in active remote sensing technology, particularly light detection and ranging and radio detection and ranging, have allowed the measurement of VSC at unprecedented spatial scales and resolutions. Out of this and earlier work has emerged evidence that VSC is typically associated with greater ecosystem functioning (especially microclimate regulation, productivity, faunal diversity and habitat provisioning), making restoration of vegetation complexity a potentially powerful restoration tool. Recent studies of VSC across natural and experimental gradients of plant diversity have also revealed that more diverse plant communities tend to be more structurally complex. However, the shape and generality of this relationship—and the mechanism(s) by which phytodiversity might contribute to structural complexity—remain poorly understood. Here, we review how active remote sensing has facilitated recent VSC research and shaped our understanding of the relationship between vegetation complexity and ecosystem function. We then present a theoretical framework for the relationship between phytodiversity and VSC based on classic biodiversity‐ecosystem functioning principles. Finally, we evaluate the evidence for the notion that diverse plant assemblages tend to be more structurally complex and explore the shape of the relationship between phytodiversity and VSC using data from 13 recent remote sensing studies. Synthesis. The relationship between phytodiversity and VSC appears to be almost universally positive. Preliminary evidence further suggests that the most common relationships between phytodiversity and VSC are linear or saturating, indicating that the extent of functional redundancy between species varies across plant communities and ecosystems. In contrast, we find little evidence for exponential or negative relationships between plant diversity and VSC, suggesting that even modest increases in plant diversity could markedly increase structural complexity. Additional investigations of phytodiversity‐VSC relationships are necessary to establish whether the observed positive relationships are causal (and, if so, in which direction) and to clarify the potential impact of plant community restoration on structural complexity and broader ecosystem function. Vegetation structural complexity (VSC) is an important ecosystem trait that is typically associated with greater ecological functioning. Recent studies have also revealed that more diverse plant communities tend to be more structurally complex. However, the shape and generality of this relationship—and the mechanism(s) by which phytodiversity might contribute to structural complexity—remain poorly understood. We propose a theoretical framework for the relationship between phytodiversity and VSC based on classic biodiversity‐ecosystem functioning principles. Using data from recently published studies that compare VSC across phytodiversity gradients, we find that the relationship between phytodiversity and VSC appears to be almost universally positive. Vegetation structural complexity (VSC)—the three‐dimensional distribution of plants within an ecosystem—is an important ecological trait. To date, research has focused primarily on the effects of VSC on ecological patterns and processes, but comparatively little is known about what drives variation in VSC.Recent advances in active remote sensing technology, particularly light detection and ranging and radio detection and ranging, have allowed the measurement of VSC at unprecedented spatial scales and resolutions. Out of this and earlier work has emerged evidence that VSC is typically associated with greater ecosystem functioning (especially microclimate regulation, productivity, faunal diversity and habitat provisioning), making restoration of vegetation complexity a potentially powerful restoration tool.Recent studies of VSC across natural and experimental gradients of plant diversity have also revealed that more diverse plant communities tend to be more structurally complex. However, the shape and generality of this relationship—and the mechanism(s) by which phytodiversity might contribute to structural complexity—remain poorly understood.Here, we review how active remote sensing has facilitated recent VSC research and shaped our understanding of the relationship between vegetation complexity and ecosystem function. We then present a theoretical framework for the relationship between phytodiversity and VSC based on classic biodiversity‐ecosystem functioning principles. Finally, we evaluate the evidence for the notion that diverse plant assemblages tend to be more structurally complex and explore the shape of the relationship between phytodiversity and VSC using data from 13 recent remote sensing studies.Synthesis. The relationship between phytodiversity and VSC appears to be almost universally positive. Preliminary evidence further suggests that the most common relationships between phytodiversity and VSC are linear or saturating, indicating that the extent of functional redundancy between species varies across plant communities and ecosystems. In contrast, we find little evidence for exponential or negative relationships between plant diversity and VSC, suggesting that even modest increases in plant diversity could markedly increase structural complexity. Additional investigations of phytodiversity‐VSC relationships are necessary to establish whether the observed positive relationships are causal (and, if so, in which direction) and to clarify the potential impact of plant community restoration on structural complexity and broader ecosystem function. |
Author | Coverdale, Tyler C. Davies, Andrew B. |
Author_xml | – sequence: 1 givenname: Tyler C. orcidid: 0000-0003-0910-9187 surname: Coverdale fullname: Coverdale, Tyler C. email: tyler_coverdale@nd.edu organization: University of Notre Dame – sequence: 2 givenname: Andrew B. orcidid: 0000-0002-0003-1435 surname: Davies fullname: Davies, Andrew B. organization: Harvard University |
BookMark | eNqFkbFvGyEYxVGVSnXczl2RsmQ5hwPuuMsWWUmbKFKXZkYYvktIMVyBs-Oh_3uxHXXI0LwFCf3e4_t4p-jEBw8Ifa3Joi66qFnbVFTwZlFz0nYf0OzfzQmaEUJpRbgQn9BpSs-EkFY0ZIb-PPioNuCc9Y84PwGO4FS2wacnO-IV5C2Ax6NTPmNjNxCTzTusvMEbeIR8QHHKcdJ5isphHdajg5cCXeKrEraxsD3gJTtEyFYXaIhqDdsQf31GHwflEnx5Pefo4eb65_J7df_j2-3y6r7SjHdd1dTarFYrRVVLWqOM0LweqBhaw_peDANVSqgeWG8MN03PaW0Y140SgouBmY7N0fkxd4zh9wQpy7VNumytPIQpSdrxvus7RmlBz96gz2GKvkxXKEZ7yvaao-ZI6RhSijBIbY-fkaOyTtZE7kuR-wrkvgJ5KKX4Lt74xmjXKu7-43h9aWsd7N7D5d318uj7C_EXogU |
CitedBy_id | crossref_primary_10_1016_j_rse_2024_114317 crossref_primary_10_1126_sciadv_adi2362 crossref_primary_10_1016_j_ecolind_2024_113061 crossref_primary_10_1002_ece3_70623 crossref_primary_10_1016_j_agee_2024_109453 crossref_primary_10_1016_j_ecoinf_2024_102813 crossref_primary_10_1126_science_ado1629 crossref_primary_10_1016_j_rama_2024_09_001 crossref_primary_10_1016_j_ecolind_2025_113085 crossref_primary_10_1016_j_scs_2024_106012 crossref_primary_10_1016_j_landurbplan_2025_105318 crossref_primary_10_1016_j_ecolind_2024_111827 crossref_primary_10_1016_j_ufug_2024_128647 crossref_primary_10_1002_rse2_398 crossref_primary_10_1016_j_scitotenv_2024_175438 crossref_primary_10_1016_j_ecolind_2024_112367 crossref_primary_10_3390_f15091670 crossref_primary_10_1038_s41467_024_52468_2 crossref_primary_10_1111_ecog_06833 crossref_primary_10_1002_ecy_4500 crossref_primary_10_1016_j_foreco_2023_121627 crossref_primary_10_1038_s41586_023_06086_5 crossref_primary_10_1016_j_ecolind_2025_113374 crossref_primary_10_1016_j_ecolind_2024_111816 crossref_primary_10_1016_j_rse_2024_114545 crossref_primary_10_1016_j_scitotenv_2023_166201 crossref_primary_10_1016_j_ecolind_2024_112306 crossref_primary_10_1002_ecm_1624 |
Cites_doi | 10.1016/j.agrformet.2019.107655 10.1016/S0378-1127(99)00140-1 10.1046/j.0305-0270.2003.00994.x 10.1111/ecog.02813 10.1111/btp.12814 10.1007/s00442-004-1497-3 10.1111/j.1461-0248.2006.00924.x 10.1890/120150 10.1002/eap.1791 10.1111/1365-2745.13631 10.1038/scientificamerican0575-90 10.1016/S0034-4257(99)00052-8 10.1038/s41598-019-45068-4 10.1371/journal.pone.0167771 10.1016/j.foreco.2022.120539 10.3390/rs70708348 10.1111/geb.13380 10.1007/s00442-006-0467-3 10.1016/j.foreco.2018.04.049 10.1093/oso/9780198515708.003.0001 10.1046/j.1461-0248.2003.00471.x 10.1111/1365-2664.14095 10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2 10.1007/BF00323530 10.1093/biosci/biu189 10.1046/j.1461-0248.2001.00230.x 10.1016/j.agrformet.2017.04.012 10.1111/een.12251 10.1088/1748-9326/ab2dcd 10.1109/LGRS.2010.2079913 10.1016/j.biocon.2019.01.032 10.1002/ecy.2864 10.1016/j.ecolind.2021.108156 10.1038/s41467-020-20767-z 10.1016/j.scitotenv.2017.08.018 10.1890/08-0939.1 10.1007/s00468-018-1704-1 10.1890/11.WB.009 10.1016/j.rse.2012.06.012 10.1111/geb.13516 10.3390/f5061374 10.1890/0012-9658(2000)081[0887:BAEFIO]2.0.CO;2 10.1016/j.foreco.2013.07.023 10.1126/sciadv.1501392 10.1007/s00442-004-1644-x 10.1016/j.tree.2018.12.012 10.1890/ES15-00121.1 10.1186/s41610-016-0020-1 10.1016/j.jag.2018.07.001 10.1016/j.rse.2011.01.026 10.1111/j.1466-8238.2007.00379.x 10.1038/nature15374 10.1111/nph.15934 10.1016/j.foreco.2021.119093 10.1038/s41467-019-09448-8 10.1111/1365-2435.13983 10.2307/1932254 10.1002/ece3.6062 10.1146/annurev.ecolsys.36.102003.152636 10.1016/j.rse.2021.112764 10.1890/10-2192.1 10.1016/j.agrformet.2017.12.251 10.3390/rs3112346 10.1890/10-1245.1 10.1139/X10-024 10.3390/s101109647 10.1016/j.foreco.2018.10.035 10.2307/2256497 10.1007/s00442-016-3623-4 10.1007/978-3-642-58001-7 10.1007/s11676-018-0746-y 10.1016/j.foreco.2018.10.024 10.1111/2041-210X.13726 10.1111/rec.13218 10.1016/j.tree.2014.10.005 10.1890/14-1593.1 10.1038/s41467-019-12737-x 10.1016/j.foreco.2021.119641 10.1038/35075055 10.1016/j.rse.2012.08.014 10.1890/04-0922 10.1086/303340 10.1071/WR07100 10.1371/journal.pone.0149098 10.2307/1948549 10.1007/s11056-019-09754-5 10.1111/1365-2664.12607 10.1016/j.ecss.2015.04.008 10.1111/oik.01549 10.1038/s41559-020-1245-z 10.1016/j.tree.2009.03.018 10.1007/s10980-018-0639-7 10.3390/rs11192222 10.1029/2010GL043622 10.1111/oik.04972 10.1111/brv.12135 10.1111/1365-2435.13585 10.1111/1365-2745.13837 10.1111/jvs.12451 10.1111/2041-210X.12214 10.1007/s10980-021-01195-w 10.1016/S0378-1127(97)00192-8 10.1002/ecs2.3390 10.1080/2150704X.2015.1088671 10.1146/annurev-ecolsys-120213-091917 10.1111/j.1365-2664.2011.02048.x 10.1111/j.1654-1103.2004.tb02233.x 10.1016/j.foreco.2013.10.014 10.1016/j.agee.2019.06.003 10.3390/f10020145 10.7882/FS.2004.004 10.1088/1748-9326/ab49bb 10.1126/science.1064088 10.1016/j.agrformet.2019.02.015 10.1111/j.0030-1299.2008.16401.x 10.1073/pnas.2001823117 10.1016/j.rse.2009.10.006 10.1111/2041-210X.13061 10.1111/1365-2664.13973 10.3390/rs10040629 10.1636/0161-8202(2001)029[0227:DTSCOA]2.0.CO;2 10.1111/cobi.12397 10.1007/s11676-019-01013-9 10.1007/s00468-010-0452-7 10.1016/j.gecco.2022.e02092 10.1007/BF00378225 10.1111/2041-210X.12385 10.1007/s10980-016-0367-9 10.1111/geb.13038 10.1093/forestscience/50.3.342 10.1002/2017JG004256 10.1146/annurev-ecolsys-120213-091540 10.1016/j.ecolind.2021.107757 10.1111/j.1523-1739.2012.01869.x 10.1016/S0921-8009(02)00089-7 10.3389/fevo.2016.00066 10.1016/B0-12-226865-2/00132-2 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2 10.1016/j.foreco.2005.08.034 10.1111/1365-2664.13895 10.1111/btp.12627 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Journal of Ecology © 2023 British Ecological Society. Journal of Ecology © 2023 British Ecological Society |
Copyright_xml | – notice: 2023 The Authors. Journal of Ecology © 2023 British Ecological Society. – notice: Journal of Ecology © 2023 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
DOI | 10.1111/1365-2745.14068 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Botany |
EISSN | 1365-2745 |
EndPage | 1395 |
ExternalDocumentID | 10_1111_1365_2745_14068 JEC14068 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Star‐Friedman Challenge for Promising Scientific Research, Harvard University |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29K 2AX 2WC 3-9 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPFR ABPLY ABPPZ ABPQH ABPVW ABTAH ABTLG ABXSQ ABYAD ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACHIC ACNCT ACPOU ACPRK ACSCC ACSTJ ACTWD ACUBG ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADULT ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFXHP AFZJQ AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CUYZI D-E D-F D-I DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EAU EBS ECGQY EJD ESX F00 F01 F04 F5P FVMVE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 UPT V8K W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH Y6R YF5 YQT YXE YZZ ZCA ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABAWQ ABSQW ACHJO AEYWJ AGHNM AGUYK AGYGG CITATION 7QG 7SN 7SS 7ST 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3488-51cdbbba2a606dad7c41f27f6d3997ff2aa7a9e39dd4d59421d34c5a7747f3d83 |
IEDL.DBID | DR2 |
ISSN | 0022-0477 |
IngestDate | Fri Jul 11 18:33:10 EDT 2025 Fri Jul 25 10:50:44 EDT 2025 Tue Jul 01 03:13:55 EDT 2025 Thu Apr 24 23:10:52 EDT 2025 Wed Jan 22 16:20:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3488-51cdbbba2a606dad7c41f27f6d3997ff2aa7a9e39dd4d59421d34c5a7747f3d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0910-9187 0000-0002-0003-1435 |
PQID | 2832923333 |
PQPubID | 37508 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2849898322 proquest_journals_2832923333 crossref_citationtrail_10_1111_1365_2745_14068 crossref_primary_10_1111_1365_2745_14068 wiley_primary_10_1111_1365_2745_14068_JEC14068 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 20230701 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The Journal of ecology |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2011; 115 2010; 10 1960; 30 2012; 124 2019; 11 2019; 10 2019; 14 2005; 218 2016; 31 2008; 35 2018; 41 1975; 232 2014; 29 2020; 10 2019; 283 2012; 127 2009; 114 2018; 610–611 2018; 9 2004; 31 2010; 24 2020; 93 2010; 114 2000; 129 2022; 35 2019; 432 2022; 36 2005; 75 2019; 278 2008; 117 2019; 433 2022; 31 2012; 26 2015; 90 2018; 33 2009; 19 2018; 32 2001; 411 2022; 110 2018; 28 2019; 9 2019; 269–270 2010; 37 2015; 124 2004; 141 2019; 34 2019; 224 2015; 526 2020; 34 1993 2001; 29 2011; 3 2014; 45 2019; 100 2011; 8 2014; 312 2010; 40 2016; 11 2011; 9 2004; 54 2021; 58 2016; 4 2004; 50 2016; 2 2020; 31 2011; 92 2015; 65 2020; 28 2021; 490 2022; 13 2000; 81 2021; 131 2016; 27 2018; 10 2020; 29 2017; 41 2019; 51 2018; 127 2018; 123 2021; 127 2016; 182 2021; 30 1983; 56 2021; 36 2014; 5 2020; 4 2001; 294 2013; 11 2002; 41 1997; 99 2001 2020; 52 1947; 35 2020; 51 2015; 40 2003; 6 2018; 250–251 2018; 73 1961; 42 2017; 242 2004; 139 2022; 525 2019; 232 2005; 36 2021; 109 2009; 24 2015; 161 2015; 6 2013; 307 2018; 424 2021; 500 2006; 9 2008; 17 2016; 53 2005 2004 2000; 155 2002 2015; 7 1990; 82 2015; 25 2021; 12 2015; 29 2001; 4 2004; 15 1997; 78 2020; 117 2022; 59 2015 2011; 48 2006; 149 1999; 70 2022; 268 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_131_1 R Core Development Team (e_1_2_10_108_1) 2015 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_147_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 Juchheim J. (e_1_2_10_59_1) 2020; 93 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 Bergen K. M. (e_1_2_10_13_1) 2009; 114 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_80_1 Scherer‐Lorenzen M. (e_1_2_10_118_1) 2005 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_43_1 Ishii H. T. (e_1_2_10_56_1) 2004; 50 e_1_2_10_20_1 e_1_2_10_130_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 Ricklefs R. E. (e_1_2_10_114_1) 1993 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 28 start-page: 2024 issue: 8 year: 2018 end-page: 2032 article-title: Direct and cascading effects of landscape structure on tropical forest and non‐forest frugivorous birds publication-title: Ecological Applications – volume: 232 start-page: 90 issue: 5 year: 1975 end-page: 101 article-title: Forest succession publication-title: Scientific American – start-page: 23 year: 2004 end-page: 35 – volume: 307 start-page: 303 year: 2013 end-page: 312 article-title: Remotely sensed forest structural complexity predicts multi species occurence at the landscape scale publication-title: Forest Ecology and Management – volume: 4 start-page: 1204 issue: 9 year: 2020 end-page: 1212 article-title: Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests publication-title: Nature Ecology and Evolution – volume: 14 start-page: 094013 issue: 9 year: 2019 article-title: Exploring the relation between remotely sensed vertical canopy structure and tree species diversity in Gabon publication-title: Environmental Research Letters – volume: 12 start-page: 1 issue: 1 year: 2021 end-page: 12 article-title: Global patterns and climatic controls of forest structural complexity publication-title: Nature Communications – volume: 70 start-page: 339 issue: 3 year: 1999 end-page: 361 article-title: Lidar remote sensing of the canopy structure and biophysical properties of Douglas‐fir western hemlock forests publication-title: Remote Sensing of Environment – volume: 37 issue: 15 year: 2010 article-title: A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system publication-title: Geophysical Research Letters – volume: 127 start-page: 98 year: 2012 end-page: 105 article-title: LiDAR measurements of canopy structure predict spatial distribution of a tropical mature forest primate publication-title: Remote Sensing of Environment – year: 2005 – volume: 9 start-page: 2057 issue: 10 year: 2018 end-page: 2066 article-title: Quantifying vegetation and canopy structural complexity from terrestrial LiDAR data using the forestr r package publication-title: Methods in Ecology and Evolution – volume: 92 start-page: 1818 issue: 9 year: 2011 end-page: 1827 article-title: The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest publication-title: Ecology – volume: 10 start-page: 1 issue: 2 year: 2019 end-page: 26 article-title: Comparison of UAV LiDAR and digital aerial photogrammetry point clouds for estimating forest structural attributes in subtropical planted forests publication-title: Forests – volume: 13 start-page: 121 year: 2022 end-page: 132 article-title: Tracking the temporal dynamics of insect defoliation by high‐resolution radar satellite data publication-title: Methods in Ecology and Evolution – volume: 155 start-page: 473 issue: 4 year: 2000 end-page: 484 article-title: Forest canopy stratification—Is it useful? publication-title: American Naturalist – volume: 29 start-page: 681 issue: 12 year: 2014 end-page: 691 article-title: Advances in animal ecology from 3D‐LiDAR ecosystem mapping publication-title: Trends in Ecology and Evolution – volume: 433 start-page: 85 year: 2019 end-page: 92 article-title: Mammal functional diversity increases with vegetation structural complexity in two forest types publication-title: Forest Ecology and Management – volume: 45 start-page: 471 year: 2014 end-page: 493 article-title: Biodiversity and ecosystem functioning publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 29 start-page: 789 issue: 5 year: 2020 end-page: 802 article-title: Structural diversity underpins carbon storage in Australian temperate forests publication-title: Global Ecology and Biogeography – volume: 3 start-page: 2346 issue: 11 year: 2011 end-page: 2363 article-title: Estimating crown variables of individual trees using airborne and terrestrial laser scanners publication-title: Remote Sensing – volume: 114 start-page: 1 issue: 4 year: 2009 end-page: 13 article-title: Remote sensing of vegetation 3‐D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions publication-title: Journal of Geophysical Research: Biogeosciences – volume: 131 year: 2021 article-title: Characterizing vegetation complexity with unmanned aerial systems (UAS)—A framework and synthesis publication-title: Ecological Indicators – volume: 11 start-page: 2222 issue: 19 year: 2019 article-title: LiDAR prediction of small mammal diversity in Wisconsin, USA publication-title: Remote Sensing – volume: 6 start-page: 1 issue: 8 year: 2015 end-page: 25 article-title: Advances in restoration ecology: Rising to the challenges of the coming decades publication-title: Ecosphere – volume: 17 start-page: 327 issue: 3 year: 2008 end-page: 339 article-title: Spatial patterns of woody plant and bird diversity: Functional relationships or environmental effects? publication-title: Global Ecology and Biogeography – volume: 9 start-page: 261 issue: 5 year: 2011 end-page: 262 article-title: LiDAR: Providing structure publication-title: Frontiers in Ecology and the Environment – volume: 123 start-page: 1387 issue: 4 year: 2018 end-page: 1405 article-title: Forest canopy structural complexity and light absorption relationships at the subcontinental scale publication-title: Journal of Geophysical Research: Biogeosciences – volume: 73 start-page: 420 year: 2018 end-page: 427 article-title: Linking Landsat to terrestrial LiDAR: Vegetation metrics of forest greenness are correlated with canopy structural complexity publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 24 start-page: 505 issue: 9 year: 2009 end-page: 514 article-title: Emerging horizons in biodiversity and ecosystem functioning research publication-title: Trends in Ecology & Evolution – volume: 218 start-page: 1 issue: 1–3 year: 2005 end-page: 24 article-title: Forest and woodland stand structural complexity: Its definition and measurement publication-title: Forest Ecology and Management – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 11 article-title: Multiple plant diversity components drive consumer communities across ecosystems publication-title: Nature Communications – volume: 250–251 start-page: 181 year: 2018 end-page: 191 article-title: Forest structure in space and time: Biotic and abiotic determinants of canopy complexity and their effects on net primary productivity publication-title: Agricultural and Forest Meteorology – volume: 8 start-page: 426 issue: 3 year: 2011 end-page: 430 article-title: Mini‐UAV‐borne LIDAR for fine‐scale mapping publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 42 start-page: 594 issue: 3 year: 1961 end-page: 598 article-title: On bird species diversity publication-title: Ecology – volume: 36 start-page: 713 issue: 3 year: 2022 end-page: 726 article-title: Power law scaling relationships link canopy structural complexity and height across forest types publication-title: Functional Ecology – volume: 31 start-page: 1849 issue: 8 year: 2016 end-page: 1862 article-title: Movement patterns of three arboreal primates in a Neotropical moist forest explained by LiDAR‐estimated canopy structure publication-title: Landscape Ecology – volume: 124 start-page: 252 issue: 3 year: 2015 end-page: 265 article-title: Marine biodiversity and ecosystem functioning: What's known and what's next? publication-title: Oikos – volume: 109 start-page: 1969 issue: 5 year: 2021 end-page: 1985 article-title: Biodiversity facets affect community surface temperature via 3D canopy structure in grassland communities publication-title: Journal of Ecology – year: 1993 – volume: 81 start-page: 887 issue: 4 year: 2000 end-page: 892 article-title: Biodiversity and ecosystem functioning: Importance of species evenness in an old field publication-title: Ecology – volume: 33 start-page: 895 issue: 6 year: 2018 end-page: 910 article-title: Living on the edge: Utilising lidar data to assess the importance of vegetation structure for avian diversity in fragmented woodlands and their edges publication-title: Landscape Ecology – volume: 31 start-page: 79 issue: 1 year: 2004 end-page: 92 article-title: Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures publication-title: Journal of Biogeography – volume: 35 year: 2022 article-title: Compositional attributes of invaded forests drive the diversity of insect functional groups publication-title: Global Ecology and Conservation – volume: 31 start-page: 1440 issue: 7 year: 2022 end-page: 1460 article-title: Towards mapping biodiversity from above: Can fusing lidar and hyperspectral remote sensing predict taxonomic, functional, and phylogenetic tree diversity in temperate forests? publication-title: Global Ecology and Biogeography – volume: 52 start-page: 1155 issue: 6 year: 2020 end-page: 1167 article-title: Detecting successional changes in tropical forest structure using GatorEye drone‐borne lidar publication-title: Biotropica – volume: 127 year: 2021 article-title: Co‐occurrence patterns of tree‐related microhabitats: A method to simplify routine monitoring publication-title: Ecological Indicators – volume: 9 start-page: 741 issue: 6 year: 2006 end-page: 758 article-title: Functional diversity: Back to basics and looking forward publication-title: Ecology Letters – volume: 24 start-page: 819 issue: 5 year: 2010 end-page: 832 article-title: Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas‐fir dominated forest stand publication-title: Trees – volume: 50 start-page: 342 issue: 3 year: 2004 end-page: 355 article-title: Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems publication-title: Forest Science – volume: 11 start-page: 1 issue: 12 year: 2016 end-page: 13 article-title: Tree diversity enhances stand carbon storage but not leaf area in a subtropical forest publication-title: PLoS One – volume: 294 start-page: 804 issue: 5543 year: 2001 end-page: 808 article-title: Biodiversity and ecosystem functioning: Current knowledge and future challenges publication-title: Science – volume: 34 start-page: 1731 issue: 8 year: 2020 end-page: 1745 article-title: Structural complexity and large‐sized trees explain shifting species richness and carbon relationship across vegetation types publication-title: Functional Ecology – volume: 82 start-page: 162 issue: 2 year: 1990 end-page: 165 article-title: Plant structural complexity and host‐finding by a parasitoid publication-title: Oecologia – volume: 117 start-page: 488 issue: 4 year: 2008 end-page: 493 article-title: On the importance of the negative selection effect for the relationship between biodiversity and ecosystem functioning publication-title: Oikos – volume: 312 start-page: 129 year: 2014 end-page: 137 article-title: Airborne LiDAR reveals context dependence in the effects of canopy architecture on arthropod diversity publication-title: Forest Ecology and Management – volume: 182 start-page: 319 issue: 2 year: 2016 end-page: 333 article-title: Structural diversity promotes productivity of mixed, uneven‐aged forests in southwestern Germany publication-title: Oecologia – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 10 article-title: Radar vision in the mapping of forest biodiversity from space publication-title: Nature Communications – volume: 2 issue: 4 year: 2016 article-title: Spatial models reveal the microclimatic buffering capacity of old‐growth forests publication-title: Science Advances – volume: 41 start-page: 393 issue: 3 year: 2002 end-page: 408 article-title: A typology for the classification, description and valuation of ecosystem functions, goods and services publication-title: Ecological Economics – volume: 424 start-page: 216 year: 2018 end-page: 227 article-title: Tree monocultures in a biodiversity hotspot: Impact of pine plantations on mammal and bird assemblages in the Atlantic Forest publication-title: Forest Ecology and Management – volume: 610–611 start-page: 926 year: 2018 end-page: 936 article-title: The effect of grazing exclusion over time on structure, biodiversity, and regeneration of high nature value farmland ecosystems in Europe publication-title: Science of the Total Environment – volume: 56 start-page: 109 issue: 1 year: 1983 end-page: 116 article-title: The structural complexity of old field vegetation and the recruitment of bird‐dispersed plant species publication-title: Oecologia – volume: 99 start-page: 21 issue: 1–2 year: 1997 end-page: 42 article-title: Development of floristic diversity in 10‐year‐old restoration forests on a bauxite mined site in Amazonia publication-title: Forest Ecology and Management – volume: 29 start-page: 350 issue: 2 year: 2015 end-page: 359 article-title: Ten ways remote sensing can contribute to conservation publication-title: Conservation Biology – volume: 10 start-page: 9647 year: 2010 end-page: 9667 article-title: Remote sensing of ecology, biodiversity and conservation: A review from the perspective of remote sensing specialists publication-title: Sensors – volume: 232 start-page: 97 year: 2019 end-page: 107 article-title: Combining behavioural and LiDAR data to reveal relationships between canopy structure and orangutan nest site selection in disturbed forests publication-title: Biological Conservation – volume: 36 start-page: 1197 issue: 4 year: 2021 end-page: 1213 article-title: Understory vegetation contributes to microclimatic buffering of near‐surface temperatures in temperate deciduous forests publication-title: Landscape Ecology – volume: 41 start-page: 1 issue: 1 year: 2017 end-page: 8 article-title: Effects of vegetation structure and human impact on understory honey plant richness: Implications for pollinator visitation publication-title: Journal of Ecology and Environment – volume: 268 year: 2022 article-title: Large scale multi‐layer fuel load characterization in tropical savanna using GEDI spaceborne lidar data publication-title: Remote Sensing of Environment – volume: 93 start-page: 75 issue: 1 year: 2020 end-page: 83 article-title: Effect of tree species mixing on stand structural complexity publication-title: Forestry – volume: 7 start-page: 8348 issue: 7 year: 2015 end-page: 8367 article-title: Airborne LiDAR detects selectively logged tropical forest even in an advanced stage of recovery publication-title: Remote Sensing – volume: 10 start-page: 1 year: 2018 end-page: 19 article-title: Topography and three‐dimensional structure can estimate tree diversity along a tropical elevational gradient in Costa Rice publication-title: Remote Sensing – volume: 51 start-page: 245 issue: 2 year: 2019 end-page: 252 article-title: Lowland tapirs facilitate seed dispersal in degraded Amazonian forests publication-title: Biotropica – volume: 54 start-page: 535 issue: 6 year: 2004 end-page: 545 article-title: Landsat's role in ecological applications of remote sensing publication-title: Bioscience – volume: 141 start-page: 171 issue: 1 year: 2004 end-page: 178 article-title: Habitat structural complexity mediates the foraging success of multiple predator species publication-title: Oecologia – volume: 115 start-page: 2786 issue: 11 year: 2011 end-page: 2797 article-title: Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level publication-title: Remote Sensing of Environment – volume: 27 start-page: 1151 year: 2016 end-page: 1163 article-title: Forest structure as a predictor of tree species diversity in the North Carolina Piedmont publication-title: Journal of Vegetation Science – volume: 4 start-page: 379 issue: 4 year: 2001 end-page: 391 article-title: Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness publication-title: Ecology Letters – volume: 78 start-page: 1946 issue: 7 year: 1997 end-page: 1957 article-title: Positive and negative effects of organisms as physical ecosystem engineers publication-title: Ecology – volume: 9 start-page: 8779 issue: 1 year: 2019 article-title: Management of ecosystems alters vector dynamics and haemosporidian infections publication-title: Scientific Reports – volume: 4 start-page: 1 year: 2016 end-page: 12 article-title: Variation in vegetation structure and composition across urban green space types publication-title: Frontiers in Ecology and Evolution – volume: 149 start-page: 493 issue: 3 year: 2006 end-page: 504 article-title: Habitat structure, trophic structure and ecosystem function: Interactive effects in a bromeliad‐insect community publication-title: Oecologia – volume: 432 start-page: 823 year: 2019 end-page: 831 article-title: Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests publication-title: Forest Ecology and Management – start-page: 109 year: 2001 end-page: 120 – volume: 500 issue: May year: 2021 article-title: Accelerating the development of structural complexity: Lidar analysis supports restoration as a tool in coastal Pacific northwest forests publication-title: Forest Ecology and Management – volume: 35 start-page: 19 issue: 1 year: 2008 end-page: 32 article-title: Colonisation of native tree and shrub plantings by woodland birds in an agricultural landscape publication-title: Wildlife Research – volume: 32 start-page: 1219 issue: 5 year: 2018 end-page: 1231 article-title: Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling publication-title: Trees—Structure and Function – volume: 224 start-page: 570 issue: 2 year: 2019 end-page: 584 article-title: Flux towers in the sky: Global ecology from space publication-title: New Phytologist – volume: 26 start-page: 840 issue: 5 year: 2012 end-page: 850 article-title: Use of an airborne Lidar system to model plant species composition and diversity of Mediterranean oak forests publication-title: Conservation Biology – volume: 51 start-page: 573 issue: 4 year: 2020 end-page: 596 article-title: Monitoring forest structure to guide adaptive management of forest restoration: A review of remote sensing approaches publication-title: New Forests – volume: 34 start-page: 327 issue: 4 year: 2019 end-page: 341 article-title: Advances in microclimate ecology arising from remote sensing publication-title: Trends in Ecology and Evolution – volume: 100 issue: 10 year: 2019 article-title: High rates of primary production in structurally complex forests publication-title: Ecology – volume: 242 start-page: 1 year: 2017 end-page: 9 article-title: Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate publication-title: Agricultural and Forest Meteorology – volume: 45 start-page: 297 year: 2014 end-page: 324 article-title: Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 31 start-page: 2347 issue: 6 year: 2020 end-page: 2357 article-title: Small‐scale edaphic heterogeneity as a floristic–structural complexity driver in seasonally dry tropical forests tree communities publication-title: Journal of Forestry Research – volume: 31 start-page: 397 issue: 2 year: 2020 end-page: 414 article-title: Disturbance history, species diversity, and structural complexity of a temperate deciduous forest publication-title: Journal of Forestry Research – volume: 117 start-page: 26254 issue: 42 year: 2020 end-page: 26262 article-title: Maximizing the value of forest restoration for tropical mammals by detecting three‐dimensional habitat associations publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 40 start-page: 748 issue: 6 year: 2015 end-page: 758 article-title: Effects of plant diversity and structural complexity on parasitoid behaviour in a field experiment publication-title: Ecological Entomology – volume: 161 start-page: 46 year: 2015 end-page: 64 article-title: Marine biodiversity and ecosystem function relationships: The potential for practical monitoring applications publication-title: Estuarine, Coastal and Shelf Science – volume: 28 start-page: 1087 issue: 5 year: 2020 end-page: 1099 article-title: Restoration for variability: Emergence of the habitat diversity paradigm in terrestrial ecosystem restoration publication-title: Restoration Ecology – volume: 6 start-page: 924 issue: 12 year: 2015 end-page: 932 article-title: Using LiDAR and remote microclimate loggers to downscale near‐surface air temperatures for site‐level studies publication-title: Remote Sensing Letters – volume: 269–270 start-page: 192 year: 2019 end-page: 202 article-title: LiDAR‐derived topography and forest structure predict fine‐scale variation in daily surface temperatures in oak savanna and conifer forest landscapes publication-title: Agricultural and Forest Meteorology – year: 2015 – volume: 124 start-page: 454 year: 2012 end-page: 465 article-title: Carnegie Airborne Observatory‐2: Increasing science data dimensionality via high‐fidelity multi‐sensor fusion publication-title: Remote Sensing of Environment – volume: 283 year: 2019 article-title: Mixed‐species tree plantings enhance structural complexity in oil palm plantations publication-title: Agriculture, Ecosystems and Environment – start-page: 3 year: 2002 end-page: 11 – volume: 139 start-page: 1 issue: 1 year: 2004 end-page: 10 article-title: Responses of invertebrate natural enemies to complex‐structured habitats: A meta‐analytical synthesis publication-title: Oecologia – volume: 6 start-page: 567 issue: 6 year: 2003 end-page: 579 article-title: Disentangling biodiversity effects on ecosystem functioning: Deriving solutions to a seemingly insurmountable problem publication-title: Ecology Letters – volume: 41 start-page: 1147 issue: 7 year: 2018 end-page: 1160 article-title: Disentangling vegetation and climate as drivers of Australian vertebrate richness publication-title: Ecography – volume: 90 start-page: 815 issue: 3 year: 2015 end-page: 836 article-title: Terminology and quantification of environmental heterogeneity in species‐richness research publication-title: Biological Reviews – volume: 110 start-page: 282 year: 2022 end-page: 300 article-title: Unveil the unseen: Using LiDAR to capture time‐lag dynamics in the herbaceous layer of European temperate forests publication-title: Journal of Ecology – volume: 65 start-page: 74 issue: 1 year: 2015 end-page: 80 article-title: Fearscapes: Mapping functional properties of cover for prey with terrestrial LiDAR publication-title: Bioscience – volume: 11 start-page: 138 issue: 3 year: 2013 end-page: 146 article-title: Lightweight unmanned aerial vehicles will revolutionize spatial ecology publication-title: Frontiers in Ecology and the Environment – volume: 75 start-page: 3 issue: 1 year: 2005 end-page: 35 article-title: Effects of biodiversity on ecosystem functioning: A consensus of current knowledge publication-title: Ecological Monographs – volume: 40 start-page: 761 issue: 4 year: 2010 end-page: 773 article-title: Comparisons between field‐ and LiDAR‐based measures of stand structural complexity publication-title: Canadian Journal of Forest Research – volume: 29 start-page: 227 issue: 2 year: 2001 end-page: 237 article-title: Does the structural complexity of aquatic macrophytes explain the diversity of associated spider assemblages? publication-title: Journal of Arachnology – volume: 58 start-page: 1764 year: 2021 end-page: 1775 article-title: The impact of logging on vertical canopy structure across a gradient of tropical forest degradation intensity in Borneo publication-title: Journal of Applied Ecology – volume: 6 start-page: 772 issue: 7 year: 2015 end-page: 781 article-title: The relative value of field survey and remote sensing for biodiversity assessment publication-title: Methods in Ecology and Evolution – volume: 53 start-page: 934 issue: 3 year: 2016 end-page: 943 article-title: Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood publication-title: Journal of Applied Ecology – volume: 12 start-page: 1 issue: 3 year: 2021 end-page: 15 article-title: Vegetation structural complexity and biodiversity in the Great Smoky Mountains publication-title: Ecosphere – volume: 30 start-page: 2245 issue: 11 year: 2021 end-page: 2258 article-title: Climate mediates the relationship between plant biodiversity and forest structure across the United States publication-title: Global Ecology and Biogeography – volume: 36 start-page: 267 year: 2005 end-page: 294 article-title: Biodiversity‐ecosystem function research: Is it relevant to conservation? publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 525 issue: June year: 2022 article-title: Management trade‐offs between forest carbon stocks, sequestration rates and structural complexity in the Central Adirondacks publication-title: Forest Ecology and Management – volume: 25 start-page: 1776 issue: 7 year: 2015 end-page: 1789 article-title: Predicting spatial variations of tree species richness in tropical forests from high‐resolution remote sensing publication-title: Ecological Applications – volume: 411 start-page: 73 issue: 6833 year: 2001 end-page: 77 article-title: Consistent patterns and the idiosyncratic effects of biodiversity in marine ecosystems publication-title: Nature – volume: 490 year: 2021 article-title: The structural complexity index SCI is useful for quantifying structural diversity of Estonian hemiboreal forests publication-title: Forest Ecology and Management – volume: 278 year: 2019 article-title: Light interception in experimental forests affected by tree diversity and structural complexity of dominant canopy publication-title: Agricultural and Forest Meteorology – volume: 15 start-page: 21 issue: 1 year: 2004 end-page: 32 article-title: Plant functional trait responses to grassland succession over 25 years publication-title: Journal of Vegetation Science – volume: 58 start-page: 2305 issue: 10 year: 2021 end-page: 2314 article-title: Tree species richness promotes an early increase of stand structural complexity in young subtropical plantations publication-title: Journal of Applied Ecology – volume: 92 start-page: 1573 issue: 8 year: 2011 end-page: 1581 article-title: Functional and phylogenetic diversity as predictors of biodiversity‐ecosystem‐function relationships publication-title: Ecology – volume: 14 year: 2019 article-title: Structural diversity as a predictor of ecosystem function publication-title: Environmental Research Letters – volume: 30 start-page: 129 issue: 2 year: 1960 end-page: 164 article-title: Changes in vegetation, structure, and growth of southwestern pine forests since white settlement publication-title: Ecological Monographs – volume: 526 start-page: 574 issue: 7574 year: 2015 end-page: 577 article-title: Biodiversity increases the resistance of ecosystem productivity to climate extremes publication-title: Nature – volume: 10 start-page: 2238 year: 2020 end-page: 2252 article-title: Remotely sensed forest understory density and nest predator occurrence interact to predict suitable breeding habitat and the occurrence of a resident boreal bird species publication-title: Ecology and Evolution – volume: 5 start-page: 1374 issue: 6 year: 2014 end-page: 1390 article-title: LiDAR remote sensing of forest structure and GPS telemetry data provide insights on winter habitat selection of European roe deer publication-title: Forests – volume: 114 start-page: 490 issue: 3 year: 2010 end-page: 495 article-title: Composition versus physiognomy of vegetation as predictors of bird assemblages: The role of lidar publication-title: Remote Sensing of Environment – volume: 5 start-page: 730 issue: 8 year: 2014 end-page: 738 article-title: An introduction to radar image processing in ecology publication-title: Methods in Ecology and Evolution – volume: 35 start-page: 1 issue: 1 year: 1947 end-page: 22 article-title: Pattern and process in the plant community publication-title: Journal of Ecology – volume: 59 start-page: 812 issue: 3 year: 2022 end-page: 821 article-title: The long‐term impacts of deer herbivory in determining temperate forest stand and canopy structural complexity publication-title: Journal of Applied Ecology – volume: 127 start-page: 814 issue: 6 year: 2018 end-page: 824 article-title: LiDAR‐derived canopy structure supports the more‐individuals hypothesis for arthropod diversity in temperate forests publication-title: Oikos – volume: 48 start-page: 1079 issue: 5 year: 2011 end-page: 1087 article-title: Beyond species: Functional diversity and the maintenance of ecological processes and services publication-title: Journal of Applied Ecology – volume: 19 start-page: 1197 issue: 5 year: 2009 end-page: 1210 article-title: Revegetation in agricultural areas: The development of structural complexity and floristic diversity publication-title: Ecological Applications – volume: 129 start-page: 75 year: 2000 end-page: 87 article-title: A new method for modeling the heterogeneity of forest structure publication-title: Forest Ecology and Management – volume: 11 start-page: 1 issue: 2 year: 2016 end-page: 20 article-title: Effects of vegetation structure on the location of lion kill sites in African thicket publication-title: PLoS One – ident: e_1_2_10_115_1 doi: 10.1016/j.agrformet.2019.107655 – ident: e_1_2_10_147_1 doi: 10.1016/S0378-1127(99)00140-1 – ident: e_1_2_10_132_1 doi: 10.1046/j.0305-0270.2003.00994.x – ident: e_1_2_10_23_1 doi: 10.1111/ecog.02813 – ident: e_1_2_10_29_1 doi: 10.1111/btp.12814 – ident: e_1_2_10_68_1 doi: 10.1007/s00442-004-1497-3 – ident: e_1_2_10_105_1 doi: 10.1111/j.1461-0248.2006.00924.x – ident: e_1_2_10_3_1 doi: 10.1890/120150 – ident: e_1_2_10_89_1 doi: 10.1002/eap.1791 – ident: e_1_2_10_46_1 doi: 10.1111/1365-2745.13631 – ident: e_1_2_10_53_1 doi: 10.1038/scientificamerican0575-90 – ident: e_1_2_10_74_1 doi: 10.1016/S0034-4257(99)00052-8 – ident: e_1_2_10_137_1 doi: 10.1038/s41598-019-45068-4 – ident: e_1_2_10_17_1 doi: 10.1371/journal.pone.0167771 – ident: e_1_2_10_102_1 doi: 10.1016/j.foreco.2022.120539 – ident: e_1_2_10_64_1 doi: 10.3390/rs70708348 – ident: e_1_2_10_47_1 doi: 10.1111/geb.13380 – ident: e_1_2_10_125_1 doi: 10.1007/s00442-006-0467-3 – ident: e_1_2_10_54_1 doi: 10.1016/j.foreco.2018.04.049 – ident: e_1_2_10_95_1 doi: 10.1093/oso/9780198515708.003.0001 – ident: e_1_2_10_96_1 doi: 10.1046/j.1461-0248.2003.00471.x – ident: e_1_2_10_111_1 doi: 10.1111/1365-2664.14095 – ident: e_1_2_10_58_1 doi: 10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2 – ident: e_1_2_10_4_1 doi: 10.1007/BF00323530 – ident: e_1_2_10_97_1 doi: 10.1093/biosci/biu189 – ident: e_1_2_10_44_1 doi: 10.1046/j.1461-0248.2001.00230.x – ident: e_1_2_10_33_1 doi: 10.1016/j.agrformet.2017.04.012 – ident: e_1_2_10_67_1 doi: 10.1111/een.12251 – ident: e_1_2_10_82_1 doi: 10.1088/1748-9326/ab2dcd – ident: e_1_2_10_78_1 doi: 10.1109/LGRS.2010.2079913 – ident: e_1_2_10_26_1 doi: 10.1016/j.biocon.2019.01.032 – ident: e_1_2_10_45_1 doi: 10.1002/ecy.2864 – ident: e_1_2_10_93_1 doi: 10.1016/j.ecolind.2021.108156 – ident: e_1_2_10_34_1 doi: 10.1038/s41467-020-20767-z – ident: e_1_2_10_79_1 doi: 10.1016/j.scitotenv.2017.08.018 – ident: e_1_2_10_94_1 doi: 10.1890/08-0939.1 – ident: e_1_2_10_72_1 doi: 10.1007/s00468-018-1704-1 – ident: e_1_2_10_138_1 doi: 10.1890/11.WB.009 – ident: e_1_2_10_6_1 doi: 10.1016/j.rse.2012.06.012 – ident: e_1_2_10_62_1 doi: 10.1111/geb.13516 – ident: e_1_2_10_36_1 doi: 10.3390/f5061374 – ident: e_1_2_10_143_1 doi: 10.1890/0012-9658(2000)081[0887:BAEFIO]2.0.CO;2 – ident: e_1_2_10_144_1 doi: 10.1016/j.foreco.2013.07.023 – ident: e_1_2_10_39_1 doi: 10.1126/sciadv.1501392 – ident: e_1_2_10_141_1 doi: 10.1007/s00442-004-1644-x – ident: e_1_2_10_145_1 doi: 10.1016/j.tree.2018.12.012 – ident: e_1_2_10_104_1 doi: 10.1890/ES15-00121.1 – ident: e_1_2_10_20_1 doi: 10.1186/s41610-016-0020-1 – ident: e_1_2_10_70_1 doi: 10.1016/j.jag.2018.07.001 – ident: e_1_2_10_107_1 doi: 10.1016/j.rse.2011.01.026 – volume-title: Species diversity in ecological communities: Historical and geographical perspectives year: 1993 ident: e_1_2_10_114_1 – ident: e_1_2_10_65_1 doi: 10.1111/j.1466-8238.2007.00379.x – ident: e_1_2_10_55_1 doi: 10.1038/nature15374 – ident: e_1_2_10_119_1 doi: 10.1111/nph.15934 – ident: e_1_2_10_106_1 doi: 10.1016/j.foreco.2021.119093 – ident: e_1_2_10_121_1 doi: 10.1038/s41467-019-09448-8 – ident: e_1_2_10_9_1 doi: 10.1111/1365-2435.13983 – ident: e_1_2_10_81_1 doi: 10.2307/1932254 – ident: e_1_2_10_66_1 doi: 10.1002/ece3.6062 – volume-title: R: A language and environment for statistical computing year: 2015 ident: e_1_2_10_108_1 – ident: e_1_2_10_126_1 doi: 10.1146/annurev.ecolsys.36.102003.152636 – ident: e_1_2_10_75_1 doi: 10.1016/j.rse.2021.112764 – volume: 114 start-page: 1 issue: 4 year: 2009 ident: e_1_2_10_13_1 article-title: Remote sensing of vegetation 3‐D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions publication-title: Journal of Geophysical Research: Biogeosciences – ident: e_1_2_10_49_1 doi: 10.1890/10-2192.1 – ident: e_1_2_10_38_1 doi: 10.1016/j.agrformet.2017.12.251 – ident: e_1_2_10_60_1 doi: 10.3390/rs3112346 – ident: e_1_2_10_37_1 doi: 10.1890/10-1245.1 – ident: e_1_2_10_63_1 doi: 10.1139/X10-024 – ident: e_1_2_10_140_1 doi: 10.3390/s101109647 – ident: e_1_2_10_131_1 doi: 10.1016/j.foreco.2018.10.035 – ident: e_1_2_10_142_1 doi: 10.2307/2256497 – ident: e_1_2_10_24_1 doi: 10.1007/s00442-016-3623-4 – ident: e_1_2_10_122_1 doi: 10.1007/978-3-642-58001-7 – ident: e_1_2_10_43_1 doi: 10.1007/s11676-018-0746-y – volume: 93 start-page: 75 issue: 1 year: 2020 ident: e_1_2_10_59_1 article-title: Effect of tree species mixing on stand structural complexity publication-title: Forestry – ident: e_1_2_10_2_1 doi: 10.1016/j.foreco.2018.10.024 – ident: e_1_2_10_11_1 doi: 10.1111/2041-210X.13726 – ident: e_1_2_10_76_1 doi: 10.1111/rec.13218 – ident: e_1_2_10_25_1 doi: 10.1016/j.tree.2014.10.005 – ident: e_1_2_10_40_1 doi: 10.1890/14-1593.1 – ident: e_1_2_10_10_1 doi: 10.1038/s41467-019-12737-x – ident: e_1_2_10_18_1 doi: 10.1016/j.foreco.2021.119641 – ident: e_1_2_10_35_1 doi: 10.1038/35075055 – ident: e_1_2_10_98_1 doi: 10.1016/j.rse.2012.08.014 – ident: e_1_2_10_52_1 doi: 10.1890/04-0922 – ident: e_1_2_10_100_1 doi: 10.1086/303340 – ident: e_1_2_10_12_1 doi: 10.1071/WR07100 – ident: e_1_2_10_27_1 doi: 10.1371/journal.pone.0149098 – ident: e_1_2_10_22_1 doi: 10.2307/1948549 – ident: e_1_2_10_15_1 doi: 10.1007/s11056-019-09754-5 – ident: e_1_2_10_123_1 doi: 10.1111/1365-2664.12607 – ident: e_1_2_10_130_1 doi: 10.1016/j.ecss.2015.04.008 – ident: e_1_2_10_41_1 doi: 10.1111/oik.01549 – ident: e_1_2_10_50_1 doi: 10.1038/s41559-020-1245-z – ident: e_1_2_10_112_1 doi: 10.1016/j.tree.2009.03.018 – ident: e_1_2_10_86_1 doi: 10.1007/s10980-018-0639-7 – ident: e_1_2_10_120_1 doi: 10.3390/rs11192222 – ident: e_1_2_10_73_1 doi: 10.1029/2010GL043622 – ident: e_1_2_10_91_1 doi: 10.1111/oik.04972 – ident: e_1_2_10_127_1 doi: 10.1111/brv.12135 – ident: e_1_2_10_87_1 doi: 10.1111/1365-2435.13585 – ident: e_1_2_10_77_1 doi: 10.1111/1365-2745.13837 – ident: e_1_2_10_48_1 doi: 10.1111/jvs.12451 – ident: e_1_2_10_128_1 doi: 10.1111/2041-210X.12214 – ident: e_1_2_10_129_1 doi: 10.1007/s10980-021-01195-w – ident: e_1_2_10_101_1 doi: 10.1016/S0378-1127(97)00192-8 – ident: e_1_2_10_139_1 doi: 10.1002/ecs2.3390 – ident: e_1_2_10_42_1 doi: 10.1080/2150704X.2015.1088671 – ident: e_1_2_10_135_1 doi: 10.1146/annurev-ecolsys-120213-091917 – ident: e_1_2_10_14_1 doi: 10.1111/j.1365-2664.2011.02048.x – ident: e_1_2_10_61_1 doi: 10.1111/j.1654-1103.2004.tb02233.x – ident: e_1_2_10_90_1 doi: 10.1016/j.foreco.2013.10.014 – ident: e_1_2_10_146_1 doi: 10.1016/j.agee.2019.06.003 – ident: e_1_2_10_16_1 doi: 10.3390/f10020145 – ident: e_1_2_10_110_1 doi: 10.7882/FS.2004.004 – ident: e_1_2_10_71_1 doi: 10.1088/1748-9326/ab49bb – ident: e_1_2_10_80_1 doi: 10.1126/science.1064088 – volume-title: Biodiversity: Structure and function. Encyclopedia of life support systems (EOLSS) year: 2005 ident: e_1_2_10_118_1 – ident: e_1_2_10_28_1 doi: 10.1016/j.agrformet.2019.02.015 – ident: e_1_2_10_57_1 doi: 10.1111/j.0030-1299.2008.16401.x – ident: e_1_2_10_32_1 doi: 10.1073/pnas.2001823117 – ident: e_1_2_10_92_1 doi: 10.1016/j.rse.2009.10.006 – ident: e_1_2_10_7_1 doi: 10.1111/2041-210X.13061 – ident: e_1_2_10_103_1 doi: 10.1111/1365-2664.13973 – ident: e_1_2_10_116_1 doi: 10.3390/rs10040629 – ident: e_1_2_10_109_1 doi: 10.1636/0161-8202(2001)029[0227:DTSCOA]2.0.CO;2 – ident: e_1_2_10_117_1 doi: 10.1111/cobi.12397 – ident: e_1_2_10_31_1 doi: 10.1007/s11676-019-01013-9 – ident: e_1_2_10_51_1 doi: 10.1007/s00468-010-0452-7 – ident: e_1_2_10_136_1 doi: 10.1016/j.gecco.2022.e02092 – ident: e_1_2_10_83_1 doi: 10.1007/BF00378225 – ident: e_1_2_10_113_1 doi: 10.1111/2041-210X.12385 – ident: e_1_2_10_85_1 doi: 10.1007/s10980-016-0367-9 – ident: e_1_2_10_5_1 doi: 10.1111/geb.13038 – volume: 50 start-page: 342 issue: 3 year: 2004 ident: e_1_2_10_56_1 article-title: Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems publication-title: Forest Science doi: 10.1093/forestscience/50.3.342 – ident: e_1_2_10_8_1 doi: 10.1002/2017JG004256 – ident: e_1_2_10_19_1 doi: 10.1146/annurev-ecolsys-120213-091540 – ident: e_1_2_10_69_1 doi: 10.1016/j.ecolind.2021.107757 – ident: e_1_2_10_124_1 doi: 10.1111/j.1523-1739.2012.01869.x – ident: e_1_2_10_30_1 doi: 10.1016/S0921-8009(02)00089-7 – ident: e_1_2_10_133_1 doi: 10.3389/fevo.2016.00066 – ident: e_1_2_10_134_1 doi: 10.1016/B0-12-226865-2/00132-2 – ident: e_1_2_10_21_1 doi: 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2 – ident: e_1_2_10_84_1 doi: 10.1016/j.foreco.2005.08.034 – ident: e_1_2_10_88_1 doi: 10.1111/1365-2664.13895 – ident: e_1_2_10_99_1 doi: 10.1111/btp.12627 |
SSID | ssj0006750 |
Score | 2.596983 |
SecondaryResourceType | review_article |
Snippet | Vegetation structural complexity (VSC)—the three‐dimensional distribution of plants within an ecosystem—is an important ecological trait. To date, research has... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1378 |
SubjectTerms | active remote sensing Biodiversity biodiversity‐ecosystem functioning canopy structural complexity Complexity Detection Ecological effects Ecological function ecosystem function and services Ecosystems Environmental restoration fauna habitats LiDAR Microclimate Plant communities plant community ecology Plant diversity Plants Plants (botany) Provisioning RADAR radio Redundancy Remote sensing Restoration restoration and management Shape species diversity Vegetation |
Title | Unravelling the relationship between plant diversity and vegetation structural complexity: A review and theoretical framework |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.14068 https://www.proquest.com/docview/2832923333 https://www.proquest.com/docview/2849898322 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4iDnzxMhWnUyL44EtHL2nT-jZlIgN9EAe-ldyq4uiGOnGC_91z0mZOQUTsS0Ob0DTJSb603_kOIYcq1TJIfO3BWXosUtITOkm8TAF6L6QQgUIH54vL5HzA-jexYxOiL0ylDzH74IaWYedrNHAhn-aMvPamYjEYu5-guy9eQVh09SkgBXDYd3rhPuO8FvdBLs-38l_XpU-wOQ9Z7Zpztkqkq21FNXnoTJ5lR719E3L81-uskZUakdJuNYTWyYIpm6RRxaicNsnSyQjwIyQaPStwPd0g74MSgxZZNW8KAJI-Okbd3f2Y1swvOh5Cp1HteB9UlJq-mNua3kgr4VoU_aCW1m5eIdMx7dLKmcZmn_OypIVjkW2SwVnv-vTcq8M4eCqC6cGLAwXjQIpQwGZJC80VC4qQF4kGcMSLIhSCi8xEmdZMxxkLAx0xFQsApryIdBptkcVyVJptQsMC5kQW6oTrmMk4kDw2wmjBE1_JNEpbpOM6MVe1xjmG2hjmbq-DzZxjM-e2mVvkaFZgXMl7_Jy17UZFXtv5U46BngAiw9EiB7PbYKH420WUZjTBPAyDdMLMCdWzQ-C3R-X93qlN7Py1wC5ZDgGFVXziNlmErjR7gJqe5b41jA-ZHQ2l |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VQtVeeJRWbGmLkUDiklXiOHEWqYc-tto-D6gr9Rb8ClStsiv6YpH4U_wV_lDHjr3dVkKIQw_kkkhxspZnxv6c_eYbgHeq0DLJYx3hWUYsVTISOs-jjkL0XkkhEmUTnA8O816f7R5nx1PwK-TCNPoQ4w9uNjLcfG0D3H6Qnohyn07FMoz2OC88sXLPjK5x23a-trOFNn5P6Xb3aLMX-coCkUrRY6MsUdg1KahA_K6F5oolFeVVrnG95lVFheCiY9KO1kxnHUYTnTKVCcRKvEp1keJ7H8FjW0fc6vVvfbqVrEIAHgeF8phx7uWELHvoXofvroS38HYSJLtVbvsZ_A7j05BbTtuXF7KtftyTjvy_BvA5PPWgm6w3UfICpkw9DzNNGc7RPDzZGCBExouZrtPwHr2En_3a1mVyguUEMTL5FkiDX0-GxJPbyPAM_ZLoQG0hotbkynzxDE7SaPNaXRPimPvmOzb6SNZJky_kmk8kkpIqEOUWoP8gw7EI0_WgNq-A0AqnfUZ1znXGZJZInhlhtOB5rGSRFi1oB68plZdxt9VEzsqwnbNmLa1ZS2fWFnwYPzBsFEz-3HQ5uGHpp7Lz0taywl0AHi14O76Nk5D9Z0nUZnBp2zBbhxQXB-ye87m__VS52910F0v_-sAbmO0dHeyX-zuHe69hjiLobOjTyzCNZjUrCBIv5KqLSgKfH9qLbwCAkm1V |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VQhEXHgXEQgEjgcQlq8Rx4gSJQ-nuqg-oEGKl3lI_aUWVXdEWWCR-FH-FX8TYsbdLJYQ49EAuiRQnsTwz9ufdb74BeKoqLbMy1QmeZcJyJROhyzKpFaJ3K4XIlEtwfrNbbo7Z9l6xtwQ_Yi5Mpw8x_8HNRYafr12AT7VdCPKQTcUKDPa0rAKvcsfMvuCu7fjl1gBN_IzS0fD9xmYSCgskKkeHTYpMYc-koALhuxaaK5ZZym2pcbnm1lIhuKhNXmvNdFEzmumcqUIgVOI211WO770El1mZ1q5axODdmWIV4u80CpSnjPOgJuTIQ-c6_PtCeIZuFzGyX-RGN-BnHJ6O2_Kxf3oi--rbOeXI_2r8bsL1ALnJehcjt2DJtKuw0hXhnK3ClVcTBMh4sTL0Ct6z2_B93LqqTF6unCBCJp8iZfDgcEoCtY1Mj9AriY7EFiJaTT6bD4G_STplXqdqQjxv33zFRi_IOumyhXzzhTRSYiNN7g6ML2Q47sJyO2nNPSDU4qTPqC65LpgsMskLI4wWvEyVrPKqB_3oNI0KIu6ulshREzdzzqyNM2vjzdqD5_MHpp1-yZ-brkUvbMJEdty4Sla4B8CjB0_mt3EKcv8ridZMTl0b5qqQ4tKA3fMu97dPNdvDDX9x_18feAxX3w5Gzeut3Z0HcI0i4uy402uwjFY1DxEhnshHPiYJ7F-0E_8CrctsBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unravelling+the+relationship+between+plant+diversity+and+vegetation+structural+complexity%3A+A+review+and+theoretical+framework&rft.jtitle=The+Journal+of+ecology&rft.au=Coverdale%2C+Tyler+C&rft.au=Davies%2C+Andrew+B&rft.date=2023-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=111&rft.issue=7&rft.spage=1378&rft.epage=1395&rft_id=info:doi/10.1111%2F1365-2745.14068&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon |