Contributions of plant‐ and microbial‐derived residuals to mangrove soil carbon stocks: Implications for blue carbon sequestration

Coastal blue carbon ecosystems, particularly mangroves, are becoming increasingly recognised for their importance in mitigating climate change. Still, the specific patterns and drivers of plant lignin components and microbial necromass accumulation in these ecosystems are unclear. In response, we ca...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 38; no. 3; pp. 573 - 585
Main Authors Qin, Guoming, He, Weijun, Sanders, Christian J., Zhang, Jingfan, Zhou, Jinge, Wu, Jingtao, Lu, Zhe, Yu, Mengxiao, Li, Yingwen, Li, Yongxing, Lambers, Hans, Li, Zhian, Wang, Faming
Format Journal Article
LanguageEnglish
Published London Wiley Subscription Services, Inc 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coastal blue carbon ecosystems, particularly mangroves, are becoming increasingly recognised for their importance in mitigating climate change. Still, the specific patterns and drivers of plant lignin components and microbial necromass accumulation in these ecosystems are unclear. In response, we carried out a study along a 40‐year mangrove restoration chronosequence, measuring lignin phenol and amino sugar concentrations in soil profiles (0–100 cm) as indicators of plant‐based and microbial‐derived residues, respectively. Our results showed that restoration significantly increased plant lignin phenol and amino sugar concentrations, with mature mangroves having much higher concentrations than tidal flats. During restoration, the fungal necromass was greater than the bacterial necromass. The factors influencing the lignin phenols were tree biomass, total nitrogen, pH and salinity, while those influencing the formation of amino sugars were total biomass, soil C: N ratio and pH. While the amino sugars decreased, the lignin phenols increased with the content of SOC, providing evidence of the important role lignin phenol components play in the formation of SOC in mangrove. Synthesis: By separating soil carbon into plant‐based and microbial‐derived components, our results demonstrate that the carbon stock in mangrove sediments is vulnerable to disturbances and that changes from anaerobic to aerobic conditions cause significant carbon mineralisation. The precise identification of soil carbon sources in blue carbon ecosystems could aid in elucidating the mechanisms of soil carbon sequestration and their responses to environmental changes. Read the free Plain Language Summary for this article on the Journal blog. 摘要 滨海湿地生态系统,尤其是红树林,在缓解全球气候变化过程中起重要作用。植物和微生物残体是土壤有机碳的两大主要来源,但它们在红树林生态系统恢复过程中的分布规律尚不明晰。 本研究以木质素酚和氨基糖分别指示植物和微生物来源的有机碳组分,对比分析了两者在红树林恢复过程中对土壤有机碳的贡献及其影响因子。 结果显示,红树林的恢复显著提高了土壤中木质素酚和氨基糖的含量,真菌残体的累积量要显著高于细菌。木质素酚的形成主要受树木生物量、土壤总氮、pH和盐度的影响,而土壤微生物生物量、土壤碳氮比和pH值是影响氨基糖形成的主要因子。总体而言,随着红树林的恢复,植物来源组分在有机碳中的占比呈增加趋势,而微生物来源组分则呈相反趋势。 本研究通过将土壤有机碳来源分为植物和微生物来源,发现红树林土壤中的有机碳稳定性不高,当土壤从厌氧到好氧的条件转换会导致固存在红树林土壤中的有机碳流失。因此,准确识别蓝碳生态系统中的土壤碳源有助于阐明土壤碳固定机制及其对环境变化的响应。 Read the free Plain Language Summary for this article on the Journal blog.
AbstractList Coastal blue carbon ecosystems, particularly mangroves, are becoming increasingly recognised for their importance in mitigating climate change. Still, the specific patterns and drivers of plant lignin components and microbial necromass accumulation in these ecosystems are unclear.In response, we carried out a study along a 40‐year mangrove restoration chronosequence, measuring lignin phenol and amino sugar concentrations in soil profiles (0–100 cm) as indicators of plant‐based and microbial‐derived residues, respectively.Our results showed that restoration significantly increased plant lignin phenol and amino sugar concentrations, with mature mangroves having much higher concentrations than tidal flats. During restoration, the fungal necromass was greater than the bacterial necromass. The factors influencing the lignin phenols were tree biomass, total nitrogen, pH and salinity, while those influencing the formation of amino sugars were total biomass, soil C: N ratio and pH. While the amino sugars decreased, the lignin phenols increased with the content of SOC, providing evidence of the important role lignin phenol components play in the formation of SOC in mangrove.Synthesis: By separating soil carbon into plant‐based and microbial‐derived components, our results demonstrate that the carbon stock in mangrove sediments is vulnerable to disturbances and that changes from anaerobic to aerobic conditions cause significant carbon mineralisation. The precise identification of soil carbon sources in blue carbon ecosystems could aid in elucidating the mechanisms of soil carbon sequestration and their responses to environmental changes.Read the free Plain Language Summary for this article on the Journal blog.
Coastal blue carbon ecosystems, particularly mangroves, are becoming increasingly recognised for their importance in mitigating climate change. Still, the specific patterns and drivers of plant lignin components and microbial necromass accumulation in these ecosystems are unclear. In response, we carried out a study along a 40‐year mangrove restoration chronosequence, measuring lignin phenol and amino sugar concentrations in soil profiles (0–100 cm) as indicators of plant‐based and microbial‐derived residues, respectively. Our results showed that restoration significantly increased plant lignin phenol and amino sugar concentrations, with mature mangroves having much higher concentrations than tidal flats. During restoration, the fungal necromass was greater than the bacterial necromass. The factors influencing the lignin phenols were tree biomass, total nitrogen, pH and salinity, while those influencing the formation of amino sugars were total biomass, soil C: N ratio and pH. While the amino sugars decreased, the lignin phenols increased with the content of SOC, providing evidence of the important role lignin phenol components play in the formation of SOC in mangrove. Synthesis: By separating soil carbon into plant‐based and microbial‐derived components, our results demonstrate that the carbon stock in mangrove sediments is vulnerable to disturbances and that changes from anaerobic to aerobic conditions cause significant carbon mineralisation. The precise identification of soil carbon sources in blue carbon ecosystems could aid in elucidating the mechanisms of soil carbon sequestration and their responses to environmental changes. Read the free Plain Language Summary for this article on the Journal blog. 摘要 滨海湿地生态系统,尤其是红树林,在缓解全球气候变化过程中起重要作用。植物和微生物残体是土壤有机碳的两大主要来源,但它们在红树林生态系统恢复过程中的分布规律尚不明晰。 本研究以木质素酚和氨基糖分别指示植物和微生物来源的有机碳组分,对比分析了两者在红树林恢复过程中对土壤有机碳的贡献及其影响因子。 结果显示,红树林的恢复显著提高了土壤中木质素酚和氨基糖的含量,真菌残体的累积量要显著高于细菌。木质素酚的形成主要受树木生物量、土壤总氮、pH和盐度的影响,而土壤微生物生物量、土壤碳氮比和pH值是影响氨基糖形成的主要因子。总体而言,随着红树林的恢复,植物来源组分在有机碳中的占比呈增加趋势,而微生物来源组分则呈相反趋势。 本研究通过将土壤有机碳来源分为植物和微生物来源,发现红树林土壤中的有机碳稳定性不高,当土壤从厌氧到好氧的条件转换会导致固存在红树林土壤中的有机碳流失。因此,准确识别蓝碳生态系统中的土壤碳源有助于阐明土壤碳固定机制及其对环境变化的响应。 Read the free Plain Language Summary for this article on the Journal blog.
Coastal blue carbon ecosystems, particularly mangroves, are becoming increasingly recognised for their importance in mitigating climate change. Still, the specific patterns and drivers of plant lignin components and microbial necromass accumulation in these ecosystems are unclear. In response, we carried out a study along a 40‐year mangrove restoration chronosequence, measuring lignin phenol and amino sugar concentrations in soil profiles (0–100 cm) as indicators of plant‐based and microbial‐derived residues, respectively. Our results showed that restoration significantly increased plant lignin phenol and amino sugar concentrations, with mature mangroves having much higher concentrations than tidal flats. During restoration, the fungal necromass was greater than the bacterial necromass. The factors influencing the lignin phenols were tree biomass, total nitrogen, pH and salinity, while those influencing the formation of amino sugars were total biomass, soil C: N ratio and pH. While the amino sugars decreased, the lignin phenols increased with the content of SOC, providing evidence of the important role lignin phenol components play in the formation of SOC in mangrove. Synthesis : By separating soil carbon into plant‐based and microbial‐derived components, our results demonstrate that the carbon stock in mangrove sediments is vulnerable to disturbances and that changes from anaerobic to aerobic conditions cause significant carbon mineralisation. The precise identification of soil carbon sources in blue carbon ecosystems could aid in elucidating the mechanisms of soil carbon sequestration and their responses to environmental changes. Read the free Plain Language Summary for this article on the Journal blog. 滨海湿地生态系统,尤其是红树林,在缓解全球气候变化过程中起重要作用。植物和微生物残体是土壤有机碳的两大主要来源,但它们在红树林生态系统恢复过程中的分布规律尚不明晰。 本研究以木质素酚和氨基糖分别指示植物和微生物来源的有机碳组分,对比分析了两者在红树林恢复过程中对土壤有机碳的贡献及其影响因子。 结果显示,红树林的恢复显著提高了土壤中木质素酚和氨基糖的含量,真菌残体的累积量要显著高于细菌。木质素酚的形成主要受树木生物量、土壤总氮、pH和盐度的影响,而土壤微生物生物量、土壤碳氮比和pH值是影响氨基糖形成的主要因子。总体而言,随着红树林的恢复,植物来源组分在有机碳中的占比呈增加趋势,而微生物来源组分则呈相反趋势。 本研究通过将土壤有机碳来源分为植物和微生物来源,发现红树林土壤中的有机碳稳定性不高,当土壤从厌氧到好氧的条件转换会导致固存在红树林土壤中的有机碳流失。因此,准确识别蓝碳生态系统中的土壤碳源有助于阐明土壤碳固定机制及其对环境变化的响应。
Author He, Weijun
Sanders, Christian J.
Li, Yingwen
Qin, Guoming
Zhou, Jinge
Lu, Zhe
Li, Yongxing
Li, Zhian
Zhang, Jingfan
Lambers, Hans
Wang, Faming
Wu, Jingtao
Yu, Mengxiao
Author_xml – sequence: 1
  givenname: Guoming
  orcidid: 0000-0002-8959-3118
  surname: Qin
  fullname: Qin, Guoming
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Weijun
  surname: He
  fullname: He, Weijun
  organization: Research Institute of Tropical Forestry, Chinese Academy of Forestry
– sequence: 3
  givenname: Christian J.
  surname: Sanders
  fullname: Sanders, Christian J.
  organization: Southern Cross University
– sequence: 4
  givenname: Jingfan
  surname: Zhang
  fullname: Zhang, Jingfan
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Jinge
  surname: Zhou
  fullname: Zhou, Jinge
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Jingtao
  surname: Wu
  fullname: Wu, Jingtao
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Zhe
  surname: Lu
  fullname: Lu, Zhe
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Mengxiao
  surname: Yu
  fullname: Yu, Mengxiao
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Yingwen
  surname: Li
  fullname: Li, Yingwen
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Yongxing
  surname: Li
  fullname: Li, Yongxing
  organization: Chinese Academy of Sciences
– sequence: 11
  givenname: Hans
  orcidid: 0000-0002-4118-2272
  surname: Lambers
  fullname: Lambers, Hans
  organization: University of Western Australia
– sequence: 12
  givenname: Zhian
  surname: Li
  fullname: Li, Zhian
  organization: Chinese Academy of Sciences
– sequence: 13
  givenname: Faming
  orcidid: 0000-0002-7543-6779
  surname: Wang
  fullname: Wang, Faming
  email: wangfm@scbg.ac.cn
  organization: Southern Marine Science and Engineering Guangdong Laboratory
BookMark eNqFkT9PHDEQxa0IpByQOq2lNDQL9tr7x-miEyRISGmS2pr1jiMTr32xd0F0qVLzGfkk8d0hCgqwLFka_94bj98ROQgxICEfOTvjZZ1z0TZVLUVzxqVU3Tuyeq4ckBWrW1X1shXvyVHON4wx1dT1ivxbxzAnNyyziyHTaOnGQ5gf_z5QCCOdnElxcOBLYcTkbnGkCbMbF_CZzpFOEH6leIs0R-epgTTEQPMcze_8mV5NG-8M7K1tTHTwCz5D-GfBPKfd9Qk5tMURPzydx-Tn5cWP9bfq-vvXq_WX68oI2XeVHUENjA8tRwAUzEjeN4CMA2NdZ5XsRstVB0y0tRCmH2vsuZUA3WAkWCWOyened5Pirr2eXDboy8wYl6wFk0w2TdkF_fQCvYlLCuV1ulaik4r3qi9Us6fKP-Wc0Grj5t1IZTLnNWd6m47eZqG3WehdOkV3_kK3SW6CdP-K4qnTnfN4_xauLy_We91_v2amfw
CitedBy_id crossref_primary_10_1016_j_watres_2025_123527
crossref_primary_10_1007_s10113_024_02307_3
crossref_primary_10_1038_s41467_024_53413_z
crossref_primary_10_1016_j_geoderma_2025_117249
crossref_primary_10_1016_j_scitotenv_2024_178128
crossref_primary_10_1039_D4EM00443D
crossref_primary_10_1016_j_ecss_2024_108963
crossref_primary_10_1016_j_catena_2024_108579
crossref_primary_10_1007_s11104_025_07372_z
crossref_primary_10_1016_j_catena_2024_108603
crossref_primary_10_1016_j_envres_2024_120397
crossref_primary_10_1016_j_ufug_2024_128666
crossref_primary_10_1007_s11104_024_06772_x
crossref_primary_10_1016_j_catena_2024_108077
crossref_primary_10_1016_j_jenvman_2024_123341
crossref_primary_10_1007_s11157_024_09702_6
crossref_primary_10_1016_j_catena_2025_108875
crossref_primary_10_1016_j_catena_2024_108401
Cites_doi 10.1002/ecy.2916
10.1016/j.soilbio.2010.11.021
10.2136/sssaj2011.0303
10.1007/s00374-011-0545-5
10.1007/978-0-387-98141-3
10.1093/treephys/tpq048
10.1111/geb.13605
10.1007/s11104-019-04035-8
10.1016/j.soilbio.2007.03.020
10.1071/SR01030
10.1016/j.agrformet.2014.10.005
10.1111/gcb.14482
10.1002/ecy.3113
10.1046/j.1365-2389.2002.00428.x
10.1111/gcb.16071
10.1007/s10533-008-9264-x
10.1890/110004
10.2136/sssaj1997.03615995006100010037x
10.1038/s41559-021-01485-1
10.1128/aem.52.2.246-250.1986
10.1023/A:1010933404324
10.1111/gcb.15403
10.1016/j.soilbio.2005.09.002
10.1016/j.soilbio.2017.07.007
10.1111/gcb.16325
10.1080/00103628409367551
10.1111/1365-2435.14290
10.1007/s00374-019-01390-7
10.1146/annurev-marine-010213-135020
10.1016/j.soilbio.2022.108688
10.1016/j.soilbio.2019.107584
10.1016/j.xinn.2021.100180
10.1093/nsr/nwaa296
10.1007/s00374-007-0170-5
10.1038/nmicrobiol.2017.105
10.1111/gcb.16413
10.1021/ac00239a007
10.1016/j.marpolbul.2018.04.043
10.1111/gcb.15319
10.1038/nature10386
10.1038/s41467-017-01406-6
10.1007/s10533-006-9014-x
10.1038/s41579-022-00695-z
10.1016/j.soilbio.2010.03.017
10.1016/j.isprsjprs.2017.07.011
10.1038/s43017-021-00224-1
10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
10.1111/gcb.13850
10.4319/lo.1991.36.7.1358
10.1016/j.foreco.2018.03.044
10.1016/j.soilbio.2021.108422
10.1111/geb.13159
10.1016/j.soilbio.2023.109017
10.1006/ecss.2000.0753
10.1016/j.soilbio.2021.108189
10.1029/2009JF001566
10.1093/jpe/rtx028
10.1016/j.soilbio.2019.05.017
10.1016/j.scitotenv.2020.137142
10.1038/s41467-018-05891-1
10.1016/j.ecoleng.2014.09.096
10.1111/gcb.15595
10.1016/j.earscirev.2017.01.004
10.1016/j.ecoleng.2017.06.069
10.1128/aem.55.6.1368-1374.1989
10.1007/s10533-011-9658-z
10.1016/j.soilbio.2022.108645
10.1007/BF00382522
10.1038/srep17466
10.1007/s002489900082
10.1016/j.aquabot.2007.12.005
10.1126/science.1256688
10.1016/j.soilbio.2020.108008
ContentType Journal Article
Copyright 2024 The Authors. Functional Ecology © 2024 British Ecological Society.
2024 British Ecological Society
Copyright_xml – notice: 2024 The Authors. Functional Ecology © 2024 British Ecological Society.
– notice: 2024 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
DOI 10.1111/1365-2435.14497
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
AGRICOLA

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 585
ExternalDocumentID 10_1111_1365_2435_14497
FEC14497
Genre researchArticle
GrantInformation_xml – fundername: Youth Innovation Promotion Association
  funderid: 2021347
– fundername: Key‐Field Research and Development Program of Guangdong
  funderid: 2022B1111230001
– fundername: Science and Technology Planning Project of Guangdong Province
  funderid: 2021B1212110004
– fundername: Southern Marine Science and Engineering Guangdong Laboratory
  funderid: SML2023SP218
– fundername: National Natural Science Foundation of China
  funderid: 32301398; 32171594; 32011530164; U2106209; 42007230
– fundername: National Key R&D Program of China
  funderid: 2023YFE0113103; 2023YFF1304504; 2021YFC3100400
– fundername: CAS Project for Young Scientists in Basic Research
  funderid: YSBR‐037
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2021B1515020011
– fundername: ANSO Collaborative Research
  funderid: ANSO‐CR‐KP‐2022‐11
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
2AX
2WC
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABTAH
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCMX
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
VOH
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
ZCA
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABSQW
AGHNM
AGUYK
CITATION
7QG
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c3487-fda9b01b61eaae30c4185ae01a0077f947df197a036233c8d2e81f4aa7bc4af93
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 11 18:29:31 EDT 2025
Fri Jul 04 00:21:22 EDT 2025
Tue Jul 01 00:36:03 EDT 2025
Thu Apr 24 22:51:32 EDT 2025
Wed Jan 22 16:14:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3487-fda9b01b61eaae30c4185ae01a0077f947df197a036233c8d2e81f4aa7bc4af93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8959-3118
0000-0002-7543-6779
0000-0002-4118-2272
PQID 2937491898
PQPubID 1066355
PageCount 13
ParticipantIDs proquest_miscellaneous_3040455455
proquest_journals_2937491898
crossref_citationtrail_10_1111_1365_2435_14497
crossref_primary_10_1111_1365_2435_14497
wiley_primary_10_1111_1365_2435_14497_FEC14497
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 39
2011; 478
2023; 32
2021; 27
2017; 8
2017; 2
2023; 180
2002; 53
2022; 170
2023; 37
2019; 55
2006; 38
1982; 54
2021; 162
2022; 20
2001; 45
2017; 114
2022; 28
2018; 131
2018; 9
2009; 92
2021; 156
1984; 15
2018; 138
2015; 213
2022; 40
2010; 115
2019; 25
2019; 439
2017; 166
2014; 6
2010; 30
2001; 52
2022; 168
1996; 22
2021; 8
2021; 5
1997; 61
2015; 5
1991; 36
2021; 2
1986; 52
1981; 5
2018; 422
2009
2002; 2
2005; 41
2020; 101
2017; 131
2012; 76
2011; 9
2018; 24
2006; 80
2010; 42
1989; 55
2012; 111
2023
2006; 87
2018; 114
2020; 150
2008; 89
2019; 135
2020; 26
2011; 43
2016
2011; 47
2013
2014; 73
2018; 11
2020; 717
2007; 44
2014; 346
1998; 35
2020; 29
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Lovelock C. E. (e_1_2_10_35_1) 2005; 41
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
Liaw A. (e_1_2_10_34_1) 2002; 2
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
Parsons J. (e_1_2_10_49_1) 1981; 5
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
Sanchez G. (e_1_2_10_56_1) 2013
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 422
  start-page: 87
  year: 2018
  end-page: 94
  article-title: Top‐meter soil organic carbon stocks and sources in restored mangrove forests of different ages
  publication-title: Forest Ecology and Management
– year: 2009
– volume: 5
  start-page: 197
  year: 1981
  article-title: Chemistry and distribution of amino sugars in soils and soil organisms
  publication-title: Soil Biochemistry
– volume: 170
  year: 2022
  article-title: Increasing contribution from microbial residues to soil organic carbon in grassland restoration chrono‐sequence
  publication-title: Soil Biology and Biochemistry
– volume: 35
  start-page: 265
  year: 1998
  end-page: 278
  article-title: Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns
  publication-title: Microbial Ecology
– volume: 5
  start-page: 1110
  year: 2021
  end-page: 1122
  article-title: The global distribution and environmental drivers of aboveground versus belowground plant biomass
  publication-title: Nature Ecology & Evolution
– volume: 22
  start-page: 261
  year: 1996
  end-page: 264
  article-title: Changes in soil fungal: Bacterial biomass ratios following reductions in the intensity of management of an upland grassland
  publication-title: Biology and Fertility of Soils
– volume: 478
  start-page: 49
  year: 2011
  end-page: 56
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
– volume: 39
  start-page: 2111
  year: 2007
  end-page: 2118
  article-title: Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil
  publication-title: Soil Biology and Biochemistry
– volume: 44
  start-page: 1
  year: 2007
  end-page: 7
  article-title: Net microbial amino sugar accumulation process in soil as influenced by different plant material inputs
  publication-title: Biology and Fertility of Soils
– volume: 29
  start-page: 1829
  year: 2020
  end-page: 1839
  article-title: The vertical distribution and control of microbial necromass carbon in forest soils
  publication-title: Global Ecology and Biogeography
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 150
  year: 2020
  article-title: Decreased rhizodeposition, but increased microbial carbon stabilization with soil depth down to 3.6 m
  publication-title: Soil Biology and Biochemistry
– volume: 52
  start-page: 246
  year: 1986
  end-page: 250
  article-title: Effects of pH on lignin and cellulose degradation by
  publication-title: Applied and Environmental Microbiology
– volume: 101
  year: 2020
  article-title: Lignin lags, leads, or limits the decomposition of litter and soil organic carbon
  publication-title: Ecology
– volume: 54
  start-page: 174
  year: 1982
  end-page: 178
  article-title: Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products
  publication-title: Analytical Chemistry
– volume: 42
  start-page: 1200
  year: 2010
  end-page: 1211
  article-title: Fate of lignins in soils: A review
  publication-title: Soil Biology and Biochemistry
– volume: 135
  start-page: 369
  year: 2019
  end-page: 378
  article-title: Physical, biochemical, and microbial controls on amino sugar accumulation in soils under long‐term cover cropping and no‐tillage farming
  publication-title: Soil Biology and Biochemistry
– volume: 89
  start-page: 201
  year: 2008
  end-page: 219
  article-title: Organic carbon dynamics in mangrove ecosystems: A review
  publication-title: Aquatic Botany
– volume: 115
  year: 2010
  article-title: How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 9
  start-page: 552
  year: 2011
  end-page: 560
  article-title: A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO
  publication-title: Frontiers in Ecology and the Environment
– volume: 27
  start-page: 417
  year: 2021
  end-page: 434
  article-title: Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C: N ratio, δ C‐δ N, and lignin biomarker
  publication-title: Global Change Biology
– volume: 27
  start-page: 2478
  year: 2021
  end-page: 2490
  article-title: Contrasting pathways of carbon sequestration in paddy and upland soils
  publication-title: Global Change Biology
– volume: 5
  start-page: 1
  year: 2015
  end-page: 13
  article-title: Use of exotic plants to control invasion and promote mangrove restoration
  publication-title: Scientific Reports
– volume: 20
  start-page: 415
  year: 2022
  end-page: 430
  article-title: Life and death in the soil microbiome: How ecological processes influence biogeochemistry
  publication-title: Nature Reviews Microbiology
– volume: 114
  start-page: 114
  year: 2017
  end-page: 120
  article-title: Linkage of microbial residue dynamics with soil organic carbon accumulation during subtropical forest succession
  publication-title: Soil Biology and Biochemistry
– volume: 36
  start-page: 1358
  year: 1991
  end-page: 1374
  article-title: Diagenesis of belowground biomass of in salt‐marsh sediments
  publication-title: Limnology and Oceanography
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 156
  year: 2021
  article-title: Plant‐ or microbial‐derived? A review on the molecular composition of stabilized soil organic matter
  publication-title: Soil Biology and Biochemistry
– volume: 38
  start-page: 1040
  year: 2006
  end-page: 1051
  article-title: Microbial colonisation of roots as a function of plant species
  publication-title: Soil Biology and Biochemistry
– volume: 55
  start-page: 1368
  year: 1989
  end-page: 1374
  article-title: Characterization of bacteria that suppress Rhizoctonia damping‐off in bark compost media by analysis of fatty acid biomarkers
  publication-title: Applied and Environmental Microbiology
– volume: 114
  start-page: 173
  year: 2018
  end-page: 178
  article-title: Decomposition as a regulator of carbon accretion in mangroves: A review
  publication-title: Ecological Engineering
– volume: 168
  year: 2022
  article-title: Plant‐derived lipids play a crucial role in forest soil carbon accumulation
  publication-title: Soil Biology and Biochemistry
– volume: 9
  start-page: 1
  year: 2018
  end-page: 9
  article-title: Divergent accumulation of microbial necromass and plant lignin components in grassland soils
  publication-title: Nature Communications
– volume: 92
  start-page: 83
  year: 2009
  end-page: 94
  article-title: Vertical distribution and pools of microbial residues in tropical forest soils formed from distinct parent materials
  publication-title: Biogeochemistry
– volume: 28
  start-page: 6065
  year: 2022
  end-page: 6085
  article-title: Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China
  publication-title: Global Change Biology
– volume: 131
  start-page: 378
  year: 2018
  end-page: 385
  article-title: Mangrove vegetation enhances soil carbon storage primarily through in situ inputs rather than increasing allochthonous sediments
  publication-title: Marine Pollution Bulletin
– volume: 28
  start-page: 7167
  year: 2022
  end-page: 7185
  article-title: Clarifying the evidence for microbial‐ and plant‐derived soil organic matter, and the path towards a more quantitative understanding
  publication-title: Global Change Biology
– volume: 180
  year: 2023
  article-title: Differential effects of forest‐floor litter and roots on soil organic carbon formation in a temperate oak forest
  publication-title: Soil Biology and Biochemistry
– volume: 47
  start-page: 387
  year: 2011
  end-page: 396
  article-title: Optimisation of amino sugar quantification by HPLC in soil and plant hydrolysates
  publication-title: Biology and Fertility of Soils
– volume: 166
  start-page: 53
  year: 2017
  end-page: 63
  article-title: The role of root decomposition in global mangrove and saltmarsh carbon budgets
  publication-title: Earth‐Science Reviews
– volume: 26
  start-page: 6032
  year: 2020
  end-page: 6039
  article-title: The soil microbial carbon pump: From conceptual insights to empirical assessments
  publication-title: Global Change Biology
– volume: 73
  start-page: 367
  year: 2014
  end-page: 372
  article-title: Eradicating invasive with alien and its implications for invasion controls
  publication-title: Ecological Engineering
– volume: 346
  year: 2014
  article-title: Global diversity and geography of soil fungi
  publication-title: Science
– volume: 439
  start-page: 325
  year: 2019
  end-page: 338
  article-title: Distribution of lignin phenols in comparison with plant‐derived lipids in the alpine versus temperate grassland soils
  publication-title: Plant and Soil
– volume: 43
  start-page: 1621
  year: 2011
  end-page: 1625
  article-title: Use and misuse of PLFA measurements in soils
  publication-title: Soil Biology and Biochemistry
– volume: 87
  start-page: 2614
  year: 2006
  end-page: 2625
  article-title: Variation partitioning of species data matrices: Estimation and comparison of fractions
  publication-title: Ecology
– volume: 213
  start-page: 266
  year: 2015
  end-page: 272
  article-title: Contribution of mangroves to coastal carbon cycling in low latitude seas
  publication-title: Agricultural and Forest Meteorology
– volume: 131
  start-page: 104
  year: 2017
  end-page: 120
  article-title: A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel‐1A imagery in Google Earth Engine cloud computing platform
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 2
  start-page: 826
  year: 2021
  end-page: 839
  article-title: Blue carbon as a natural climate solution
  publication-title: Nature Reviews Earth and Environment
– volume: 111
  start-page: 41
  year: 2012
  end-page: 55
  article-title: SOM genesis: Microbial biomass as a significant source
  publication-title: Biogeochemistry
– volume: 717
  year: 2020
  article-title: Changes of ecosystem carbon stock following the plantation of exotic mangrove in Qi'ao Island, China
  publication-title: Science of the Total Environment
– volume: 61
  start-page: 262
  year: 1997
  end-page: 267
  article-title: Soil aggregation and fungal and bacterial biomass under annual and perennial cropping systems
  publication-title: Soil Science Society of America Journal
– volume: 8
  start-page: 1
  year: 2017
  end-page: 10
  article-title: Anaerobic microsites have an unaccounted role in soil carbon stabilization
  publication-title: Nature Communications
– volume: 40
  start-page: 977
  year: 2022
  end-page: 998
  article-title: Lignin, carbohydrate, and amino sugar distribution and transformation in the tropical highland soils of northern Thailand under cabbage cultivation, Pinus reforestation, secondary forest, and primary forest
  publication-title: Soil Research
– volume: 138
  year: 2018
  article-title: pH and exchangeable aluminum are major regulators of microbial energy flow and carbon use efficiency in soil microbial communities
  publication-title: Soil Biology and Biochemistry
– volume: 30
  start-page: 1148
  year: 2010
  end-page: 1160
  article-title: Nutrition of mangroves
  publication-title: Tree Physiology
– volume: 24
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale
  publication-title: Global Change Biology
– volume: 25
  start-page: 12
  year: 2019
  end-page: 24
  article-title: Pathways of mineral‐associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry
  publication-title: Global Change Biology
– year: 2016
– volume: 76
  start-page: 1719
  year: 2012
  end-page: 1727
  article-title: Precision of soil particle size analysis using laser diffractometry
  publication-title: Soil Science Society of America Journal
– volume: 28
  start-page: 2169
  year: 2022
  end-page: 2182
  article-title: From energy to (soil organic) matter
  publication-title: Global Change Biology
– volume: 8
  year: 2021
  article-title: Global blue carbon accumulation in tidal wetlands increases with climate change
  publication-title: National Science Review
– volume: 2
  start-page: 1
  year: 2017
  end-page: 6
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nature Microbiology
– volume: 55
  start-page: 767
  year: 2019
  end-page: 776
  article-title: Contrasting contribution of fungal and bacterial residues to organic carbon accumulation in paddy soils across eastern China
  publication-title: Biology and Fertility of Soils
– volume: 2
  year: 2021
  article-title: Technologies and perspectives for achieving carbon neutrality
  publication-title: The Innovation
– volume: 52
  start-page: 505
  year: 2001
  end-page: 514
  article-title: Sediment retention by a Mediterranean meadow: The balance between deposition and resuspension
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 11
  start-page: 560
  year: 2018
  end-page: 568
  article-title: Lignin characteristics in soil profiles in different plant communities in a subtropical mixed forest
  publication-title: Journal of Plant Ecology
– year: 2023
– volume: 6
  start-page: 195
  year: 2014
  end-page: 219
  article-title: Carbon cycling and storage in mangrove forests
  publication-title: Annual Review of Marine Science
– volume: 15
  start-page: 1191
  year: 1984
  end-page: 1213
  article-title: Determination of total organic‐C in soils by an improved chromic acid digestion and spectrophotometric procedure
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 37
  start-page: 1
  year: 2023
  end-page: 15
  article-title: Patterns and determinants of plant‐derived lignin phenols in coastal wetlands: Implications for organic C accumulation
  publication-title: Functional Ecology
– volume: 162
  year: 2021
  article-title: Microbial necromass as the source of soil organic carbon in global ecosystems
  publication-title: Soil Biology and Biochemistry
– volume: 41
  start-page: 456
  year: 2005
  end-page: 464
  article-title: Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama
  publication-title: Caribbean Journal of Science
– volume: 101
  year: 2020
  article-title: Quantifying how changing mangrove cover affects ecosystem carbon storage in coastal wetlands
  publication-title: Ecology
– volume: 32
  start-page: 120
  year: 2023
  end-page: 131
  article-title: Mean annual temperature and carbon availability respectively controlled the contributions of bacterial and fungal residues to organic carbon accumulation in topsoil across China's forests
  publication-title: Global Ecology and Biogeography
– volume: 53
  start-page: 29
  year: 2002
  end-page: 35
  article-title: Fate of microbial residues in sandy soils of the South African Highveld as influenced by prolonged arable cropping
  publication-title: European Journal of Soil Science
– year: 2013
– volume: 80
  start-page: 121
  year: 2006
  end-page: 142
  article-title: Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil
  publication-title: Biogeochemistry
– ident: e_1_2_10_13_1
  doi: 10.1002/ecy.2916
– ident: e_1_2_10_21_1
  doi: 10.1016/j.soilbio.2010.11.021
– ident: e_1_2_10_40_1
  doi: 10.2136/sssaj2011.0303
– ident: e_1_2_10_27_1
  doi: 10.1007/s00374-011-0545-5
– ident: e_1_2_10_69_1
  doi: 10.1007/978-0-387-98141-3
– volume: 2
  start-page: 18
  year: 2002
  ident: e_1_2_10_34_1
  article-title: Classification and regression by randomForest
  publication-title: R News
– ident: e_1_2_10_55_1
  doi: 10.1093/treephys/tpq048
– ident: e_1_2_10_78_1
  doi: 10.1111/geb.13605
– ident: e_1_2_10_80_1
  doi: 10.1007/s11104-019-04035-8
– ident: e_1_2_10_19_1
  doi: 10.1016/j.soilbio.2007.03.020
– ident: e_1_2_10_42_1
  doi: 10.1071/SR01030
– ident: e_1_2_10_3_1
  doi: 10.1016/j.agrformet.2014.10.005
– ident: e_1_2_10_59_1
  doi: 10.1111/gcb.14482
– ident: e_1_2_10_24_1
  doi: 10.1002/ecy.3113
– ident: e_1_2_10_4_1
  doi: 10.1046/j.1365-2389.2002.00428.x
– ident: e_1_2_10_23_1
  doi: 10.1111/gcb.16071
– ident: e_1_2_10_43_1
  doi: 10.1007/s10533-008-9264-x
– ident: e_1_2_10_39_1
  doi: 10.1890/110004
– ident: e_1_2_10_12_1
  doi: 10.2136/sssaj1997.03615995006100010037x
– ident: e_1_2_10_36_1
  doi: 10.1038/s41559-021-01485-1
– ident: e_1_2_10_53_1
  doi: 10.1128/aem.52.2.246-250.1986
– ident: e_1_2_10_11_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_10_70_1
  doi: 10.1111/gcb.15403
– ident: e_1_2_10_6_1
  doi: 10.1016/j.soilbio.2005.09.002
– volume-title: Package ‘plspm’
  year: 2013
  ident: e_1_2_10_56_1
– ident: e_1_2_10_58_1
  doi: 10.1016/j.soilbio.2017.07.007
– ident: e_1_2_10_71_1
  doi: 10.1111/gcb.16325
– volume: 41
  start-page: 456
  year: 2005
  ident: e_1_2_10_35_1
  article-title: Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama
  publication-title: Caribbean Journal of Science
– ident: e_1_2_10_25_1
  doi: 10.1080/00103628409367551
– ident: e_1_2_10_72_1
  doi: 10.1111/1365-2435.14290
– ident: e_1_2_10_73_1
  doi: 10.1007/s00374-019-01390-7
– ident: e_1_2_10_2_1
  doi: 10.1146/annurev-marine-010213-135020
– ident: e_1_2_10_75_1
  doi: 10.1016/j.soilbio.2022.108688
– ident: e_1_2_10_28_1
  doi: 10.1016/j.soilbio.2019.107584
– ident: e_1_2_10_65_1
  doi: 10.1016/j.xinn.2021.100180
– ident: e_1_2_10_66_1
  doi: 10.1093/nsr/nwaa296
– ident: e_1_2_10_7_1
– ident: e_1_2_10_33_1
  doi: 10.1007/s00374-007-0170-5
– ident: e_1_2_10_32_1
  doi: 10.1038/nmicrobiol.2017.105
– ident: e_1_2_10_68_1
  doi: 10.1111/gcb.16413
– ident: e_1_2_10_26_1
  doi: 10.1021/ac00239a007
– ident: e_1_2_10_74_1
  doi: 10.1016/j.marpolbul.2018.04.043
– ident: e_1_2_10_81_1
  doi: 10.1111/gcb.15319
– ident: e_1_2_10_57_1
  doi: 10.1038/nature10386
– ident: e_1_2_10_29_1
  doi: 10.1038/s41467-017-01406-6
– ident: e_1_2_10_47_1
  doi: 10.1007/s10533-006-9014-x
– ident: e_1_2_10_60_1
  doi: 10.1038/s41579-022-00695-z
– ident: e_1_2_10_62_1
  doi: 10.1016/j.soilbio.2010.03.017
– ident: e_1_2_10_14_1
  doi: 10.1016/j.isprsjprs.2017.07.011
– ident: e_1_2_10_38_1
  doi: 10.1038/s43017-021-00224-1
– ident: e_1_2_10_52_1
  doi: 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
– ident: e_1_2_10_50_1
  doi: 10.1111/gcb.13850
– ident: e_1_2_10_9_1
  doi: 10.4319/lo.1991.36.7.1358
– volume: 5
  start-page: 197
  year: 1981
  ident: e_1_2_10_49_1
  article-title: Chemistry and distribution of amino sugars in soils and soil organisms
  publication-title: Soil Biochemistry
– ident: e_1_2_10_15_1
  doi: 10.1016/j.foreco.2018.03.044
– ident: e_1_2_10_64_1
  doi: 10.1016/j.soilbio.2021.108422
– ident: e_1_2_10_45_1
  doi: 10.1111/geb.13159
– ident: e_1_2_10_46_1
– ident: e_1_2_10_77_1
  doi: 10.1016/j.soilbio.2023.109017
– ident: e_1_2_10_22_1
  doi: 10.1006/ecss.2000.0753
– ident: e_1_2_10_5_1
  doi: 10.1016/j.soilbio.2021.108189
– ident: e_1_2_10_44_1
  doi: 10.1029/2009JF001566
– ident: e_1_2_10_67_1
  doi: 10.1093/jpe/rtx028
– ident: e_1_2_10_31_1
  doi: 10.1016/j.soilbio.2019.05.017
– ident: e_1_2_10_76_1
  doi: 10.1016/j.scitotenv.2020.137142
– ident: e_1_2_10_37_1
  doi: 10.1038/s41467-018-05891-1
– ident: e_1_2_10_16_1
  doi: 10.1016/j.ecoleng.2014.09.096
– ident: e_1_2_10_17_1
  doi: 10.1111/gcb.15595
– ident: e_1_2_10_48_1
  doi: 10.1016/j.earscirev.2017.01.004
– ident: e_1_2_10_20_1
  doi: 10.1016/j.ecoleng.2017.06.069
– ident: e_1_2_10_63_1
  doi: 10.1128/aem.55.6.1368-1374.1989
– ident: e_1_2_10_54_1
– ident: e_1_2_10_41_1
  doi: 10.1007/s10533-011-9658-z
– ident: e_1_2_10_18_1
  doi: 10.1016/j.soilbio.2022.108645
– ident: e_1_2_10_8_1
  doi: 10.1007/BF00382522
– ident: e_1_2_10_79_1
  doi: 10.1038/srep17466
– ident: e_1_2_10_10_1
  doi: 10.1007/s002489900082
– ident: e_1_2_10_30_1
  doi: 10.1016/j.aquabot.2007.12.005
– ident: e_1_2_10_61_1
  doi: 10.1126/science.1256688
– ident: e_1_2_10_51_1
  doi: 10.1016/j.soilbio.2020.108008
SSID ssj0009522
Score 2.5726144
Snippet Coastal blue carbon ecosystems, particularly mangroves, are becoming increasingly recognised for their importance in mitigating climate change. Still, the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 573
SubjectTerms Aerobic conditions
amino sugars
Anaerobic conditions
Biomass
blue carbon
Carbon sequestration
carbon sinks
Carbon sources
chronosequences
Climate change
Climate change mitigation
ecology
Ecosystems
Environmental changes
fungi
Lignin
lignin phenols
mangrove restoration
mangrove soils
Mangroves
microbial necromass
Microorganisms
Mineralization
necromass
Organic carbon
phenol
Phenols
Restoration
salinity
Sediments
soil carbon
Soil microorganisms
soil organic carbon
Soil profiles
Soil properties
Soils
Sugar
sugars
Tidal flats
total nitrogen
trees
Title Contributions of plant‐ and microbial‐derived residuals to mangrove soil carbon stocks: Implications for blue carbon sequestration
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14497
https://www.proquest.com/docview/2937491898
https://www.proquest.com/docview/3040455455
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSxwxFA9FEHqx9kO6aiWFHnqZZWeSnQ9vIrtooT2UCr0NL18ijjOysyvoyVPP_Rv9S3wvmVlXQaQU5hAyCZNJ3scvycsvjH2xiNqEGMdRro2J0ErqSGlNRJBjZUCij1a0Dvn9R3p0Ir_9HvfRhHQWJvBDLBfcSDO8vSYFB9WuKHmIz0JvT_uTBZ0npxyCRT-TFdrdsI-QpEWEnlZ05D4Uy_Ok_mO_9AA2VyGr9znTN0z1rQ2hJufDxVwN9c0TIsf_-p1NttEhUn4QROgte2Xrd2w93FF5jamJ7lJbk4dDcVihswrte_aHKK76i7Na3jh-WeGA3d3-5VAbfnHmyZ6gwgyDAn9lDcdJvj8F1vJ5wy-gPp01V5a3zVnFNcxUU3MEpfq83efHKyHvHBE2V9XCLgtZ339Bij-wk-nk1-FR1N3vEGmB86TIGSjUKFZpbAGsGGki0gE7ioFIhlwhM-PiIgNyskLo3CQ2j50EyJSW4AqxxdbqprYfGdcqljpNXOoBVQIgTZYJ6xQg_pJuPGDDfnRL3ZGf0x0cVdlPgqj_S-r_0vf_gH1dVrgMvB_PF93txaXsDEBbIorKZBHnRT5gn5evUXVpPwZq2yzaUqABRW3AB5vnZeOlT5XTyaFPbP9rhR32OkE4FqLndtnafLawnxBOzdWe15h7eKAXaQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagqIIL0ELVhQKu1AOXrDaxNw9uqNrVFtoeqlbqzRq_qqppUm12K8GJE2d-I7-EsZ1sQyWEEFIOVhInjjOPz_b4G0L2DKI2xsZxlCutI7SSKpJKOSLIsdTA0UdLNw95dJzOzvin8_F5by9M4IdYTbg5zfD22im4m5DuaXkI0EJ37xYoi-wheeTyevth1UnSI94NKwlJWkToa1lL7-Oiee494HfPdAc3-6DVe53pM6K69oZgk6vhciGH6us9Ksf_-6Dn5GkLSunHIEUb5IGpNsl6SFP5BUsT1Za2Jnf74rBCaxiaF-S7Y7nqcmc1tLb0psR_9vPbDwqVpteXnu8JSjyhUeZvjaY4zvcbwRq6qOk1VBfz-tbQpr4sqYK5rCuKuFRdNR_oQS_qnSLIprJcmtVNxndgEOSX5Gw6Od2fRW2Kh0gxHCpFVkMhR7FMYwNg2Eg5Lh0woxgcz5AteKZtXGTg_CxjKteJyWPLATKpONiCbZG1qq7MNqFKxlyliU09pkoAuM4yZqwEhGDcjgdk2P1eoVr-c5eGoxTdOMj1v3D9L3z_D8j7VYWbQP3x51t3OnkRrQ1oBAKpjBdxXuQDsru6jNrrlmSgMvWyEQxtKCoEHtg8Lxx_e5WYTvZ94dW_VnhHHs9Ojw7F4cHx59fkSYLoLATT7ZC1xXxp3iC6Wsi3Xn1-AeQQG4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9MwGLZgCLQLY8C0wjaMxIFLqiZ287HbtLXagE0IMYmb9fprmpYlVdNOghMnzvuN_JK9tpOum4QQQsrBSuzEsd-Px_brx4S8M4jaGBvGUa60jtBKqkgq5Yggh1IDRx8t3Tzk8Ul6eMo_fBt20YRuL0zgh1hMuDnN8PbaKfhE2yUlD_FZ6O3d-mSRPSSPeDrInWAffEmWeHfDQkKSFhG6Wtay-7hgnnsvuOuYbtHmMmb1Tme8RmRX3RBrctGfz2Rf_bjH5Phf__OMPG0hKd0LMrROHpjqOXkcDqn8jqmRalMbo9tdcVigNQvNC_LLcVx1J2c1tLZ0UmKP_f55TaHS9PLcsz1BiTc0SvyV0RRH-X4bWENnNb2E6mxaXxna1OclVTCVdUURlaqLZpceLcW8U4TYVJZzs8hkfPsFMX5JTsejr_uHUXvAQ6QYDpQiq6GQg1imsQEwbKAckw6YQQyOZcgWPNM2LjJwXpYxlevE5LHlAJlUHGzBNshKVVdmk1AlY67SxKYeUSUAXGcZM1YCAjBuhz3S73pXqJb93B3CUYpuFOTaX7j2F779e-T9osAkEH_8OetWJy6itQCNQBiV8SLOi7xH3i4eo-66BRmoTD1vBEMLiuqAF1bPy8bfPiXGo32fePWvBd6QJ58PxuLT0cnH12Q1QWgWIum2yMpsOjfbCK1mcscrzw2UtRo8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contributions+of+plant%E2%80%90+and+microbial%E2%80%90derived+residuals+to+mangrove+soil+carbon+stocks%3A+Implications+for+blue+carbon+sequestration&rft.jtitle=Functional+ecology&rft.au=Qin%2C+Guoming&rft.au=He%2C+Weijun&rft.au=Sanders%2C+Christian+J.&rft.au=Zhang%2C+Jingfan&rft.date=2024-03-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=38&rft.issue=3&rft.spage=573&rft.epage=585&rft_id=info:doi/10.1111%2F1365-2435.14497&rft.externalDBID=10.1111%252F1365-2435.14497&rft.externalDocID=FEC14497
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon