Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal‐dominated alpine coniferous forests
Fine root traits vary greatly with environmental changes, but the understanding of root trait variation and its drivers is limited over broad geographical scales, especially for ectomycorrhizal (ECM)‐dominated conifers in alpine forests. Herein, the covariation patterns of and environmental controls...
Saved in:
Published in | The Journal of ecology Vol. 108; no. 6; pp. 2544 - 2556 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fine root traits vary greatly with environmental changes, but the understanding of root trait variation and its drivers is limited over broad geographical scales, especially for ectomycorrhizal (ECM)‐dominated conifers in alpine forests. Herein, the covariation patterns of and environmental controls for fine root traits among ECM‐dominated conifers were examined to test whether and how climate and soil nutrients differentially affect fine root trait variations.
Eight traits of first‐ and second‐order roots were measured, that is, root diameter (RD), specific root length (SRL), branching intensity (BRI), root tissue density (RTD), mycorrhizal colonization rate (MCR) and concentrations of carbon (C), nitrogen (N) and phosphorus (P), across 76 alpine coniferous populations on the eastern Tibetan Plateau, China.
Our results showed that variations of the fine root traits fell into two major dimensions: the first dimension (32.39% of the total variance) was mainly represented by RD and SRL, potentially conveying a trade‐off between root life span and efficiency of resource foraging; the second dimension (23.70% of the variance) represented coordinated variation for root nutrients (i.e. N and P) and RTD, which depicts the conservation‐acquisition trade‐off in resource uptake, that is, root economic spectrum. Variations in RD and SRL were mainly driven by climatic variables, characterized by a significant increase in RD and a decrease in SRL with increasing mean annual precipitation. In contrast, variations in fine root nutrients (i.e. N and P) and RTD were primarily driven by soil fertility, showing a significant increase in root N and P concentrations but a decrease in RTD with increasing soil resource levels.
Synthesis. Our study clearly shows two distinct dimensions of the variation of fine root traits in ECM‐dominated alpine coniferous forests, providing further evidence of the inherent multidimensionality of root traits. Moreover, our findings highlight different roles of climatic and soil variables in driving the variation of fine root traits, potentially leading to the multidimensionality of root traits. This study provides new insights for understanding and predicting shifts in plant belowground strategies in climate‐sensitive alpine forests world‐wide.
Our study shows two distinct dimensions of the variation of fine root traits in ECM‐dominated alpine coniferous forests on the eastern Tibetan Plateau. The climatic and soil variables drive differently the variation of fine root traits, potentially leading to the multidimensionality of root traits. |
---|---|
AbstractList | Fine root traits vary greatly with environmental changes, but the understanding of root trait variation and its drivers is limited over broad geographical scales, especially for ectomycorrhizal (ECM)‐dominated conifers in alpine forests. Herein, the covariation patterns of and environmental controls for fine root traits among ECM‐dominated conifers were examined to test whether and how climate and soil nutrients differentially affect fine root trait variations. Eight traits of first‐ and second‐order roots were measured, that is, root diameter (RD), specific root length (SRL), branching intensity (BRI), root tissue density (RTD), mycorrhizal colonization rate (MCR) and concentrations of carbon (C), nitrogen (N) and phosphorus (P), across 76 alpine coniferous populations on the eastern Tibetan Plateau, China. Our results showed that variations of the fine root traits fell into two major dimensions: the first dimension (32.39% of the total variance) was mainly represented by RD and SRL, potentially conveying a trade‐off between root life span and efficiency of resource foraging; the second dimension (23.70% of the variance) represented coordinated variation for root nutrients (i.e. N and P) and RTD, which depicts the conservation‐acquisition trade‐off in resource uptake, that is, root economic spectrum. Variations in RD and SRL were mainly driven by climatic variables, characterized by a significant increase in RD and a decrease in SRL with increasing mean annual precipitation. In contrast, variations in fine root nutrients (i.e. N and P) and RTD were primarily driven by soil fertility, showing a significant increase in root N and P concentrations but a decrease in RTD with increasing soil resource levels. Synthesis. Our study clearly shows two distinct dimensions of the variation of fine root traits in ECM‐dominated alpine coniferous forests, providing further evidence of the inherent multidimensionality of root traits. Moreover, our findings highlight different roles of climatic and soil variables in driving the variation of fine root traits, potentially leading to the multidimensionality of root traits. This study provides new insights for understanding and predicting shifts in plant belowground strategies in climate‐sensitive alpine forests world‐wide. Fine root traits vary greatly with environmental changes, but the understanding of root trait variation and its drivers is limited over broad geographical scales, especially for ectomycorrhizal (ECM)‐dominated conifers in alpine forests. Herein, the covariation patterns of and environmental controls for fine root traits among ECM‐dominated conifers were examined to test whether and how climate and soil nutrients differentially affect fine root trait variations. Eight traits of first‐ and second‐order roots were measured, that is, root diameter (RD), specific root length (SRL), branching intensity (BRI), root tissue density (RTD), mycorrhizal colonization rate (MCR) and concentrations of carbon (C), nitrogen (N) and phosphorus (P), across 76 alpine coniferous populations on the eastern Tibetan Plateau, China. Our results showed that variations of the fine root traits fell into two major dimensions: the first dimension (32.39% of the total variance) was mainly represented by RD and SRL, potentially conveying a trade‐off between root life span and efficiency of resource foraging; the second dimension (23.70% of the variance) represented coordinated variation for root nutrients (i.e. N and P) and RTD, which depicts the conservation‐acquisition trade‐off in resource uptake, that is, root economic spectrum. Variations in RD and SRL were mainly driven by climatic variables, characterized by a significant increase in RD and a decrease in SRL with increasing mean annual precipitation. In contrast, variations in fine root nutrients (i.e. N and P) and RTD were primarily driven by soil fertility, showing a significant increase in root N and P concentrations but a decrease in RTD with increasing soil resource levels. Synthesis . Our study clearly shows two distinct dimensions of the variation of fine root traits in ECM‐dominated alpine coniferous forests, providing further evidence of the inherent multidimensionality of root traits. Moreover, our findings highlight different roles of climatic and soil variables in driving the variation of fine root traits, potentially leading to the multidimensionality of root traits. This study provides new insights for understanding and predicting shifts in plant belowground strategies in climate‐sensitive alpine forests world‐wide. Fine root traits vary greatly with environmental changes, but the understanding of root trait variation and its drivers is limited over broad geographical scales, especially for ectomycorrhizal (ECM)‐dominated conifers in alpine forests. Herein, the covariation patterns of and environmental controls for fine root traits among ECM‐dominated conifers were examined to test whether and how climate and soil nutrients differentially affect fine root trait variations. Eight traits of first‐ and second‐order roots were measured, that is, root diameter (RD), specific root length (SRL), branching intensity (BRI), root tissue density (RTD), mycorrhizal colonization rate (MCR) and concentrations of carbon (C), nitrogen (N) and phosphorus (P), across 76 alpine coniferous populations on the eastern Tibetan Plateau, China. Our results showed that variations of the fine root traits fell into two major dimensions: the first dimension (32.39% of the total variance) was mainly represented by RD and SRL, potentially conveying a trade‐off between root life span and efficiency of resource foraging; the second dimension (23.70% of the variance) represented coordinated variation for root nutrients (i.e. N and P) and RTD, which depicts the conservation‐acquisition trade‐off in resource uptake, that is, root economic spectrum. Variations in RD and SRL were mainly driven by climatic variables, characterized by a significant increase in RD and a decrease in SRL with increasing mean annual precipitation. In contrast, variations in fine root nutrients (i.e. N and P) and RTD were primarily driven by soil fertility, showing a significant increase in root N and P concentrations but a decrease in RTD with increasing soil resource levels. Synthesis. Our study clearly shows two distinct dimensions of the variation of fine root traits in ECM‐dominated alpine coniferous forests, providing further evidence of the inherent multidimensionality of root traits. Moreover, our findings highlight different roles of climatic and soil variables in driving the variation of fine root traits, potentially leading to the multidimensionality of root traits. This study provides new insights for understanding and predicting shifts in plant belowground strategies in climate‐sensitive alpine forests world‐wide. Our study shows two distinct dimensions of the variation of fine root traits in ECM‐dominated alpine coniferous forests on the eastern Tibetan Plateau. The climatic and soil variables drive differently the variation of fine root traits, potentially leading to the multidimensionality of root traits. |
Author | Ding, JunXiang Zhang, Ziliang Cai, Qin Wardle, David Liu, Qing Xiao, Juan Kong, Deliang Yin, Huajun |
Author_xml | – sequence: 1 givenname: JunXiang orcidid: 0000-0003-3782-9966 surname: Ding fullname: Ding, JunXiang organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Deliang orcidid: 0000-0002-3418-3787 surname: Kong fullname: Kong, Deliang organization: Henan Agricultural University – sequence: 3 givenname: Ziliang surname: Zhang fullname: Zhang, Ziliang organization: Clemson University – sequence: 4 givenname: Qin surname: Cai fullname: Cai, Qin organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Juan surname: Xiao fullname: Xiao, Juan organization: China West Normal University – sequence: 6 givenname: Qing orcidid: 0000-0002-7046-0307 surname: Liu fullname: Liu, Qing organization: Chinese Academy of Sciences – sequence: 7 givenname: Huajun orcidid: 0000-0001-9202-8286 surname: Yin fullname: Yin, Huajun email: yinhj@cib.ac.cn organization: China West Normal University – sequence: 8 givenname: David surname: Wardle fullname: Wardle, David |
BookMark | eNqFkTtvFDEUhS0UJDYJdVpLNDST-DnOlmgVXopEQ2rL44dyI4-92B7QUlFT8Rv5JXhYRJEmbmxZ57vHPucUnaScPEIXlFzSvq4oH-XAlJCXlAuinqHN_5sTtCGEsYEIpV6g01ofCCGjkmSDfu4izKZ5bJLDNUPEaWkFfGoVOwjBl34EE-MBuwJfPZ6X2MDB7FOFnEzEAZLHJeeGWzHQMUjY25bng82l3MN3E3__-OXyDKn7OGzifiVsTtCn56XikIuvrZ6j58HE6l_-28_Q3dubz7v3w-2ndx92b24Hy8W1GrhiwtFJMm-EooxZ6ibnt5aQSYSgmKFqEltuxi1xEw-EE0oFH72ydrTWSH6GXh_n7kv-snRnPUO1PkaTfH-OZlLS7dhjI1366pH0IS-l_7qrhKSKy2tCu-rqqLIl11p80PvSQy0HTYleu9FrE3ptQv_tphPyEWGhmdYDXTOMT3PfIPrDUzb6483uyP0B4c6njA |
CitedBy_id | crossref_primary_10_1111_1365_2435_13723 crossref_primary_10_1111_nph_18870 crossref_primary_10_3390_biology14010082 crossref_primary_10_1016_j_agee_2025_109550 crossref_primary_10_3390_f15030476 crossref_primary_10_1093_jpe_rtae043 crossref_primary_10_1007_s11104_023_06087_3 crossref_primary_10_3389_fpls_2024_1481323 crossref_primary_10_1016_j_scitotenv_2025_178841 crossref_primary_10_1111_jbi_14157 crossref_primary_10_3389_fevo_2021_748038 crossref_primary_10_1093_jpe_rtae004 crossref_primary_10_3390_f15020336 crossref_primary_10_1111_nph_18915 crossref_primary_10_1016_j_tree_2023_09_002 crossref_primary_10_1111_1365_2435_13856 crossref_primary_10_1111_nph_18066 crossref_primary_10_1111_nph_17136 crossref_primary_10_1111_nph_19678 crossref_primary_10_1016_j_apsoil_2024_105773 crossref_primary_10_1111_nph_70001 crossref_primary_10_3389_fpls_2021_785589 crossref_primary_10_1111_1365_2745_14268 crossref_primary_10_3390_plants11040486 crossref_primary_10_1016_j_jare_2021_07_005 crossref_primary_10_3390_plants11192495 crossref_primary_10_1029_2022JG007268 crossref_primary_10_1111_nph_17854 crossref_primary_10_3390_f15071151 crossref_primary_10_3390_plants13040536 crossref_primary_10_1007_s11104_023_06473_x crossref_primary_10_1007_s11104_025_07358_x crossref_primary_10_1016_j_rhisph_2022_100489 crossref_primary_10_1002_ldr_3954 crossref_primary_10_1007_s11104_023_06267_1 crossref_primary_10_1016_j_scitotenv_2024_172670 crossref_primary_10_1093_treephys_tpad067 crossref_primary_10_3389_fpls_2024_1358367 crossref_primary_10_1007_s11104_020_04706_x crossref_primary_10_1016_j_agrformet_2023_109756 crossref_primary_10_1007_s11104_023_06449_x crossref_primary_10_1016_j_scitotenv_2023_164893 crossref_primary_10_1111_oik_09638 crossref_primary_10_1007_s11676_022_01551_9 crossref_primary_10_1111_nph_18736 crossref_primary_10_3389_fpls_2021_772463 crossref_primary_10_1111_1365_2435_14554 crossref_primary_10_1007_s11104_022_05603_1 crossref_primary_10_1007_s11104_023_06381_0 crossref_primary_10_3390_f15050806 crossref_primary_10_1016_j_foreco_2021_119152 crossref_primary_10_3390_f15010199 crossref_primary_10_3389_fpls_2024_1485542 crossref_primary_10_1016_j_ecoser_2022_101484 crossref_primary_10_1111_oik_08975 crossref_primary_10_1016_j_soilbio_2025_109731 crossref_primary_10_1016_j_scitotenv_2023_165653 crossref_primary_10_1007_s00468_023_02394_5 crossref_primary_10_1016_j_geoderma_2024_116901 crossref_primary_10_1111_nph_16865 crossref_primary_10_1111_pce_15352 crossref_primary_10_3390_f15111895 crossref_primary_10_1016_j_soilbio_2023_109093 crossref_primary_10_1093_jpe_rtae072 crossref_primary_10_1016_j_envexpbot_2024_105773 |
Cites_doi | 10.1038/nplants.2015.50 10.1111/1365-2745.12211 10.1111/j.1600-0587.2010.06904.x 10.1111/nph.14206 10.1111/1365-2745.13125 10.1093/treephys/tpx096 10.1007/s11104-018-3618-5 10.1111/j.1461-0248.2008.01185.x 10.1034/j.1600-0706.2003.10638.x 10.1111/j.1469-8137.2009.02799.x 10.1111/nph.14486 10.1016/j.soilbio.2018.01.002 10.1111/j.1365-2435.2010.01727.x 10.1111/1365-2745.12562 10.1111/nph.14643 10.1111/nph.14003 10.1890/05-1051 10.1111/1365-2745.12769 10.1111/nph.14571 10.1111/nph.14710 10.1111/j.1365-3040.2007.01765.x 10.1073/pnas.1601006113 10.1111/nph.14496 10.1007/s11104-019-03934-0 10.1093/treephys/tpw022 10.1046/j.1469-8137.2000.00686.x 10.1007/s00442-016-3549-x 10.1890/03-4022 10.1111/j.1466-8238.2006.00263.x 10.1002/ece3.1147 10.1111/1365-2745.12953 10.1046/j.1469-8137.2000.00775.x 10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2 10.1007/s11104-017-3234-9 10.1111/j.1469-8137.2006.01667.x 10.1038/s41467-019-10245-6 10.1038/nature16489 10.1111/nph.13363 10.1046/j.1469-8137.1999.00342.x 10.1111/1365-2435.12983 10.1111/ele.12466 10.1046/j.1469-8137.2002.00397.x 10.1098/rspb.2005.3212 10.1093/jxb/eru305 10.3389/fpls.2019.01215 10.1139/X09-093 10.1111/1365-2435.12384 10.1038/nature25783 10.1111/j.1469-8137.2008.02436.x 10.1007/s00442-017-4044-8 10.1111/nph.14247 10.1111/nph.13451 10.1007/s11104-012-1464-4 10.1111/nph.13828 10.1111/j.2041-210x.2012.00261.x 10.1111/nph.12221 10.1016/j.tree.2014.10.006 10.1111/geb.12048 10.1111/j.1365-2745.2011.01821.x 10.1111/j.1365-2745.2009.01615.x 10.1016/j.ecolind.2019.105559 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2 10.1111/j.1469-8137.2011.03679.x 10.1111/nph.12842 10.1111/1365-2745.12351 10.1111/j.1469-8137.2008.02573.x 10.1111/j.1469-8137.2006.01704.x 10.1111/nph.14459 10.1007/s00572-005-0033-6 |
ContentType | Journal Article |
Copyright | 2020 British Ecological Society Journal of Ecology © 2020 British Ecological Society |
Copyright_xml | – notice: 2020 British Ecological Society – notice: Journal of Ecology © 2020 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
DOI | 10.1111/1365-2745.13407 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Botany Economics |
EISSN | 1365-2745 |
EndPage | 2556 |
ExternalDocumentID | 10_1111_1365_2745_13407 JEC13407 |
Genre | article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: The Second Tibetan Plateau Scientific Expedition and Research program (STEP) funderid: 2019QZKK0301 – fundername: The National Natural Science Foundation of China funderid: 31670449; 31670550; 31700387; 31872700 – fundername: The Frontier Science Key Research Programs of CAS funderid: QYZDB‐SSW‐SMC023 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29K 2AX 2WC 3-9 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPFR ABPLY ABPPZ ABPQH ABPVW ABTAH ABTLG ABXSQ ABYAD ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACHIC ACNCT ACPOU ACPRK ACSCC ACSTJ ACTWD ACUBG ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADULT ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFXHP AFZJQ AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CUYZI D-E D-F D-I DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EAU EBS ECGQY EJD ESX F00 F01 F04 F5P FVMVE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 UPT V8K W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH Y6R YF5 YQT YXE YZZ ZCA ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABAWQ ABSQW ACHJO AEYWJ AGHNM AGUYK AGYGG CITATION 7QG 7SN 7SS 7ST 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3487-3724d1b52ea47122c1dbde9c00b4ff72a17b493a690db3f03011436e7cc6cca53 |
IEDL.DBID | DR2 |
ISSN | 0022-0477 |
IngestDate | Fri Jul 11 18:23:54 EDT 2025 Sun Aug 10 10:10:32 EDT 2025 Tue Jul 01 03:13:45 EDT 2025 Thu Apr 24 23:00:59 EDT 2025 Wed Jan 22 16:33:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3487-3724d1b52ea47122c1dbde9c00b4ff72a17b493a690db3f03011436e7cc6cca53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9202-8286 0000-0002-3418-3787 0000-0003-3782-9966 0000-0002-7046-0307 |
PQID | 2451735801 |
PQPubID | 37508 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2551967450 proquest_journals_2451735801 crossref_primary_10_1111_1365_2745_13407 crossref_citationtrail_10_1111_1365_2745_13407 wiley_primary_10_1111_1365_2745_13407_JEC13407 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 20201101 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The Journal of ecology |
PublicationYear | 2020 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2010; 98 2013; 4 2013; 22 2002; 154 2006; 76 2019; 10 2015; 103 2011; 99 2013; 367 2006; 170 2011; 191 2014; 29 2016; 104 2008; 31 2016; 180 2016; 36 2014; 65 2004; 74 2014; 4 2010; 24 2017; 37 2016; 113 2013; 199 2019; 436 2018; 32 2014; 203 2017; 416 2018; 186 2015; 1 2005; 272 2015; 18 2018; 106 2018; 424 2017; 25 2002; 72 2009; 182 2006; 16 2016; 529 2008 1999; 141 2015; 208 2011; 34 2015; 207 2008; 11 2019; 107 2002 2017; 213 2017; 214 2017; 215 2017; 216 2007; 16 2008; 180 2015; 29 2000; 147 2006; 87 2000; 148 2018; 119 2020 2018; 555 2019 2016; 211 2016; 210 2014 2008; 178 2003; 103 2017; 105 2009; 39 2014; 102 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Liu Q. (e_1_2_9_39_1) 2002 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 Ding J. (e_1_2_9_15_1) 2020 e_1_2_9_34_1 R Core Team (e_1_2_9_54_1) 2019 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 Bergmann J. (e_1_2_9_6_1) 2020 e_1_2_9_70_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_3_1 e_1_2_9_9_1 Smith S. E. (e_1_2_9_63_1) 2008 Bates D. (e_1_2_9_5_1) 2014 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 215 start-page: 1562 year: 2017 end-page: 1573 article-title: A worldview of root traits: The influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine‐root tissues in seed plants publication-title: New Phytologist – volume: 24 start-page: 1192 year: 2010 end-page: 1201 article-title: A multi‐trait approach reveals the structure and the relative importance of intra‐ vs. interspecific variability in plant traits publication-title: Functional Ecology – volume: 4 start-page: 133 year: 2013 end-page: 142 article-title: A general and simple method for obtaining from generalized linear mixed‐effects models publication-title: Methods in Ecology and Evolution – volume: 39 start-page: 1787 year: 2009 end-page: 1796 article-title: Does a fungal species drive ectomycorrhizal root traits in spp.? publication-title: Canadian Journal of Forest Research – volume: 16 start-page: 299 year: 2006 end-page: 363 article-title: Phylogenetic distribution and evolution of mycorrhizas in land plants publication-title: Mycorrhiza – volume: 36 start-page: 618 year: 2016 end-page: 627 article-title: Untangling the effects of root age and tissue nitrogen on root respiration in at different nitrogen supply publication-title: Tree Physiology – volume: 170 start-page: 357 year: 2006 end-page: 368 article-title: Suites of root traits differ between annual and perennial species growing in the field publication-title: New Phytologist – volume: 16 start-page: 1 year: 2007 end-page: 13 article-title: Could temperature and water availability drive elevational species richness patterns? A global case study for bats publication-title: Global Ecology and Biogeography – volume: 65 start-page: 5115 year: 2014 end-page: 5123 article-title: Leaf mass per area is independent of vein length per area: Avoiding pitfalls when modelling phenotypic integration (reply to) publication-title: Journal of Experimental Botany – volume: 76 start-page: 381 year: 2006 end-page: 397 article-title: Comparisons of structure and life span in roots and leaves among temperate trees publication-title: Ecological Monographs – volume: 182 start-page: 919 year: 2009 end-page: 928 article-title: Patterns in root trait variation among 25 co‐existing North American forest species publication-title: New Phytologist – volume: 103 start-page: 361 year: 2015 end-page: 373 article-title: Root functional parameters along a land‐use gradient: Evidence of a community‐level economics spectrum publication-title: Journal of Ecology – volume: 34 start-page: 856 year: 2011 end-page: 863 article-title: Community trait response to environment: Disentangling species turnover vs intraspecific trait variability effects publication-title: Ecography – volume: 180 start-page: 923 year: 2016 end-page: 931 article-title: Reinforcing loose foundation stones in trait‐based plant ecology publication-title: Oecologia – volume: 29 start-page: 692 year: 2014 end-page: 699 article-title: Going underground: Root traits as drivers of ecosystem processes publication-title: Trends in Ecology & Evolution – volume: 154 start-page: 275 year: 2002 end-page: 304 article-title: Coevolution of roots and mycorrhizas of land plants publication-title: New Phytologist – volume: 113 start-page: 8741 year: 2016 end-page: 8746 article-title: Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 215 start-page: 27 year: 2017 end-page: 37 article-title: Building a better foundation: Improving root‐trait measurements to understand and model plant and ecosystem processes publication-title: New Phytologist – volume: 199 start-page: 41 year: 2013 end-page: 51 article-title: The mycorrhizal‐associated nutrient economy: A new framework for predicting carbon‐nutrient couplings in temperate forests publication-title: New Phytologist – volume: 191 start-page: 173 year: 2011 end-page: 183 article-title: Introducing short roots in a desert perennial: Anatomy and spatiotemporal foraging responses to increased precipitation publication-title: New Phytologist – year: 2014 – volume: 213 start-page: 1440 year: 2017 end-page: 1451 article-title: Similar below‐ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests publication-title: New Phytologist – volume: 210 start-page: 815 year: 2016 end-page: 826 article-title: Root structure‐function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy publication-title: New Phytologist – volume: 529 start-page: 167 year: 2016 end-page: 171 article-title: The global spectrum of plant form and function publication-title: Nature – volume: 4 start-page: 2979 issue: 15 year: 2014 end-page: 2990 article-title: Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: Implications for the evolution of belowground strategies publication-title: Ecology and Evolution – volume: 203 start-page: 863 year: 2014 end-page: 872 article-title: Leading dimensions in absorptive root trait variation across 96 subtropical forest species publication-title: New Phytologist – volume: 87 start-page: 535 year: 2006 end-page: 541 article-title: Fundamental trade‐offs generating the worldwide leaf economics spectrum publication-title: Ecology – year: 2008 – volume: 32 start-page: 29 year: 2018 end-page: 39 article-title: Different phylogenetic and environmental controls of first‐order root morphological and nutrient traits: Evidence of multidimensional root traits publication-title: Functional Ecology – volume: 272 start-page: 2203 year: 2005 end-page: 2210 article-title: New insights into butterfly‐environment relationships using partitioning methods publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 178 start-page: 719 year: 2008 end-page: 739 article-title: Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? publication-title: New Phytologist – volume: 211 start-page: 1159 year: 2016 end-page: 1169 article-title: Towards a multidimensional root trait framework: A tree root review publication-title: New Phytologist – volume: 37 start-page: 1055 year: 2017 end-page: 1068 article-title: The interactive impact of root branch order and soil genetic horizon on root respiration and nitrogen concentration publication-title: Tree Physiology – volume: 18 start-page: 899 year: 2015 end-page: 906 article-title: Leaf economics and hydraulic traits are decoupled in five species‐rich tropical‐subtropical forests publication-title: Ecology Letters – volume: 10 start-page: 1 year: 2019 end-page: 12 article-title: Physical and functional constraints on viable belowground acquisition strategies publication-title: Frontiers in Plant Science – volume: 1 start-page: 15050 issue: 5 year: 2015 article-title: Diversity of plant nutrient‐acquisition strategies increases during long‐term ecosystem development publication-title: Nature Plants – volume: 555 start-page: 94 year: 2018 end-page: 97 article-title: Evolutionary history resolves global organization of root functional traits publication-title: Nature – year: 2019 – volume: 213 start-page: 1597 year: 2017 end-page: 1603 article-title: Below‐ground frontiers in trait‐based plant ecology publication-title: New Phytologist – volume: 103 start-page: 668 year: 2003 end-page: 680 article-title: Ecological strategies of ectomycorrhizal fungi of : Root manipulation versus root replacement publication-title: Oikos – volume: 10 start-page: 2203 year: 2019 article-title: Nonlinearity of root trait relationships and the root economics spectrum publication-title: Nature Communications – volume: 102 start-page: 275 year: 2014 end-page: 301 article-title: The world‐wide ‘fast‐slow’ plant economics spectrum: A traits manifesto publication-title: Journal of Ecology – volume: 74 start-page: 25 year: 2004 end-page: 44 article-title: Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance publication-title: Ecological Monographs – volume: 31 start-page: 632 year: 2008 end-page: 645 article-title: Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees publication-title: Plant, Cell & Environment – year: 2020 article-title: The fungal collaboration gradient dominates the root economics space in plants publication-title: bioRxiv – volume: 11 start-page: 793 year: 2008 end-page: 801 article-title: Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants publication-title: Ecology Letters – volume: 215 start-page: 977 year: 2017 end-page: 991 article-title: Adaptive root foraging strategies along a boreal‐temperate forest gradient publication-title: New Phytologist – volume: 104 start-page: 1299 year: 2016 end-page: 1310 article-title: Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum publication-title: Journal of Ecology – volume: 25 start-page: 15 year: 2017 end-page: 26 article-title: A global fine‐root ecology database to address below‐ground challenges in plant ecology publication-title: New Phytologist – volume: 436 start-page: 347 year: 2019 end-page: 364 article-title: Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests publication-title: Plant and Soil – volume: 170 start-page: 835 year: 2006 end-page: 848 article-title: A test of the generality of leaf trait relationships on the Tibetan Plateau publication-title: New Phytologist – volume: 207 start-page: 505 year: 2015 end-page: 518 article-title: Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes publication-title: New Phytologist – volume: 105 start-page: 1182 year: 2017 end-page: 1196 article-title: Climate, soil and plant functional types as drivers of global fine‐root trait variation publication-title: Journal of Ecology – volume: 22 start-page: 846 year: 2013 end-page: 856 article-title: Variation of first‐order root traits across climatic gradients and evolutionary trends in geological time publication-title: Global Ecology and Biogeography – volume: 99 start-page: 954 year: 2011 end-page: 963 article-title: Species‐ and community‐level patterns in fine root traits along a 120000‐year soil chronosequence in temperate rain forest publication-title: Journal of Ecology – volume: 186 start-page: 731 year: 2018 end-page: 741 article-title: Patterns in spatial distribution and root trait syndromes for ecto and arbuscular mycorrhizal temperate trees in a mixed broadleaf forest publication-title: Oecologia – volume: 107 start-page: 105559 year: 2019 article-title: Past and future climatic indicators for distribution patterns and conservation planning of temperate coniferous forests in southwestern China publication-title: Ecological Indicators – year: 2020 article-title: Data from: Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal‐dominated alpine coniferous forests publication-title: Dryad Digital Repository – volume: 180 start-page: 673 year: 2008 end-page: 683 article-title: Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty‐three Chinese temperate tree species publication-title: New Phytologist – volume: 106 start-page: 2031 year: 2018 end-page: 2042 article-title: Two dimensions define the variation of fine root traits across plant communities under the joint influence of ecological succession and annual mowing publication-title: Journal of Ecology – year: 2002 – volume: 141 start-page: 309 year: 1999 end-page: 321 article-title: Anatomical characteristics of roots of citrus rootstocks that vary in specific root length publication-title: New Phytologist – volume: 148 start-page: 459 year: 2000 end-page: 471 article-title: Root tissue structure is linked to ecological strategies of grasses publication-title: New Phytologist – volume: 72 start-page: 293 year: 2002 end-page: 309 article-title: Fine root architecture of nine North American trees publication-title: Ecological Monographs – volume: 208 start-page: 114 year: 2015 end-page: 124 article-title: Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest publication-title: New Phytologist – volume: 214 start-page: 1447 year: 2017 end-page: 1463 article-title: Physiological and structural tradeoffs underlying the leaf economics spectrum publication-title: New Phytologist – volume: 424 start-page: 1 year: 2018 end-page: 9 article-title: Frontiers in root ecology: Recent advances and future challenges publication-title: Plant and Soil – volume: 416 start-page: 539 year: 2017 end-page: 550 article-title: Root nutrient concentration and biomass allocation are more plastic than morphological traits in response to nutrient limitation publication-title: Plant and Soil – volume: 29 start-page: 796 year: 2015 end-page: 807 article-title: Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees publication-title: Functional Ecology – volume: 147 start-page: 33 year: 2000 end-page: 42 article-title: Building roots in a changing environment: Implications for root longevity publication-title: New Phytologist – volume: 216 start-page: 1140 year: 2017 end-page: 1150 article-title: Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient publication-title: New Phytologist – volume: 107 start-page: 1238 year: 2019 end-page: 1249 article-title: Community‐level economics spectrum of fine‐roots driven by nutrient limitations in subalpine forests publication-title: Journal of Ecology – volume: 367 start-page: 313 year: 2013 end-page: 326 article-title: Insights into root growth, function, and mycorrhizal abundance from chemical and isotopic data across root orders publication-title: Plant and Soil – volume: 98 start-page: 362 year: 2010 end-page: 373 article-title: Evidence of the ‘plant economics spectrum’ in a subarctic flora publication-title: Journal of Ecology – volume: 119 start-page: 50 year: 2018 end-page: 58 article-title: Changes in plant nitrogen acquisition strategies during the restoration of spruce plantations on the eastern Tibetan Plateau, China publication-title: Soil Biology and Biochemistry – ident: e_1_2_9_75_1 doi: 10.1038/nplants.2015.50 – ident: e_1_2_9_55_1 doi: 10.1111/1365-2745.12211 – ident: e_1_2_9_33_1 doi: 10.1111/j.1600-0587.2010.06904.x – ident: e_1_2_9_37_1 doi: 10.1111/nph.14206 – volume-title: R: A language and environment for statistical computing year: 2019 ident: e_1_2_9_54_1 – year: 2020 ident: e_1_2_9_6_1 article-title: The fungal collaboration gradient dominates the root economics space in plants publication-title: bioRxiv – ident: e_1_2_9_34_1 doi: 10.1111/1365-2745.13125 – ident: e_1_2_9_65_1 doi: 10.1093/treephys/tpx096 – ident: e_1_2_9_19_1 doi: 10.1007/s11104-018-3618-5 – ident: e_1_2_9_56_1 doi: 10.1111/j.1461-0248.2008.01185.x – ident: e_1_2_9_69_1 doi: 10.1034/j.1600-0706.2003.10638.x – ident: e_1_2_9_12_1 doi: 10.1111/j.1469-8137.2009.02799.x – ident: e_1_2_9_27_1 doi: 10.1111/nph.14486 – ident: e_1_2_9_76_1 doi: 10.1016/j.soilbio.2018.01.002 – volume-title: Package lme4: Linear mixed‐effects models using Eigen and S4 year: 2014 ident: e_1_2_9_5_1 – ident: e_1_2_9_3_1 doi: 10.1111/j.1365-2435.2010.01727.x – ident: e_1_2_9_30_1 doi: 10.1111/1365-2745.12562 – ident: e_1_2_9_49_1 doi: 10.1111/nph.14643 – ident: e_1_2_9_73_1 doi: 10.1111/nph.14003 – ident: e_1_2_9_62_1 doi: 10.1890/05-1051 – year: 2020 ident: e_1_2_9_15_1 article-title: Data from: Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal‐dominated alpine coniferous forests publication-title: Dryad Digital Repository – ident: e_1_2_9_22_1 doi: 10.1111/1365-2745.12769 – volume-title: Mycorrhizal symbiosis year: 2008 ident: e_1_2_9_63_1 – ident: e_1_2_9_66_1 doi: 10.1111/nph.14571 – ident: e_1_2_9_35_1 doi: 10.1111/nph.14710 – ident: e_1_2_9_64_1 doi: 10.1111/j.1365-3040.2007.01765.x – ident: e_1_2_9_9_1 doi: 10.1073/pnas.1601006113 – ident: e_1_2_9_47_1 doi: 10.1111/nph.14496 – ident: e_1_2_9_38_1 doi: 10.1007/s11104-019-03934-0 – ident: e_1_2_9_8_1 doi: 10.1093/treephys/tpw022 – ident: e_1_2_9_18_1 doi: 10.1046/j.1469-8137.2000.00686.x – ident: e_1_2_9_61_1 doi: 10.1007/s00442-016-3549-x – ident: e_1_2_9_2_1 doi: 10.1890/03-4022 – volume-title: Ecological research on subalpine coniferous forests in China year: 2002 ident: e_1_2_9_39_1 – ident: e_1_2_9_41_1 doi: 10.1111/j.1466-8238.2006.00263.x – ident: e_1_2_9_11_1 doi: 10.1002/ece3.1147 – ident: e_1_2_9_20_1 doi: 10.1111/1365-2745.12953 – ident: e_1_2_9_70_1 doi: 10.1046/j.1469-8137.2000.00775.x – ident: e_1_2_9_74_1 doi: 10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2 – ident: e_1_2_9_31_1 doi: 10.1007/s11104-017-3234-9 – ident: e_1_2_9_58_1 doi: 10.1111/j.1469-8137.2006.01667.x – ident: e_1_2_9_29_1 doi: 10.1038/s41467-019-10245-6 – ident: e_1_2_9_14_1 doi: 10.1038/nature16489 – ident: e_1_2_9_42_1 doi: 10.1111/nph.13363 – ident: e_1_2_9_16_1 doi: 10.1046/j.1469-8137.1999.00342.x – ident: e_1_2_9_72_1 doi: 10.1111/1365-2435.12983 – ident: e_1_2_9_36_1 doi: 10.1111/ele.12466 – ident: e_1_2_9_7_1 doi: 10.1046/j.1469-8137.2002.00397.x – ident: e_1_2_9_25_1 doi: 10.1098/rspb.2005.3212 – ident: e_1_2_9_59_1 doi: 10.1093/jxb/eru305 – ident: e_1_2_9_44_1 doi: 10.3389/fpls.2019.01215 – ident: e_1_2_9_48_1 doi: 10.1139/X09-093 – ident: e_1_2_9_67_1 doi: 10.1111/1365-2435.12384 – ident: e_1_2_9_40_1 doi: 10.1038/nature25783 – ident: e_1_2_9_45_1 doi: 10.1111/j.1469-8137.2008.02436.x – ident: e_1_2_9_68_1 doi: 10.1007/s00442-017-4044-8 – ident: e_1_2_9_32_1 doi: 10.1111/nph.14247 – ident: e_1_2_9_17_1 doi: 10.1111/nph.13451 – ident: e_1_2_9_50_1 doi: 10.1007/s11104-012-1464-4 – ident: e_1_2_9_57_1 doi: 10.1111/nph.13828 – ident: e_1_2_9_46_1 doi: 10.1111/j.2041-210x.2012.00261.x – ident: e_1_2_9_51_1 doi: 10.1111/nph.12221 – ident: e_1_2_9_4_1 doi: 10.1016/j.tree.2014.10.006 – ident: e_1_2_9_10_1 doi: 10.1111/geb.12048 – ident: e_1_2_9_26_1 doi: 10.1111/j.1365-2745.2011.01821.x – ident: e_1_2_9_21_1 doi: 10.1111/j.1365-2745.2009.01615.x – ident: e_1_2_9_13_1 doi: 10.1016/j.ecolind.2019.105559 – ident: e_1_2_9_52_1 doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2 – ident: e_1_2_9_60_1 doi: 10.1111/j.1469-8137.2011.03679.x – ident: e_1_2_9_28_1 doi: 10.1111/nph.12842 – ident: e_1_2_9_53_1 doi: 10.1111/1365-2745.12351 – ident: e_1_2_9_23_1 doi: 10.1111/j.1469-8137.2008.02573.x – ident: e_1_2_9_24_1 doi: 10.1111/j.1469-8137.2006.01704.x – ident: e_1_2_9_43_1 doi: 10.1111/nph.14459 – ident: e_1_2_9_71_1 doi: 10.1007/s00572-005-0033-6 |
SSID | ssj0006750 |
Score | 2.602915 |
Snippet | Fine root traits vary greatly with environmental changes, but the understanding of root trait variation and its drivers is limited over broad geographical... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2544 |
SubjectTerms | alpine forests Annual precipitation atmospheric precipitation carbon China Climate Climate change climatic variables Colonization Coniferous forests Conifers Diameters Dimensions ECM‐dominated conifers Economics ectomycorrhizae Ectomycorrhizas Environmental changes Environmental control Fertility fine root trait covariation fine roots first‐ and second‐order roots Foraging Forests Life span longevity Mineral nutrients Nitrogen Nutrients Phosphorus Plant tissues Resource conservation Resource efficiency root trait multidimensionality root‐adaptive strategies Soil Soil fertility Soil nutrients Soils Uptake Variance Variation |
Title | Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal‐dominated alpine coniferous forests |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.13407 https://www.proquest.com/docview/2451735801 https://www.proquest.com/docview/2551967450 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5VCCQuFCiIlIe2EodeHNm7a29ybKMghASHqkjcrH2qEcZGcXIIJ86c-hv7S5hZ2-EhVQhxs5JMsp7MzH7jnfmGkGMnM8sz66I41pCgsIGJ1EDxKHWQS0grOfPY4Hx-kZ1eirOrtKsmxF6Yhh9i-cANPSPEa3RwpetnTt52U4m0n3AR-snxFYRFv54IpAAOxx1feCykbMl9sJbnlfzLfekJbD6HrGHPOflMdLfaptTkuj-f6b65e0Xk-KHb2SQbLSKlPxoT2iKfXLlN1poZlYttsvqzAvwIF2vjQHC9-EIeRsUEgK6jqrS0riYFLZHTH0syaDdwBQJHUSyonUI0paFq0eIcgYYDhHpYLgXMPqM4ogLEJiXF44ObBSTD0z-TO1X8u_9rK6zTAUhMVXGLEpC7YyVONa8pYG1QXL1DLk_Gv0enUTvTITJchHjGhE10ypyCbZExk1ht3dCAqQjvJVOJ1GLIFSTtVnPfJGw8c9KYDIwt5btkpaxKt0eo14OBSxxkhAZAHXdD2I2HqdTepKBL73uk3_2juWkJz_GmirxLfFDnOeo8Dzrvke9LgduG6-P_Hz3oTCRvnb7OmUgTicfKSY98W74N7opnMKp0oJ0cMjiIefA9MSwv2MNbP5WfjUfh4ut7BfbJOsOnA6Fz8oCszKZzdwgQaqaPgpc8ArElEdo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQoYILhQJioYCROHDJKrGdePdIl62W0vaAWqk3y0-xIiTVPg7bE-ee-hv5Jcw4yXaphBDiFmnjxJmdGX9jz3xDyDsvC8cL55M0NRCgsIFN9EDzJPcQS0gnOQtY4Hx8UkzOxOF5fr5RC9PwQ6w33NAyor9GA8cN6Q0rb8upRN7PuMCC8rvY1xv58z9-uaGQAkCcdozhqZCypffBbJ5bD_h9ZbqBm5ugNa46BzvEdvNtkk2-9ZcL07eXt6gc_--DHpGHLSilHxotekzu-GqXbDdtKle75N5-DRASLrbHkeN69YRcjcopYF1PdeXovJ6WtEJaf8zKoF3PFfAdZbmibgYOlcbERYetBBoaEBpgvhRg-4JilwoYNq0oniB8X0E8PPs6vdTlzx_XrsZUHUDFVJcXOALCd0zGqZdzCnAbJDd_Ss4OxqejSdK2dUgsF9GlMeEykzOvYWVkzGbOOD-0oC0iBMl0Jo0Ycg1xuzM8NDEbL7y0tgB9y_kzslXVlX9OaDCDgc88BIUWcB33Q1iQh7k0weYgyxB6pN_9pcq2nOf4UaXqYh-UuUKZqyjzHnm_HnDR0H38-da9TkdUa_dzxUSeSTxZznrk7fpnsFg8htGVB-koCOLA7cFzUpheVIi_vUodjkfx4sW_DnhD7k9Oj4_U0aeTzy_JA4abBbGQco9sLWZL_woQ1cK8jibzC87sFfY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQoagXHgXUhQJG4sAlq8R24s0RtrsqBSqEqMTN8lOsCMlqH4ftiTMnfiO_hBkn2ZZKCCFukRInzmRm_E088w0hz70sHC-cT9LUQIDCRjbRI82T3EMsIZ3kLGCB87vT4vhMnHzK-2xCrIVp-SG2P9zQMqK_RgOfu3DJyLtqKpEPMy6wnvy6KNISuzccfbhgkAI8nPaE4amQsmP3wWSeKzf4fWG6QJuXMWtcdKa3iemn2-aafBmuV2Zoz68wOf7X-9whtzpISl-2OnSXXPP1Ptltm1Ru9smNVw0ASDjYnUSG68098n1czQDpeqprR5fNrKI1kvpjTgbtO66A56iqDXULcKc0pi06bCTQkoDQANOlANpXFHtUwLBZTXH_4OsGouHF59m5rn5---EaTNQBTEx1NccRELxjKk6zXlIA2yC45X1yNp18HB8nXVOHxHIRHRoTLjM58xrWRcZs5ozzpQVdESFIpjNpRMk1RO3O8NBGbLzw0toCtC3nD8hO3dT-gNBgRiOfeQgJLaA67ktYjstcmmBzkGUIAzLsv6iyHeM5vlSl-sgHZa5Q5irKfEBebAfMW7KPP1962KuI6qx-qZjIM4n7ytmAPNueBnvFTRhde5COghAOnB7cJ4XpRX3426PUyWQcDx7-64Cn5Ob7o6l6-_r0zSOyx_BPQayiPCQ7q8XaPwY4tTJPosH8AnNMFKU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+and+soil+nutrients+differentially+drive+multidimensional+fine+root+traits+in+ectomycorrhizal%E2%80%90dominated+alpine+coniferous+forests&rft.jtitle=The+Journal+of+ecology&rft.au=Ding%2C+JunXiang&rft.au=Kong%2C+Deliang&rft.au=Zhang%2C+Ziliang&rft.au=Cai%2C+Qin&rft.date=2020-11-01&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=108&rft.issue=6&rft.spage=2544&rft.epage=2556&rft_id=info:doi/10.1111%2F1365-2745.13407&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1365_2745_13407 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon |