Cystathionine γ Lyase Sulfhydrates the RNA Binding Protein Human Antigen R to Preserve Endothelial Cell Function and Delay Atherogenesis
BACKGROUND:Hydrogen sulfide (H2S), generated by cystathionine γ lyase (CSE), is an important endogenous regulator of vascular function. The aim of the present study was to investigate the control and consequences of CSE activity in endothelial cells under physiological and proatherogenic conditions....
Saved in:
Published in | Circulation (New York, N.Y.) Vol. 139; no. 1; pp. 101 - 114 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
by the American College of Cardiology Foundation and the American Heart Association, Inc
02.01.2019
|
Online Access | Get full text |
Cover
Loading…
Abstract | BACKGROUND:Hydrogen sulfide (H2S), generated by cystathionine γ lyase (CSE), is an important endogenous regulator of vascular function. The aim of the present study was to investigate the control and consequences of CSE activity in endothelial cells under physiological and proatherogenic conditions.
METHODS:Endothelial cell CSE knockout mice were generated, and lung endothelial cells were studied in vitro (gene expression, protein sulfhydration, and monocyte adhesion). Mice were crossed onto the apolipoprotein E–deficient background, and atherogenesis (partial carotid artery ligation) was monitored over 21 days. CSE expression, H2S bioavailability, and amino acid profiling were also performed with human material.
RESULTS:The endothelial cell–specific deletion of CSE selectively increased the expression of CD62E and elevated monocyte adherence in the absence of an inflammatory stimulus. Mechanistically, CD62E mRNA was more stable in endothelial cells from CSE-deficient mice, an effect attributed to the attenuated sulfhydration and dimerization of the RNA-binding protein human antigen R. CSE expression was upregulated in mice after partial carotid artery ligation and in atheromas from human subjects. Despite the increase in CSE protein, circulating and intraplaque H2S levels were reduced, a phenomenon that could be attributed to the serine phosphorylation (on Ser377) and inhibition of the enzyme, most likely resulting from increased interleukin-1β. Consistent with the loss of H2S, human antigen R sulfhydration was attenuated in atherosclerosis and resulted in the stabilization of human antigen R–target mRNAs, for example, CD62E and cathepsin S, both of which are linked to endothelial cell activation and atherosclerosis. The deletion of CSE from endothelial cells was associated with the accelerated development of endothelial dysfunction and atherosclerosis, effects that were reversed on treatment with a polysulfide donor. Finally, in mice and humans, plasma levels of the CSE substrate L-cystathionine negatively correlated with vascular reactivity and H2S levels, indicating its potential use as a biomarker for vascular disease.
CONCLUSIONS:The constitutive S-sulfhydration of human antigen R (on Cys13) by CSE-derived H2S prevents its homodimerization and activity, which attenuates the expression of target proteins such as CD62E and cathepsin S. However, as a consequence of vascular inflammation, the beneficial actions of CSE-derived H2S are lost owing to the phosphorylation and inhibition of the enzyme. |
---|---|
AbstractList | BACKGROUND:Hydrogen sulfide (H2S), generated by cystathionine γ lyase (CSE), is an important endogenous regulator of vascular function. The aim of the present study was to investigate the control and consequences of CSE activity in endothelial cells under physiological and proatherogenic conditions.
METHODS:Endothelial cell CSE knockout mice were generated, and lung endothelial cells were studied in vitro (gene expression, protein sulfhydration, and monocyte adhesion). Mice were crossed onto the apolipoprotein E–deficient background, and atherogenesis (partial carotid artery ligation) was monitored over 21 days. CSE expression, H2S bioavailability, and amino acid profiling were also performed with human material.
RESULTS:The endothelial cell–specific deletion of CSE selectively increased the expression of CD62E and elevated monocyte adherence in the absence of an inflammatory stimulus. Mechanistically, CD62E mRNA was more stable in endothelial cells from CSE-deficient mice, an effect attributed to the attenuated sulfhydration and dimerization of the RNA-binding protein human antigen R. CSE expression was upregulated in mice after partial carotid artery ligation and in atheromas from human subjects. Despite the increase in CSE protein, circulating and intraplaque H2S levels were reduced, a phenomenon that could be attributed to the serine phosphorylation (on Ser377) and inhibition of the enzyme, most likely resulting from increased interleukin-1β. Consistent with the loss of H2S, human antigen R sulfhydration was attenuated in atherosclerosis and resulted in the stabilization of human antigen R–target mRNAs, for example, CD62E and cathepsin S, both of which are linked to endothelial cell activation and atherosclerosis. The deletion of CSE from endothelial cells was associated with the accelerated development of endothelial dysfunction and atherosclerosis, effects that were reversed on treatment with a polysulfide donor. Finally, in mice and humans, plasma levels of the CSE substrate L-cystathionine negatively correlated with vascular reactivity and H2S levels, indicating its potential use as a biomarker for vascular disease.
CONCLUSIONS:The constitutive S-sulfhydration of human antigen R (on Cys13) by CSE-derived H2S prevents its homodimerization and activity, which attenuates the expression of target proteins such as CD62E and cathepsin S. However, as a consequence of vascular inflammation, the beneficial actions of CSE-derived H2S are lost owing to the phosphorylation and inhibition of the enzyme. Hydrogen sulfide (H2S), generated by cystathionine γ lyase (CSE), is an important endogenous regulator of vascular function. The aim of the present study was to investigate the control and consequences of CSE activity in endothelial cells under physiological and proatherogenic conditions.BACKGROUNDHydrogen sulfide (H2S), generated by cystathionine γ lyase (CSE), is an important endogenous regulator of vascular function. The aim of the present study was to investigate the control and consequences of CSE activity in endothelial cells under physiological and proatherogenic conditions.Endothelial cell CSE knockout mice were generated, and lung endothelial cells were studied in vitro (gene expression, protein sulfhydration, and monocyte adhesion). Mice were crossed onto the apolipoprotein E-deficient background, and atherogenesis (partial carotid artery ligation) was monitored over 21 days. CSE expression, H2S bioavailability, and amino acid profiling were also performed with human material.METHODSEndothelial cell CSE knockout mice were generated, and lung endothelial cells were studied in vitro (gene expression, protein sulfhydration, and monocyte adhesion). Mice were crossed onto the apolipoprotein E-deficient background, and atherogenesis (partial carotid artery ligation) was monitored over 21 days. CSE expression, H2S bioavailability, and amino acid profiling were also performed with human material.The endothelial cell-specific deletion of CSE selectively increased the expression of CD62E and elevated monocyte adherence in the absence of an inflammatory stimulus. Mechanistically, CD62E mRNA was more stable in endothelial cells from CSE-deficient mice, an effect attributed to the attenuated sulfhydration and dimerization of the RNA-binding protein human antigen R. CSE expression was upregulated in mice after partial carotid artery ligation and in atheromas from human subjects. Despite the increase in CSE protein, circulating and intraplaque H2S levels were reduced, a phenomenon that could be attributed to the serine phosphorylation (on Ser377) and inhibition of the enzyme, most likely resulting from increased interleukin-1β. Consistent with the loss of H2S, human antigen R sulfhydration was attenuated in atherosclerosis and resulted in the stabilization of human antigen R-target mRNAs, for example, CD62E and cathepsin S, both of which are linked to endothelial cell activation and atherosclerosis. The deletion of CSE from endothelial cells was associated with the accelerated development of endothelial dysfunction and atherosclerosis, effects that were reversed on treatment with a polysulfide donor. Finally, in mice and humans, plasma levels of the CSE substrate l-cystathionine negatively correlated with vascular reactivity and H2S levels, indicating its potential use as a biomarker for vascular disease.RESULTSThe endothelial cell-specific deletion of CSE selectively increased the expression of CD62E and elevated monocyte adherence in the absence of an inflammatory stimulus. Mechanistically, CD62E mRNA was more stable in endothelial cells from CSE-deficient mice, an effect attributed to the attenuated sulfhydration and dimerization of the RNA-binding protein human antigen R. CSE expression was upregulated in mice after partial carotid artery ligation and in atheromas from human subjects. Despite the increase in CSE protein, circulating and intraplaque H2S levels were reduced, a phenomenon that could be attributed to the serine phosphorylation (on Ser377) and inhibition of the enzyme, most likely resulting from increased interleukin-1β. Consistent with the loss of H2S, human antigen R sulfhydration was attenuated in atherosclerosis and resulted in the stabilization of human antigen R-target mRNAs, for example, CD62E and cathepsin S, both of which are linked to endothelial cell activation and atherosclerosis. The deletion of CSE from endothelial cells was associated with the accelerated development of endothelial dysfunction and atherosclerosis, effects that were reversed on treatment with a polysulfide donor. Finally, in mice and humans, plasma levels of the CSE substrate l-cystathionine negatively correlated with vascular reactivity and H2S levels, indicating its potential use as a biomarker for vascular disease.The constitutive S-sulfhydration of human antigen R (on Cys13) by CSE-derived H2S prevents its homodimerization and activity, which attenuates the expression of target proteins such as CD62E and cathepsin S. However, as a consequence of vascular inflammation, the beneficial actions of CSE-derived H2S are lost owing to the phosphorylation and inhibition of the enzyme.CONCLUSIONSThe constitutive S-sulfhydration of human antigen R (on Cys13) by CSE-derived H2S prevents its homodimerization and activity, which attenuates the expression of target proteins such as CD62E and cathepsin S. However, as a consequence of vascular inflammation, the beneficial actions of CSE-derived H2S are lost owing to the phosphorylation and inhibition of the enzyme. |
Author | Siuda, Daniel Szabo, Csaba Papapetropoulos, Andreas Sigala, Fragiska Randriamboavonjy, Voahanginirina Fleming, Ingrid Heidler, Juliana Siragusa, Mauro Abdel Malik, Randa Zukunft, Sven Luck, Bert Wang, Dao Wen Hu, Jiong Chen, Chen Wittig, Ilka Filis, Konstantinos A. Schürmann, Christoph Zografos, George Wittig, Janina Kojonazarov, Baktybek Bibli, Sofia-Iris Pfeilschifter, Josef Tsilimigras, Diamantis I. Brandes, Ralf P. |
Author_xml | – sequence: 1 givenname: Sofia-Iris surname: Bibli fullname: Bibli, Sofia-Iris – sequence: 2 givenname: Jiong surname: Hu fullname: Hu, Jiong – sequence: 3 givenname: Fragiska surname: Sigala fullname: Sigala, Fragiska – sequence: 4 givenname: Ilka surname: Wittig fullname: Wittig, Ilka – sequence: 5 givenname: Juliana surname: Heidler fullname: Heidler, Juliana – sequence: 6 givenname: Sven surname: Zukunft fullname: Zukunft, Sven – sequence: 7 givenname: Diamantis surname: Tsilimigras middlename: I. fullname: Tsilimigras, Diamantis I. – sequence: 8 givenname: Voahanginirina surname: Randriamboavonjy fullname: Randriamboavonjy, Voahanginirina – sequence: 9 givenname: Janina surname: Wittig fullname: Wittig, Janina – sequence: 10 givenname: Baktybek surname: Kojonazarov fullname: Kojonazarov, Baktybek – sequence: 11 givenname: Christoph surname: Schürmann fullname: Schürmann, Christoph – sequence: 12 givenname: Mauro surname: Siragusa fullname: Siragusa, Mauro – sequence: 13 givenname: Daniel surname: Siuda fullname: Siuda, Daniel – sequence: 14 givenname: Bert surname: Luck fullname: Luck, Bert – sequence: 15 givenname: Randa surname: Abdel Malik fullname: Abdel Malik, Randa – sequence: 16 givenname: Konstantinos surname: Filis middlename: A. fullname: Filis, Konstantinos A. – sequence: 17 givenname: George surname: Zografos fullname: Zografos, George – sequence: 18 givenname: Chen surname: Chen fullname: Chen, Chen – sequence: 19 givenname: Dao surname: Wang middlename: Wen fullname: Wang, Dao Wen – sequence: 20 givenname: Josef surname: Pfeilschifter fullname: Pfeilschifter, Josef – sequence: 21 givenname: Ralf surname: Brandes middlename: P. fullname: Brandes, Ralf P. – sequence: 22 givenname: Csaba surname: Szabo fullname: Szabo, Csaba – sequence: 23 givenname: Andreas surname: Papapetropoulos fullname: Papapetropoulos, Andreas – sequence: 24 givenname: Ingrid surname: Fleming fullname: Fleming, Ingrid |
BookMark | eNqNkc1u1DAUhS1UJKaFd7js2KTYjvPjBUIhbZmRRi0a2nXkSW4ag8cutkOVR-B5eA-eCaNhA6turuXr8x37-pySE-ssEvKa0XPGSva23ezau21zu7m5btZN6tXnNBdVUT0jK1ZwkYkilydkRSmVWZVz_oKchvAlbcu8KlbkR7uEqOKkndUW4ddP2C4qIHyezTgtg1cRA8QJYXfdwAdtB23v4ZN3EbWF9XxQFhob9T1a2EF06QgD-u8Il3ZwiTNaGWjRGLiabR_TNaDsABdo1AJNEniXWAw6vCTPR2UCvvq7npG7q8vbdp1tbz5u2mab9bmoq6wcq7ws-CDpwGtVSir3ZS4wjbMfR4lS7dmoKjrKQlSM0j7VWvCS1QNPFTE_I2-Ovg_efZsxxO6gQ59eqCy6OXScloILWhQySd8fpb13IXgcu16nz0pDRK-06Rjt_oTQ_RtC6tXdMYTkIP9zePD6oPzyJPbdkX10JqIPX838iL6bUJk4PYH_DQXJpQI |
CitedBy_id | crossref_primary_10_3389_fphar_2018_01066 crossref_primary_10_1161_CIRCRESAHA_123_323716 crossref_primary_10_3390_nu13114024 crossref_primary_10_1177_1538574419856453 crossref_primary_10_1016_j_atherosclerosis_2023_01_008 crossref_primary_10_3390_antiox12091731 crossref_primary_10_1161_CIRCULATIONAHA_120_051877 crossref_primary_10_1016_j_vph_2024_107282 crossref_primary_10_1002_advs_202409250 crossref_primary_10_1007_s00210_023_02729_6 crossref_primary_10_3233_JCB_230098 crossref_primary_10_1152_physrev_00028_2021 crossref_primary_10_1016_j_bcp_2020_113833 crossref_primary_10_1080_17460441_2021_1850688 crossref_primary_10_3390_antiox10030383 crossref_primary_10_1016_j_celrep_2024_113924 crossref_primary_10_1016_j_jare_2022_03_010 crossref_primary_10_3389_fphar_2019_01568 crossref_primary_10_1161_CIRCULATIONAHA_118_036854 crossref_primary_10_3892_mmr_2024_13259 crossref_primary_10_1111_bph_14691 crossref_primary_10_3389_fcvm_2022_876639 crossref_primary_10_1016_j_phrs_2020_105119 crossref_primary_10_1016_j_micres_2023_127366 crossref_primary_10_1038_s41569_022_00741_6 crossref_primary_10_1074_jbc_RA119_008597 crossref_primary_10_1007_s11010_021_04278_z crossref_primary_10_1016_j_cca_2021_02_003 crossref_primary_10_1016_j_gendis_2022_03_022 crossref_primary_10_1016_j_tem_2020_06_001 crossref_primary_10_1016_j_yexcr_2024_114172 crossref_primary_10_3390_ijms26062488 crossref_primary_10_1111_acel_13205 crossref_primary_10_3390_biomedicines11020612 crossref_primary_10_1038_d41591_019_00001_0 crossref_primary_10_3390_biom14091165 crossref_primary_10_1089_ars_2020_8060 crossref_primary_10_1161_CIRCULATIONAHA_123_065389 crossref_primary_10_1002_mc_23513 crossref_primary_10_1016_j_jare_2020_05_007 crossref_primary_10_1016_j_hlc_2020_07_015 crossref_primary_10_1089_ars_2023_0365 crossref_primary_10_3389_fphar_2023_1303465 crossref_primary_10_3390_antiox10030486 crossref_primary_10_24884_1682_6655_2021_20_1_5_16 crossref_primary_10_1007_s11357_022_00600_9 crossref_primary_10_1016_j_endmts_2020_100068 crossref_primary_10_1016_j_bcp_2019_08_006 crossref_primary_10_3390_ijms24129955 crossref_primary_10_1016_j_ejphar_2024_176345 crossref_primary_10_1016_j_exer_2022_109378 crossref_primary_10_1038_s41569_023_00958_z crossref_primary_10_1016_j_freeradbiomed_2024_10_294 crossref_primary_10_1161_JAHA_120_016391 crossref_primary_10_7717_peerj_12846 crossref_primary_10_1016_j_jare_2020_05_015 crossref_primary_10_1016_j_coph_2019_07_001 crossref_primary_10_1096_fj_202402042R crossref_primary_10_3390_antiox13091067 crossref_primary_10_3390_cells12242794 crossref_primary_10_1089_ars_2021_0162 crossref_primary_10_1111_bph_17366 crossref_primary_10_1161_ATVBAHA_118_312054 crossref_primary_10_3390_cancers14112666 crossref_primary_10_1002_mco2_661 crossref_primary_10_3390_antiox10050633 crossref_primary_10_1161_CIRCRESAHA_122_321326 crossref_primary_10_1111_bph_14929 crossref_primary_10_3390_life13061420 crossref_primary_10_1124_pharmrev_123_000928 crossref_primary_10_1161_CIRCRESAHA_123_323084 crossref_primary_10_1161_CIRCULATIONAHA_122_062743 crossref_primary_10_3390_pathophysiology32010010 crossref_primary_10_1080_15548627_2022_2026097 crossref_primary_10_34133_research_0187 crossref_primary_10_1016_j_biopha_2024_116466 crossref_primary_10_3389_fphar_2023_1090654 crossref_primary_10_3390_antiox11061095 crossref_primary_10_1089_ars_2019_7777 crossref_primary_10_1016_j_niox_2023_11_005 crossref_primary_10_1360_SSV_2021_0228 crossref_primary_10_1016_j_addr_2021_114088 crossref_primary_10_1089_ars_2021_0014 crossref_primary_10_1021_acs_jmedchem_3c00321 crossref_primary_10_1161_HYPERTENSIONAHA_123_19437 crossref_primary_10_1016_j_phrs_2020_105125 crossref_primary_10_3389_fgene_2022_1035380 crossref_primary_10_3390_ijms22010047 crossref_primary_10_1016_j_ab_2023_115434 crossref_primary_10_3390_cancers12103069 crossref_primary_10_1093_cvr_cvz086 crossref_primary_10_3389_fmolb_2021_658852 crossref_primary_10_1089_ars_2019_7889 crossref_primary_10_1111_febs_15214 crossref_primary_10_1002_advs_202413333 crossref_primary_10_1016_j_arr_2022_101579 crossref_primary_10_1111_bph_14700 crossref_primary_10_1161_ATVBAHA_120_314084 |
Cites_doi | 10.1093/nar/gkv380 10.1093/nar/gkl189 10.1016/bs.mie.2014.11.021 10.1038/srep34608 10.1038/nm.4172 10.1371/journal.pone.0113038 10.1161/01.ATV.18.5.686 10.1371/journal.pone.0041614 10.1016/j.ejphar.2017.05.010 10.1016/j.brainres.2015.07.058 10.1126/scisignal.2005846 10.1089/ars.2017.7195 10.1161/CIRCULATIONAHA.113.002208 10.1111/1755-5922.12128 10.1021/ct100578z 10.1089/ars.2017.7068 10.1126/science.180.4093.1332 10.1038/ncomms12210 10.1093/nar/gki412 10.1161/CIRCRESAHA.114.300505 10.1016/j.jmb.2010.02.043 10.1152/ajpheart.00245.2016 10.1152/physrev.00017.2011 10.1038/ncomms2371 10.1042/CS20130439 10.1124/pr.117.014050 10.1002/dvdy.20982 10.1016/j.molcel.2007.01.011 10.1126/science.1162667 10.1093/cvr/cvt101 10.1021/jacs.7b09795 10.1242/jcs.01290 10.1016/j.redox.2017.02.006 10.1161/01.HYP.32.2.351 10.1152/ajpheart.00510.2009 10.1161/01.RES.82.5.532 |
ContentType | Journal Article |
Copyright | 2019 by the American College of Cardiology Foundation and the American Heart Association, Inc. |
Copyright_xml | – notice: 2019 by the American College of Cardiology Foundation and the American Heart Association, Inc. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1161/CIRCULATIONAHA.118.034757 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1524-4539 |
EndPage | 114 |
ExternalDocumentID | 10_1161_CIRCULATIONAHA_118_034757 10.1161/CIRCULATIONAHA.118.034757 |
GroupedDBID | --- .-D .3C .XZ .Z2 01R 0R~ 0ZK 18M 1J1 29B 2FS 2WC 354 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AASXQ AAUEB AAWTL AAXQO ABASU ABBUW ABDIG ABJNI ABOCM ABPMR ABPXF ABQRW ABVCZ ABXVJ ABXYN ABZAD ABZZY ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACLDA ACOAL ACRKK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADCYY ADGGA ADHPY AE3 AE6 AEBDS AENEX AFBFQ AFCHL AFDTB AFEXH AFMBP AFNMH AFSOK AFUWQ AGINI AHMBA AHOMT AHQNM AHQVU AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC ASPBG AVWKF AYCSE AZFZN BAWUL BOYCO BQLVK BYPQX C45 CS3 DIK DIWNM DU5 E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG GNXGY GQDEL GX1 H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JF9 JG8 JK3 K-A K-F K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OBH OCB ODMTH OGEVE OHH OHYEH OK1 OL1 OLB OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P2P PQQKQ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W2D W3M W8F WH7 WOQ WOW X3V X3W XXN XYM YFH YOC YSK YYM YZZ ZFV ZY1 ~H1 AAFWJ AAYXX CITATION 7X8 ADSXY |
ID | FETCH-LOGICAL-c3487-6f73652d90d28a6909b634e063bff9e9ab1fa70f9547100c471842618d2261ee3 |
ISSN | 0009-7322 1524-4539 |
IngestDate | Tue Aug 05 11:12:32 EDT 2025 Tue Jul 01 03:21:06 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 Fri May 16 04:02:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3487-6f73652d90d28a6909b634e063bff9e9ab1fa70f9547100c471842618d2261ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2064240559 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2064240559 crossref_citationtrail_10_1161_CIRCULATIONAHA_118_034757 crossref_primary_10_1161_CIRCULATIONAHA_118_034757 wolterskluwer_health_10_1161_CIRCULATIONAHA_118_034757 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-January-2 2019-01-02 20190102 |
PublicationDateYYYYMMDD | 2019-01-02 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-January-2 day: 02 |
PublicationDecade | 2010 |
PublicationTitle | Circulation (New York, N.Y.) |
PublicationYear | 2019 |
Publisher | by the American College of Cardiology Foundation and the American Heart Association, Inc |
Publisher_xml | – name: by the American College of Cardiology Foundation and the American Heart Association, Inc |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_6_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 |
References_xml | – ident: e_1_3_4_18_2 doi: 10.1093/nar/gkv380 – ident: e_1_3_4_24_2 doi: 10.1093/nar/gkl189 – ident: e_1_3_4_16_2 doi: 10.1016/bs.mie.2014.11.021 – ident: e_1_3_4_13_2 doi: 10.1038/srep34608 – ident: e_1_3_4_27_2 doi: 10.1038/nm.4172 – ident: e_1_3_4_12_2 doi: 10.1371/journal.pone.0113038 – ident: e_1_3_4_20_2 doi: 10.1161/01.ATV.18.5.686 – ident: e_1_3_4_10_2 doi: 10.1371/journal.pone.0041614 – ident: e_1_3_4_36_2 doi: 10.1016/j.ejphar.2017.05.010 – ident: e_1_3_4_8_2 doi: 10.1016/j.brainres.2015.07.058 – ident: e_1_3_4_31_2 doi: 10.1126/scisignal.2005846 – ident: e_1_3_4_32_2 doi: 10.1089/ars.2017.7195 – ident: e_1_3_4_9_2 doi: 10.1161/CIRCULATIONAHA.113.002208 – ident: e_1_3_4_37_2 doi: 10.1111/1755-5922.12128 – ident: e_1_3_4_22_2 doi: 10.1021/ct100578z – ident: e_1_3_4_28_2 doi: 10.1089/ars.2017.7068 – ident: e_1_3_4_2_2 doi: 10.1126/science.180.4093.1332 – ident: e_1_3_4_35_2 doi: 10.1038/ncomms12210 – ident: e_1_3_4_23_2 doi: 10.1093/nar/gki412 – ident: e_1_3_4_30_2 doi: 10.1161/CIRCRESAHA.114.300505 – ident: e_1_3_4_25_2 doi: 10.1016/j.jmb.2010.02.043 – ident: e_1_3_4_11_2 doi: 10.1152/ajpheart.00245.2016 – ident: e_1_3_4_4_2 doi: 10.1152/physrev.00017.2011 – ident: e_1_3_4_5_2 doi: 10.1038/ncomms2371 – ident: e_1_3_4_21_2 doi: 10.1042/CS20130439 – ident: e_1_3_4_6_2 doi: 10.1124/pr.117.014050 – ident: e_1_3_4_17_2 doi: 10.1002/dvdy.20982 – ident: e_1_3_4_33_2 doi: 10.1016/j.molcel.2007.01.011 – ident: e_1_3_4_7_2 doi: 10.1126/science.1162667 – ident: e_1_3_4_3_2 doi: 10.1093/cvr/cvt101 – ident: e_1_3_4_15_2 doi: 10.1021/jacs.7b09795 – ident: e_1_3_4_34_2 doi: 10.1242/jcs.01290 – ident: e_1_3_4_14_2 doi: 10.1016/j.redox.2017.02.006 – ident: e_1_3_4_19_2 doi: 10.1161/01.HYP.32.2.351 – ident: e_1_3_4_26_2 doi: 10.1152/ajpheart.00510.2009 – ident: e_1_3_4_29_2 doi: 10.1161/01.RES.82.5.532 |
SSID | ssj0006375 |
Score | 2.5846827 |
Snippet | BACKGROUND:Hydrogen sulfide (H2S), generated by cystathionine γ lyase (CSE), is an important endogenous regulator of vascular function. The aim of the present... Hydrogen sulfide (H2S), generated by cystathionine γ lyase (CSE), is an important endogenous regulator of vascular function. The aim of the present study was... |
SourceID | proquest crossref wolterskluwer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101 |
Title | Cystathionine γ Lyase Sulfhydrates the RNA Binding Protein Human Antigen R to Preserve Endothelial Cell Function and Delay Atherogenesis |
URI | https://www.proquest.com/docview/2064240559 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3battAEF2SFEKhlNZpSXpjA21fjFJdV9KjLRyckoTixpA3sbJWjogrlVimuH_Q7-l_9Js6s7u2pCalbl6EWZjF3jneOTOaCyFv04QzO7Ucg4nENFxHJEYIdtgAMgDm3_bTTI7zOTtnw7H78dK73NruNLKWFlVyNPl-Z13JfbQKa6BXrJL9D82uN4UF-Az6hSdoGJ4b6ThaYj3QlQypAleMBu_6Tvd0CYYJLoRZdrVMsRHEXJLL0Xmv289VDcsnbM6ATa5kBL9XVNiSsztCHoopGZgE2R0UKRZnzTCiHmGA7xgsYFUnL8_4sttD9lhO8brM502aG-U3Ez0X7K5xP43wQz9PVIH2ZzgJbuDA-xppEmKwx3QdB8rBoHFNuKf5_Lo2KviqRV5bJzO9qmMZWD5lGWbt-SLhrutpimbsJJLZubIrVT1vap1kupYYwvVQNZF9K6MUSaXhO3bbBKiGSi2sqwvd0qEWxQ0sVfB62-wwNDvRySgan6omxsMerAZHpuP6qgH3H129N5DaJg9s8H1kBftlnbfEHN9bjQfE37FLDvVmH_66VZt01Z7Uo28l5mTMr2VJRoNYXTwhj7VHRHsK3k_Jlig6ZK9X8Kr8sqTvqcxRljrpkN0znQqyR360wE9__aQS-LQJfApaowB8qoFPNfCpBD7VwKcjWpV0BXzaAD5F4NMV8CnggErg0xbwn5Hx8eAiGhp6rogxccA_N1jmO8yz09BM7YCz0AwT5rgCTjbJslCEPLEy7ptZ6LnY-2qC_A0jDUEKvoolhPOc7BRlIfYJzSwOFjIIhMcSN8lCjuRP-NxyuOdxLzwgwerg44luuo-zX2axdL6ZFbd1BmtBrHR2QOy16FfVeWYTocOVdmOwE_jyjxeiXMxjGyMN4J3hd2Ittceq4vrfm7-4r-BL8rD-t78iO9XNQrwGLl8lbyS2fwOSzu7O |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cystathionine+%CE%B3+Lyase+Sulfhydrates+the+RNA+Binding+Protein+Human+Antigen+R+to+Preserve+Endothelial+Cell+Function+and+Delay+Atherogenesis&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Bibli%2C+Sofia-Iris&rft.au=Hu%2C+Jiong&rft.au=Sigala%2C+Fragiska&rft.au=Wittig%2C+Ilka&rft.date=2019-01-02&rft.pub=by+the+American+College+of+Cardiology+Foundation+and+the+American+Heart+Association%2C+Inc&rft.issn=0009-7322&rft.volume=139&rft.issue=1&rft.spage=101&rft.epage=114&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.118.034757&rft.externalDocID=10.1161%2FCIRCULATIONAHA.118.034757 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon |