Flexible parametrization of graph‐theoretical features from individual‐specific networks for prediction
Statistical techniques are needed to analyze data structures with complex dependencies such that clinically useful information can be extracted. Individual‐specific networks, which capture dependencies in complex biological systems, are often summarized by graph‐theoretical features. These features,...
Saved in:
Published in | Statistics in medicine Vol. 43; no. 13; pp. 2592 - 2606 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.06.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 1097-0258 |
DOI | 10.1002/sim.10091 |
Cover
Loading…
Abstract | Statistical techniques are needed to analyze data structures with complex dependencies such that clinically useful information can be extracted. Individual‐specific networks, which capture dependencies in complex biological systems, are often summarized by graph‐theoretical features. These features, which lend themselves to outcome modeling, can be subject to high variability due to arbitrary decisions in network inference and noise. Correlation‐based adjacency matrices often need to be sparsified before meaningful graph‐theoretical features can be extracted, requiring the data analysts to determine an optimal threshold. To address this issue, we propose to incorporate a flexible weighting function over the full range of possible thresholds to capture the variability of graph‐theoretical features over the threshold domain. The potential of this approach, which extends concepts from functional data analysis to a graph‐theoretical setting, is explored in a plasmode simulation study using real functional magnetic resonance imaging (fMRI) data from the Autism Brain Imaging Data Exchange (ABIDE) Preprocessed initiative. The simulations show that our modeling approach yields accurate estimates of the functional form of the weight function, improves inference efficiency, and achieves a comparable or reduced root mean square prediction error compared to competitor modeling approaches. This assertion holds true in settings where both complex functional forms underlie the outcome‐generating process and a universal threshold value is employed. We demonstrate the practical utility of our approach by using resting‐state fMRI data to predict biological age in children. Our study establishes the flexible modeling approach as a statistically principled, serious competitor to ad‐hoc methods with superior performance. |
---|---|
AbstractList | Statistical techniques are needed to analyze data structures with complex dependencies such that clinically useful information can be extracted. Individual‐specific networks, which capture dependencies in complex biological systems, are often summarized by graph‐theoretical features. These features, which lend themselves to outcome modeling, can be subject to high variability due to arbitrary decisions in network inference and noise. Correlation‐based adjacency matrices often need to be sparsified before meaningful graph‐theoretical features can be extracted, requiring the data analysts to determine an optimal threshold. To address this issue, we propose to incorporate a flexible weighting function over the full range of possible thresholds to capture the variability of graph‐theoretical features over the threshold domain. The potential of this approach, which extends concepts from functional data analysis to a graph‐theoretical setting, is explored in a plasmode simulation study using real functional magnetic resonance imaging (fMRI) data from the Autism Brain Imaging Data Exchange (ABIDE) Preprocessed initiative. The simulations show that our modeling approach yields accurate estimates of the functional form of the weight function, improves inference efficiency, and achieves a comparable or reduced root mean square prediction error compared to competitor modeling approaches. This assertion holds true in settings where both complex functional forms underlie the outcome‐generating process and a universal threshold value is employed. We demonstrate the practical utility of our approach by using resting‐state fMRI data to predict biological age in children. Our study establishes the flexible modeling approach as a statistically principled, serious competitor to ad‐hoc methods with superior performance. Statistical techniques are needed to analyze data structures with complex dependencies such that clinically useful information can be extracted. Individual-specific networks, which capture dependencies in complex biological systems, are often summarized by graph-theoretical features. These features, which lend themselves to outcome modeling, can be subject to high variability due to arbitrary decisions in network inference and noise. Correlation-based adjacency matrices often need to be sparsified before meaningful graph-theoretical features can be extracted, requiring the data analysts to determine an optimal threshold. To address this issue, we propose to incorporate a flexible weighting function over the full range of possible thresholds to capture the variability of graph-theoretical features over the threshold domain. The potential of this approach, which extends concepts from functional data analysis to a graph-theoretical setting, is explored in a plasmode simulation study using real functional magnetic resonance imaging (fMRI) data from the Autism Brain Imaging Data Exchange (ABIDE) Preprocessed initiative. The simulations show that our modeling approach yields accurate estimates of the functional form of the weight function, improves inference efficiency, and achieves a comparable or reduced root mean square prediction error compared to competitor modeling approaches. This assertion holds true in settings where both complex functional forms underlie the outcome-generating process and a universal threshold value is employed. We demonstrate the practical utility of our approach by using resting-state fMRI data to predict biological age in children. Our study establishes the flexible modeling approach as a statistically principled, serious competitor to ad-hoc methods with superior performance.Statistical techniques are needed to analyze data structures with complex dependencies such that clinically useful information can be extracted. Individual-specific networks, which capture dependencies in complex biological systems, are often summarized by graph-theoretical features. These features, which lend themselves to outcome modeling, can be subject to high variability due to arbitrary decisions in network inference and noise. Correlation-based adjacency matrices often need to be sparsified before meaningful graph-theoretical features can be extracted, requiring the data analysts to determine an optimal threshold. To address this issue, we propose to incorporate a flexible weighting function over the full range of possible thresholds to capture the variability of graph-theoretical features over the threshold domain. The potential of this approach, which extends concepts from functional data analysis to a graph-theoretical setting, is explored in a plasmode simulation study using real functional magnetic resonance imaging (fMRI) data from the Autism Brain Imaging Data Exchange (ABIDE) Preprocessed initiative. The simulations show that our modeling approach yields accurate estimates of the functional form of the weight function, improves inference efficiency, and achieves a comparable or reduced root mean square prediction error compared to competitor modeling approaches. This assertion holds true in settings where both complex functional forms underlie the outcome-generating process and a universal threshold value is employed. We demonstrate the practical utility of our approach by using resting-state fMRI data to predict biological age in children. Our study establishes the flexible modeling approach as a statistically principled, serious competitor to ad-hoc methods with superior performance. |
Author | Heinze, Georg Gregorich, Mariella Simpson, Sean L. |
Author_xml | – sequence: 1 givenname: Mariella surname: Gregorich fullname: Gregorich, Mariella organization: Center for Medical Data Science, Institute of Clinical Biometrics – sequence: 2 givenname: Sean L. surname: Simpson fullname: Simpson, Sean L. organization: Wake Forest University School of Medicine – sequence: 3 givenname: Georg orcidid: 0000-0003-1147-8491 surname: Heinze fullname: Heinze, Georg email: georg.heinze@meduniwien.ac.at organization: Center for Medical Data Science, Institute of Clinical Biometrics |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38664934$$D View this record in MEDLINE/PubMed |
BookMark | eNp10b1OwzAQB3ALgaAtDLwAisQCQ8BO7DgeUUWhUhEDMEeOcwZDEgc74WviEXhGnoSEFgYk5OE8_O50uv8Yrde2BoR2CT4iGEfH3lTDR5A1NCJY8BBHLF1HIxxxHiacsC009v4eY0JYxDfRVpwmCRUxHaGHWQkvJi8haKSTFbTOvMnW2DqwOrh1srn7fP9o78A6aI2SZaBBtp0DH2hnq8DUhXkyRSfLnvkGlNFGBTW0z9Y99Ma6oHFQGDWM3EYbWpYedlZ1gm5mp9fT83BxeTafnixCFdOUhJonHETCClzInBKQEisGkpK4oDwXacw1JjynCiKe54SRKBXDEywiic5lPEEHy7mNs48d-DarjFdQlrIG2_ksxpQLmnLOe7r_h97bztX9dr1iKWMRI4PaW6kur6DIGmcq6V6znzP24HAJlLPeO9C_hOBsiCjrI8q-I-rt8dI-mxJe_4fZ1fxi2fEFLtKU6g |
Cites_doi | 10.1007/978-1-4757-3462-1 10.1017/CBO9780511815478 10.3389/fnhum.2020.00346 10.1162/netn_a_00214 10.1016/0021-9045(72)90080-9 10.1145/3154524 10.1186/s41512-020-00074-3 10.1007/BF01386390 10.1016/j.csda.2008.02.032 10.1186/s12874-022-01544-6 10.3389/fnhum.2015.00418 10.1016/j.neuroimage.2010.12.047 10.1007/s11682‐017‐9715‐x 10.1002/sim.3701 10.1214/13-SS103 10.1016/j.neuroimage.2015.05.046 10.1002/bimj.202200222 10.1016/j.neuroimage.2017.08.047 10.1016/j.neuroimage.2019.02.039 10.1038/s41467-018-03399-2 10.1186/s12874-021-01374-y 10.1038/mp.2013.78 10.1016/j.dcn.2022.101123 10.1126/science.1194144 10.1002/hbm.24241 10.1002/0470013192.bsa239 10.1016/j.nicl.2021.102921 10.1038/s41598-022-22079-2 |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by John Wiley & Sons Ltd. 2024 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd. – notice: 2024 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1002/sim.10091 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 2606 |
ExternalDocumentID | 38664934 10_1002_sim_10091 SIM10091 |
Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Österreichischen Akademie der Wissenschaften funderid: 24620 – fundername: Österreichischen Akademie der Wissenschaften grantid: 24620 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION EBD EMOBN SV3 AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM K9. 7X8 |
ID | FETCH-LOGICAL-c3481-f767e965d0dab41eaa0c5ea413d47b9837f017b4ce27bb151289898995216fba3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 09:48:02 EDT 2025 Sun Jul 13 04:17:11 EDT 2025 Fri Jul 04 01:52:03 EDT 2025 Tue Jul 01 03:28:19 EDT 2025 Wed Jan 22 17:20:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | prediction fMRI complex systems networks splines |
Language | English |
License | Attribution 2024 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3481-f767e965d0dab41eaa0c5ea413d47b9837f017b4ce27bb151289898995216fba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1147-8491 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10091 |
PMID | 38664934 |
PQID | 3058552517 |
PQPubID | 48361 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_3047948777 proquest_journals_3058552517 pubmed_primary_38664934 crossref_primary_10_1002_sim_10091 wiley_primary_10_1002_sim_10091_SIM10091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 June 2024 |
PublicationDateYYYYMMDD | 2024-06-15 |
PublicationDate_xml | – month: 06 year: 2024 text: 15 June 2024 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2021; 21 2010; 329 2011; 55 2020; 14 1994 2005 2022; 66 2022; 22 2001; 608 2013; 7 2015; 9 1972; 6 1959; 1 2009; 28 2018; 9 2018; 39 2020; 4 2009; 53 2023 2022 2022; 6 2022; 56 2022; 12 2017; 161 2018; 51 2014; 19 2022; 33 2015; 118 2018; 12 2019; 194 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_14_1 Hardin J (e_1_2_9_32_1) 2013; 7 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 R Core Team R (e_1_2_9_24_1) 2023 e_1_2_9_9_1 Craddock C (e_1_2_9_29_1) 2013; 7 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 |
References_xml | – volume: 28 start-page: 3437 issue: 27 year: 2009 end-page: 3453 article-title: Flexible modeling of the cumulative effects of time‐dependent exposures on the hazard publication-title: Stat Med – volume: 7 start-page: 27 year: 2013 article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives publication-title: Front Neuroinform – volume: 33 year: 2022 article-title: Brain age prediction using fMRI network coupling in youths and associations with psychiatric symptoms publication-title: Neuroimage Clin – volume: 329 start-page: 1358 issue: 5997 year: 2010 end-page: 1361 article-title: Prediction of individual brain maturity using fMRI publication-title: Science – volume: 7 start-page: 1 year: 2013 end-page: 36 article-title: Analyzing complex functional brain networks: fusing statistics and network science to understand the brain publication-title: Stat Surv – volume: 55 start-page: 1132 issue: 3 year: 2011 end-page: 1146 article-title: Negative edges and soft thresholding in complex network analysis of resting state functional connectivity data publication-title: NeuroImage – year: 2005 – volume: 118 start-page: 651 year: 2015 end-page: 661 article-title: The (in) stability of functional brain network measures across thresholds publication-title: NeuroImage – volume: 66 year: 2022 article-title: Phases of methodological research in biostatistics—building the evidence base for new methods publication-title: Biom J – volume: 53 start-page: 1755 issue: 5 year: 2009 end-page: 1766 article-title: The use of plasmodes as a supplement to simulations: a simple example evaluating individual admixture estimation methodologies publication-title: Comput Stat Data Anal – volume: 39 start-page: 4213 issue: 11 year: 2018 end-page: 4227 article-title: Statistical harmonization corrects site effects in functional connectivity measurements from multi‐site fMRI data publication-title: Hum Brain Mapp – volume: 9 start-page: 1027 issue: 1 year: 2018 article-title: Development of the social brain from age three to twelve years publication-title: Nat Commun – volume: 6 start-page: 50 issue: 1 year: 1972 end-page: 62 article-title: On calculating with B‐splines publication-title: J Approx Theory – volume: 161 start-page: 149 year: 2017 end-page: 170 article-title: Harmonization of multi‐site diffusion tensor imaging data publication-title: NeuroImage – year: 1994 – volume: 4 start-page: 1 issue: 1 year: 2020 end-page: 18 article-title: State of the art in selection of variables and functional forms in multivariable analysis—outstanding issues publication-title: Diagn Progn Res – volume: 6 start-page: 49 issue: 1 year: 2022 end-page: 68 article-title: A regression framework for brain network distance metrics publication-title: Netw Neurosci – volume: 12 start-page: 467 issue: 2 year: 2018 end-page: 476 article-title: Negative functional brain networks publication-title: Brain Imaging Behav – volume: 14 start-page: 346 year: 2020 article-title: Brain network modularity predicts improvements in cognitive and scholastic performance in children involved in a physical activity intervention publication-title: Front Hum Neurosci – volume: 1 start-page: 269 issue: 1 year: 1959 end-page: 271 article-title: A note on two problems in connexion with graphs publication-title: Numer Math – volume: 21 start-page: 1 year: 2021 end-page: 15 article-title: To tune or not to tune, a case study of ridge logistic regression in small or sparse datasets publication-title: BMC Med Res Methodol – volume: 608 year: 2001 – volume: 9 start-page: 418 year: 2015 article-title: Predicting individual brain maturity using dynamic functional connectivity publication-title: Front Hum Neurosci – volume: 7 start-page: 1733 year: 2013 end-page: 1762 article-title: A method for generating realistic correlation matrices. publication-title: Appl Stat – volume: 194 start-page: 68 year: 2019 end-page: 81 article-title: Is removal of weak connections necessary for graph‐theoretical analysis of dense weighted structural connectomes from diffusion MRI? publication-title: NeuroImage – year: 2022 – year: 2023 – volume: 12 issue: 1 year: 2022 article-title: The thresholding problem and variability in the EEG graph network parameters publication-title: Sci Rep – volume: 56 year: 2022 article-title: Resting‐state functional connectivity identifies individuals and predicts age in 8‐to‐26‐month‐olds publication-title: Dev Cogn Neurosci – volume: 19 start-page: 659 issue: 6 year: 2014 end-page: 667 article-title: The autism brain imaging data exchange: towards a large‐scale evaluation of the intrinsic brain architecture in autism publication-title: Mol Psychiatry – volume: 22 start-page: 62 issue: 1 year: 2022 article-title: Individual‐specific networks for prediction modelling–A scoping review of methods publication-title: BMC Med Res Methodol – volume: 51 start-page: 1 issue: 2 year: 2018 end-page: 39 article-title: Network structure inference, a survey: motivations, methods, and applications publication-title: ACM Comput Surv – ident: e_1_2_9_19_1 doi: 10.1007/978-1-4757-3462-1 – ident: e_1_2_9_17_1 doi: 10.1017/CBO9780511815478 – ident: e_1_2_9_4_1 doi: 10.3389/fnhum.2020.00346 – ident: e_1_2_9_13_1 doi: 10.1162/netn_a_00214 – volume-title: R: A Language and Environment for Statistical Computing year: 2023 ident: e_1_2_9_24_1 – ident: e_1_2_9_20_1 doi: 10.1016/0021-9045(72)90080-9 – ident: e_1_2_9_7_1 doi: 10.1145/3154524 – ident: e_1_2_9_21_1 doi: 10.1186/s41512-020-00074-3 – ident: e_1_2_9_16_1 doi: 10.1007/BF01386390 – ident: e_1_2_9_27_1 doi: 10.1016/j.csda.2008.02.032 – ident: e_1_2_9_18_1 doi: 10.1186/s12874-022-01544-6 – ident: e_1_2_9_2_1 doi: 10.3389/fnhum.2015.00418 – ident: e_1_2_9_15_1 doi: 10.1016/j.neuroimage.2010.12.047 – ident: e_1_2_9_14_1 doi: 10.1007/s11682‐017‐9715‐x – ident: e_1_2_9_25_1 doi: 10.1002/sim.3701 – volume: 7 start-page: 27 year: 2013 ident: e_1_2_9_29_1 article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives publication-title: Front Neuroinform – ident: e_1_2_9_8_1 doi: 10.1214/13-SS103 – ident: e_1_2_9_10_1 doi: 10.1016/j.neuroimage.2015.05.046 – ident: e_1_2_9_12_1 doi: 10.1002/bimj.202200222 – ident: e_1_2_9_31_1 doi: 10.1016/j.neuroimage.2017.08.047 – ident: e_1_2_9_11_1 doi: 10.1016/j.neuroimage.2019.02.039 – ident: e_1_2_9_33_1 doi: 10.1038/s41467-018-03399-2 – volume: 7 start-page: 1733 year: 2013 ident: e_1_2_9_32_1 article-title: A method for generating realistic correlation matrices. Ann publication-title: Appl Stat – ident: e_1_2_9_34_1 doi: 10.1186/s12874-021-01374-y – ident: e_1_2_9_28_1 doi: 10.1038/mp.2013.78 – ident: e_1_2_9_5_1 doi: 10.1016/j.dcn.2022.101123 – ident: e_1_2_9_6_1 doi: 10.1126/science.1194144 – ident: e_1_2_9_22_1 – ident: e_1_2_9_23_1 – ident: e_1_2_9_30_1 doi: 10.1002/hbm.24241 – ident: e_1_2_9_26_1 doi: 10.1002/0470013192.bsa239 – ident: e_1_2_9_3_1 doi: 10.1016/j.nicl.2021.102921 – ident: e_1_2_9_9_1 doi: 10.1038/s41598-022-22079-2 |
SSID | ssj0011527 |
Score | 2.4386785 |
Snippet | Statistical techniques are needed to analyze data structures with complex dependencies such that clinically useful information can be extracted.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2592 |
SubjectTerms | Age Autism Autistic Disorder Brain - diagnostic imaging Child Childrens health complex systems Computer Simulation fMRI Humans Magnetic Resonance Imaging Models, Statistical networks prediction splines Statistical analysis |
Title | Flexible parametrization of graph‐theoretical features from individual‐specific networks for prediction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10091 https://www.ncbi.nlm.nih.gov/pubmed/38664934 https://www.proquest.com/docview/3058552517 https://www.proquest.com/docview/3047948777 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS-QwFL2oD8uArOuou11dieKDL9U2k6QtPsmygyuMiB_gg1CSNgGZnY7Mx4tP_oT9jf4Sc5NpdVwWxLeU3rZpcpOcJPecAOwpajRNyyK004lOyKwPhSqN7aWgpYjjRGgnpN07EyfX7PSG3yzAUc2F8foQzYIbtgzXX2MDl2p8-CIaOr4bYNIx1zFWCwHRRSMdFdfHteIWpUhiXqsKRfSweXJ-LPoHYM7jVTfgdFfgts6qjzPpH0wn6qB4eKPi-MF_-QKfZ0CUHHvPWYUFXbXhU2-21d6GZb-gRzxPqQ0thKVe1XkN-l3U0VR_NEHp8AGeyuXpnGRoiNPAfnr8-4ojSYx2AqJjgnQWctewwKwZcj0xXolUPiLd2gxH5H6EOcFXrsN199fVz5NwdmxDWCCrNzSJSHQmeBmVUrFYSxkVXEs7WpYsUZmdERvbDShWaJoohYgjdYdYZhZJCKNkZwOWqmGlvwGxYDKRRsRFZihTRSapyLhWZcojlUaGBrBbV2B-79U5cq_DTHNbprkr0wC26qrNZw10nNtuLuUc9doC2Glu26aF-yWy0sMp2qD8PgomBvDVu0TzlU4qBMs6LIB9V7H__3x--bvnEt_fb7oJLWrBE4akxXwLliajqf5hwc9EbcMiZefbztefAbtBAr8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH6IggriMm51jeLBS8c206QteBFxGJfx4AJepDRtAqJ2ZJaLJ3-Cv9FfYl4yrRuCeEvpa5smL8mX5fsewI6gStIoz1w9nWi4gfYhV0S-vuQ0574fcmmEtNvnvHUdnNywmxHYL7kwVh-iWnDDlmH6a2zguCC996Ea2rt7xCRS18cworeZUF1U4lF-GbAVNyl56LNSV8ije9WjX0ejHxDzK2I1Q05zBm7LzNqTJvf1QV_Us-dvOo7__ZtZmB5iUXJgnWcORmRRg_H2cLe9BlN2TY9YqlINJhGZWmHnebhvopSmeJAE1cMfMTCXZXSSjiJGBvvt5fUTTZIoaTREewQZLeSuIoJpM6R74pElUthD6dqm0yVPXcwJvnIBrptHV4ctdxi5wc2Q2OuqkIcy5iz38lQEvkxTL2My1QNmHoQi1pNipXsCEWSShkIg6IhMHMtYgwmuRNpYhNGiU8hlIBpPhqnifhYrGogsTimPmRR5xDwReYo6sF3WYPJkBToSK8VME12miSlTB9bKuk2GbbSX6J4uYgwl2xzYqm7r1oVbJmkhOwO0QQV-1Ex0YMn6RPWVRsR5EDcCB3ZNzf7--eTyuG0SK3833YSJ1lX7LDk7Pj9dhUmqsRSeUPPZGoz2uwO5rrFQX2wYl38HtxEGAw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFD6ICyIsro672vUWxQdfqm0mSVt8EnXwNiJewIeF0rQJiGtnmMuLT_4Ef6O_xJxkWm8I4ltK0zZNzkm-XL7vAKxLqhWNi9w304mmz4wN-TIOzaWghQjDSCgrpN0-FQdX7OiaX4_BdsWFcfoQ9YIbeobtr9HBu4XeehEN7d_cYRKZ6z-YCGI06b3zWjsqrOK14h6liEJeyQoFdKt-9O1g9AFhvgWsdsRp_YJ_VVndQZPbzeFAbub372Qcv_kz0zA1QqJkx5nODIypsgET7dFeewN-uhU94ohKDZhEXOpknWfhtoVCmvK_IqgdfodhuRyfk3Q0sSLYTw-Pr0iSRCurINonyGchNzUNzGRDsiceWCKlO5Ju8nR6pNvDkuArf8NVa_9y98AfxW3wc6T1-joSkUoEL4IikyxUWRbkXGVmuCxYJBMzJdamH5AsVzSSEiFHbKNYJgZKCC2z5h8YLzulmgdi0GSUaRHmiaZM5klGRcKVLGIeyDjQ1IO1qgHTrpPnSJ0QM01Nnaa2Tj1YrJo2HXloPzX9XMw5CrZ5sFrfNr6FGyZZqTpDzIP6-6iY6MGcM4n6K81YCJY0mQcbtmE__3x6cdi2ib9fz7oCE2d7rfTk8PR4ASapAVJ4PC3kizA-6A3VkgFCA7lsDf4Zx4AEuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+parametrization+of+graph%E2%80%90theoretical+features+from+individual%E2%80%90specific+networks+for+prediction&rft.jtitle=Statistics+in+medicine&rft.au=Gregorich%2C+Mariella&rft.au=Simpson%2C+Sean+L.&rft.au=Heinze%2C+Georg&rft.date=2024-06-15&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=43&rft.issue=13&rft.spage=2592&rft.epage=2606&rft_id=info:doi/10.1002%2Fsim.10091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_10091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |