Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal‐dominated alpine coniferous forests

Fine root traits vary greatly with environmental changes, but the understanding of root trait variation and its drivers is limited over broad geographical scales, especially for ectomycorrhizal (ECM)‐dominated conifers in alpine forests. Herein, the covariation patterns of and environmental controls...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of ecology Vol. 108; no. 6; pp. 2544 - 2556
Main Authors Ding, JunXiang, Kong, Deliang, Zhang, Ziliang, Cai, Qin, Xiao, Juan, Liu, Qing, Yin, Huajun, Wardle, David
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fine root traits vary greatly with environmental changes, but the understanding of root trait variation and its drivers is limited over broad geographical scales, especially for ectomycorrhizal (ECM)‐dominated conifers in alpine forests. Herein, the covariation patterns of and environmental controls for fine root traits among ECM‐dominated conifers were examined to test whether and how climate and soil nutrients differentially affect fine root trait variations. Eight traits of first‐ and second‐order roots were measured, that is, root diameter (RD), specific root length (SRL), branching intensity (BRI), root tissue density (RTD), mycorrhizal colonization rate (MCR) and concentrations of carbon (C), nitrogen (N) and phosphorus (P), across 76 alpine coniferous populations on the eastern Tibetan Plateau, China. Our results showed that variations of the fine root traits fell into two major dimensions: the first dimension (32.39% of the total variance) was mainly represented by RD and SRL, potentially conveying a trade‐off between root life span and efficiency of resource foraging; the second dimension (23.70% of the variance) represented coordinated variation for root nutrients (i.e. N and P) and RTD, which depicts the conservation‐acquisition trade‐off in resource uptake, that is, root economic spectrum. Variations in RD and SRL were mainly driven by climatic variables, characterized by a significant increase in RD and a decrease in SRL with increasing mean annual precipitation. In contrast, variations in fine root nutrients (i.e. N and P) and RTD were primarily driven by soil fertility, showing a significant increase in root N and P concentrations but a decrease in RTD with increasing soil resource levels. Synthesis. Our study clearly shows two distinct dimensions of the variation of fine root traits in ECM‐dominated alpine coniferous forests, providing further evidence of the inherent multidimensionality of root traits. Moreover, our findings highlight different roles of climatic and soil variables in driving the variation of fine root traits, potentially leading to the multidimensionality of root traits. This study provides new insights for understanding and predicting shifts in plant belowground strategies in climate‐sensitive alpine forests world‐wide. Our study shows two distinct dimensions of the variation of fine root traits in ECM‐dominated alpine coniferous forests on the eastern Tibetan Plateau. The climatic and soil variables drive differently the variation of fine root traits, potentially leading to the multidimensionality of root traits.
AbstractList Fine root traits vary greatly with environmental changes, but the understanding of root trait variation and its drivers is limited over broad geographical scales, especially for ectomycorrhizal (ECM)‐dominated conifers in alpine forests. Herein, the covariation patterns of and environmental controls for fine root traits among ECM‐dominated conifers were examined to test whether and how climate and soil nutrients differentially affect fine root trait variations. Eight traits of first‐ and second‐order roots were measured, that is, root diameter (RD), specific root length (SRL), branching intensity (BRI), root tissue density (RTD), mycorrhizal colonization rate (MCR) and concentrations of carbon (C), nitrogen (N) and phosphorus (P), across 76 alpine coniferous populations on the eastern Tibetan Plateau, China. Our results showed that variations of the fine root traits fell into two major dimensions: the first dimension (32.39% of the total variance) was mainly represented by RD and SRL, potentially conveying a trade‐off between root life span and efficiency of resource foraging; the second dimension (23.70% of the variance) represented coordinated variation for root nutrients (i.e. N and P) and RTD, which depicts the conservation‐acquisition trade‐off in resource uptake, that is, root economic spectrum. Variations in RD and SRL were mainly driven by climatic variables, characterized by a significant increase in RD and a decrease in SRL with increasing mean annual precipitation. In contrast, variations in fine root nutrients (i.e. N and P) and RTD were primarily driven by soil fertility, showing a significant increase in root N and P concentrations but a decrease in RTD with increasing soil resource levels. Synthesis. Our study clearly shows two distinct dimensions of the variation of fine root traits in ECM‐dominated alpine coniferous forests, providing further evidence of the inherent multidimensionality of root traits. Moreover, our findings highlight different roles of climatic and soil variables in driving the variation of fine root traits, potentially leading to the multidimensionality of root traits. This study provides new insights for understanding and predicting shifts in plant belowground strategies in climate‐sensitive alpine forests world‐wide.
Fine root traits vary greatly with environmental changes, but the understanding of root trait variation and its drivers is limited over broad geographical scales, especially for ectomycorrhizal (ECM)‐dominated conifers in alpine forests. Herein, the covariation patterns of and environmental controls for fine root traits among ECM‐dominated conifers were examined to test whether and how climate and soil nutrients differentially affect fine root trait variations. Eight traits of first‐ and second‐order roots were measured, that is, root diameter (RD), specific root length (SRL), branching intensity (BRI), root tissue density (RTD), mycorrhizal colonization rate (MCR) and concentrations of carbon (C), nitrogen (N) and phosphorus (P), across 76 alpine coniferous populations on the eastern Tibetan Plateau, China. Our results showed that variations of the fine root traits fell into two major dimensions: the first dimension (32.39% of the total variance) was mainly represented by RD and SRL, potentially conveying a trade‐off between root life span and efficiency of resource foraging; the second dimension (23.70% of the variance) represented coordinated variation for root nutrients (i.e. N and P) and RTD, which depicts the conservation‐acquisition trade‐off in resource uptake, that is, root economic spectrum. Variations in RD and SRL were mainly driven by climatic variables, characterized by a significant increase in RD and a decrease in SRL with increasing mean annual precipitation. In contrast, variations in fine root nutrients (i.e. N and P) and RTD were primarily driven by soil fertility, showing a significant increase in root N and P concentrations but a decrease in RTD with increasing soil resource levels. Synthesis . Our study clearly shows two distinct dimensions of the variation of fine root traits in ECM‐dominated alpine coniferous forests, providing further evidence of the inherent multidimensionality of root traits. Moreover, our findings highlight different roles of climatic and soil variables in driving the variation of fine root traits, potentially leading to the multidimensionality of root traits. This study provides new insights for understanding and predicting shifts in plant belowground strategies in climate‐sensitive alpine forests world‐wide.
Fine root traits vary greatly with environmental changes, but the understanding of root trait variation and its drivers is limited over broad geographical scales, especially for ectomycorrhizal (ECM)‐dominated conifers in alpine forests. Herein, the covariation patterns of and environmental controls for fine root traits among ECM‐dominated conifers were examined to test whether and how climate and soil nutrients differentially affect fine root trait variations. Eight traits of first‐ and second‐order roots were measured, that is, root diameter (RD), specific root length (SRL), branching intensity (BRI), root tissue density (RTD), mycorrhizal colonization rate (MCR) and concentrations of carbon (C), nitrogen (N) and phosphorus (P), across 76 alpine coniferous populations on the eastern Tibetan Plateau, China. Our results showed that variations of the fine root traits fell into two major dimensions: the first dimension (32.39% of the total variance) was mainly represented by RD and SRL, potentially conveying a trade‐off between root life span and efficiency of resource foraging; the second dimension (23.70% of the variance) represented coordinated variation for root nutrients (i.e. N and P) and RTD, which depicts the conservation‐acquisition trade‐off in resource uptake, that is, root economic spectrum. Variations in RD and SRL were mainly driven by climatic variables, characterized by a significant increase in RD and a decrease in SRL with increasing mean annual precipitation. In contrast, variations in fine root nutrients (i.e. N and P) and RTD were primarily driven by soil fertility, showing a significant increase in root N and P concentrations but a decrease in RTD with increasing soil resource levels. Synthesis. Our study clearly shows two distinct dimensions of the variation of fine root traits in ECM‐dominated alpine coniferous forests, providing further evidence of the inherent multidimensionality of root traits. Moreover, our findings highlight different roles of climatic and soil variables in driving the variation of fine root traits, potentially leading to the multidimensionality of root traits. This study provides new insights for understanding and predicting shifts in plant belowground strategies in climate‐sensitive alpine forests world‐wide. Our study shows two distinct dimensions of the variation of fine root traits in ECM‐dominated alpine coniferous forests on the eastern Tibetan Plateau. The climatic and soil variables drive differently the variation of fine root traits, potentially leading to the multidimensionality of root traits.
Author Ding, JunXiang
Zhang, Ziliang
Cai, Qin
Wardle, David
Liu, Qing
Xiao, Juan
Kong, Deliang
Yin, Huajun
Author_xml – sequence: 1
  givenname: JunXiang
  orcidid: 0000-0003-3782-9966
  surname: Ding
  fullname: Ding, JunXiang
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Deliang
  orcidid: 0000-0002-3418-3787
  surname: Kong
  fullname: Kong, Deliang
  organization: Henan Agricultural University
– sequence: 3
  givenname: Ziliang
  surname: Zhang
  fullname: Zhang, Ziliang
  organization: Clemson University
– sequence: 4
  givenname: Qin
  surname: Cai
  fullname: Cai, Qin
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Juan
  surname: Xiao
  fullname: Xiao, Juan
  organization: China West Normal University
– sequence: 6
  givenname: Qing
  orcidid: 0000-0002-7046-0307
  surname: Liu
  fullname: Liu, Qing
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Huajun
  orcidid: 0000-0001-9202-8286
  surname: Yin
  fullname: Yin, Huajun
  email: yinhj@cib.ac.cn
  organization: China West Normal University
– sequence: 8
  givenname: David
  surname: Wardle
  fullname: Wardle, David
BookMark eNqFkTtvFDEUhS0UJDYJdVpLNDST-DnOlmgVXopEQ2rL44dyI4-92B7QUlFT8Rv5JXhYRJEmbmxZ57vHPucUnaScPEIXlFzSvq4oH-XAlJCXlAuinqHN_5sTtCGEsYEIpV6g01ofCCGjkmSDfu4izKZ5bJLDNUPEaWkFfGoVOwjBl34EE-MBuwJfPZ6X2MDB7FOFnEzEAZLHJeeGWzHQMUjY25bng82l3MN3E3__-OXyDKn7OGzifiVsTtCn56XikIuvrZ6j58HE6l_-28_Q3dubz7v3w-2ndx92b24Hy8W1GrhiwtFJMm-EooxZ6ibnt5aQSYSgmKFqEltuxi1xEw-EE0oFH72ydrTWSH6GXh_n7kv-snRnPUO1PkaTfH-OZlLS7dhjI1366pH0IS-l_7qrhKSKy2tCu-rqqLIl11p80PvSQy0HTYleu9FrE3ptQv_tphPyEWGhmdYDXTOMT3PfIPrDUzb6483uyP0B4c6njA
CitedBy_id crossref_primary_10_1111_1365_2435_13723
crossref_primary_10_1111_nph_18870
crossref_primary_10_3390_biology14010082
crossref_primary_10_1016_j_agee_2025_109550
crossref_primary_10_3390_f15030476
crossref_primary_10_1093_jpe_rtae043
crossref_primary_10_1007_s11104_023_06087_3
crossref_primary_10_3389_fpls_2024_1481323
crossref_primary_10_1016_j_scitotenv_2025_178841
crossref_primary_10_1111_jbi_14157
crossref_primary_10_3389_fevo_2021_748038
crossref_primary_10_1093_jpe_rtae004
crossref_primary_10_3390_f15020336
crossref_primary_10_1111_nph_18915
crossref_primary_10_1016_j_tree_2023_09_002
crossref_primary_10_1111_1365_2435_13856
crossref_primary_10_1111_nph_18066
crossref_primary_10_1111_nph_17136
crossref_primary_10_1111_nph_19678
crossref_primary_10_1016_j_apsoil_2024_105773
crossref_primary_10_1111_nph_70001
crossref_primary_10_3389_fpls_2021_785589
crossref_primary_10_1111_1365_2745_14268
crossref_primary_10_3390_plants11040486
crossref_primary_10_1016_j_jare_2021_07_005
crossref_primary_10_3390_plants11192495
crossref_primary_10_1029_2022JG007268
crossref_primary_10_1111_nph_17854
crossref_primary_10_3390_f15071151
crossref_primary_10_3390_plants13040536
crossref_primary_10_1007_s11104_023_06473_x
crossref_primary_10_1007_s11104_025_07358_x
crossref_primary_10_1016_j_rhisph_2022_100489
crossref_primary_10_1002_ldr_3954
crossref_primary_10_1007_s11104_023_06267_1
crossref_primary_10_1016_j_scitotenv_2024_172670
crossref_primary_10_1093_treephys_tpad067
crossref_primary_10_3389_fpls_2024_1358367
crossref_primary_10_1007_s11104_020_04706_x
crossref_primary_10_1016_j_agrformet_2023_109756
crossref_primary_10_1007_s11104_023_06449_x
crossref_primary_10_1016_j_scitotenv_2023_164893
crossref_primary_10_1111_oik_09638
crossref_primary_10_1007_s11676_022_01551_9
crossref_primary_10_1111_nph_18736
crossref_primary_10_3389_fpls_2021_772463
crossref_primary_10_1111_1365_2435_14554
crossref_primary_10_1007_s11104_022_05603_1
crossref_primary_10_1007_s11104_023_06381_0
crossref_primary_10_3390_f15050806
crossref_primary_10_1016_j_foreco_2021_119152
crossref_primary_10_3390_f15010199
crossref_primary_10_3389_fpls_2024_1485542
crossref_primary_10_1016_j_ecoser_2022_101484
crossref_primary_10_1111_oik_08975
crossref_primary_10_1016_j_soilbio_2025_109731
crossref_primary_10_1016_j_scitotenv_2023_165653
crossref_primary_10_1007_s00468_023_02394_5
crossref_primary_10_1016_j_geoderma_2024_116901
crossref_primary_10_1111_nph_16865
crossref_primary_10_1111_pce_15352
crossref_primary_10_3390_f15111895
crossref_primary_10_1016_j_soilbio_2023_109093
crossref_primary_10_1093_jpe_rtae072
crossref_primary_10_1016_j_envexpbot_2024_105773
Cites_doi 10.1038/nplants.2015.50
10.1111/1365-2745.12211
10.1111/j.1600-0587.2010.06904.x
10.1111/nph.14206
10.1111/1365-2745.13125
10.1093/treephys/tpx096
10.1007/s11104-018-3618-5
10.1111/j.1461-0248.2008.01185.x
10.1034/j.1600-0706.2003.10638.x
10.1111/j.1469-8137.2009.02799.x
10.1111/nph.14486
10.1016/j.soilbio.2018.01.002
10.1111/j.1365-2435.2010.01727.x
10.1111/1365-2745.12562
10.1111/nph.14643
10.1111/nph.14003
10.1890/05-1051
10.1111/1365-2745.12769
10.1111/nph.14571
10.1111/nph.14710
10.1111/j.1365-3040.2007.01765.x
10.1073/pnas.1601006113
10.1111/nph.14496
10.1007/s11104-019-03934-0
10.1093/treephys/tpw022
10.1046/j.1469-8137.2000.00686.x
10.1007/s00442-016-3549-x
10.1890/03-4022
10.1111/j.1466-8238.2006.00263.x
10.1002/ece3.1147
10.1111/1365-2745.12953
10.1046/j.1469-8137.2000.00775.x
10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2
10.1007/s11104-017-3234-9
10.1111/j.1469-8137.2006.01667.x
10.1038/s41467-019-10245-6
10.1038/nature16489
10.1111/nph.13363
10.1046/j.1469-8137.1999.00342.x
10.1111/1365-2435.12983
10.1111/ele.12466
10.1046/j.1469-8137.2002.00397.x
10.1098/rspb.2005.3212
10.1093/jxb/eru305
10.3389/fpls.2019.01215
10.1139/X09-093
10.1111/1365-2435.12384
10.1038/nature25783
10.1111/j.1469-8137.2008.02436.x
10.1007/s00442-017-4044-8
10.1111/nph.14247
10.1111/nph.13451
10.1007/s11104-012-1464-4
10.1111/nph.13828
10.1111/j.2041-210x.2012.00261.x
10.1111/nph.12221
10.1016/j.tree.2014.10.006
10.1111/geb.12048
10.1111/j.1365-2745.2011.01821.x
10.1111/j.1365-2745.2009.01615.x
10.1016/j.ecolind.2019.105559
10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
10.1111/j.1469-8137.2011.03679.x
10.1111/nph.12842
10.1111/1365-2745.12351
10.1111/j.1469-8137.2008.02573.x
10.1111/j.1469-8137.2006.01704.x
10.1111/nph.14459
10.1007/s00572-005-0033-6
ContentType Journal Article
Copyright 2020 British Ecological Society
Journal of Ecology © 2020 British Ecological Society
Copyright_xml – notice: 2020 British Ecological Society
– notice: Journal of Ecology © 2020 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
DOI 10.1111/1365-2745.13407
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Botany
Economics
EISSN 1365-2745
EndPage 2556
ExternalDocumentID 10_1111_1365_2745_13407
JEC13407
Genre article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: The Second Tibetan Plateau Scientific Expedition and Research program (STEP)
  funderid: 2019QZKK0301
– fundername: The National Natural Science Foundation of China
  funderid: 31670449; 31670550; 31700387; 31872700
– fundername: The Frontier Science Key Research Programs of CAS
  funderid: QYZDB‐SSW‐SMC023
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29K
2AX
2WC
3-9
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABPVW
ABTAH
ABTLG
ABXSQ
ABYAD
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHIC
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACTWD
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFXHP
AFZJQ
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CUYZI
D-E
D-F
D-I
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAU
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FVMVE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
V8K
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
Y6R
YF5
YQT
YXE
YZZ
ZCA
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABAWQ
ABSQW
ACHJO
AEYWJ
AGHNM
AGUYK
AGYGG
CITATION
7QG
7SN
7SS
7ST
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c3487-3724d1b52ea47122c1dbde9c00b4ff72a17b493a690db3f03011436e7cc6cca53
IEDL.DBID DR2
ISSN 0022-0477
IngestDate Fri Jul 11 18:23:54 EDT 2025
Sun Aug 10 10:10:32 EDT 2025
Tue Jul 01 03:13:45 EDT 2025
Thu Apr 24 23:00:59 EDT 2025
Wed Jan 22 16:33:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3487-3724d1b52ea47122c1dbde9c00b4ff72a17b493a690db3f03011436e7cc6cca53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9202-8286
0000-0002-3418-3787
0000-0003-3782-9966
0000-0002-7046-0307
PQID 2451735801
PQPubID 37508
PageCount 13
ParticipantIDs proquest_miscellaneous_2551967450
proquest_journals_2451735801
crossref_primary_10_1111_1365_2745_13407
crossref_citationtrail_10_1111_1365_2745_13407
wiley_primary_10_1111_1365_2745_13407_JEC13407
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The Journal of ecology
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 98
2013; 4
2013; 22
2002; 154
2006; 76
2019; 10
2015; 103
2011; 99
2013; 367
2006; 170
2011; 191
2014; 29
2016; 104
2008; 31
2016; 180
2016; 36
2014; 65
2004; 74
2014; 4
2010; 24
2017; 37
2016; 113
2013; 199
2019; 436
2018; 32
2014; 203
2017; 416
2018; 186
2015; 1
2005; 272
2015; 18
2018; 106
2018; 424
2017; 25
2002; 72
2009; 182
2006; 16
2016; 529
2008
1999; 141
2015; 208
2011; 34
2015; 207
2008; 11
2019; 107
2002
2017; 213
2017; 214
2017; 215
2017; 216
2007; 16
2008; 180
2015; 29
2000; 147
2006; 87
2000; 148
2018; 119
2020
2018; 555
2019
2016; 211
2016; 210
2014
2008; 178
2003; 103
2017; 105
2009; 39
2014; 102
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Liu Q. (e_1_2_9_39_1) 2002
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
Ding J. (e_1_2_9_15_1) 2020
e_1_2_9_34_1
R Core Team (e_1_2_9_54_1) 2019
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
Bergmann J. (e_1_2_9_6_1) 2020
e_1_2_9_70_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_3_1
e_1_2_9_9_1
Smith S. E. (e_1_2_9_63_1) 2008
Bates D. (e_1_2_9_5_1) 2014
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 215
  start-page: 1562
  year: 2017
  end-page: 1573
  article-title: A worldview of root traits: The influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine‐root tissues in seed plants
  publication-title: New Phytologist
– volume: 24
  start-page: 1192
  year: 2010
  end-page: 1201
  article-title: A multi‐trait approach reveals the structure and the relative importance of intra‐ vs. interspecific variability in plant traits
  publication-title: Functional Ecology
– volume: 4
  start-page: 133
  year: 2013
  end-page: 142
  article-title: A general and simple method for obtaining from generalized linear mixed‐effects models
  publication-title: Methods in Ecology and Evolution
– volume: 39
  start-page: 1787
  year: 2009
  end-page: 1796
  article-title: Does a fungal species drive ectomycorrhizal root traits in spp.?
  publication-title: Canadian Journal of Forest Research
– volume: 16
  start-page: 299
  year: 2006
  end-page: 363
  article-title: Phylogenetic distribution and evolution of mycorrhizas in land plants
  publication-title: Mycorrhiza
– volume: 36
  start-page: 618
  year: 2016
  end-page: 627
  article-title: Untangling the effects of root age and tissue nitrogen on root respiration in at different nitrogen supply
  publication-title: Tree Physiology
– volume: 170
  start-page: 357
  year: 2006
  end-page: 368
  article-title: Suites of root traits differ between annual and perennial species growing in the field
  publication-title: New Phytologist
– volume: 16
  start-page: 1
  year: 2007
  end-page: 13
  article-title: Could temperature and water availability drive elevational species richness patterns? A global case study for bats
  publication-title: Global Ecology and Biogeography
– volume: 65
  start-page: 5115
  year: 2014
  end-page: 5123
  article-title: Leaf mass per area is independent of vein length per area: Avoiding pitfalls when modelling phenotypic integration (reply to)
  publication-title: Journal of Experimental Botany
– volume: 76
  start-page: 381
  year: 2006
  end-page: 397
  article-title: Comparisons of structure and life span in roots and leaves among temperate trees
  publication-title: Ecological Monographs
– volume: 182
  start-page: 919
  year: 2009
  end-page: 928
  article-title: Patterns in root trait variation among 25 co‐existing North American forest species
  publication-title: New Phytologist
– volume: 103
  start-page: 361
  year: 2015
  end-page: 373
  article-title: Root functional parameters along a land‐use gradient: Evidence of a community‐level economics spectrum
  publication-title: Journal of Ecology
– volume: 34
  start-page: 856
  year: 2011
  end-page: 863
  article-title: Community trait response to environment: Disentangling species turnover vs intraspecific trait variability effects
  publication-title: Ecography
– volume: 180
  start-page: 923
  year: 2016
  end-page: 931
  article-title: Reinforcing loose foundation stones in trait‐based plant ecology
  publication-title: Oecologia
– volume: 29
  start-page: 692
  year: 2014
  end-page: 699
  article-title: Going underground: Root traits as drivers of ecosystem processes
  publication-title: Trends in Ecology & Evolution
– volume: 154
  start-page: 275
  year: 2002
  end-page: 304
  article-title: Coevolution of roots and mycorrhizas of land plants
  publication-title: New Phytologist
– volume: 113
  start-page: 8741
  year: 2016
  end-page: 8746
  article-title: Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 215
  start-page: 27
  year: 2017
  end-page: 37
  article-title: Building a better foundation: Improving root‐trait measurements to understand and model plant and ecosystem processes
  publication-title: New Phytologist
– volume: 199
  start-page: 41
  year: 2013
  end-page: 51
  article-title: The mycorrhizal‐associated nutrient economy: A new framework for predicting carbon‐nutrient couplings in temperate forests
  publication-title: New Phytologist
– volume: 191
  start-page: 173
  year: 2011
  end-page: 183
  article-title: Introducing short roots in a desert perennial: Anatomy and spatiotemporal foraging responses to increased precipitation
  publication-title: New Phytologist
– year: 2014
– volume: 213
  start-page: 1440
  year: 2017
  end-page: 1451
  article-title: Similar below‐ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests
  publication-title: New Phytologist
– volume: 210
  start-page: 815
  year: 2016
  end-page: 826
  article-title: Root structure‐function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy
  publication-title: New Phytologist
– volume: 529
  start-page: 167
  year: 2016
  end-page: 171
  article-title: The global spectrum of plant form and function
  publication-title: Nature
– volume: 4
  start-page: 2979
  issue: 15
  year: 2014
  end-page: 2990
  article-title: Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: Implications for the evolution of belowground strategies
  publication-title: Ecology and Evolution
– volume: 203
  start-page: 863
  year: 2014
  end-page: 872
  article-title: Leading dimensions in absorptive root trait variation across 96 subtropical forest species
  publication-title: New Phytologist
– volume: 87
  start-page: 535
  year: 2006
  end-page: 541
  article-title: Fundamental trade‐offs generating the worldwide leaf economics spectrum
  publication-title: Ecology
– year: 2008
– volume: 32
  start-page: 29
  year: 2018
  end-page: 39
  article-title: Different phylogenetic and environmental controls of first‐order root morphological and nutrient traits: Evidence of multidimensional root traits
  publication-title: Functional Ecology
– volume: 272
  start-page: 2203
  year: 2005
  end-page: 2210
  article-title: New insights into butterfly‐environment relationships using partitioning methods
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 178
  start-page: 719
  year: 2008
  end-page: 739
  article-title: Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?
  publication-title: New Phytologist
– volume: 211
  start-page: 1159
  year: 2016
  end-page: 1169
  article-title: Towards a multidimensional root trait framework: A tree root review
  publication-title: New Phytologist
– volume: 37
  start-page: 1055
  year: 2017
  end-page: 1068
  article-title: The interactive impact of root branch order and soil genetic horizon on root respiration and nitrogen concentration
  publication-title: Tree Physiology
– volume: 18
  start-page: 899
  year: 2015
  end-page: 906
  article-title: Leaf economics and hydraulic traits are decoupled in five species‐rich tropical‐subtropical forests
  publication-title: Ecology Letters
– volume: 10
  start-page: 1
  year: 2019
  end-page: 12
  article-title: Physical and functional constraints on viable belowground acquisition strategies
  publication-title: Frontiers in Plant Science
– volume: 1
  start-page: 15050
  issue: 5
  year: 2015
  article-title: Diversity of plant nutrient‐acquisition strategies increases during long‐term ecosystem development
  publication-title: Nature Plants
– volume: 555
  start-page: 94
  year: 2018
  end-page: 97
  article-title: Evolutionary history resolves global organization of root functional traits
  publication-title: Nature
– year: 2019
– volume: 213
  start-page: 1597
  year: 2017
  end-page: 1603
  article-title: Below‐ground frontiers in trait‐based plant ecology
  publication-title: New Phytologist
– volume: 103
  start-page: 668
  year: 2003
  end-page: 680
  article-title: Ecological strategies of ectomycorrhizal fungi of : Root manipulation versus root replacement
  publication-title: Oikos
– volume: 10
  start-page: 2203
  year: 2019
  article-title: Nonlinearity of root trait relationships and the root economics spectrum
  publication-title: Nature Communications
– volume: 102
  start-page: 275
  year: 2014
  end-page: 301
  article-title: The world‐wide ‘fast‐slow’ plant economics spectrum: A traits manifesto
  publication-title: Journal of Ecology
– volume: 74
  start-page: 25
  year: 2004
  end-page: 44
  article-title: Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance
  publication-title: Ecological Monographs
– volume: 31
  start-page: 632
  year: 2008
  end-page: 645
  article-title: Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees
  publication-title: Plant, Cell & Environment
– year: 2020
  article-title: The fungal collaboration gradient dominates the root economics space in plants
  publication-title: bioRxiv
– volume: 11
  start-page: 793
  year: 2008
  end-page: 801
  article-title: Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants
  publication-title: Ecology Letters
– volume: 215
  start-page: 977
  year: 2017
  end-page: 991
  article-title: Adaptive root foraging strategies along a boreal‐temperate forest gradient
  publication-title: New Phytologist
– volume: 104
  start-page: 1299
  year: 2016
  end-page: 1310
  article-title: Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum
  publication-title: Journal of Ecology
– volume: 25
  start-page: 15
  year: 2017
  end-page: 26
  article-title: A global fine‐root ecology database to address below‐ground challenges in plant ecology
  publication-title: New Phytologist
– volume: 436
  start-page: 347
  year: 2019
  end-page: 364
  article-title: Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests
  publication-title: Plant and Soil
– volume: 170
  start-page: 835
  year: 2006
  end-page: 848
  article-title: A test of the generality of leaf trait relationships on the Tibetan Plateau
  publication-title: New Phytologist
– volume: 207
  start-page: 505
  year: 2015
  end-page: 518
  article-title: Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes
  publication-title: New Phytologist
– volume: 105
  start-page: 1182
  year: 2017
  end-page: 1196
  article-title: Climate, soil and plant functional types as drivers of global fine‐root trait variation
  publication-title: Journal of Ecology
– volume: 22
  start-page: 846
  year: 2013
  end-page: 856
  article-title: Variation of first‐order root traits across climatic gradients and evolutionary trends in geological time
  publication-title: Global Ecology and Biogeography
– volume: 99
  start-page: 954
  year: 2011
  end-page: 963
  article-title: Species‐ and community‐level patterns in fine root traits along a 120000‐year soil chronosequence in temperate rain forest
  publication-title: Journal of Ecology
– volume: 186
  start-page: 731
  year: 2018
  end-page: 741
  article-title: Patterns in spatial distribution and root trait syndromes for ecto and arbuscular mycorrhizal temperate trees in a mixed broadleaf forest
  publication-title: Oecologia
– volume: 107
  start-page: 105559
  year: 2019
  article-title: Past and future climatic indicators for distribution patterns and conservation planning of temperate coniferous forests in southwestern China
  publication-title: Ecological Indicators
– year: 2020
  article-title: Data from: Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal‐dominated alpine coniferous forests
  publication-title: Dryad Digital Repository
– volume: 180
  start-page: 673
  year: 2008
  end-page: 683
  article-title: Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty‐three Chinese temperate tree species
  publication-title: New Phytologist
– volume: 106
  start-page: 2031
  year: 2018
  end-page: 2042
  article-title: Two dimensions define the variation of fine root traits across plant communities under the joint influence of ecological succession and annual mowing
  publication-title: Journal of Ecology
– year: 2002
– volume: 141
  start-page: 309
  year: 1999
  end-page: 321
  article-title: Anatomical characteristics of roots of citrus rootstocks that vary in specific root length
  publication-title: New Phytologist
– volume: 148
  start-page: 459
  year: 2000
  end-page: 471
  article-title: Root tissue structure is linked to ecological strategies of grasses
  publication-title: New Phytologist
– volume: 72
  start-page: 293
  year: 2002
  end-page: 309
  article-title: Fine root architecture of nine North American trees
  publication-title: Ecological Monographs
– volume: 208
  start-page: 114
  year: 2015
  end-page: 124
  article-title: Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest
  publication-title: New Phytologist
– volume: 214
  start-page: 1447
  year: 2017
  end-page: 1463
  article-title: Physiological and structural tradeoffs underlying the leaf economics spectrum
  publication-title: New Phytologist
– volume: 424
  start-page: 1
  year: 2018
  end-page: 9
  article-title: Frontiers in root ecology: Recent advances and future challenges
  publication-title: Plant and Soil
– volume: 416
  start-page: 539
  year: 2017
  end-page: 550
  article-title: Root nutrient concentration and biomass allocation are more plastic than morphological traits in response to nutrient limitation
  publication-title: Plant and Soil
– volume: 29
  start-page: 796
  year: 2015
  end-page: 807
  article-title: Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees
  publication-title: Functional Ecology
– volume: 147
  start-page: 33
  year: 2000
  end-page: 42
  article-title: Building roots in a changing environment: Implications for root longevity
  publication-title: New Phytologist
– volume: 216
  start-page: 1140
  year: 2017
  end-page: 1150
  article-title: Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient
  publication-title: New Phytologist
– volume: 107
  start-page: 1238
  year: 2019
  end-page: 1249
  article-title: Community‐level economics spectrum of fine‐roots driven by nutrient limitations in subalpine forests
  publication-title: Journal of Ecology
– volume: 367
  start-page: 313
  year: 2013
  end-page: 326
  article-title: Insights into root growth, function, and mycorrhizal abundance from chemical and isotopic data across root orders
  publication-title: Plant and Soil
– volume: 98
  start-page: 362
  year: 2010
  end-page: 373
  article-title: Evidence of the ‘plant economics spectrum’ in a subarctic flora
  publication-title: Journal of Ecology
– volume: 119
  start-page: 50
  year: 2018
  end-page: 58
  article-title: Changes in plant nitrogen acquisition strategies during the restoration of spruce plantations on the eastern Tibetan Plateau, China
  publication-title: Soil Biology and Biochemistry
– ident: e_1_2_9_75_1
  doi: 10.1038/nplants.2015.50
– ident: e_1_2_9_55_1
  doi: 10.1111/1365-2745.12211
– ident: e_1_2_9_33_1
  doi: 10.1111/j.1600-0587.2010.06904.x
– ident: e_1_2_9_37_1
  doi: 10.1111/nph.14206
– volume-title: R: A language and environment for statistical computing
  year: 2019
  ident: e_1_2_9_54_1
– year: 2020
  ident: e_1_2_9_6_1
  article-title: The fungal collaboration gradient dominates the root economics space in plants
  publication-title: bioRxiv
– ident: e_1_2_9_34_1
  doi: 10.1111/1365-2745.13125
– ident: e_1_2_9_65_1
  doi: 10.1093/treephys/tpx096
– ident: e_1_2_9_19_1
  doi: 10.1007/s11104-018-3618-5
– ident: e_1_2_9_56_1
  doi: 10.1111/j.1461-0248.2008.01185.x
– ident: e_1_2_9_69_1
  doi: 10.1034/j.1600-0706.2003.10638.x
– ident: e_1_2_9_12_1
  doi: 10.1111/j.1469-8137.2009.02799.x
– ident: e_1_2_9_27_1
  doi: 10.1111/nph.14486
– ident: e_1_2_9_76_1
  doi: 10.1016/j.soilbio.2018.01.002
– volume-title: Package lme4: Linear mixed‐effects models using Eigen and S4
  year: 2014
  ident: e_1_2_9_5_1
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1365-2435.2010.01727.x
– ident: e_1_2_9_30_1
  doi: 10.1111/1365-2745.12562
– ident: e_1_2_9_49_1
  doi: 10.1111/nph.14643
– ident: e_1_2_9_73_1
  doi: 10.1111/nph.14003
– ident: e_1_2_9_62_1
  doi: 10.1890/05-1051
– year: 2020
  ident: e_1_2_9_15_1
  article-title: Data from: Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal‐dominated alpine coniferous forests
  publication-title: Dryad Digital Repository
– ident: e_1_2_9_22_1
  doi: 10.1111/1365-2745.12769
– volume-title: Mycorrhizal symbiosis
  year: 2008
  ident: e_1_2_9_63_1
– ident: e_1_2_9_66_1
  doi: 10.1111/nph.14571
– ident: e_1_2_9_35_1
  doi: 10.1111/nph.14710
– ident: e_1_2_9_64_1
  doi: 10.1111/j.1365-3040.2007.01765.x
– ident: e_1_2_9_9_1
  doi: 10.1073/pnas.1601006113
– ident: e_1_2_9_47_1
  doi: 10.1111/nph.14496
– ident: e_1_2_9_38_1
  doi: 10.1007/s11104-019-03934-0
– ident: e_1_2_9_8_1
  doi: 10.1093/treephys/tpw022
– ident: e_1_2_9_18_1
  doi: 10.1046/j.1469-8137.2000.00686.x
– ident: e_1_2_9_61_1
  doi: 10.1007/s00442-016-3549-x
– ident: e_1_2_9_2_1
  doi: 10.1890/03-4022
– volume-title: Ecological research on subalpine coniferous forests in China
  year: 2002
  ident: e_1_2_9_39_1
– ident: e_1_2_9_41_1
  doi: 10.1111/j.1466-8238.2006.00263.x
– ident: e_1_2_9_11_1
  doi: 10.1002/ece3.1147
– ident: e_1_2_9_20_1
  doi: 10.1111/1365-2745.12953
– ident: e_1_2_9_70_1
  doi: 10.1046/j.1469-8137.2000.00775.x
– ident: e_1_2_9_74_1
  doi: 10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2
– ident: e_1_2_9_31_1
  doi: 10.1007/s11104-017-3234-9
– ident: e_1_2_9_58_1
  doi: 10.1111/j.1469-8137.2006.01667.x
– ident: e_1_2_9_29_1
  doi: 10.1038/s41467-019-10245-6
– ident: e_1_2_9_14_1
  doi: 10.1038/nature16489
– ident: e_1_2_9_42_1
  doi: 10.1111/nph.13363
– ident: e_1_2_9_16_1
  doi: 10.1046/j.1469-8137.1999.00342.x
– ident: e_1_2_9_72_1
  doi: 10.1111/1365-2435.12983
– ident: e_1_2_9_36_1
  doi: 10.1111/ele.12466
– ident: e_1_2_9_7_1
  doi: 10.1046/j.1469-8137.2002.00397.x
– ident: e_1_2_9_25_1
  doi: 10.1098/rspb.2005.3212
– ident: e_1_2_9_59_1
  doi: 10.1093/jxb/eru305
– ident: e_1_2_9_44_1
  doi: 10.3389/fpls.2019.01215
– ident: e_1_2_9_48_1
  doi: 10.1139/X09-093
– ident: e_1_2_9_67_1
  doi: 10.1111/1365-2435.12384
– ident: e_1_2_9_40_1
  doi: 10.1038/nature25783
– ident: e_1_2_9_45_1
  doi: 10.1111/j.1469-8137.2008.02436.x
– ident: e_1_2_9_68_1
  doi: 10.1007/s00442-017-4044-8
– ident: e_1_2_9_32_1
  doi: 10.1111/nph.14247
– ident: e_1_2_9_17_1
  doi: 10.1111/nph.13451
– ident: e_1_2_9_50_1
  doi: 10.1007/s11104-012-1464-4
– ident: e_1_2_9_57_1
  doi: 10.1111/nph.13828
– ident: e_1_2_9_46_1
  doi: 10.1111/j.2041-210x.2012.00261.x
– ident: e_1_2_9_51_1
  doi: 10.1111/nph.12221
– ident: e_1_2_9_4_1
  doi: 10.1016/j.tree.2014.10.006
– ident: e_1_2_9_10_1
  doi: 10.1111/geb.12048
– ident: e_1_2_9_26_1
  doi: 10.1111/j.1365-2745.2011.01821.x
– ident: e_1_2_9_21_1
  doi: 10.1111/j.1365-2745.2009.01615.x
– ident: e_1_2_9_13_1
  doi: 10.1016/j.ecolind.2019.105559
– ident: e_1_2_9_52_1
  doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
– ident: e_1_2_9_60_1
  doi: 10.1111/j.1469-8137.2011.03679.x
– ident: e_1_2_9_28_1
  doi: 10.1111/nph.12842
– ident: e_1_2_9_53_1
  doi: 10.1111/1365-2745.12351
– ident: e_1_2_9_23_1
  doi: 10.1111/j.1469-8137.2008.02573.x
– ident: e_1_2_9_24_1
  doi: 10.1111/j.1469-8137.2006.01704.x
– ident: e_1_2_9_43_1
  doi: 10.1111/nph.14459
– ident: e_1_2_9_71_1
  doi: 10.1007/s00572-005-0033-6
SSID ssj0006750
Score 2.602915
Snippet Fine root traits vary greatly with environmental changes, but the understanding of root trait variation and its drivers is limited over broad geographical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2544
SubjectTerms alpine forests
Annual precipitation
atmospheric precipitation
carbon
China
Climate
Climate change
climatic variables
Colonization
Coniferous forests
Conifers
Diameters
Dimensions
ECM‐dominated conifers
Economics
ectomycorrhizae
Ectomycorrhizas
Environmental changes
Environmental control
Fertility
fine root trait covariation
fine roots
first‐ and second‐order roots
Foraging
Forests
Life span
longevity
Mineral nutrients
Nitrogen
Nutrients
Phosphorus
Plant tissues
Resource conservation
Resource efficiency
root trait multidimensionality
root‐adaptive strategies
Soil
Soil fertility
Soil nutrients
Soils
Uptake
Variance
Variation
Title Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal‐dominated alpine coniferous forests
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.13407
https://www.proquest.com/docview/2451735801
https://www.proquest.com/docview/2551967450
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5VCCQuFCiIlIe2EodeHNm7a29ybKMghASHqkjcrH2qEcZGcXIIJ86c-hv7S5hZ2-EhVQhxs5JMsp7MzH7jnfmGkGMnM8sz66I41pCgsIGJ1EDxKHWQS0grOfPY4Hx-kZ1eirOrtKsmxF6Yhh9i-cANPSPEa3RwpetnTt52U4m0n3AR-snxFYRFv54IpAAOxx1feCykbMl9sJbnlfzLfekJbD6HrGHPOflMdLfaptTkuj-f6b65e0Xk-KHb2SQbLSKlPxoT2iKfXLlN1poZlYttsvqzAvwIF2vjQHC9-EIeRsUEgK6jqrS0riYFLZHTH0syaDdwBQJHUSyonUI0paFq0eIcgYYDhHpYLgXMPqM4ogLEJiXF44ObBSTD0z-TO1X8u_9rK6zTAUhMVXGLEpC7YyVONa8pYG1QXL1DLk_Gv0enUTvTITJchHjGhE10ypyCbZExk1ht3dCAqQjvJVOJ1GLIFSTtVnPfJGw8c9KYDIwt5btkpaxKt0eo14OBSxxkhAZAHXdD2I2HqdTepKBL73uk3_2juWkJz_GmirxLfFDnOeo8Dzrvke9LgduG6-P_Hz3oTCRvnb7OmUgTicfKSY98W74N7opnMKp0oJ0cMjiIefA9MSwv2MNbP5WfjUfh4ut7BfbJOsOnA6Fz8oCszKZzdwgQaqaPgpc8ArElEdo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQoYILhQJioYCROHDJKrGdePdIl62W0vaAWqk3y0-xIiTVPg7bE-ee-hv5Jcw4yXaphBDiFmnjxJmdGX9jz3xDyDsvC8cL55M0NRCgsIFN9EDzJPcQS0gnOQtY4Hx8UkzOxOF5fr5RC9PwQ6w33NAyor9GA8cN6Q0rb8upRN7PuMCC8rvY1xv58z9-uaGQAkCcdozhqZCypffBbJ5bD_h9ZbqBm5ugNa46BzvEdvNtkk2-9ZcL07eXt6gc_--DHpGHLSilHxotekzu-GqXbDdtKle75N5-DRASLrbHkeN69YRcjcopYF1PdeXovJ6WtEJaf8zKoF3PFfAdZbmibgYOlcbERYetBBoaEBpgvhRg-4JilwoYNq0oniB8X0E8PPs6vdTlzx_XrsZUHUDFVJcXOALCd0zGqZdzCnAbJDd_Ss4OxqejSdK2dUgsF9GlMeEykzOvYWVkzGbOOD-0oC0iBMl0Jo0Ycg1xuzM8NDEbL7y0tgB9y_kzslXVlX9OaDCDgc88BIUWcB33Q1iQh7k0weYgyxB6pN_9pcq2nOf4UaXqYh-UuUKZqyjzHnm_HnDR0H38-da9TkdUa_dzxUSeSTxZznrk7fpnsFg8htGVB-koCOLA7cFzUpheVIi_vUodjkfx4sW_DnhD7k9Oj4_U0aeTzy_JA4abBbGQco9sLWZL_woQ1cK8jibzC87sFfY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQoagXHgXUhQJG4sAlq8R24s0RtrsqBSqEqMTN8lOsCMlqH4ftiTMnfiO_hBkn2ZZKCCFukRInzmRm_E088w0hz70sHC-cT9LUQIDCRjbRI82T3EMsIZ3kLGCB87vT4vhMnHzK-2xCrIVp-SG2P9zQMqK_RgOfu3DJyLtqKpEPMy6wnvy6KNISuzccfbhgkAI8nPaE4amQsmP3wWSeKzf4fWG6QJuXMWtcdKa3iemn2-aafBmuV2Zoz68wOf7X-9whtzpISl-2OnSXXPP1Ptltm1Ru9smNVw0ASDjYnUSG68098n1czQDpeqprR5fNrKI1kvpjTgbtO66A56iqDXULcKc0pi06bCTQkoDQANOlANpXFHtUwLBZTXH_4OsGouHF59m5rn5---EaTNQBTEx1NccRELxjKk6zXlIA2yC45X1yNp18HB8nXVOHxHIRHRoTLjM58xrWRcZs5ozzpQVdESFIpjNpRMk1RO3O8NBGbLzw0toCtC3nD8hO3dT-gNBgRiOfeQgJLaA67ktYjstcmmBzkGUIAzLsv6iyHeM5vlSl-sgHZa5Q5irKfEBebAfMW7KPP1962KuI6qx-qZjIM4n7ytmAPNueBnvFTRhde5COghAOnB7cJ4XpRX3426PUyWQcDx7-64Cn5Ob7o6l6-_r0zSOyx_BPQayiPCQ7q8XaPwY4tTJPosH8AnNMFKU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+and+soil+nutrients+differentially+drive+multidimensional+fine+root+traits+in+ectomycorrhizal%E2%80%90dominated+alpine+coniferous+forests&rft.jtitle=The+Journal+of+ecology&rft.au=Ding%2C+JunXiang&rft.au=Kong%2C+Deliang&rft.au=Zhang%2C+Ziliang&rft.au=Cai%2C+Qin&rft.date=2020-11-01&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=108&rft.issue=6&rft.spage=2544&rft.epage=2556&rft_id=info:doi/10.1111%2F1365-2745.13407&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1365_2745_13407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon