Cystathionine γ Lyase Sulfhydrates the RNA Binding Protein Human Antigen R to Preserve Endothelial Cell Function and Delay Atherogenesis

BACKGROUND:Hydrogen sulfide (H2S), generated by cystathionine γ lyase (CSE), is an important endogenous regulator of vascular function. The aim of the present study was to investigate the control and consequences of CSE activity in endothelial cells under physiological and proatherogenic conditions....

Full description

Saved in:
Bibliographic Details
Published inCirculation (New York, N.Y.) Vol. 139; no. 1; pp. 101 - 114
Main Authors Bibli, Sofia-Iris, Hu, Jiong, Sigala, Fragiska, Wittig, Ilka, Heidler, Juliana, Zukunft, Sven, Tsilimigras, Diamantis I., Randriamboavonjy, Voahanginirina, Wittig, Janina, Kojonazarov, Baktybek, Schürmann, Christoph, Siragusa, Mauro, Siuda, Daniel, Luck, Bert, Abdel Malik, Randa, Filis, Konstantinos A., Zografos, George, Chen, Chen, Wang, Dao Wen, Pfeilschifter, Josef, Brandes, Ralf P., Szabo, Csaba, Papapetropoulos, Andreas, Fleming, Ingrid
Format Journal Article
LanguageEnglish
Published by the American College of Cardiology Foundation and the American Heart Association, Inc 02.01.2019
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND:Hydrogen sulfide (H2S), generated by cystathionine γ lyase (CSE), is an important endogenous regulator of vascular function. The aim of the present study was to investigate the control and consequences of CSE activity in endothelial cells under physiological and proatherogenic conditions. METHODS:Endothelial cell CSE knockout mice were generated, and lung endothelial cells were studied in vitro (gene expression, protein sulfhydration, and monocyte adhesion). Mice were crossed onto the apolipoprotein E–deficient background, and atherogenesis (partial carotid artery ligation) was monitored over 21 days. CSE expression, H2S bioavailability, and amino acid profiling were also performed with human material. RESULTS:The endothelial cell–specific deletion of CSE selectively increased the expression of CD62E and elevated monocyte adherence in the absence of an inflammatory stimulus. Mechanistically, CD62E mRNA was more stable in endothelial cells from CSE-deficient mice, an effect attributed to the attenuated sulfhydration and dimerization of the RNA-binding protein human antigen R. CSE expression was upregulated in mice after partial carotid artery ligation and in atheromas from human subjects. Despite the increase in CSE protein, circulating and intraplaque H2S levels were reduced, a phenomenon that could be attributed to the serine phosphorylation (on Ser377) and inhibition of the enzyme, most likely resulting from increased interleukin-1β. Consistent with the loss of H2S, human antigen R sulfhydration was attenuated in atherosclerosis and resulted in the stabilization of human antigen R–target mRNAs, for example, CD62E and cathepsin S, both of which are linked to endothelial cell activation and atherosclerosis. The deletion of CSE from endothelial cells was associated with the accelerated development of endothelial dysfunction and atherosclerosis, effects that were reversed on treatment with a polysulfide donor. Finally, in mice and humans, plasma levels of the CSE substrate L-cystathionine negatively correlated with vascular reactivity and H2S levels, indicating its potential use as a biomarker for vascular disease. CONCLUSIONS:The constitutive S-sulfhydration of human antigen R (on Cys13) by CSE-derived H2S prevents its homodimerization and activity, which attenuates the expression of target proteins such as CD62E and cathepsin S. However, as a consequence of vascular inflammation, the beneficial actions of CSE-derived H2S are lost owing to the phosphorylation and inhibition of the enzyme.
AbstractList BACKGROUND:Hydrogen sulfide (H2S), generated by cystathionine γ lyase (CSE), is an important endogenous regulator of vascular function. The aim of the present study was to investigate the control and consequences of CSE activity in endothelial cells under physiological and proatherogenic conditions. METHODS:Endothelial cell CSE knockout mice were generated, and lung endothelial cells were studied in vitro (gene expression, protein sulfhydration, and monocyte adhesion). Mice were crossed onto the apolipoprotein E–deficient background, and atherogenesis (partial carotid artery ligation) was monitored over 21 days. CSE expression, H2S bioavailability, and amino acid profiling were also performed with human material. RESULTS:The endothelial cell–specific deletion of CSE selectively increased the expression of CD62E and elevated monocyte adherence in the absence of an inflammatory stimulus. Mechanistically, CD62E mRNA was more stable in endothelial cells from CSE-deficient mice, an effect attributed to the attenuated sulfhydration and dimerization of the RNA-binding protein human antigen R. CSE expression was upregulated in mice after partial carotid artery ligation and in atheromas from human subjects. Despite the increase in CSE protein, circulating and intraplaque H2S levels were reduced, a phenomenon that could be attributed to the serine phosphorylation (on Ser377) and inhibition of the enzyme, most likely resulting from increased interleukin-1β. Consistent with the loss of H2S, human antigen R sulfhydration was attenuated in atherosclerosis and resulted in the stabilization of human antigen R–target mRNAs, for example, CD62E and cathepsin S, both of which are linked to endothelial cell activation and atherosclerosis. The deletion of CSE from endothelial cells was associated with the accelerated development of endothelial dysfunction and atherosclerosis, effects that were reversed on treatment with a polysulfide donor. Finally, in mice and humans, plasma levels of the CSE substrate L-cystathionine negatively correlated with vascular reactivity and H2S levels, indicating its potential use as a biomarker for vascular disease. CONCLUSIONS:The constitutive S-sulfhydration of human antigen R (on Cys13) by CSE-derived H2S prevents its homodimerization and activity, which attenuates the expression of target proteins such as CD62E and cathepsin S. However, as a consequence of vascular inflammation, the beneficial actions of CSE-derived H2S are lost owing to the phosphorylation and inhibition of the enzyme.
Hydrogen sulfide (H2S), generated by cystathionine γ lyase (CSE), is an important endogenous regulator of vascular function. The aim of the present study was to investigate the control and consequences of CSE activity in endothelial cells under physiological and proatherogenic conditions.BACKGROUNDHydrogen sulfide (H2S), generated by cystathionine γ lyase (CSE), is an important endogenous regulator of vascular function. The aim of the present study was to investigate the control and consequences of CSE activity in endothelial cells under physiological and proatherogenic conditions.Endothelial cell CSE knockout mice were generated, and lung endothelial cells were studied in vitro (gene expression, protein sulfhydration, and monocyte adhesion). Mice were crossed onto the apolipoprotein E-deficient background, and atherogenesis (partial carotid artery ligation) was monitored over 21 days. CSE expression, H2S bioavailability, and amino acid profiling were also performed with human material.METHODSEndothelial cell CSE knockout mice were generated, and lung endothelial cells were studied in vitro (gene expression, protein sulfhydration, and monocyte adhesion). Mice were crossed onto the apolipoprotein E-deficient background, and atherogenesis (partial carotid artery ligation) was monitored over 21 days. CSE expression, H2S bioavailability, and amino acid profiling were also performed with human material.The endothelial cell-specific deletion of CSE selectively increased the expression of CD62E and elevated monocyte adherence in the absence of an inflammatory stimulus. Mechanistically, CD62E mRNA was more stable in endothelial cells from CSE-deficient mice, an effect attributed to the attenuated sulfhydration and dimerization of the RNA-binding protein human antigen R. CSE expression was upregulated in mice after partial carotid artery ligation and in atheromas from human subjects. Despite the increase in CSE protein, circulating and intraplaque H2S levels were reduced, a phenomenon that could be attributed to the serine phosphorylation (on Ser377) and inhibition of the enzyme, most likely resulting from increased interleukin-1β. Consistent with the loss of H2S, human antigen R sulfhydration was attenuated in atherosclerosis and resulted in the stabilization of human antigen R-target mRNAs, for example, CD62E and cathepsin S, both of which are linked to endothelial cell activation and atherosclerosis. The deletion of CSE from endothelial cells was associated with the accelerated development of endothelial dysfunction and atherosclerosis, effects that were reversed on treatment with a polysulfide donor. Finally, in mice and humans, plasma levels of the CSE substrate l-cystathionine negatively correlated with vascular reactivity and H2S levels, indicating its potential use as a biomarker for vascular disease.RESULTSThe endothelial cell-specific deletion of CSE selectively increased the expression of CD62E and elevated monocyte adherence in the absence of an inflammatory stimulus. Mechanistically, CD62E mRNA was more stable in endothelial cells from CSE-deficient mice, an effect attributed to the attenuated sulfhydration and dimerization of the RNA-binding protein human antigen R. CSE expression was upregulated in mice after partial carotid artery ligation and in atheromas from human subjects. Despite the increase in CSE protein, circulating and intraplaque H2S levels were reduced, a phenomenon that could be attributed to the serine phosphorylation (on Ser377) and inhibition of the enzyme, most likely resulting from increased interleukin-1β. Consistent with the loss of H2S, human antigen R sulfhydration was attenuated in atherosclerosis and resulted in the stabilization of human antigen R-target mRNAs, for example, CD62E and cathepsin S, both of which are linked to endothelial cell activation and atherosclerosis. The deletion of CSE from endothelial cells was associated with the accelerated development of endothelial dysfunction and atherosclerosis, effects that were reversed on treatment with a polysulfide donor. Finally, in mice and humans, plasma levels of the CSE substrate l-cystathionine negatively correlated with vascular reactivity and H2S levels, indicating its potential use as a biomarker for vascular disease.The constitutive S-sulfhydration of human antigen R (on Cys13) by CSE-derived H2S prevents its homodimerization and activity, which attenuates the expression of target proteins such as CD62E and cathepsin S. However, as a consequence of vascular inflammation, the beneficial actions of CSE-derived H2S are lost owing to the phosphorylation and inhibition of the enzyme.CONCLUSIONSThe constitutive S-sulfhydration of human antigen R (on Cys13) by CSE-derived H2S prevents its homodimerization and activity, which attenuates the expression of target proteins such as CD62E and cathepsin S. However, as a consequence of vascular inflammation, the beneficial actions of CSE-derived H2S are lost owing to the phosphorylation and inhibition of the enzyme.
Author Siuda, Daniel
Szabo, Csaba
Papapetropoulos, Andreas
Sigala, Fragiska
Randriamboavonjy, Voahanginirina
Fleming, Ingrid
Heidler, Juliana
Siragusa, Mauro
Abdel Malik, Randa
Zukunft, Sven
Luck, Bert
Wang, Dao Wen
Hu, Jiong
Chen, Chen
Wittig, Ilka
Filis, Konstantinos A.
Schürmann, Christoph
Zografos, George
Wittig, Janina
Kojonazarov, Baktybek
Bibli, Sofia-Iris
Pfeilschifter, Josef
Tsilimigras, Diamantis I.
Brandes, Ralf P.
Author_xml – sequence: 1
  givenname: Sofia-Iris
  surname: Bibli
  fullname: Bibli, Sofia-Iris
– sequence: 2
  givenname: Jiong
  surname: Hu
  fullname: Hu, Jiong
– sequence: 3
  givenname: Fragiska
  surname: Sigala
  fullname: Sigala, Fragiska
– sequence: 4
  givenname: Ilka
  surname: Wittig
  fullname: Wittig, Ilka
– sequence: 5
  givenname: Juliana
  surname: Heidler
  fullname: Heidler, Juliana
– sequence: 6
  givenname: Sven
  surname: Zukunft
  fullname: Zukunft, Sven
– sequence: 7
  givenname: Diamantis
  surname: Tsilimigras
  middlename: I.
  fullname: Tsilimigras, Diamantis I.
– sequence: 8
  givenname: Voahanginirina
  surname: Randriamboavonjy
  fullname: Randriamboavonjy, Voahanginirina
– sequence: 9
  givenname: Janina
  surname: Wittig
  fullname: Wittig, Janina
– sequence: 10
  givenname: Baktybek
  surname: Kojonazarov
  fullname: Kojonazarov, Baktybek
– sequence: 11
  givenname: Christoph
  surname: Schürmann
  fullname: Schürmann, Christoph
– sequence: 12
  givenname: Mauro
  surname: Siragusa
  fullname: Siragusa, Mauro
– sequence: 13
  givenname: Daniel
  surname: Siuda
  fullname: Siuda, Daniel
– sequence: 14
  givenname: Bert
  surname: Luck
  fullname: Luck, Bert
– sequence: 15
  givenname: Randa
  surname: Abdel Malik
  fullname: Abdel Malik, Randa
– sequence: 16
  givenname: Konstantinos
  surname: Filis
  middlename: A.
  fullname: Filis, Konstantinos A.
– sequence: 17
  givenname: George
  surname: Zografos
  fullname: Zografos, George
– sequence: 18
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
– sequence: 19
  givenname: Dao
  surname: Wang
  middlename: Wen
  fullname: Wang, Dao Wen
– sequence: 20
  givenname: Josef
  surname: Pfeilschifter
  fullname: Pfeilschifter, Josef
– sequence: 21
  givenname: Ralf
  surname: Brandes
  middlename: P.
  fullname: Brandes, Ralf P.
– sequence: 22
  givenname: Csaba
  surname: Szabo
  fullname: Szabo, Csaba
– sequence: 23
  givenname: Andreas
  surname: Papapetropoulos
  fullname: Papapetropoulos, Andreas
– sequence: 24
  givenname: Ingrid
  surname: Fleming
  fullname: Fleming, Ingrid
BookMark eNqNkc1u1DAUhS1UJKaFd7js2KTYjvPjBUIhbZmRRi0a2nXkSW4ag8cutkOVR-B5eA-eCaNhA6turuXr8x37-pySE-ssEvKa0XPGSva23ezau21zu7m5btZN6tXnNBdVUT0jK1ZwkYkilydkRSmVWZVz_oKchvAlbcu8KlbkR7uEqOKkndUW4ddP2C4qIHyezTgtg1cRA8QJYXfdwAdtB23v4ZN3EbWF9XxQFhob9T1a2EF06QgD-u8Il3ZwiTNaGWjRGLiabR_TNaDsABdo1AJNEniXWAw6vCTPR2UCvvq7npG7q8vbdp1tbz5u2mab9bmoq6wcq7ws-CDpwGtVSir3ZS4wjbMfR4lS7dmoKjrKQlSM0j7VWvCS1QNPFTE_I2-Ovg_efZsxxO6gQ59eqCy6OXScloILWhQySd8fpb13IXgcu16nz0pDRK-06Rjt_oTQ_RtC6tXdMYTkIP9zePD6oPzyJPbdkX10JqIPX838iL6bUJk4PYH_DQXJpQI
CitedBy_id crossref_primary_10_3389_fphar_2018_01066
crossref_primary_10_1161_CIRCRESAHA_123_323716
crossref_primary_10_3390_nu13114024
crossref_primary_10_1177_1538574419856453
crossref_primary_10_1016_j_atherosclerosis_2023_01_008
crossref_primary_10_3390_antiox12091731
crossref_primary_10_1161_CIRCULATIONAHA_120_051877
crossref_primary_10_1016_j_vph_2024_107282
crossref_primary_10_1002_advs_202409250
crossref_primary_10_1007_s00210_023_02729_6
crossref_primary_10_3233_JCB_230098
crossref_primary_10_1152_physrev_00028_2021
crossref_primary_10_1016_j_bcp_2020_113833
crossref_primary_10_1080_17460441_2021_1850688
crossref_primary_10_3390_antiox10030383
crossref_primary_10_1016_j_celrep_2024_113924
crossref_primary_10_1016_j_jare_2022_03_010
crossref_primary_10_3389_fphar_2019_01568
crossref_primary_10_1161_CIRCULATIONAHA_118_036854
crossref_primary_10_3892_mmr_2024_13259
crossref_primary_10_1111_bph_14691
crossref_primary_10_3389_fcvm_2022_876639
crossref_primary_10_1016_j_phrs_2020_105119
crossref_primary_10_1016_j_micres_2023_127366
crossref_primary_10_1038_s41569_022_00741_6
crossref_primary_10_1074_jbc_RA119_008597
crossref_primary_10_1007_s11010_021_04278_z
crossref_primary_10_1016_j_cca_2021_02_003
crossref_primary_10_1016_j_gendis_2022_03_022
crossref_primary_10_1016_j_tem_2020_06_001
crossref_primary_10_1016_j_yexcr_2024_114172
crossref_primary_10_3390_ijms26062488
crossref_primary_10_1111_acel_13205
crossref_primary_10_3390_biomedicines11020612
crossref_primary_10_1038_d41591_019_00001_0
crossref_primary_10_3390_biom14091165
crossref_primary_10_1089_ars_2020_8060
crossref_primary_10_1161_CIRCULATIONAHA_123_065389
crossref_primary_10_1002_mc_23513
crossref_primary_10_1016_j_jare_2020_05_007
crossref_primary_10_1016_j_hlc_2020_07_015
crossref_primary_10_1089_ars_2023_0365
crossref_primary_10_3389_fphar_2023_1303465
crossref_primary_10_3390_antiox10030486
crossref_primary_10_24884_1682_6655_2021_20_1_5_16
crossref_primary_10_1007_s11357_022_00600_9
crossref_primary_10_1016_j_endmts_2020_100068
crossref_primary_10_1016_j_bcp_2019_08_006
crossref_primary_10_3390_ijms24129955
crossref_primary_10_1016_j_ejphar_2024_176345
crossref_primary_10_1016_j_exer_2022_109378
crossref_primary_10_1038_s41569_023_00958_z
crossref_primary_10_1016_j_freeradbiomed_2024_10_294
crossref_primary_10_1161_JAHA_120_016391
crossref_primary_10_7717_peerj_12846
crossref_primary_10_1016_j_jare_2020_05_015
crossref_primary_10_1016_j_coph_2019_07_001
crossref_primary_10_1096_fj_202402042R
crossref_primary_10_3390_antiox13091067
crossref_primary_10_3390_cells12242794
crossref_primary_10_1089_ars_2021_0162
crossref_primary_10_1111_bph_17366
crossref_primary_10_1161_ATVBAHA_118_312054
crossref_primary_10_3390_cancers14112666
crossref_primary_10_1002_mco2_661
crossref_primary_10_3390_antiox10050633
crossref_primary_10_1161_CIRCRESAHA_122_321326
crossref_primary_10_1111_bph_14929
crossref_primary_10_3390_life13061420
crossref_primary_10_1124_pharmrev_123_000928
crossref_primary_10_1161_CIRCRESAHA_123_323084
crossref_primary_10_1161_CIRCULATIONAHA_122_062743
crossref_primary_10_3390_pathophysiology32010010
crossref_primary_10_1080_15548627_2022_2026097
crossref_primary_10_34133_research_0187
crossref_primary_10_1016_j_biopha_2024_116466
crossref_primary_10_3389_fphar_2023_1090654
crossref_primary_10_3390_antiox11061095
crossref_primary_10_1089_ars_2019_7777
crossref_primary_10_1016_j_niox_2023_11_005
crossref_primary_10_1360_SSV_2021_0228
crossref_primary_10_1016_j_addr_2021_114088
crossref_primary_10_1089_ars_2021_0014
crossref_primary_10_1021_acs_jmedchem_3c00321
crossref_primary_10_1161_HYPERTENSIONAHA_123_19437
crossref_primary_10_1016_j_phrs_2020_105125
crossref_primary_10_3389_fgene_2022_1035380
crossref_primary_10_3390_ijms22010047
crossref_primary_10_1016_j_ab_2023_115434
crossref_primary_10_3390_cancers12103069
crossref_primary_10_1093_cvr_cvz086
crossref_primary_10_3389_fmolb_2021_658852
crossref_primary_10_1089_ars_2019_7889
crossref_primary_10_1111_febs_15214
crossref_primary_10_1002_advs_202413333
crossref_primary_10_1016_j_arr_2022_101579
crossref_primary_10_1111_bph_14700
crossref_primary_10_1161_ATVBAHA_120_314084
Cites_doi 10.1093/nar/gkv380
10.1093/nar/gkl189
10.1016/bs.mie.2014.11.021
10.1038/srep34608
10.1038/nm.4172
10.1371/journal.pone.0113038
10.1161/01.ATV.18.5.686
10.1371/journal.pone.0041614
10.1016/j.ejphar.2017.05.010
10.1016/j.brainres.2015.07.058
10.1126/scisignal.2005846
10.1089/ars.2017.7195
10.1161/CIRCULATIONAHA.113.002208
10.1111/1755-5922.12128
10.1021/ct100578z
10.1089/ars.2017.7068
10.1126/science.180.4093.1332
10.1038/ncomms12210
10.1093/nar/gki412
10.1161/CIRCRESAHA.114.300505
10.1016/j.jmb.2010.02.043
10.1152/ajpheart.00245.2016
10.1152/physrev.00017.2011
10.1038/ncomms2371
10.1042/CS20130439
10.1124/pr.117.014050
10.1002/dvdy.20982
10.1016/j.molcel.2007.01.011
10.1126/science.1162667
10.1093/cvr/cvt101
10.1021/jacs.7b09795
10.1242/jcs.01290
10.1016/j.redox.2017.02.006
10.1161/01.HYP.32.2.351
10.1152/ajpheart.00510.2009
10.1161/01.RES.82.5.532
ContentType Journal Article
Copyright 2019 by the American College of Cardiology Foundation and the American Heart Association, Inc.
Copyright_xml – notice: 2019 by the American College of Cardiology Foundation and the American Heart Association, Inc.
DBID AAYXX
CITATION
7X8
DOI 10.1161/CIRCULATIONAHA.118.034757
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1524-4539
EndPage 114
ExternalDocumentID 10_1161_CIRCULATIONAHA_118_034757
10.1161/CIRCULATIONAHA.118.034757
GroupedDBID ---
.-D
.3C
.XZ
.Z2
01R
0R~
0ZK
18M
1J1
29B
2FS
2WC
354
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AASXQ
AAUEB
AAWTL
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPMR
ABPXF
ABQRW
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACOAL
ACRKK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADCYY
ADGGA
ADHPY
AE3
AE6
AEBDS
AENEX
AFBFQ
AFCHL
AFDTB
AFEXH
AFMBP
AFNMH
AFSOK
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHQVU
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
ASPBG
AVWKF
AYCSE
AZFZN
BAWUL
BOYCO
BQLVK
BYPQX
C45
CS3
DIK
DIWNM
DU5
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
GNXGY
GQDEL
GX1
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JF9
JG8
JK3
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OBH
OCB
ODMTH
OGEVE
OHH
OHYEH
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PQQKQ
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
UPT
V2I
VVN
W2D
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
YOC
YSK
YYM
YZZ
ZFV
ZY1
~H1
AAFWJ
AAYXX
CITATION
7X8
ADSXY
ID FETCH-LOGICAL-c3487-6f73652d90d28a6909b634e063bff9e9ab1fa70f9547100c471842618d2261ee3
ISSN 0009-7322
1524-4539
IngestDate Tue Aug 05 11:12:32 EDT 2025
Tue Jul 01 03:21:06 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
Fri May 16 04:02:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3487-6f73652d90d28a6909b634e063bff9e9ab1fa70f9547100c471842618d2261ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2064240559
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2064240559
crossref_citationtrail_10_1161_CIRCULATIONAHA_118_034757
crossref_primary_10_1161_CIRCULATIONAHA_118_034757
wolterskluwer_health_10_1161_CIRCULATIONAHA_118_034757
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-January-2
2019-01-02
20190102
PublicationDateYYYYMMDD 2019-01-02
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-January-2
  day: 02
PublicationDecade 2010
PublicationTitle Circulation (New York, N.Y.)
PublicationYear 2019
Publisher by the American College of Cardiology Foundation and the American Heart Association, Inc
Publisher_xml – name: by the American College of Cardiology Foundation and the American Heart Association, Inc
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_6_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
References_xml – ident: e_1_3_4_18_2
  doi: 10.1093/nar/gkv380
– ident: e_1_3_4_24_2
  doi: 10.1093/nar/gkl189
– ident: e_1_3_4_16_2
  doi: 10.1016/bs.mie.2014.11.021
– ident: e_1_3_4_13_2
  doi: 10.1038/srep34608
– ident: e_1_3_4_27_2
  doi: 10.1038/nm.4172
– ident: e_1_3_4_12_2
  doi: 10.1371/journal.pone.0113038
– ident: e_1_3_4_20_2
  doi: 10.1161/01.ATV.18.5.686
– ident: e_1_3_4_10_2
  doi: 10.1371/journal.pone.0041614
– ident: e_1_3_4_36_2
  doi: 10.1016/j.ejphar.2017.05.010
– ident: e_1_3_4_8_2
  doi: 10.1016/j.brainres.2015.07.058
– ident: e_1_3_4_31_2
  doi: 10.1126/scisignal.2005846
– ident: e_1_3_4_32_2
  doi: 10.1089/ars.2017.7195
– ident: e_1_3_4_9_2
  doi: 10.1161/CIRCULATIONAHA.113.002208
– ident: e_1_3_4_37_2
  doi: 10.1111/1755-5922.12128
– ident: e_1_3_4_22_2
  doi: 10.1021/ct100578z
– ident: e_1_3_4_28_2
  doi: 10.1089/ars.2017.7068
– ident: e_1_3_4_2_2
  doi: 10.1126/science.180.4093.1332
– ident: e_1_3_4_35_2
  doi: 10.1038/ncomms12210
– ident: e_1_3_4_23_2
  doi: 10.1093/nar/gki412
– ident: e_1_3_4_30_2
  doi: 10.1161/CIRCRESAHA.114.300505
– ident: e_1_3_4_25_2
  doi: 10.1016/j.jmb.2010.02.043
– ident: e_1_3_4_11_2
  doi: 10.1152/ajpheart.00245.2016
– ident: e_1_3_4_4_2
  doi: 10.1152/physrev.00017.2011
– ident: e_1_3_4_5_2
  doi: 10.1038/ncomms2371
– ident: e_1_3_4_21_2
  doi: 10.1042/CS20130439
– ident: e_1_3_4_6_2
  doi: 10.1124/pr.117.014050
– ident: e_1_3_4_17_2
  doi: 10.1002/dvdy.20982
– ident: e_1_3_4_33_2
  doi: 10.1016/j.molcel.2007.01.011
– ident: e_1_3_4_7_2
  doi: 10.1126/science.1162667
– ident: e_1_3_4_3_2
  doi: 10.1093/cvr/cvt101
– ident: e_1_3_4_15_2
  doi: 10.1021/jacs.7b09795
– ident: e_1_3_4_34_2
  doi: 10.1242/jcs.01290
– ident: e_1_3_4_14_2
  doi: 10.1016/j.redox.2017.02.006
– ident: e_1_3_4_19_2
  doi: 10.1161/01.HYP.32.2.351
– ident: e_1_3_4_26_2
  doi: 10.1152/ajpheart.00510.2009
– ident: e_1_3_4_29_2
  doi: 10.1161/01.RES.82.5.532
SSID ssj0006375
Score 2.5846827
Snippet BACKGROUND:Hydrogen sulfide (H2S), generated by cystathionine γ lyase (CSE), is an important endogenous regulator of vascular function. The aim of the present...
Hydrogen sulfide (H2S), generated by cystathionine γ lyase (CSE), is an important endogenous regulator of vascular function. The aim of the present study was...
SourceID proquest
crossref
wolterskluwer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101
Title Cystathionine γ Lyase Sulfhydrates the RNA Binding Protein Human Antigen R to Preserve Endothelial Cell Function and Delay Atherogenesis
URI https://www.proquest.com/docview/2064240559
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3battAEF2SFEKhlNZpSXpjA21fjFJdV9KjLRyckoTixpA3sbJWjogrlVimuH_Q7-l_9Js6s7u2pCalbl6EWZjF3jneOTOaCyFv04QzO7Ucg4nENFxHJEYIdtgAMgDm3_bTTI7zOTtnw7H78dK73NruNLKWFlVyNPl-Z13JfbQKa6BXrJL9D82uN4UF-Az6hSdoGJ4b6ThaYj3QlQypAleMBu_6Tvd0CYYJLoRZdrVMsRHEXJLL0Xmv289VDcsnbM6ATa5kBL9XVNiSsztCHoopGZgE2R0UKRZnzTCiHmGA7xgsYFUnL8_4sttD9lhO8brM502aG-U3Ez0X7K5xP43wQz9PVIH2ZzgJbuDA-xppEmKwx3QdB8rBoHFNuKf5_Lo2KviqRV5bJzO9qmMZWD5lGWbt-SLhrutpimbsJJLZubIrVT1vap1kupYYwvVQNZF9K6MUSaXhO3bbBKiGSi2sqwvd0qEWxQ0sVfB62-wwNDvRySgan6omxsMerAZHpuP6qgH3H129N5DaJg9s8H1kBftlnbfEHN9bjQfE37FLDvVmH_66VZt01Z7Uo28l5mTMr2VJRoNYXTwhj7VHRHsK3k_Jlig6ZK9X8Kr8sqTvqcxRljrpkN0znQqyR360wE9__aQS-LQJfApaowB8qoFPNfCpBD7VwKcjWpV0BXzaAD5F4NMV8CnggErg0xbwn5Hx8eAiGhp6rogxccA_N1jmO8yz09BM7YCz0AwT5rgCTjbJslCEPLEy7ptZ6LnY-2qC_A0jDUEKvoolhPOc7BRlIfYJzSwOFjIIhMcSN8lCjuRP-NxyuOdxLzwgwerg44luuo-zX2axdL6ZFbd1BmtBrHR2QOy16FfVeWYTocOVdmOwE_jyjxeiXMxjGyMN4J3hd2Ittceq4vrfm7-4r-BL8rD-t78iO9XNQrwGLl8lbyS2fwOSzu7O
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cystathionine+%CE%B3+Lyase+Sulfhydrates+the+RNA+Binding+Protein+Human+Antigen+R+to+Preserve+Endothelial+Cell+Function+and+Delay+Atherogenesis&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Bibli%2C+Sofia-Iris&rft.au=Hu%2C+Jiong&rft.au=Sigala%2C+Fragiska&rft.au=Wittig%2C+Ilka&rft.date=2019-01-02&rft.pub=by+the+American+College+of+Cardiology+Foundation+and+the+American+Heart+Association%2C+Inc&rft.issn=0009-7322&rft.volume=139&rft.issue=1&rft.spage=101&rft.epage=114&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.118.034757&rft.externalDocID=10.1161%2FCIRCULATIONAHA.118.034757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon