Reduced predation and energy flux in soil food webs by introduced tree species: Bottom‐up control of multitrophic biodiversity across size compartments
The introduction of non‐native tree species has become a global concern and may disrupt native communities and related ecosystem functions. Soil food webs regulate organic matter decomposition and nutrient cycling in forests with their feeding activities, but evaluating consequences of the introduct...
Saved in:
Published in | Functional ecology Vol. 39; no. 1; pp. 64 - 76 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley Subscription Services, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The introduction of non‐native tree species has become a global concern and may disrupt native communities and related ecosystem functions. Soil food webs regulate organic matter decomposition and nutrient cycling in forests with their feeding activities, but evaluating consequences of the introduction of tree species on soil invertebrates is challenging due to the complex trophic structure and wide range in body size of soil invertebrates.
Here, we employed an energetic food web approach and estimated the energy flux in soil food webs using a four‐node model including soil meso‐ and macrofauna decomposers and predators. We examined pure and mixed stands of native European beech (Fagus sylvatica), introduced Douglas fir (Pseudotsuga menziesii) and native range‐expanding Norway spruce (Picea abies) across site conditions.
Compared to native forests, introduced tree species reduced total fresh mass of macrofauna predators by 92% at sandy sites but not that of decomposers, suggesting trophic downgrading in soil food webs by Douglas fir. The energy flux in mixed forests was intermediate between respective monocultures, suggesting that tree mixtures mitigate potential negative impacts of introduced tree species on food web functioning. Across size classes, soil macrofauna responded more sensitively to changes in environmental conditions than soil mesofauna. Additionally, total energy flux positively correlated with species richness, pointing to the significance of soil biodiversity for trophic functionality.
The energy flux through mesofauna outweighed that through macrofauna when considering energy loss to predators, highlighting the importance of mesofauna for decomposition processes in forest soil food webs. Overall, the study emphasizes the critical role of tree species composition, site conditions and soil biodiversity in driving energy flux through soil food webs and maintaining forest ecosystem functions.
Read the free Plain Language Summary for this article on the Journal blog.
Zusammenfassung
Die Einführung nicht‐einheimischer Baumarten ist ein globales Problem und kann einheimische Gemeinschaften und die damit verbundene Ökosystemfunktionen beeinträchtigen. Bodennahrungsnetze regulieren den Abbau organischer Stoffe und den Nährstoffkreislauf in Wäldern, jedoch sind die Auswirkungen der Einführung von nicht‐einheimischen Baumarten auf Bodeninvertebraten aufgrund der komplexen trophischen Struktur und der großen Bandbreite an Körpergrößen von Bodeninvertebraten wenig untersucht.
Wir untersuchten den Energiefluss in Bodennahrungsnetzen mit einem Vier‐Knoten‐Modell, das Bodenmeso‐ und Makrofauna‐Zersetzer sowie Bodenmeso‐ und Makrofauna‐Prädatoren umfasste. Wir analysierten reine und gemischte Bestände der einheimischen europäischen Buche (Fagus sylvatica), der eingeführten Douglasie (Pseudotsuga menziesii) und der einheimischen Fichte (Picea abies) unter verschiedenen Standortbedingungen.
Im Vergleich zu einheimischen Wäldern reduzierte die Douglasie die Gesamtmasse der Makrofauna‐Prädatoren auf sandigen Böden um 92%, jedoch nicht die der Zersetzer, was auf ein trophisches “downgrading” der Bodennahrungsnetze hindeutet. Der Energiefluss in Mischwäldern lag zwischen den jeweiligen Monokulturen, was darauf hindeutet, dass Baummischungen potenzielle negative Auswirkungen eingeführter Baumarten auf die Funktionsweise von Nahrungsnetzen abmildern. Über alle Größenklassen hinweg reagierte die Bodenmakrofauna empfindlicher auf Umweltveränderungen als die Bodenmesofauna. Zudem korrelierte der Gesamtenergiefluss positiv mit der Artenvielfalt, was die Bedeutung der Bodenbiodiversität für die trophische Funktionalität unterstreicht.
Trotz der geringeren Gesamtmasse überwog der Energiefluss durch die Mesofauna den durch die Makrofauna, wenn der Energieverlust durch Prädation berücksichtigt wurde, was die Bedeutung der Mesofauna für Zersetzungsprozesse in Bodennahrungsnetzen hervorhebt. Insgesamt betont die Studie die entscheidende Rolle der Baumarten‐Zusammensetzung, der Standortbedingungen und der Bodenbiodiversität für den Energiefluss in Bodennahrungsnetzen und die Erhaltung der Waldökosystemfunktionen.
Read the free Plain Language Summary for this article on the Journal blog. |
---|---|
AbstractList | The introduction of non‐native tree species has become a global concern and may disrupt native communities and related ecosystem functions. Soil food webs regulate organic matter decomposition and nutrient cycling in forests with their feeding activities, but evaluating consequences of the introduction of tree species on soil invertebrates is challenging due to the complex trophic structure and wide range in body size of soil invertebrates.Here, we employed an energetic food web approach and estimated the energy flux in soil food webs using a four‐node model including soil meso‐ and macrofauna decomposers and predators. We examined pure and mixed stands of native European beech (Fagus sylvatica), introduced Douglas fir (Pseudotsuga menziesii) and native range‐expanding Norway spruce (Picea abies) across site conditions.Compared to native forests, introduced tree species reduced total fresh mass of macrofauna predators by 92% at sandy sites but not that of decomposers, suggesting trophic downgrading in soil food webs by Douglas fir. The energy flux in mixed forests was intermediate between respective monocultures, suggesting that tree mixtures mitigate potential negative impacts of introduced tree species on food web functioning. Across size classes, soil macrofauna responded more sensitively to changes in environmental conditions than soil mesofauna. Additionally, total energy flux positively correlated with species richness, pointing to the significance of soil biodiversity for trophic functionality.The energy flux through mesofauna outweighed that through macrofauna when considering energy loss to predators, highlighting the importance of mesofauna for decomposition processes in forest soil food webs. Overall, the study emphasizes the critical role of tree species composition, site conditions and soil biodiversity in driving energy flux through soil food webs and maintaining forest ecosystem functions.Read the free Plain Language Summary for this article on the Journal blog. The introduction of non‐native tree species has become a global concern and may disrupt native communities and related ecosystem functions. Soil food webs regulate organic matter decomposition and nutrient cycling in forests with their feeding activities, but evaluating consequences of the introduction of tree species on soil invertebrates is challenging due to the complex trophic structure and wide range in body size of soil invertebrates. Here, we employed an energetic food web approach and estimated the energy flux in soil food webs using a four‐node model including soil meso‐ and macrofauna decomposers and predators. We examined pure and mixed stands of native European beech ( Fagus sylvatica ), introduced Douglas fir ( Pseudotsuga menziesii ) and native range‐expanding Norway spruce ( Picea abies ) across site conditions. Compared to native forests, introduced tree species reduced total fresh mass of macrofauna predators by 92% at sandy sites but not that of decomposers, suggesting trophic downgrading in soil food webs by Douglas fir. The energy flux in mixed forests was intermediate between respective monocultures, suggesting that tree mixtures mitigate potential negative impacts of introduced tree species on food web functioning. Across size classes, soil macrofauna responded more sensitively to changes in environmental conditions than soil mesofauna. Additionally, total energy flux positively correlated with species richness, pointing to the significance of soil biodiversity for trophic functionality. The energy flux through mesofauna outweighed that through macrofauna when considering energy loss to predators, highlighting the importance of mesofauna for decomposition processes in forest soil food webs. Overall, the study emphasizes the critical role of tree species composition, site conditions and soil biodiversity in driving energy flux through soil food webs and maintaining forest ecosystem functions. Read the free Plain Language Summary for this article on the Journal blog. Die Einführung nicht‐einheimischer Baumarten ist ein globales Problem und kann einheimische Gemeinschaften und die damit verbundene Ökosystemfunktionen beeinträchtigen. Bodennahrungsnetze regulieren den Abbau organischer Stoffe und den Nährstoffkreislauf in Wäldern, jedoch sind die Auswirkungen der Einführung von nicht‐einheimischen Baumarten auf Bodeninvertebraten aufgrund der komplexen trophischen Struktur und der großen Bandbreite an Körpergrößen von Bodeninvertebraten wenig untersucht. Wir untersuchten den Energiefluss in Bodennahrungsnetzen mit einem Vier‐Knoten‐Modell, das Bodenmeso‐ und Makrofauna‐Zersetzer sowie Bodenmeso‐ und Makrofauna‐Prädatoren umfasste. Wir analysierten reine und gemischte Bestände der einheimischen europäischen Buche ( Fagus sylvatica ), der eingeführten Douglasie ( Pseudotsuga menziesii ) und der einheimischen Fichte ( Picea abies ) unter verschiedenen Standortbedingungen. Im Vergleich zu einheimischen Wäldern reduzierte die Douglasie die Gesamtmasse der Makrofauna‐Prädatoren auf sandigen Böden um 92%, jedoch nicht die der Zersetzer, was auf ein trophisches “downgrading” der Bodennahrungsnetze hindeutet. Der Energiefluss in Mischwäldern lag zwischen den jeweiligen Monokulturen, was darauf hindeutet, dass Baummischungen potenzielle negative Auswirkungen eingeführter Baumarten auf die Funktionsweise von Nahrungsnetzen abmildern. Über alle Größenklassen hinweg reagierte die Bodenmakrofauna empfindlicher auf Umweltveränderungen als die Bodenmesofauna. Zudem korrelierte der Gesamtenergiefluss positiv mit der Artenvielfalt, was die Bedeutung der Bodenbiodiversität für die trophische Funktionalität unterstreicht. Trotz der geringeren Gesamtmasse überwog der Energiefluss durch die Mesofauna den durch die Makrofauna, wenn der Energieverlust durch Prädation berücksichtigt wurde, was die Bedeutung der Mesofauna für Zersetzungsprozesse in Bodennahrungsnetzen hervorhebt. Insgesamt betont die Studie die entscheidende Rolle der Baumarten‐Zusammensetzung, der Standortbedingungen und der Bodenbiodiversität für den Energiefluss in Bodennahrungsnetzen und die Erhaltung der Waldökosystemfunktionen. The introduction of non‐native tree species has become a global concern and may disrupt native communities and related ecosystem functions. Soil food webs regulate organic matter decomposition and nutrient cycling in forests with their feeding activities, but evaluating consequences of the introduction of tree species on soil invertebrates is challenging due to the complex trophic structure and wide range in body size of soil invertebrates. Here, we employed an energetic food web approach and estimated the energy flux in soil food webs using a four‐node model including soil meso‐ and macrofauna decomposers and predators. We examined pure and mixed stands of native European beech (Fagus sylvatica), introduced Douglas fir (Pseudotsuga menziesii) and native range‐expanding Norway spruce (Picea abies) across site conditions. Compared to native forests, introduced tree species reduced total fresh mass of macrofauna predators by 92% at sandy sites but not that of decomposers, suggesting trophic downgrading in soil food webs by Douglas fir. The energy flux in mixed forests was intermediate between respective monocultures, suggesting that tree mixtures mitigate potential negative impacts of introduced tree species on food web functioning. Across size classes, soil macrofauna responded more sensitively to changes in environmental conditions than soil mesofauna. Additionally, total energy flux positively correlated with species richness, pointing to the significance of soil biodiversity for trophic functionality. The energy flux through mesofauna outweighed that through macrofauna when considering energy loss to predators, highlighting the importance of mesofauna for decomposition processes in forest soil food webs. Overall, the study emphasizes the critical role of tree species composition, site conditions and soil biodiversity in driving energy flux through soil food webs and maintaining forest ecosystem functions. Read the free Plain Language Summary for this article on the Journal blog. Zusammenfassung Die Einführung nicht‐einheimischer Baumarten ist ein globales Problem und kann einheimische Gemeinschaften und die damit verbundene Ökosystemfunktionen beeinträchtigen. Bodennahrungsnetze regulieren den Abbau organischer Stoffe und den Nährstoffkreislauf in Wäldern, jedoch sind die Auswirkungen der Einführung von nicht‐einheimischen Baumarten auf Bodeninvertebraten aufgrund der komplexen trophischen Struktur und der großen Bandbreite an Körpergrößen von Bodeninvertebraten wenig untersucht. Wir untersuchten den Energiefluss in Bodennahrungsnetzen mit einem Vier‐Knoten‐Modell, das Bodenmeso‐ und Makrofauna‐Zersetzer sowie Bodenmeso‐ und Makrofauna‐Prädatoren umfasste. Wir analysierten reine und gemischte Bestände der einheimischen europäischen Buche (Fagus sylvatica), der eingeführten Douglasie (Pseudotsuga menziesii) und der einheimischen Fichte (Picea abies) unter verschiedenen Standortbedingungen. Im Vergleich zu einheimischen Wäldern reduzierte die Douglasie die Gesamtmasse der Makrofauna‐Prädatoren auf sandigen Böden um 92%, jedoch nicht die der Zersetzer, was auf ein trophisches “downgrading” der Bodennahrungsnetze hindeutet. Der Energiefluss in Mischwäldern lag zwischen den jeweiligen Monokulturen, was darauf hindeutet, dass Baummischungen potenzielle negative Auswirkungen eingeführter Baumarten auf die Funktionsweise von Nahrungsnetzen abmildern. Über alle Größenklassen hinweg reagierte die Bodenmakrofauna empfindlicher auf Umweltveränderungen als die Bodenmesofauna. Zudem korrelierte der Gesamtenergiefluss positiv mit der Artenvielfalt, was die Bedeutung der Bodenbiodiversität für die trophische Funktionalität unterstreicht. Trotz der geringeren Gesamtmasse überwog der Energiefluss durch die Mesofauna den durch die Makrofauna, wenn der Energieverlust durch Prädation berücksichtigt wurde, was die Bedeutung der Mesofauna für Zersetzungsprozesse in Bodennahrungsnetzen hervorhebt. Insgesamt betont die Studie die entscheidende Rolle der Baumarten‐Zusammensetzung, der Standortbedingungen und der Bodenbiodiversität für den Energiefluss in Bodennahrungsnetzen und die Erhaltung der Waldökosystemfunktionen. Read the free Plain Language Summary for this article on the Journal blog. |
Author | Bluhm, Christian Lu, Jing‐Zhong Stuckenberg, Thalea Ammer, Christian Wenglein, Ronja Potapov, Anton M. Scheu, Stefan |
Author_xml | – sequence: 1 givenname: Jing‐Zhong orcidid: 0000-0002-4051-8993 surname: Lu fullname: Lu, Jing‐Zhong email: jlu@gwdg.de organization: University of Göttingen – sequence: 2 givenname: Ronja orcidid: 0009-0006-7926-0877 surname: Wenglein fullname: Wenglein, Ronja organization: University of Göttingen – sequence: 3 givenname: Christian orcidid: 0000-0003-4691-2876 surname: Bluhm fullname: Bluhm, Christian organization: Forest Research Institute Baden‐Württemberg – sequence: 4 givenname: Thalea orcidid: 0009-0000-5969-0868 surname: Stuckenberg fullname: Stuckenberg, Thalea organization: University of Göttingen – sequence: 5 givenname: Anton M. orcidid: 0000-0002-4456-1710 surname: Potapov fullname: Potapov, Anton M. organization: TUD Dresden University of Technology – sequence: 6 givenname: Christian orcidid: 0000-0002-4235-0135 surname: Ammer fullname: Ammer, Christian organization: University of Göttingen – sequence: 7 givenname: Stefan orcidid: 0000-0003-4350-9520 surname: Scheu fullname: Scheu, Stefan organization: University of Göttingen |
BookMark | eNqFkcFuFSEUhompibe1a7ckbtxMO8DAzLjTm1ZNmpgYuyYMnFEaBkZgrOOqj9Ctr-eTyL23cdGFsiGcfB9wzn-MjnzwgNALUp-Rss4JE7yiDeNnpBG9eII2fytHaFNT0VddI9gzdJzSTV3XPad0g359ArNoMHiOYFS2wWPlDQYP8cuKR7f8wNbjFKzDYwgG38KQ8LCWYo7hYOYIgNMM2kJ6jd-GnMP0--5-mbEOO8rhMOJpcdmWw_zVajzYYOx3iMnmFSsdQ0o42Z9QhGlWMU_gc3qOno7KJTh92E_Q9eXF5-376urjuw_bN1eVZk0nKkNB1EYRzqBtGW1Uo5VgQA0lYhxIS7purFvoejqonivVtuPYCcKVMYy3nWYn6NXh3jmGbwukLCebNDinPIQlSUYEL0JHRUFfPkJvwhJ9-V2hOGU9E4QVih-ofWMRRqlt3o82R2WdJLXcBSZ38chdPHIfWPHOH3lztJOK6z-Mh5durYP1f7i8vNgevD_9yqxA |
CitedBy_id | crossref_primary_10_1111_1365_2435_14696 |
Cites_doi | 10.1098/rspb.2005.3377 10.1111/nph.15263 10.1016/j.soilbio.2024.109413 10.1093/icb/8.1.11 10.1023/A:1021340601986 10.1016/j.foreco.2021.119956 10.1016/j.soilbio.2021.108155 10.1111/BRV.12832 10.2307/5483 10.1016/j.tree.2017.12.007 10.1007/s00442‐021‐04910‐1 10.1111/brv.12193 10.1111/1365‐2664.14623 10.1086/303244 10.1007/s00442‐020‐04640‐w 10.1111/ecog.02769 10.1007/BF00260580 10.1007/S10531‐021‐02155‐1/TABLES/4 10.2307/3544689 10.1002/EAP.2921 10.1038/nature13247 10.1016/j.soilbio.2022.108656 10.1002/ecy.3421 10.1016/j.geoderma.2024.116947 10.1111/1365-2435.14696 10.1016/j.baae.2021.02.006 10.1086/282146 10.2307/1930126 10.1111/1365‐2664.14300 10.1111/gcb.13774 10.1111/j.1461‐0248.2010.01450.x 10.1111/nph.14255 10.1016/0169‐5347(92)90208‐S 10.1111/j.1461‐0248.2011.01660.x 10.1674/0003‐0031(2000)143[0226:TCOMTA]2.0.CO;2 10.1071/sr22218 10.1126/science.1116030 10.1002/ece3.70311 10.1016/S0031-4056(22)00112-3 10.1111/gcb.14323 10.1016/j.soilbio.2020.107876 10.1007/s004420051015 10.1016/j.soilbio.2009.03.002 10.1007/S10531‐023‐02547‐5/FIGURES/3 10.1111/ele.14276 10.1111/1365‐2656.13027 10.1890/0012‐9658(1998)079[1573:BUCOTS]2.0.CO;2 10.1525/9780520407114 10.3389/ffgc.2021.622370 10.1111/j.1461‐0248.2004.00606.x 10.1007/BF00318544 10.7554/eLife.75428 10.1007/3-540-26599-6_11 10.1038/ncomms6351 10.1016/j.ejsobi.2023.103556 10.1016/J.SOILBIO.2006.04.035 10.1007/s42991‐023‐00384‐1 10.1016/J.FORECO.2021.119709 10.2307/2120 10.1007/S11676‐023‐01607‐4/TABLES/5 10.1002/ECS2.4609 10.1017/CBO9780511608551.004 10.1126/science.1205106 10.1086/285546 10.1093/acprof:oso/9780198566182.001.0001 10.1641/0006‐3568(2001)051[0933:TEOTWA]2.0.CO;2 10.1034/j.1600‐0706.2003.12131.x 10.1007/s10342‐013‐0745‐7 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of British Ecological Society. 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of British Ecological Society. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/1365-2435.14696 |
DatabaseName | Wiley Online Library Open Access CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 76 |
ExternalDocumentID | 10_1111_1365_2435_14696 FEC14696 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: 316045089 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPVW ABTAH ABTLG ABXSQ ACAHQ ACCFJ ACCMX ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K VOH W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW ZCA ZY4 ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX ABSQW AEFGJ AGHNM AGUYK AGXDD AIDQK AIDYY CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c3486-d2e60da153e77324a4ca63e2d216fb17188f07e892ba95aa77ff8615add3578c3 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 11 18:32:15 EDT 2025 Fri Jul 25 20:14:26 EDT 2025 Thu Apr 24 23:06:31 EDT 2025 Tue Aug 05 12:06:42 EDT 2025 Wed Jan 22 17:13:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3486-d2e60da153e77324a4ca63e2d216fb17188f07e892ba95aa77ff8615add3578c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0000-5969-0868 0000-0002-4235-0135 0000-0003-4691-2876 0000-0002-4456-1710 0009-0006-7926-0877 0000-0003-4350-9520 0000-0002-4051-8993 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14696 |
PQID | 3152393613 |
PQPubID | 1066355 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3165861826 proquest_journals_3152393613 crossref_citationtrail_10_1111_1365_2435_14696 crossref_primary_10_1111_1365_2435_14696 wiley_primary_10_1111_1365_2435_14696_FEC14696 |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 40 2023; 32 1968; 8 1987; 3 2009; 41 2023; 33 2023; 34 2010; 13 2024; 104 1993; 62 2006; 38 2004; 7 1961; 30 2011; 14 2024 1942; 23 2014; 133 2021; 30 1979 1992; 7 2014; 5 2023; 26 2024; 61 2005; 309 1983 2021; 196 2021; 155 2000; 123 2018; 33 2001; 51 2024; 193 2022; 169 1960; 94 2011; 333 2021; 4 2023; 14 1982; 39 2012 2021; 102 2024; 448 2021; 502 2017; 23 2020; 148 2006; 273 2008 2007 2005 2016; 91 2024; 14 2021; 52 2019; 221 2023; 61 1993; 142 1990; 82 2018; 24 2022 2002; 484 2014; 509 2019; 88 2020 2020; 192 1963; 3 2016; 212 1999; 154 2018 2022; 59 2000; 143 2022; 97 2023; 119 2022; 506 2022; 11 2003; 101 1998; 79 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 R Core Team (e_1_2_10_55_1) 2024 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_45_1 Schaefer M. (e_1_2_10_57_1) 2018 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Cain M. L. (e_1_2_10_10_1) 2008 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 Hopkin S. P. (e_1_2_10_24_1) 2007 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 30 start-page: 171 issue: 1 year: 1961 end-page: 184 article-title: Improved funnel‐type extractors for soil arthropods publication-title: The Journal of Animal Ecology – volume: 61 start-page: 647 year: 2023 end-page: 662 article-title: Do admixed conifers change soil nutrient conditions of European beech stands? publication-title: Soil Research – volume: 212 start-page: 871 issue: 4 year: 2016 end-page: 887 article-title: Forest ecosystems of temperate climatic regions: From ancient use to climate change publication-title: New Phytologist – volume: 154 start-page: 449 issue: 4 year: 1999 end-page: 468 article-title: Patterns in the fate of production in plant communities publication-title: American Naturalist – volume: 509 start-page: 218 issue: 7499 year: 2014 end-page: 221 article-title: Consequences of biodiversity loss for litter decomposition across biomes publication-title: Nature – volume: 23 start-page: 399 issue: 4 year: 1942 end-page: 417 article-title: The trophic‐dynamic aspect of ecology publication-title: Ecology – volume: 484 start-page: 11 issue: 1 year: 2002 end-page: 20 article-title: Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production:primary production publication-title: Hydrobiologia – start-page: 211 year: 2005 end-page: 233 – volume: 309 start-page: 1239 issue: 5738 year: 2005 end-page: 1241 article-title: Multiple causes of high extinction risk in large mammal species publication-title: Science – volume: 3 start-page: 1 issue: 1 year: 1963 end-page: 21 article-title: A new extractor for woodland litter publication-title: Pedobiologia – volume: 88 start-page: 1845 issue: 12 year: 2019 end-page: 1859 article-title: Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land‐use systems publication-title: Journal of Animal Ecology – year: 2024 – start-page: 432 year: 2008 end-page: 453 – volume: 38 start-page: 2985 issue: 9 year: 2006 end-page: 2989 article-title: Do oribatid mites live in enemy‐free space? Evidence from feeding experiments with the predatory mite publication-title: Soil Biology and Biochemistry – volume: 7 start-page: 151 issue: 5 year: 1992 end-page: 154 article-title: Intraguild predation: The dynamics of complex trophic interactions publication-title: Trends in Ecology & Evolution – volume: 448 year: 2024 article-title: Functional traits in soil‐living oribatid mites unveil trophic reorganization in belowground communities by introduced tree species publication-title: Geoderma – volume: 142 start-page: 379 issue: 3 year: 1993 end-page: 411 article-title: Cause‐effect relationships in energy flow, trophic structure, and interspecific interactions publication-title: The American Naturalist – volume: 8 start-page: 11 issue: 1 year: 1968 end-page: 18 article-title: Energy flow in ecosystems: A historical review publication-title: American Zoologist – volume: 502 year: 2021 article-title: Tree species composition and soil properties in pure and mixed beech‐conifer stands drive soil fungal communities publication-title: Forest Ecology and Management – year: 1979 – year: 2018 – volume: 41 start-page: 1221 issue: 6 year: 2009 end-page: 1226 article-title: Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios ( N/ N and C/ C) publication-title: Soil Biology and Biochemistry – volume: 40 start-page: 1426 issue: 12 year: 2017 end-page: 1435 article-title: Climate drivers of bark beetle outbreak dynamics in Norway spruce forests publication-title: Ecography – volume: 5 year: 2014 article-title: Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning publication-title: Nature Communications – volume: 148 year: 2020 article-title: The physical structure of soil: Determinant and consequence of trophic interactions publication-title: Soil Biology and Biochemistry – volume: 91 start-page: 760 issue: 3 year: 2016 end-page: 781 article-title: Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests publication-title: Biological Reviews – volume: 52 start-page: 1 year: 2021 end-page: 14 article-title: An interdisciplinary framework to describe and evaluate the functioning of forest ecosystems publication-title: Basic and Applied Ecology – volume: 221 start-page: 50 issue: 1 year: 2019 end-page: 66 article-title: Diversity and forest productivity in a changing climate publication-title: New Phytologist – volume: 155 year: 2021 article-title: Response of soil microbial communities to mixed beech‐conifer forests varies with site conditions publication-title: Soil Biology and Biochemistry – volume: 62 start-page: 67 issue: 1 year: 1993 article-title: Body sizes of animal predators and animal prey in food webs publication-title: The Journal of Animal Ecology – volume: 23 start-page: 5108 issue: 12 year: 2017 end-page: 5119 article-title: Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south‐western Germany publication-title: Global Change Biology – volume: 97 start-page: 1057 issue: 3 year: 2022 end-page: 1117 article-title: Feeding habits and multifunctional classification of soil‐associated consumers from protists to vertebrates publication-title: Biological Reviews – volume: 506 year: 2022 article-title: Non‐native Douglas fir ( ) in Central Europe: Ecology, performance and nature conservation publication-title: Forest Ecology and Management – volume: 32 start-page: 1233 issue: 4 year: 2023 end-page: 1250 article-title: Non‐native Douglas fir promotes epigeal spider density, but has a mixed effect on functional diversity publication-title: Biodiversity and Conservation – year: 2022 – volume: 101 start-page: 225 issue: November 2002 year: 2003 end-page: 238 article-title: The soil fauna community in pure and mixed stands of beech and spruce of different age: Trophic structure and structuring forces publication-title: Oikos – volume: 104 start-page: 25 issue: 1 year: 2024 end-page: 39 article-title: Douglas fir and Norway spruce have similar effects on small mammal density, but not survival, in Central European managed forests publication-title: Mammalian Biology – volume: 33 issue: 8 year: 2023 article-title: Metabarcoding reveals that mixed forests mitigate negative effects of non‐native trees on canopy arthropod diversity publication-title: Ecological Applications – volume: 133 start-page: 13 issue: 1 year: 2014 end-page: 29 article-title: Ecological consequences of Douglas fir ( ) cultivation in Europe publication-title: European Journal of Forest Research – volume: 14 start-page: 993 issue: 10 year: 2011 end-page: 1000 article-title: Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates publication-title: Ecology Letters – volume: 196 start-page: 195 issue: 1 year: 2021 end-page: 209 article-title: Diversity and functional structure of soil animal communities suggest soil animal food webs to be buffered against changes in forest land use publication-title: Oecologia – volume: 102 issue: 8 year: 2021 article-title: Size compartmentalization of energy channeling in terrestrial belowground food webs publication-title: Ecology – year: 1983 – volume: 61 start-page: 1000 issue: 5 year: 2024 end-page: 1014 article-title: Beneficial effects of native broadleaved forests on canopy beetle diversity are not reduced by admixture of non‐native conifers publication-title: Journal of Applied Ecology – volume: 333 start-page: 301 issue: 6040 year: 2011 end-page: 306 article-title: Trophic downgrading of planet earth publication-title: Science – volume: 79 start-page: 1573 issue: 5 year: 1998 end-page: 1585 article-title: Bottom‐up control of the soil macrofauna community in a beechwood on limestone: Manipulation of food resources publication-title: Ecology – volume: 119 year: 2023 article-title: soilfoodwebs: An R package for analyzing and simulating nutrient fluxes through food webs publication-title: European Journal of Soil Biology – volume: 30 start-page: 1479 issue: 5 year: 2021 end-page: 1499 article-title: Monoculture and mixture‐planting of non‐native Douglas fir alters species composition, but promotes the diversity of ground beetles in a temperate forest system publication-title: Biodiversity and Conservation – volume: 193 year: 2024 article-title: Restructuring of soil food webs reduces carbon storage potential in boreal peatlands publication-title: Soil Biology and Biochemistry – year: 2007 – volume: 34 start-page: 871 issue: 4 year: 2023 end-page: 888 article-title: Douglas‐fir ( (Mirb.) Franco) in Europe: An overview of management practices publication-title: Journal of Forestry Research – volume: 24 start-page: 4428 issue: 9 year: 2018 end-page: 4437 article-title: The negative ecological impacts of a globally introduced species decrease with time since introduction publication-title: Global Change Biology – volume: 14 issue: 9 year: 2024 article-title: The influence of forest types including native and non‐native tree species on soil macrofauna depends on site conditions publication-title: Ecology and Evolution – volume: 169 year: 2022 article-title: Energy flux across multitrophic levels drives ecosystem multifunctionality: Evidence from nematode food webs publication-title: Soil Biology and Biochemistry – volume: 33 start-page: 186 issue: 3 year: 2018 end-page: 197 article-title: Energy flux: The link between multitrophic biodiversity and ecosystem functioning publication-title: Trends in Ecology & Evolution – volume: 51 start-page: 933 issue: 11 year: 2001 article-title: Terrestrial ecoregions of the world: A new map of life on earth publication-title: Bioscience – year: 2012 – volume: 26 start-page: 1663 issue: 10 year: 2023 end-page: 1675 article-title: Rainforest conversion to plantations fundamentally alters energy fluxes and functions in canopy arthropod food webs publication-title: Ecology Letters – volume: 123 start-page: 285 issue: 2 year: 2000 end-page: 296 article-title: The soil food web of two beech forests ( ) of contrasting humus type: Stable isotope analysis of a macro‐ and a mesofauna‐dominated community publication-title: Oecologia – volume: 82 start-page: 128 issue: 1 year: 1990 end-page: 136 article-title: The soil fauna of a beech forest on limestone: Trophic structure and energy budget publication-title: Oecologia – volume: 14 issue: 7 year: 2023 article-title: Species diversity of forest floor biota in non‐native Douglas‐fir stands is similar to that of native stands publication-title: Ecosphere – volume: 39 start-page: 288 issue: 3 year: 1982 article-title: A comparative analysis of soil fauna populations and their role in decomposition processes publication-title: Oikos – year: 2020 – volume: 3 start-page: 57 issue: 1–2 year: 1987 end-page: 68 article-title: The detrital food web in a shortgrass prairie publication-title: Biology and Fertility of Soils – volume: 59 start-page: 3049 issue: 12 year: 2022 end-page: 3060 article-title: Tree mixtures mediate negative effects of introduced tree species on bird taxonomic and functional diversity publication-title: Journal of Applied Ecology – volume: 143 start-page: 226 issue: 1 year: 2000 end-page: 238 article-title: The contribution of microarthropods to aboveground food webs: A review and model of belowground transfer in a coniferous forest publication-title: American Midland Naturalist – volume: 7 start-page: 584 issue: 7 year: 2004 end-page: 600 article-title: Detritus, trophic dynamics and biodiversity publication-title: Ecology Letters – volume: 273 start-page: 1 issue: 1582 year: 2006 end-page: 9 article-title: All wet or dried up? Real differences between aquatic and terrestrial food webs publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 192 start-page: 1047 issue: 4 year: 2020 end-page: 1056 article-title: Multiple environmental controls explain global patterns in soil animal communities publication-title: Oecologia – volume: 13 start-page: 543 issue: 5 year: 2010 end-page: 552 article-title: Connectivity, non‐random extinction and ecosystem function in experimental metacommunities publication-title: Ecology Letters – volume: 4 year: 2021 article-title: The impact of root‐derived resources on forest soil invertebrates depends on body size and trophic position publication-title: Frontiers in Forests and Global Change – volume: 94 start-page: 421 issue: 879 year: 1960 end-page: 425 article-title: Community structure, population control, and competition publication-title: The American Naturalist – volume: 11 year: 2022 article-title: Tropical land use alters functional diversity of soil food webs and leads to monopolization of the detrital energy channel publication-title: eLife – ident: e_1_2_10_64_1 doi: 10.1098/rspb.2005.3377 – ident: e_1_2_10_2_1 doi: 10.1111/nph.15263 – ident: e_1_2_10_7_1 doi: 10.1016/j.soilbio.2024.109413 – ident: e_1_2_10_43_1 doi: 10.1093/icb/8.1.11 – ident: e_1_2_10_65_1 doi: 10.1023/A:1021340601986 – ident: e_1_2_10_69_1 doi: 10.1016/j.foreco.2021.119956 – ident: e_1_2_10_34_1 doi: 10.1016/j.soilbio.2021.108155 – ident: e_1_2_10_52_1 doi: 10.1111/BRV.12832 – ident: e_1_2_10_13_1 doi: 10.2307/5483 – ident: e_1_2_10_5_1 doi: 10.1016/j.tree.2017.12.007 – ident: e_1_2_10_35_1 – ident: e_1_2_10_50_1 doi: 10.1007/s00442‐021‐04910‐1 – ident: e_1_2_10_68_1 doi: 10.1111/brv.12193 – ident: e_1_2_10_73_1 doi: 10.1111/1365‐2664.14623 – ident: e_1_2_10_12_1 doi: 10.1086/303244 – ident: e_1_2_10_26_1 doi: 10.1007/s00442‐020‐04640‐w – ident: e_1_2_10_38_1 doi: 10.1111/ecog.02769 – ident: e_1_2_10_25_1 doi: 10.1007/BF00260580 – ident: e_1_2_10_29_1 doi: 10.1007/S10531‐021‐02155‐1/TABLES/4 – ident: e_1_2_10_47_1 doi: 10.2307/3544689 – ident: e_1_2_10_74_1 doi: 10.1002/EAP.2921 – ident: e_1_2_10_23_1 doi: 10.1038/nature13247 – ident: e_1_2_10_71_1 doi: 10.1016/j.soilbio.2022.108656 – ident: e_1_2_10_54_1 doi: 10.1002/ecy.3421 – ident: e_1_2_10_32_1 doi: 10.1016/j.geoderma.2024.116947 – ident: e_1_2_10_36_1 doi: 10.1111/1365-2435.14696 – ident: e_1_2_10_19_1 doi: 10.1016/j.baae.2021.02.006 – start-page: 432 volume-title: Ecology year: 2008 ident: e_1_2_10_10_1 – ident: e_1_2_10_22_1 doi: 10.1086/282146 – ident: e_1_2_10_31_1 doi: 10.2307/1930126 – ident: e_1_2_10_63_1 doi: 10.1111/1365‐2664.14300 – ident: e_1_2_10_70_1 doi: 10.1111/gcb.13774 – ident: e_1_2_10_66_1 doi: 10.1111/j.1461‐0248.2010.01450.x – ident: e_1_2_10_18_1 doi: 10.1111/nph.14255 – ident: e_1_2_10_48_1 doi: 10.1016/0169‐5347(92)90208‐S – ident: e_1_2_10_33_1 – ident: e_1_2_10_14_1 doi: 10.1111/j.1461‐0248.2011.01660.x – ident: e_1_2_10_27_1 doi: 10.1674/0003‐0031(2000)143[0226:TCOMTA]2.0.CO;2 – ident: e_1_2_10_17_1 doi: 10.1071/sr22218 – ident: e_1_2_10_11_1 doi: 10.1126/science.1116030 – ident: e_1_2_10_72_1 doi: 10.1002/ece3.70311 – ident: e_1_2_10_28_1 doi: 10.1016/S0031-4056(22)00112-3 – volume-title: A key to the Collembola (springtails) of Britain and Ireland year: 2007 ident: e_1_2_10_24_1 – ident: e_1_2_10_75_1 doi: 10.1111/gcb.14323 – ident: e_1_2_10_15_1 doi: 10.1016/j.soilbio.2020.107876 – ident: e_1_2_10_60_1 doi: 10.1007/s004420051015 – volume-title: R: A language and environment for statistical computing year: 2024 ident: e_1_2_10_55_1 – ident: e_1_2_10_51_1 doi: 10.1016/j.soilbio.2009.03.002 – volume-title: Brohmer—Fauna von Deutschland year: 2018 ident: e_1_2_10_57_1 – ident: e_1_2_10_39_1 doi: 10.1007/S10531‐023‐02547‐5/FIGURES/3 – ident: e_1_2_10_49_1 doi: 10.1111/ele.14276 – ident: e_1_2_10_53_1 doi: 10.1111/1365‐2656.13027 – ident: e_1_2_10_61_1 doi: 10.1890/0012‐9658(1998)079[1573:BUCOTS]2.0.CO;2 – ident: e_1_2_10_67_1 doi: 10.1525/9780520407114 – ident: e_1_2_10_8_1 doi: 10.3389/ffgc.2021.622370 – ident: e_1_2_10_40_1 doi: 10.1111/j.1461‐0248.2004.00606.x – ident: e_1_2_10_56_1 doi: 10.1007/BF00318544 – ident: e_1_2_10_76_1 doi: 10.7554/eLife.75428 – ident: e_1_2_10_58_1 doi: 10.1007/3-540-26599-6_11 – ident: e_1_2_10_6_1 doi: 10.1038/ncomms6351 – ident: e_1_2_10_9_1 doi: 10.1016/j.ejsobi.2023.103556 – ident: e_1_2_10_45_1 doi: 10.1016/J.SOILBIO.2006.04.035 – ident: e_1_2_10_4_1 doi: 10.1007/s42991‐023‐00384‐1 – ident: e_1_2_10_30_1 doi: 10.1016/J.FORECO.2021.119709 – ident: e_1_2_10_37_1 doi: 10.2307/2120 – ident: e_1_2_10_42_1 doi: 10.1007/S11676‐023‐01607‐4/TABLES/5 – ident: e_1_2_10_20_1 doi: 10.1002/ECS2.4609 – ident: e_1_2_10_46_1 doi: 10.1017/CBO9780511608551.004 – ident: e_1_2_10_16_1 doi: 10.1126/science.1205106 – ident: e_1_2_10_3_1 – ident: e_1_2_10_21_1 doi: 10.1086/285546 – ident: e_1_2_10_41_1 doi: 10.1093/acprof:oso/9780198566182.001.0001 – ident: e_1_2_10_44_1 doi: 10.1641/0006‐3568(2001)051[0933:TEOTWA]2.0.CO;2 – ident: e_1_2_10_59_1 doi: 10.1034/j.1600‐0706.2003.12131.x – ident: e_1_2_10_62_1 doi: 10.1007/s10342‐013‐0745‐7 |
SSID | ssj0009522 |
Score | 2.4686155 |
Snippet | The introduction of non‐native tree species has become a global concern and may disrupt native communities and related ecosystem functions. Soil food webs... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 64 |
SubjectTerms | BEF Biodiversity Body size Decomposition Douglas fir Ecological function ecosystem function Energy energy flow Energy loss Environmental changes Environmental conditions Fagus sylvatica Fagus sylvatica subsp. sylvatica Fluctuations Food chains Food composition Food processing Food webs Forest ecosystems Forest soils Forests Indigenous species introduced plants Introduced species Invertebrates Macrofauna mesofauna Mixed forests Monoculture non‐native species Nutrient cycles Organic matter Picea abies Pine trees Plant species introduction Predation Predators Pseudotsuga menziesii Sandy soils size spectrum soil fauna Soil invertebrates Soil mixtures Species composition Species richness Terrestrial ecosystems trees |
Title | Reduced predation and energy flux in soil food webs by introduced tree species: Bottom‐up control of multitrophic biodiversity across size compartments |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14696 https://www.proquest.com/docview/3152393613 https://www.proquest.com/docview/3165861826 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEG40IHjR-AiueVCCBy-zbLrn6S0JuwRBkWDA29BPHNxML5kZMDn5E3L17_lLrOqZ2awBEfHWOzvFzG53VX3d_fVXjL0Wdqa0TIjzpDgt3ahI5Ybk8XShE5yLmSDX9P5Denoev_ucjGxCOgvT60OsF9zIM0K8JgeXqtlw8p6fhdmenL0g0W26QrDojG_I7vb7CDwtIsy0YhD3IS7PHfvf89It2NyErCHnLB4zNb5tTzX5Ou1aNdXXd4Qc_-vnbLNHAyKFo34IPWH3bP2UPehrVF5ha66H1s789lAcGgxRoXnGfpyR_qs1sLq0fYkmkLUBG44Vglt236CqofHVEpz3BjByN6Cu8GIb9GbRkvbGgU594sT9LRz7tvUXP7_fdCsYuPTgHQTyI35Yfak0qMqbkVMCMvyp0FTXFnpWfSDPN8_Z-WL-6eQ0Gko-RFrEeRoZbtOZkRiGbZYh1pOxlqmw3PDD1KlDTKS5m2U2L7iSRSJlljmXIyjDKE2yPVrssK3a1_YFwycXmYhjm6jUxTNhVJIqldkMAZUzmLknbDp2eKkHPXQqy7Esx3kRdUlJXVKGLpmwN2uDVS8F8udb98YRVA4xoSkFQiVRCMRPE_Zq_TV6M23RyNr6ju5BRJjSnA9fLwyXvz2qXMxPQuPlvxrssoecihmH9aQ9ttVednYfEVarDth9Hn88CK70Cw_UHbE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEG2FIAQX9oiBAIUEEpcZTdx220biAMmMJmQ5RImUm-nNisVgj2JbMDnxCVz5DX6FP-BLqGrbkyESQhxy4NZe2rbatbzurnrF2HNuh0rLgGKelEdLN6qvIkP0eDrWAc7FjKNr2tsXkyP_3XFwvMK-d7kwDT_EYsGNNMPZa1JwWpBe0vImQAvdPWl7LNrAyh07_4TTtvL19hb-4xeeNx4dbk76bWWBvuZ-JPrGs2JoJGq7DUOEFNLXUnDrGW9DpGoD7XWUDkMbxZ6ScSBlGKZphL4fjQGxw2iOz73CrlIdceLr3zrwloh-m50LT8R99O28pROi6KELH_y7JzyHt8sg2Xm58S32oxufJrjlw6Cu1ECfXaCO_L8G8Da72YJueNNoyR22YvO77FpThnOOrZFuW2uj87w_7NAavvIe-3ZAFLfWwOzUNlWoQOYGrMuchHRaf4Ysh7LIppAWhQF0TiWoOZ6sHKUu9qTtf6DE1syWr-BtUVXFx59fvtYzaNMFoEjBxXfiwewk06CywnRhMyDdX4QyO7PQJA64_IDyPju6lKFbY6t5kdsHDN8ch9z3baBE6g-5UYFQKrQhYsbUIDjpsUEnYYluKd-p8sg06aZ-JAIJiUDiRKDHXi46zBq2kz_fut6JbNKavTLhiAZ5zBEi9tizxWU0WLQLJXNb1HQPgl5B01r8PCeff3tVMh5tusbDf-3wlF2fHO7tJrvb-zuP2A2Paje75bN1tlqd1vYxAspKPXEaDOz9ZUv8LwvYejg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKEYgN4lUxbYGLBBKboKmdOAkSC2hn1FKoKkSl7oId2yLSkERNRjCs-AS2fAa_xJdwr5NMBySEWHTnPJyHru_LPj6XsUfCjnWuIsI8aU5TNzrQiSF6vDzNI8zFjKdrenMk90_CV6fR6Rr7MeyF6fghlhNupBneXpOC18atKHmHz0JvT8qeyh5XeWgXnzBra54f7KGIH3M-nbzb3Q_6wgJBLsJEBoZbOTYKld3GMUYUKsyVFJYbviOd3kFznbhxbJOUa5VGSsWxcwm6frQFRA6TC3zuJXaZlhgJRcbD4xWe327hgss0QNcuejYhAg_98cG_O8Lz6HY1RvZObnqDXe-jU3jRDaebbM2Wt9iVrl7lAluTvG9tTM43yGGH3kI0t9n3t8QFaw3UZ7Yr1wSqNGD9FkNws_lnKEpoqmIGrqoMoBVvQC_wZOu5Z7EnrZMD7QDFJP4ZvKzatvr48-u3eQ09rh4qBx4IiQf1hyIHXVRmwJeA8v8LTfHFQoew90D65g47uRApbbD1sirtXYZvTmMRhjbS0oVjYXQktY5tjMGVM-jFR-zpIIss77nRqUTHLBtyJBJeRsLLvPBG7MmyQ93Rgvz91u1BuFlvH5pMYNgkUoGx1Ig9XF5GzablGlXaak73YHQoKf_Dz_OD4l-vyqaTXd_Y_N8OD9jV471p9vrg6HCLXeNU49hPM22z9fZsbu9h4NXq-36oA3t_0br1C-egOEc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+predation+and+energy+flux+in+soil+food+webs+by+introduced+tree+species%3A+Bottom%E2%80%90up+control+of+multitrophic+biodiversity+across+size+compartments&rft.jtitle=Functional+ecology&rft.au=Lu%2C+Jing%E2%80%90Zhong&rft.au=Wenglein%2C+Ronja&rft.au=Bluhm%2C+Christian&rft.au=Stuckenberg%2C+Thalea&rft.date=2025-01-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=39&rft.issue=1&rft.spage=64&rft.epage=76&rft_id=info:doi/10.1111%2F1365-2435.14696&rft.externalDBID=10.1111%252F1365-2435.14696&rft.externalDocID=FEC14696 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |