Contributions of plant‐ and microbial‐derived residuals to mangrove soil carbon stocks: Implications for blue carbon sequestration
Coastal blue carbon ecosystems, particularly mangroves, are becoming increasingly recognised for their importance in mitigating climate change. Still, the specific patterns and drivers of plant lignin components and microbial necromass accumulation in these ecosystems are unclear. In response, we ca...
Saved in:
Published in | Functional ecology Vol. 38; no. 3; pp. 573 - 585 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley Subscription Services, Inc
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coastal blue carbon ecosystems, particularly mangroves, are becoming increasingly recognised for their importance in mitigating climate change. Still, the specific patterns and drivers of plant lignin components and microbial necromass accumulation in these ecosystems are unclear.
In response, we carried out a study along a 40‐year mangrove restoration chronosequence, measuring lignin phenol and amino sugar concentrations in soil profiles (0–100 cm) as indicators of plant‐based and microbial‐derived residues, respectively.
Our results showed that restoration significantly increased plant lignin phenol and amino sugar concentrations, with mature mangroves having much higher concentrations than tidal flats. During restoration, the fungal necromass was greater than the bacterial necromass. The factors influencing the lignin phenols were tree biomass, total nitrogen, pH and salinity, while those influencing the formation of amino sugars were total biomass, soil C: N ratio and pH. While the amino sugars decreased, the lignin phenols increased with the content of SOC, providing evidence of the important role lignin phenol components play in the formation of SOC in mangrove.
Synthesis: By separating soil carbon into plant‐based and microbial‐derived components, our results demonstrate that the carbon stock in mangrove sediments is vulnerable to disturbances and that changes from anaerobic to aerobic conditions cause significant carbon mineralisation. The precise identification of soil carbon sources in blue carbon ecosystems could aid in elucidating the mechanisms of soil carbon sequestration and their responses to environmental changes.
Read the free Plain Language Summary for this article on the Journal blog.
摘要
滨海湿地生态系统,尤其是红树林,在缓解全球气候变化过程中起重要作用。植物和微生物残体是土壤有机碳的两大主要来源,但它们在红树林生态系统恢复过程中的分布规律尚不明晰。
本研究以木质素酚和氨基糖分别指示植物和微生物来源的有机碳组分,对比分析了两者在红树林恢复过程中对土壤有机碳的贡献及其影响因子。
结果显示,红树林的恢复显著提高了土壤中木质素酚和氨基糖的含量,真菌残体的累积量要显著高于细菌。木质素酚的形成主要受树木生物量、土壤总氮、pH和盐度的影响,而土壤微生物生物量、土壤碳氮比和pH值是影响氨基糖形成的主要因子。总体而言,随着红树林的恢复,植物来源组分在有机碳中的占比呈增加趋势,而微生物来源组分则呈相反趋势。
本研究通过将土壤有机碳来源分为植物和微生物来源,发现红树林土壤中的有机碳稳定性不高,当土壤从厌氧到好氧的条件转换会导致固存在红树林土壤中的有机碳流失。因此,准确识别蓝碳生态系统中的土壤碳源有助于阐明土壤碳固定机制及其对环境变化的响应。
Read the free Plain Language Summary for this article on the Journal blog. |
---|---|
AbstractList | Coastal blue carbon ecosystems, particularly mangroves, are becoming increasingly recognised for their importance in mitigating climate change. Still, the specific patterns and drivers of plant lignin components and microbial necromass accumulation in these ecosystems are unclear.In response, we carried out a study along a 40‐year mangrove restoration chronosequence, measuring lignin phenol and amino sugar concentrations in soil profiles (0–100 cm) as indicators of plant‐based and microbial‐derived residues, respectively.Our results showed that restoration significantly increased plant lignin phenol and amino sugar concentrations, with mature mangroves having much higher concentrations than tidal flats. During restoration, the fungal necromass was greater than the bacterial necromass. The factors influencing the lignin phenols were tree biomass, total nitrogen, pH and salinity, while those influencing the formation of amino sugars were total biomass, soil C: N ratio and pH. While the amino sugars decreased, the lignin phenols increased with the content of SOC, providing evidence of the important role lignin phenol components play in the formation of SOC in mangrove.Synthesis: By separating soil carbon into plant‐based and microbial‐derived components, our results demonstrate that the carbon stock in mangrove sediments is vulnerable to disturbances and that changes from anaerobic to aerobic conditions cause significant carbon mineralisation. The precise identification of soil carbon sources in blue carbon ecosystems could aid in elucidating the mechanisms of soil carbon sequestration and their responses to environmental changes.Read the free Plain Language Summary for this article on the Journal blog. Coastal blue carbon ecosystems, particularly mangroves, are becoming increasingly recognised for their importance in mitigating climate change. Still, the specific patterns and drivers of plant lignin components and microbial necromass accumulation in these ecosystems are unclear. In response, we carried out a study along a 40‐year mangrove restoration chronosequence, measuring lignin phenol and amino sugar concentrations in soil profiles (0–100 cm) as indicators of plant‐based and microbial‐derived residues, respectively. Our results showed that restoration significantly increased plant lignin phenol and amino sugar concentrations, with mature mangroves having much higher concentrations than tidal flats. During restoration, the fungal necromass was greater than the bacterial necromass. The factors influencing the lignin phenols were tree biomass, total nitrogen, pH and salinity, while those influencing the formation of amino sugars were total biomass, soil C: N ratio and pH. While the amino sugars decreased, the lignin phenols increased with the content of SOC, providing evidence of the important role lignin phenol components play in the formation of SOC in mangrove. Synthesis: By separating soil carbon into plant‐based and microbial‐derived components, our results demonstrate that the carbon stock in mangrove sediments is vulnerable to disturbances and that changes from anaerobic to aerobic conditions cause significant carbon mineralisation. The precise identification of soil carbon sources in blue carbon ecosystems could aid in elucidating the mechanisms of soil carbon sequestration and their responses to environmental changes. Read the free Plain Language Summary for this article on the Journal blog. 摘要 滨海湿地生态系统,尤其是红树林,在缓解全球气候变化过程中起重要作用。植物和微生物残体是土壤有机碳的两大主要来源,但它们在红树林生态系统恢复过程中的分布规律尚不明晰。 本研究以木质素酚和氨基糖分别指示植物和微生物来源的有机碳组分,对比分析了两者在红树林恢复过程中对土壤有机碳的贡献及其影响因子。 结果显示,红树林的恢复显著提高了土壤中木质素酚和氨基糖的含量,真菌残体的累积量要显著高于细菌。木质素酚的形成主要受树木生物量、土壤总氮、pH和盐度的影响,而土壤微生物生物量、土壤碳氮比和pH值是影响氨基糖形成的主要因子。总体而言,随着红树林的恢复,植物来源组分在有机碳中的占比呈增加趋势,而微生物来源组分则呈相反趋势。 本研究通过将土壤有机碳来源分为植物和微生物来源,发现红树林土壤中的有机碳稳定性不高,当土壤从厌氧到好氧的条件转换会导致固存在红树林土壤中的有机碳流失。因此,准确识别蓝碳生态系统中的土壤碳源有助于阐明土壤碳固定机制及其对环境变化的响应。 Read the free Plain Language Summary for this article on the Journal blog. Coastal blue carbon ecosystems, particularly mangroves, are becoming increasingly recognised for their importance in mitigating climate change. Still, the specific patterns and drivers of plant lignin components and microbial necromass accumulation in these ecosystems are unclear. In response, we carried out a study along a 40‐year mangrove restoration chronosequence, measuring lignin phenol and amino sugar concentrations in soil profiles (0–100 cm) as indicators of plant‐based and microbial‐derived residues, respectively. Our results showed that restoration significantly increased plant lignin phenol and amino sugar concentrations, with mature mangroves having much higher concentrations than tidal flats. During restoration, the fungal necromass was greater than the bacterial necromass. The factors influencing the lignin phenols were tree biomass, total nitrogen, pH and salinity, while those influencing the formation of amino sugars were total biomass, soil C: N ratio and pH. While the amino sugars decreased, the lignin phenols increased with the content of SOC, providing evidence of the important role lignin phenol components play in the formation of SOC in mangrove. Synthesis : By separating soil carbon into plant‐based and microbial‐derived components, our results demonstrate that the carbon stock in mangrove sediments is vulnerable to disturbances and that changes from anaerobic to aerobic conditions cause significant carbon mineralisation. The precise identification of soil carbon sources in blue carbon ecosystems could aid in elucidating the mechanisms of soil carbon sequestration and their responses to environmental changes. Read the free Plain Language Summary for this article on the Journal blog. 滨海湿地生态系统,尤其是红树林,在缓解全球气候变化过程中起重要作用。植物和微生物残体是土壤有机碳的两大主要来源,但它们在红树林生态系统恢复过程中的分布规律尚不明晰。 本研究以木质素酚和氨基糖分别指示植物和微生物来源的有机碳组分,对比分析了两者在红树林恢复过程中对土壤有机碳的贡献及其影响因子。 结果显示,红树林的恢复显著提高了土壤中木质素酚和氨基糖的含量,真菌残体的累积量要显著高于细菌。木质素酚的形成主要受树木生物量、土壤总氮、pH和盐度的影响,而土壤微生物生物量、土壤碳氮比和pH值是影响氨基糖形成的主要因子。总体而言,随着红树林的恢复,植物来源组分在有机碳中的占比呈增加趋势,而微生物来源组分则呈相反趋势。 本研究通过将土壤有机碳来源分为植物和微生物来源,发现红树林土壤中的有机碳稳定性不高,当土壤从厌氧到好氧的条件转换会导致固存在红树林土壤中的有机碳流失。因此,准确识别蓝碳生态系统中的土壤碳源有助于阐明土壤碳固定机制及其对环境变化的响应。 |
Author | He, Weijun Sanders, Christian J. Li, Yingwen Qin, Guoming Zhou, Jinge Lu, Zhe Li, Yongxing Li, Zhian Zhang, Jingfan Lambers, Hans Wang, Faming Wu, Jingtao Yu, Mengxiao |
Author_xml | – sequence: 1 givenname: Guoming orcidid: 0000-0002-8959-3118 surname: Qin fullname: Qin, Guoming organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Weijun surname: He fullname: He, Weijun organization: Research Institute of Tropical Forestry, Chinese Academy of Forestry – sequence: 3 givenname: Christian J. surname: Sanders fullname: Sanders, Christian J. organization: Southern Cross University – sequence: 4 givenname: Jingfan surname: Zhang fullname: Zhang, Jingfan organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Jinge surname: Zhou fullname: Zhou, Jinge organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Jingtao surname: Wu fullname: Wu, Jingtao organization: Chinese Academy of Sciences – sequence: 7 givenname: Zhe surname: Lu fullname: Lu, Zhe organization: Chinese Academy of Sciences – sequence: 8 givenname: Mengxiao surname: Yu fullname: Yu, Mengxiao organization: Chinese Academy of Sciences – sequence: 9 givenname: Yingwen surname: Li fullname: Li, Yingwen organization: Chinese Academy of Sciences – sequence: 10 givenname: Yongxing surname: Li fullname: Li, Yongxing organization: Chinese Academy of Sciences – sequence: 11 givenname: Hans orcidid: 0000-0002-4118-2272 surname: Lambers fullname: Lambers, Hans organization: University of Western Australia – sequence: 12 givenname: Zhian surname: Li fullname: Li, Zhian organization: Chinese Academy of Sciences – sequence: 13 givenname: Faming orcidid: 0000-0002-7543-6779 surname: Wang fullname: Wang, Faming email: wangfm@scbg.ac.cn organization: Southern Marine Science and Engineering Guangdong Laboratory |
BookMark | eNqFkT9PHDEQxa0IpByQOq2lNDQL9tr7x-miEyRISGmS2pr1jiMTr32xd0F0qVLzGfkk8d0hCgqwLFka_94bj98ROQgxICEfOTvjZZ1z0TZVLUVzxqVU3Tuyeq4ckBWrW1X1shXvyVHON4wx1dT1ivxbxzAnNyyziyHTaOnGQ5gf_z5QCCOdnElxcOBLYcTkbnGkCbMbF_CZzpFOEH6leIs0R-epgTTEQPMcze_8mV5NG-8M7K1tTHTwCz5D-GfBPKfd9Qk5tMURPzydx-Tn5cWP9bfq-vvXq_WX68oI2XeVHUENjA8tRwAUzEjeN4CMA2NdZ5XsRstVB0y0tRCmH2vsuZUA3WAkWCWOyened5Pirr2eXDboy8wYl6wFk0w2TdkF_fQCvYlLCuV1ulaik4r3qi9Us6fKP-Wc0Grj5t1IZTLnNWd6m47eZqG3WehdOkV3_kK3SW6CdP-K4qnTnfN4_xauLy_We91_v2amfw |
CitedBy_id | crossref_primary_10_1016_j_watres_2025_123527 crossref_primary_10_1007_s10113_024_02307_3 crossref_primary_10_1038_s41467_024_53413_z crossref_primary_10_1016_j_geoderma_2025_117249 crossref_primary_10_1016_j_scitotenv_2024_178128 crossref_primary_10_1039_D4EM00443D crossref_primary_10_1016_j_ecss_2024_108963 crossref_primary_10_1016_j_catena_2024_108579 crossref_primary_10_1007_s11104_025_07372_z crossref_primary_10_1016_j_catena_2024_108603 crossref_primary_10_1016_j_envres_2024_120397 crossref_primary_10_1016_j_ufug_2024_128666 crossref_primary_10_1007_s11104_024_06772_x crossref_primary_10_1016_j_catena_2024_108077 crossref_primary_10_1016_j_jenvman_2024_123341 crossref_primary_10_1007_s11157_024_09702_6 crossref_primary_10_1016_j_catena_2025_108875 crossref_primary_10_1016_j_catena_2024_108401 |
Cites_doi | 10.1002/ecy.2916 10.1016/j.soilbio.2010.11.021 10.2136/sssaj2011.0303 10.1007/s00374-011-0545-5 10.1007/978-0-387-98141-3 10.1093/treephys/tpq048 10.1111/geb.13605 10.1007/s11104-019-04035-8 10.1016/j.soilbio.2007.03.020 10.1071/SR01030 10.1016/j.agrformet.2014.10.005 10.1111/gcb.14482 10.1002/ecy.3113 10.1046/j.1365-2389.2002.00428.x 10.1111/gcb.16071 10.1007/s10533-008-9264-x 10.1890/110004 10.2136/sssaj1997.03615995006100010037x 10.1038/s41559-021-01485-1 10.1128/aem.52.2.246-250.1986 10.1023/A:1010933404324 10.1111/gcb.15403 10.1016/j.soilbio.2005.09.002 10.1016/j.soilbio.2017.07.007 10.1111/gcb.16325 10.1080/00103628409367551 10.1111/1365-2435.14290 10.1007/s00374-019-01390-7 10.1146/annurev-marine-010213-135020 10.1016/j.soilbio.2022.108688 10.1016/j.soilbio.2019.107584 10.1016/j.xinn.2021.100180 10.1093/nsr/nwaa296 10.1007/s00374-007-0170-5 10.1038/nmicrobiol.2017.105 10.1111/gcb.16413 10.1021/ac00239a007 10.1016/j.marpolbul.2018.04.043 10.1111/gcb.15319 10.1038/nature10386 10.1038/s41467-017-01406-6 10.1007/s10533-006-9014-x 10.1038/s41579-022-00695-z 10.1016/j.soilbio.2010.03.017 10.1016/j.isprsjprs.2017.07.011 10.1038/s43017-021-00224-1 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2 10.1111/gcb.13850 10.4319/lo.1991.36.7.1358 10.1016/j.foreco.2018.03.044 10.1016/j.soilbio.2021.108422 10.1111/geb.13159 10.1016/j.soilbio.2023.109017 10.1006/ecss.2000.0753 10.1016/j.soilbio.2021.108189 10.1029/2009JF001566 10.1093/jpe/rtx028 10.1016/j.soilbio.2019.05.017 10.1016/j.scitotenv.2020.137142 10.1038/s41467-018-05891-1 10.1016/j.ecoleng.2014.09.096 10.1111/gcb.15595 10.1016/j.earscirev.2017.01.004 10.1016/j.ecoleng.2017.06.069 10.1128/aem.55.6.1368-1374.1989 10.1007/s10533-011-9658-z 10.1016/j.soilbio.2022.108645 10.1007/BF00382522 10.1038/srep17466 10.1007/s002489900082 10.1016/j.aquabot.2007.12.005 10.1126/science.1256688 10.1016/j.soilbio.2020.108008 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Functional Ecology © 2024 British Ecological Society. 2024 British Ecological Society |
Copyright_xml | – notice: 2024 The Authors. Functional Ecology © 2024 British Ecological Society. – notice: 2024 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/1365-2435.14497 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 585 |
ExternalDocumentID | 10_1111_1365_2435_14497 FEC14497 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Youth Innovation Promotion Association funderid: 2021347 – fundername: Key‐Field Research and Development Program of Guangdong funderid: 2022B1111230001 – fundername: Science and Technology Planning Project of Guangdong Province funderid: 2021B1212110004 – fundername: Southern Marine Science and Engineering Guangdong Laboratory funderid: SML2023SP218 – fundername: National Natural Science Foundation of China funderid: 32301398; 32171594; 32011530164; U2106209; 42007230 – fundername: National Key R&D Program of China funderid: 2023YFE0113103; 2023YFF1304504; 2021YFC3100400 – fundername: CAS Project for Young Scientists in Basic Research funderid: YSBR‐037 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2021B1515020011 – fundername: ANSO Collaborative Research funderid: ANSO‐CR‐KP‐2022‐11 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPVW ABTAH ABTLG ABXSQ ACAHQ ACCFJ ACCMX ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K VOH W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW ZCA ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABSQW AGHNM AGUYK CITATION 7QG 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c3487-fda9b01b61eaae30c4185ae01a0077f947df197a036233c8d2e81f4aa7bc4af93 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 11 18:29:31 EDT 2025 Fri Jul 04 00:21:22 EDT 2025 Tue Jul 01 00:36:03 EDT 2025 Thu Apr 24 22:51:32 EDT 2025 Wed Jan 22 16:14:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3487-fda9b01b61eaae30c4185ae01a0077f947df197a036233c8d2e81f4aa7bc4af93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8959-3118 0000-0002-7543-6779 0000-0002-4118-2272 |
PQID | 2937491898 |
PQPubID | 1066355 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3040455455 proquest_journals_2937491898 crossref_citationtrail_10_1111_1365_2435_14497 crossref_primary_10_1111_1365_2435_14497 wiley_primary_10_1111_1365_2435_14497_FEC14497 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 39 2011; 478 2023; 32 2021; 27 2017; 8 2017; 2 2023; 180 2002; 53 2022; 170 2023; 37 2019; 55 2006; 38 1982; 54 2021; 162 2022; 20 2001; 45 2017; 114 2022; 28 2018; 131 2018; 9 2009; 92 2021; 156 1984; 15 2018; 138 2015; 213 2022; 40 2010; 115 2019; 25 2019; 439 2017; 166 2014; 6 2010; 30 2001; 52 2022; 168 1996; 22 2021; 8 2021; 5 1997; 61 2015; 5 1991; 36 2021; 2 1986; 52 1981; 5 2018; 422 2009 2002; 2 2005; 41 2020; 101 2017; 131 2012; 76 2011; 9 2018; 24 2006; 80 2010; 42 1989; 55 2012; 111 2023 2006; 87 2018; 114 2020; 150 2008; 89 2019; 135 2020; 26 2011; 43 2016 2011; 47 2013 2014; 73 2018; 11 2020; 717 2007; 44 2014; 346 1998; 35 2020; 29 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Lovelock C. E. (e_1_2_10_35_1) 2005; 41 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 Liaw A. (e_1_2_10_34_1) 2002; 2 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_73_1 Parsons J. (e_1_2_10_49_1) 1981; 5 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 Sanchez G. (e_1_2_10_56_1) 2013 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 422 start-page: 87 year: 2018 end-page: 94 article-title: Top‐meter soil organic carbon stocks and sources in restored mangrove forests of different ages publication-title: Forest Ecology and Management – year: 2009 – volume: 5 start-page: 197 year: 1981 article-title: Chemistry and distribution of amino sugars in soils and soil organisms publication-title: Soil Biochemistry – volume: 170 year: 2022 article-title: Increasing contribution from microbial residues to soil organic carbon in grassland restoration chrono‐sequence publication-title: Soil Biology and Biochemistry – volume: 35 start-page: 265 year: 1998 end-page: 278 article-title: Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns publication-title: Microbial Ecology – volume: 5 start-page: 1110 year: 2021 end-page: 1122 article-title: The global distribution and environmental drivers of aboveground versus belowground plant biomass publication-title: Nature Ecology & Evolution – volume: 22 start-page: 261 year: 1996 end-page: 264 article-title: Changes in soil fungal: Bacterial biomass ratios following reductions in the intensity of management of an upland grassland publication-title: Biology and Fertility of Soils – volume: 478 start-page: 49 year: 2011 end-page: 56 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – volume: 39 start-page: 2111 year: 2007 end-page: 2118 article-title: Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil publication-title: Soil Biology and Biochemistry – volume: 44 start-page: 1 year: 2007 end-page: 7 article-title: Net microbial amino sugar accumulation process in soil as influenced by different plant material inputs publication-title: Biology and Fertility of Soils – volume: 29 start-page: 1829 year: 2020 end-page: 1839 article-title: The vertical distribution and control of microbial necromass carbon in forest soils publication-title: Global Ecology and Biogeography – volume: 45 start-page: 5 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 150 year: 2020 article-title: Decreased rhizodeposition, but increased microbial carbon stabilization with soil depth down to 3.6 m publication-title: Soil Biology and Biochemistry – volume: 52 start-page: 246 year: 1986 end-page: 250 article-title: Effects of pH on lignin and cellulose degradation by publication-title: Applied and Environmental Microbiology – volume: 101 year: 2020 article-title: Lignin lags, leads, or limits the decomposition of litter and soil organic carbon publication-title: Ecology – volume: 54 start-page: 174 year: 1982 end-page: 178 article-title: Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products publication-title: Analytical Chemistry – volume: 42 start-page: 1200 year: 2010 end-page: 1211 article-title: Fate of lignins in soils: A review publication-title: Soil Biology and Biochemistry – volume: 135 start-page: 369 year: 2019 end-page: 378 article-title: Physical, biochemical, and microbial controls on amino sugar accumulation in soils under long‐term cover cropping and no‐tillage farming publication-title: Soil Biology and Biochemistry – volume: 89 start-page: 201 year: 2008 end-page: 219 article-title: Organic carbon dynamics in mangrove ecosystems: A review publication-title: Aquatic Botany – volume: 115 year: 2010 article-title: How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation publication-title: Journal of Geophysical Research: Earth Surface – volume: 9 start-page: 552 year: 2011 end-page: 560 article-title: A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO publication-title: Frontiers in Ecology and the Environment – volume: 27 start-page: 417 year: 2021 end-page: 434 article-title: Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C: N ratio, δ C‐δ N, and lignin biomarker publication-title: Global Change Biology – volume: 27 start-page: 2478 year: 2021 end-page: 2490 article-title: Contrasting pathways of carbon sequestration in paddy and upland soils publication-title: Global Change Biology – volume: 5 start-page: 1 year: 2015 end-page: 13 article-title: Use of exotic plants to control invasion and promote mangrove restoration publication-title: Scientific Reports – volume: 20 start-page: 415 year: 2022 end-page: 430 article-title: Life and death in the soil microbiome: How ecological processes influence biogeochemistry publication-title: Nature Reviews Microbiology – volume: 114 start-page: 114 year: 2017 end-page: 120 article-title: Linkage of microbial residue dynamics with soil organic carbon accumulation during subtropical forest succession publication-title: Soil Biology and Biochemistry – volume: 36 start-page: 1358 year: 1991 end-page: 1374 article-title: Diagenesis of belowground biomass of in salt‐marsh sediments publication-title: Limnology and Oceanography – volume: 2 start-page: 18 year: 2002 end-page: 22 article-title: Classification and regression by randomForest publication-title: R News – volume: 156 year: 2021 article-title: Plant‐ or microbial‐derived? A review on the molecular composition of stabilized soil organic matter publication-title: Soil Biology and Biochemistry – volume: 38 start-page: 1040 year: 2006 end-page: 1051 article-title: Microbial colonisation of roots as a function of plant species publication-title: Soil Biology and Biochemistry – volume: 55 start-page: 1368 year: 1989 end-page: 1374 article-title: Characterization of bacteria that suppress Rhizoctonia damping‐off in bark compost media by analysis of fatty acid biomarkers publication-title: Applied and Environmental Microbiology – volume: 114 start-page: 173 year: 2018 end-page: 178 article-title: Decomposition as a regulator of carbon accretion in mangroves: A review publication-title: Ecological Engineering – volume: 168 year: 2022 article-title: Plant‐derived lipids play a crucial role in forest soil carbon accumulation publication-title: Soil Biology and Biochemistry – volume: 9 start-page: 1 year: 2018 end-page: 9 article-title: Divergent accumulation of microbial necromass and plant lignin components in grassland soils publication-title: Nature Communications – volume: 92 start-page: 83 year: 2009 end-page: 94 article-title: Vertical distribution and pools of microbial residues in tropical forest soils formed from distinct parent materials publication-title: Biogeochemistry – volume: 28 start-page: 6065 year: 2022 end-page: 6085 article-title: Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China publication-title: Global Change Biology – volume: 131 start-page: 378 year: 2018 end-page: 385 article-title: Mangrove vegetation enhances soil carbon storage primarily through in situ inputs rather than increasing allochthonous sediments publication-title: Marine Pollution Bulletin – volume: 28 start-page: 7167 year: 2022 end-page: 7185 article-title: Clarifying the evidence for microbial‐ and plant‐derived soil organic matter, and the path towards a more quantitative understanding publication-title: Global Change Biology – volume: 180 year: 2023 article-title: Differential effects of forest‐floor litter and roots on soil organic carbon formation in a temperate oak forest publication-title: Soil Biology and Biochemistry – volume: 47 start-page: 387 year: 2011 end-page: 396 article-title: Optimisation of amino sugar quantification by HPLC in soil and plant hydrolysates publication-title: Biology and Fertility of Soils – volume: 166 start-page: 53 year: 2017 end-page: 63 article-title: The role of root decomposition in global mangrove and saltmarsh carbon budgets publication-title: Earth‐Science Reviews – volume: 26 start-page: 6032 year: 2020 end-page: 6039 article-title: The soil microbial carbon pump: From conceptual insights to empirical assessments publication-title: Global Change Biology – volume: 73 start-page: 367 year: 2014 end-page: 372 article-title: Eradicating invasive with alien and its implications for invasion controls publication-title: Ecological Engineering – volume: 346 year: 2014 article-title: Global diversity and geography of soil fungi publication-title: Science – volume: 439 start-page: 325 year: 2019 end-page: 338 article-title: Distribution of lignin phenols in comparison with plant‐derived lipids in the alpine versus temperate grassland soils publication-title: Plant and Soil – volume: 43 start-page: 1621 year: 2011 end-page: 1625 article-title: Use and misuse of PLFA measurements in soils publication-title: Soil Biology and Biochemistry – volume: 87 start-page: 2614 year: 2006 end-page: 2625 article-title: Variation partitioning of species data matrices: Estimation and comparison of fractions publication-title: Ecology – volume: 213 start-page: 266 year: 2015 end-page: 272 article-title: Contribution of mangroves to coastal carbon cycling in low latitude seas publication-title: Agricultural and Forest Meteorology – volume: 131 start-page: 104 year: 2017 end-page: 120 article-title: A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel‐1A imagery in Google Earth Engine cloud computing platform publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 2 start-page: 826 year: 2021 end-page: 839 article-title: Blue carbon as a natural climate solution publication-title: Nature Reviews Earth and Environment – volume: 111 start-page: 41 year: 2012 end-page: 55 article-title: SOM genesis: Microbial biomass as a significant source publication-title: Biogeochemistry – volume: 717 year: 2020 article-title: Changes of ecosystem carbon stock following the plantation of exotic mangrove in Qi'ao Island, China publication-title: Science of the Total Environment – volume: 61 start-page: 262 year: 1997 end-page: 267 article-title: Soil aggregation and fungal and bacterial biomass under annual and perennial cropping systems publication-title: Soil Science Society of America Journal – volume: 8 start-page: 1 year: 2017 end-page: 10 article-title: Anaerobic microsites have an unaccounted role in soil carbon stabilization publication-title: Nature Communications – volume: 40 start-page: 977 year: 2022 end-page: 998 article-title: Lignin, carbohydrate, and amino sugar distribution and transformation in the tropical highland soils of northern Thailand under cabbage cultivation, Pinus reforestation, secondary forest, and primary forest publication-title: Soil Research – volume: 138 year: 2018 article-title: pH and exchangeable aluminum are major regulators of microbial energy flow and carbon use efficiency in soil microbial communities publication-title: Soil Biology and Biochemistry – volume: 30 start-page: 1148 year: 2010 end-page: 1160 article-title: Nutrition of mangroves publication-title: Tree Physiology – volume: 24 start-page: 1 year: 2018 end-page: 12 article-title: Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale publication-title: Global Change Biology – volume: 25 start-page: 12 year: 2019 end-page: 24 article-title: Pathways of mineral‐associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry publication-title: Global Change Biology – year: 2016 – volume: 76 start-page: 1719 year: 2012 end-page: 1727 article-title: Precision of soil particle size analysis using laser diffractometry publication-title: Soil Science Society of America Journal – volume: 28 start-page: 2169 year: 2022 end-page: 2182 article-title: From energy to (soil organic) matter publication-title: Global Change Biology – volume: 8 year: 2021 article-title: Global blue carbon accumulation in tidal wetlands increases with climate change publication-title: National Science Review – volume: 2 start-page: 1 year: 2017 end-page: 6 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nature Microbiology – volume: 55 start-page: 767 year: 2019 end-page: 776 article-title: Contrasting contribution of fungal and bacterial residues to organic carbon accumulation in paddy soils across eastern China publication-title: Biology and Fertility of Soils – volume: 2 year: 2021 article-title: Technologies and perspectives for achieving carbon neutrality publication-title: The Innovation – volume: 52 start-page: 505 year: 2001 end-page: 514 article-title: Sediment retention by a Mediterranean meadow: The balance between deposition and resuspension publication-title: Estuarine, Coastal and Shelf Science – volume: 11 start-page: 560 year: 2018 end-page: 568 article-title: Lignin characteristics in soil profiles in different plant communities in a subtropical mixed forest publication-title: Journal of Plant Ecology – year: 2023 – volume: 6 start-page: 195 year: 2014 end-page: 219 article-title: Carbon cycling and storage in mangrove forests publication-title: Annual Review of Marine Science – volume: 15 start-page: 1191 year: 1984 end-page: 1213 article-title: Determination of total organic‐C in soils by an improved chromic acid digestion and spectrophotometric procedure publication-title: Communications in Soil Science and Plant Analysis – volume: 37 start-page: 1 year: 2023 end-page: 15 article-title: Patterns and determinants of plant‐derived lignin phenols in coastal wetlands: Implications for organic C accumulation publication-title: Functional Ecology – volume: 162 year: 2021 article-title: Microbial necromass as the source of soil organic carbon in global ecosystems publication-title: Soil Biology and Biochemistry – volume: 41 start-page: 456 year: 2005 end-page: 464 article-title: Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama publication-title: Caribbean Journal of Science – volume: 101 year: 2020 article-title: Quantifying how changing mangrove cover affects ecosystem carbon storage in coastal wetlands publication-title: Ecology – volume: 32 start-page: 120 year: 2023 end-page: 131 article-title: Mean annual temperature and carbon availability respectively controlled the contributions of bacterial and fungal residues to organic carbon accumulation in topsoil across China's forests publication-title: Global Ecology and Biogeography – volume: 53 start-page: 29 year: 2002 end-page: 35 article-title: Fate of microbial residues in sandy soils of the South African Highveld as influenced by prolonged arable cropping publication-title: European Journal of Soil Science – year: 2013 – volume: 80 start-page: 121 year: 2006 end-page: 142 article-title: Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil publication-title: Biogeochemistry – ident: e_1_2_10_13_1 doi: 10.1002/ecy.2916 – ident: e_1_2_10_21_1 doi: 10.1016/j.soilbio.2010.11.021 – ident: e_1_2_10_40_1 doi: 10.2136/sssaj2011.0303 – ident: e_1_2_10_27_1 doi: 10.1007/s00374-011-0545-5 – ident: e_1_2_10_69_1 doi: 10.1007/978-0-387-98141-3 – volume: 2 start-page: 18 year: 2002 ident: e_1_2_10_34_1 article-title: Classification and regression by randomForest publication-title: R News – ident: e_1_2_10_55_1 doi: 10.1093/treephys/tpq048 – ident: e_1_2_10_78_1 doi: 10.1111/geb.13605 – ident: e_1_2_10_80_1 doi: 10.1007/s11104-019-04035-8 – ident: e_1_2_10_19_1 doi: 10.1016/j.soilbio.2007.03.020 – ident: e_1_2_10_42_1 doi: 10.1071/SR01030 – ident: e_1_2_10_3_1 doi: 10.1016/j.agrformet.2014.10.005 – ident: e_1_2_10_59_1 doi: 10.1111/gcb.14482 – ident: e_1_2_10_24_1 doi: 10.1002/ecy.3113 – ident: e_1_2_10_4_1 doi: 10.1046/j.1365-2389.2002.00428.x – ident: e_1_2_10_23_1 doi: 10.1111/gcb.16071 – ident: e_1_2_10_43_1 doi: 10.1007/s10533-008-9264-x – ident: e_1_2_10_39_1 doi: 10.1890/110004 – ident: e_1_2_10_12_1 doi: 10.2136/sssaj1997.03615995006100010037x – ident: e_1_2_10_36_1 doi: 10.1038/s41559-021-01485-1 – ident: e_1_2_10_53_1 doi: 10.1128/aem.52.2.246-250.1986 – ident: e_1_2_10_11_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_10_70_1 doi: 10.1111/gcb.15403 – ident: e_1_2_10_6_1 doi: 10.1016/j.soilbio.2005.09.002 – volume-title: Package ‘plspm’ year: 2013 ident: e_1_2_10_56_1 – ident: e_1_2_10_58_1 doi: 10.1016/j.soilbio.2017.07.007 – ident: e_1_2_10_71_1 doi: 10.1111/gcb.16325 – volume: 41 start-page: 456 year: 2005 ident: e_1_2_10_35_1 article-title: Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama publication-title: Caribbean Journal of Science – ident: e_1_2_10_25_1 doi: 10.1080/00103628409367551 – ident: e_1_2_10_72_1 doi: 10.1111/1365-2435.14290 – ident: e_1_2_10_73_1 doi: 10.1007/s00374-019-01390-7 – ident: e_1_2_10_2_1 doi: 10.1146/annurev-marine-010213-135020 – ident: e_1_2_10_75_1 doi: 10.1016/j.soilbio.2022.108688 – ident: e_1_2_10_28_1 doi: 10.1016/j.soilbio.2019.107584 – ident: e_1_2_10_65_1 doi: 10.1016/j.xinn.2021.100180 – ident: e_1_2_10_66_1 doi: 10.1093/nsr/nwaa296 – ident: e_1_2_10_7_1 – ident: e_1_2_10_33_1 doi: 10.1007/s00374-007-0170-5 – ident: e_1_2_10_32_1 doi: 10.1038/nmicrobiol.2017.105 – ident: e_1_2_10_68_1 doi: 10.1111/gcb.16413 – ident: e_1_2_10_26_1 doi: 10.1021/ac00239a007 – ident: e_1_2_10_74_1 doi: 10.1016/j.marpolbul.2018.04.043 – ident: e_1_2_10_81_1 doi: 10.1111/gcb.15319 – ident: e_1_2_10_57_1 doi: 10.1038/nature10386 – ident: e_1_2_10_29_1 doi: 10.1038/s41467-017-01406-6 – ident: e_1_2_10_47_1 doi: 10.1007/s10533-006-9014-x – ident: e_1_2_10_60_1 doi: 10.1038/s41579-022-00695-z – ident: e_1_2_10_62_1 doi: 10.1016/j.soilbio.2010.03.017 – ident: e_1_2_10_14_1 doi: 10.1016/j.isprsjprs.2017.07.011 – ident: e_1_2_10_38_1 doi: 10.1038/s43017-021-00224-1 – ident: e_1_2_10_52_1 doi: 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2 – ident: e_1_2_10_50_1 doi: 10.1111/gcb.13850 – ident: e_1_2_10_9_1 doi: 10.4319/lo.1991.36.7.1358 – volume: 5 start-page: 197 year: 1981 ident: e_1_2_10_49_1 article-title: Chemistry and distribution of amino sugars in soils and soil organisms publication-title: Soil Biochemistry – ident: e_1_2_10_15_1 doi: 10.1016/j.foreco.2018.03.044 – ident: e_1_2_10_64_1 doi: 10.1016/j.soilbio.2021.108422 – ident: e_1_2_10_45_1 doi: 10.1111/geb.13159 – ident: e_1_2_10_46_1 – ident: e_1_2_10_77_1 doi: 10.1016/j.soilbio.2023.109017 – ident: e_1_2_10_22_1 doi: 10.1006/ecss.2000.0753 – ident: e_1_2_10_5_1 doi: 10.1016/j.soilbio.2021.108189 – ident: e_1_2_10_44_1 doi: 10.1029/2009JF001566 – ident: e_1_2_10_67_1 doi: 10.1093/jpe/rtx028 – ident: e_1_2_10_31_1 doi: 10.1016/j.soilbio.2019.05.017 – ident: e_1_2_10_76_1 doi: 10.1016/j.scitotenv.2020.137142 – ident: e_1_2_10_37_1 doi: 10.1038/s41467-018-05891-1 – ident: e_1_2_10_16_1 doi: 10.1016/j.ecoleng.2014.09.096 – ident: e_1_2_10_17_1 doi: 10.1111/gcb.15595 – ident: e_1_2_10_48_1 doi: 10.1016/j.earscirev.2017.01.004 – ident: e_1_2_10_20_1 doi: 10.1016/j.ecoleng.2017.06.069 – ident: e_1_2_10_63_1 doi: 10.1128/aem.55.6.1368-1374.1989 – ident: e_1_2_10_54_1 – ident: e_1_2_10_41_1 doi: 10.1007/s10533-011-9658-z – ident: e_1_2_10_18_1 doi: 10.1016/j.soilbio.2022.108645 – ident: e_1_2_10_8_1 doi: 10.1007/BF00382522 – ident: e_1_2_10_79_1 doi: 10.1038/srep17466 – ident: e_1_2_10_10_1 doi: 10.1007/s002489900082 – ident: e_1_2_10_30_1 doi: 10.1016/j.aquabot.2007.12.005 – ident: e_1_2_10_61_1 doi: 10.1126/science.1256688 – ident: e_1_2_10_51_1 doi: 10.1016/j.soilbio.2020.108008 |
SSID | ssj0009522 |
Score | 2.5726144 |
Snippet | Coastal blue carbon ecosystems, particularly mangroves, are becoming increasingly recognised for their importance in mitigating climate change. Still, the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 573 |
SubjectTerms | Aerobic conditions amino sugars Anaerobic conditions Biomass blue carbon Carbon sequestration carbon sinks Carbon sources chronosequences Climate change Climate change mitigation ecology Ecosystems Environmental changes fungi Lignin lignin phenols mangrove restoration mangrove soils Mangroves microbial necromass Microorganisms Mineralization necromass Organic carbon phenol Phenols Restoration salinity Sediments soil carbon Soil microorganisms soil organic carbon Soil profiles Soil properties Soils Sugar sugars Tidal flats total nitrogen trees |
Title | Contributions of plant‐ and microbial‐derived residuals to mangrove soil carbon stocks: Implications for blue carbon sequestration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14497 https://www.proquest.com/docview/2937491898 https://www.proquest.com/docview/3040455455 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSxwxFA9FEHqx9kO6aiWFHnqZZWeSnQ9vIrtooT2UCr0NL18ijjOysyvoyVPP_Rv9S3wvmVlXQaQU5hAyCZNJ3scvycsvjH2xiNqEGMdRro2J0ErqSGlNRJBjZUCij1a0Dvn9R3p0Ir_9HvfRhHQWJvBDLBfcSDO8vSYFB9WuKHmIz0JvT_uTBZ0npxyCRT-TFdrdsI-QpEWEnlZ05D4Uy_Ok_mO_9AA2VyGr9znTN0z1rQ2hJufDxVwN9c0TIsf_-p1NttEhUn4QROgte2Xrd2w93FF5jamJ7lJbk4dDcVihswrte_aHKK76i7Na3jh-WeGA3d3-5VAbfnHmyZ6gwgyDAn9lDcdJvj8F1vJ5wy-gPp01V5a3zVnFNcxUU3MEpfq83efHKyHvHBE2V9XCLgtZ339Bij-wk-nk1-FR1N3vEGmB86TIGSjUKFZpbAGsGGki0gE7ioFIhlwhM-PiIgNyskLo3CQ2j50EyJSW4AqxxdbqprYfGdcqljpNXOoBVQIgTZYJ6xQg_pJuPGDDfnRL3ZGf0x0cVdlPgqj_S-r_0vf_gH1dVrgMvB_PF93txaXsDEBbIorKZBHnRT5gn5evUXVpPwZq2yzaUqABRW3AB5vnZeOlT5XTyaFPbP9rhR32OkE4FqLndtnafLawnxBOzdWe15h7eKAXaQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagqIIL0ELVhQKu1AOXrDaxNw9uqNrVFtoeqlbqzRq_qqppUm12K8GJE2d-I7-EsZ1sQyWEEFIOVhInjjOPz_b4G0L2DKI2xsZxlCutI7SSKpJKOSLIsdTA0UdLNw95dJzOzvin8_F5by9M4IdYTbg5zfD22im4m5DuaXkI0EJ37xYoi-wheeTyevth1UnSI94NKwlJWkToa1lL7-Oiee494HfPdAc3-6DVe53pM6K69oZgk6vhciGH6us9Ksf_-6Dn5GkLSunHIEUb5IGpNsl6SFP5BUsT1Za2Jnf74rBCaxiaF-S7Y7nqcmc1tLb0psR_9vPbDwqVpteXnu8JSjyhUeZvjaY4zvcbwRq6qOk1VBfz-tbQpr4sqYK5rCuKuFRdNR_oQS_qnSLIprJcmtVNxndgEOSX5Gw6Od2fRW2Kh0gxHCpFVkMhR7FMYwNg2Eg5Lh0woxgcz5AteKZtXGTg_CxjKteJyWPLATKpONiCbZG1qq7MNqFKxlyliU09pkoAuM4yZqwEhGDcjgdk2P1eoVr-c5eGoxTdOMj1v3D9L3z_D8j7VYWbQP3x51t3OnkRrQ1oBAKpjBdxXuQDsru6jNrrlmSgMvWyEQxtKCoEHtg8Lxx_e5WYTvZ94dW_VnhHHs9Ojw7F4cHx59fkSYLoLATT7ZC1xXxp3iC6Wsi3Xn1-AeQQG4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9MwGLZgCLQLY8C0wjaMxIFLqiZ287HbtLXagE0IMYmb9fprmpYlVdNOghMnzvuN_JK9tpOum4QQQsrBSuzEsd-Px_brx4S8M4jaGBvGUa60jtBKqkgq5Yggh1IDRx8t3Tzk8Ul6eMo_fBt20YRuL0zgh1hMuDnN8PbaKfhE2yUlD_FZ6O3d-mSRPSSPeDrInWAffEmWeHfDQkKSFhG6Wtay-7hgnnsvuOuYbtHmMmb1Tme8RmRX3RBrctGfz2Rf_bjH5Phf__OMPG0hKd0LMrROHpjqOXkcDqn8jqmRalMbo9tdcVigNQvNC_LLcVx1J2c1tLZ0UmKP_f55TaHS9PLcsz1BiTc0SvyV0RRH-X4bWENnNb2E6mxaXxna1OclVTCVdUURlaqLZpceLcW8U4TYVJZzs8hkfPsFMX5JTsejr_uHUXvAQ6QYDpQiq6GQg1imsQEwbKAckw6YQQyOZcgWPNM2LjJwXpYxlevE5LHlAJlUHGzBNshKVVdmk1AlY67SxKYeUSUAXGcZM1YCAjBuhz3S73pXqJb93B3CUYpuFOTaX7j2F779e-T9osAkEH_8OetWJy6itQCNQBiV8SLOi7xH3i4eo-66BRmoTD1vBEMLiuqAF1bPy8bfPiXGo32fePWvBd6QJ58PxuLT0cnH12Q1QWgWIum2yMpsOjfbCK1mcscrzw2UtRo8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contributions+of+plant%E2%80%90+and+microbial%E2%80%90derived+residuals+to+mangrove+soil+carbon+stocks%3A+Implications+for+blue+carbon+sequestration&rft.jtitle=Functional+ecology&rft.au=Qin%2C+Guoming&rft.au=He%2C+Weijun&rft.au=Sanders%2C+Christian+J.&rft.au=Zhang%2C+Jingfan&rft.date=2024-03-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=38&rft.issue=3&rft.spage=573&rft.epage=585&rft_id=info:doi/10.1111%2F1365-2435.14497&rft.externalDBID=10.1111%252F1365-2435.14497&rft.externalDocID=FEC14497 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |