Flexible parametrization of graph‐theoretical features from individual‐specific networks for prediction

Statistical techniques are needed to analyze data structures with complex dependencies such that clinically useful information can be extracted. Individual‐specific networks, which capture dependencies in complex biological systems, are often summarized by graph‐theoretical features. These features,...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 43; no. 13; pp. 2592 - 2606
Main Authors Gregorich, Mariella, Simpson, Sean L., Heinze, Georg
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.06.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.10091

Cover

Loading…
Abstract Statistical techniques are needed to analyze data structures with complex dependencies such that clinically useful information can be extracted. Individual‐specific networks, which capture dependencies in complex biological systems, are often summarized by graph‐theoretical features. These features, which lend themselves to outcome modeling, can be subject to high variability due to arbitrary decisions in network inference and noise. Correlation‐based adjacency matrices often need to be sparsified before meaningful graph‐theoretical features can be extracted, requiring the data analysts to determine an optimal threshold. To address this issue, we propose to incorporate a flexible weighting function over the full range of possible thresholds to capture the variability of graph‐theoretical features over the threshold domain. The potential of this approach, which extends concepts from functional data analysis to a graph‐theoretical setting, is explored in a plasmode simulation study using real functional magnetic resonance imaging (fMRI) data from the Autism Brain Imaging Data Exchange (ABIDE) Preprocessed initiative. The simulations show that our modeling approach yields accurate estimates of the functional form of the weight function, improves inference efficiency, and achieves a comparable or reduced root mean square prediction error compared to competitor modeling approaches. This assertion holds true in settings where both complex functional forms underlie the outcome‐generating process and a universal threshold value is employed. We demonstrate the practical utility of our approach by using resting‐state fMRI data to predict biological age in children. Our study establishes the flexible modeling approach as a statistically principled, serious competitor to ad‐hoc methods with superior performance.
AbstractList Statistical techniques are needed to analyze data structures with complex dependencies such that clinically useful information can be extracted. Individual‐specific networks, which capture dependencies in complex biological systems, are often summarized by graph‐theoretical features. These features, which lend themselves to outcome modeling, can be subject to high variability due to arbitrary decisions in network inference and noise. Correlation‐based adjacency matrices often need to be sparsified before meaningful graph‐theoretical features can be extracted, requiring the data analysts to determine an optimal threshold. To address this issue, we propose to incorporate a flexible weighting function over the full range of possible thresholds to capture the variability of graph‐theoretical features over the threshold domain. The potential of this approach, which extends concepts from functional data analysis to a graph‐theoretical setting, is explored in a plasmode simulation study using real functional magnetic resonance imaging (fMRI) data from the Autism Brain Imaging Data Exchange (ABIDE) Preprocessed initiative. The simulations show that our modeling approach yields accurate estimates of the functional form of the weight function, improves inference efficiency, and achieves a comparable or reduced root mean square prediction error compared to competitor modeling approaches. This assertion holds true in settings where both complex functional forms underlie the outcome‐generating process and a universal threshold value is employed. We demonstrate the practical utility of our approach by using resting‐state fMRI data to predict biological age in children. Our study establishes the flexible modeling approach as a statistically principled, serious competitor to ad‐hoc methods with superior performance.
Statistical techniques are needed to analyze data structures with complex dependencies such that clinically useful information can be extracted. Individual-specific networks, which capture dependencies in complex biological systems, are often summarized by graph-theoretical features. These features, which lend themselves to outcome modeling, can be subject to high variability due to arbitrary decisions in network inference and noise. Correlation-based adjacency matrices often need to be sparsified before meaningful graph-theoretical features can be extracted, requiring the data analysts to determine an optimal threshold. To address this issue, we propose to incorporate a flexible weighting function over the full range of possible thresholds to capture the variability of graph-theoretical features over the threshold domain. The potential of this approach, which extends concepts from functional data analysis to a graph-theoretical setting, is explored in a plasmode simulation study using real functional magnetic resonance imaging (fMRI) data from the Autism Brain Imaging Data Exchange (ABIDE) Preprocessed initiative. The simulations show that our modeling approach yields accurate estimates of the functional form of the weight function, improves inference efficiency, and achieves a comparable or reduced root mean square prediction error compared to competitor modeling approaches. This assertion holds true in settings where both complex functional forms underlie the outcome-generating process and a universal threshold value is employed. We demonstrate the practical utility of our approach by using resting-state fMRI data to predict biological age in children. Our study establishes the flexible modeling approach as a statistically principled, serious competitor to ad-hoc methods with superior performance.Statistical techniques are needed to analyze data structures with complex dependencies such that clinically useful information can be extracted. Individual-specific networks, which capture dependencies in complex biological systems, are often summarized by graph-theoretical features. These features, which lend themselves to outcome modeling, can be subject to high variability due to arbitrary decisions in network inference and noise. Correlation-based adjacency matrices often need to be sparsified before meaningful graph-theoretical features can be extracted, requiring the data analysts to determine an optimal threshold. To address this issue, we propose to incorporate a flexible weighting function over the full range of possible thresholds to capture the variability of graph-theoretical features over the threshold domain. The potential of this approach, which extends concepts from functional data analysis to a graph-theoretical setting, is explored in a plasmode simulation study using real functional magnetic resonance imaging (fMRI) data from the Autism Brain Imaging Data Exchange (ABIDE) Preprocessed initiative. The simulations show that our modeling approach yields accurate estimates of the functional form of the weight function, improves inference efficiency, and achieves a comparable or reduced root mean square prediction error compared to competitor modeling approaches. This assertion holds true in settings where both complex functional forms underlie the outcome-generating process and a universal threshold value is employed. We demonstrate the practical utility of our approach by using resting-state fMRI data to predict biological age in children. Our study establishes the flexible modeling approach as a statistically principled, serious competitor to ad-hoc methods with superior performance.
Author Heinze, Georg
Gregorich, Mariella
Simpson, Sean L.
Author_xml – sequence: 1
  givenname: Mariella
  surname: Gregorich
  fullname: Gregorich, Mariella
  organization: Center for Medical Data Science, Institute of Clinical Biometrics
– sequence: 2
  givenname: Sean L.
  surname: Simpson
  fullname: Simpson, Sean L.
  organization: Wake Forest University School of Medicine
– sequence: 3
  givenname: Georg
  orcidid: 0000-0003-1147-8491
  surname: Heinze
  fullname: Heinze, Georg
  email: georg.heinze@meduniwien.ac.at
  organization: Center for Medical Data Science, Institute of Clinical Biometrics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38664934$$D View this record in MEDLINE/PubMed
BookMark eNp10b1OwzAQB3ALgaAtDLwAisQCQ8BO7DgeUUWhUhEDMEeOcwZDEgc74WviEXhGnoSEFgYk5OE8_O50uv8Yrde2BoR2CT4iGEfH3lTDR5A1NCJY8BBHLF1HIxxxHiacsC009v4eY0JYxDfRVpwmCRUxHaGHWQkvJi8haKSTFbTOvMnW2DqwOrh1srn7fP9o78A6aI2SZaBBtp0DH2hnq8DUhXkyRSfLnvkGlNFGBTW0z9Y99Ma6oHFQGDWM3EYbWpYedlZ1gm5mp9fT83BxeTafnixCFdOUhJonHETCClzInBKQEisGkpK4oDwXacw1JjynCiKe54SRKBXDEywiic5lPEEHy7mNs48d-DarjFdQlrIG2_ksxpQLmnLOe7r_h97bztX9dr1iKWMRI4PaW6kur6DIGmcq6V6znzP24HAJlLPeO9C_hOBsiCjrI8q-I-rt8dI-mxJe_4fZ1fxi2fEFLtKU6g
Cites_doi 10.1007/978-1-4757-3462-1
10.1017/CBO9780511815478
10.3389/fnhum.2020.00346
10.1162/netn_a_00214
10.1016/0021-9045(72)90080-9
10.1145/3154524
10.1186/s41512-020-00074-3
10.1007/BF01386390
10.1016/j.csda.2008.02.032
10.1186/s12874-022-01544-6
10.3389/fnhum.2015.00418
10.1016/j.neuroimage.2010.12.047
10.1007/s11682‐017‐9715‐x
10.1002/sim.3701
10.1214/13-SS103
10.1016/j.neuroimage.2015.05.046
10.1002/bimj.202200222
10.1016/j.neuroimage.2017.08.047
10.1016/j.neuroimage.2019.02.039
10.1038/s41467-018-03399-2
10.1186/s12874-021-01374-y
10.1038/mp.2013.78
10.1016/j.dcn.2022.101123
10.1126/science.1194144
10.1002/hbm.24241
10.1002/0470013192.bsa239
10.1016/j.nicl.2021.102921
10.1038/s41598-022-22079-2
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd.
2024 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd.
– notice: 2024 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.10091
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 2606
ExternalDocumentID 38664934
10_1002_sim_10091
SIM10091
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Österreichischen Akademie der Wissenschaften
  funderid: 24620
– fundername: Österreichischen Akademie der Wissenschaften
  grantid: 24620
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
EBD
EMOBN
SV3
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c3481-f767e965d0dab41eaa0c5ea413d47b9837f017b4ce27bb151289898995216fba3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 09:48:02 EDT 2025
Sun Jul 13 04:17:11 EDT 2025
Fri Jul 04 01:52:03 EDT 2025
Tue Jul 01 03:28:19 EDT 2025
Wed Jan 22 17:20:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords prediction
fMRI
complex systems
networks
splines
Language English
License Attribution
2024 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3481-f767e965d0dab41eaa0c5ea413d47b9837f017b4ce27bb151289898995216fba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1147-8491
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10091
PMID 38664934
PQID 3058552517
PQPubID 48361
PageCount 15
ParticipantIDs proquest_miscellaneous_3047948777
proquest_journals_3058552517
pubmed_primary_38664934
crossref_primary_10_1002_sim_10091
wiley_primary_10_1002_sim_10091_SIM10091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 June 2024
PublicationDateYYYYMMDD 2024-06-15
PublicationDate_xml – month: 06
  year: 2024
  text: 15 June 2024
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 21
2010; 329
2011; 55
2020; 14
1994
2005
2022; 66
2022; 22
2001; 608
2013; 7
2015; 9
1972; 6
1959; 1
2009; 28
2018; 9
2018; 39
2020; 4
2009; 53
2023
2022
2022; 6
2022; 56
2022; 12
2017; 161
2018; 51
2014; 19
2022; 33
2015; 118
2018; 12
2019; 194
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
Hardin J (e_1_2_9_32_1) 2013; 7
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
R Core Team R (e_1_2_9_24_1) 2023
e_1_2_9_9_1
Craddock C (e_1_2_9_29_1) 2013; 7
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
References_xml – volume: 28
  start-page: 3437
  issue: 27
  year: 2009
  end-page: 3453
  article-title: Flexible modeling of the cumulative effects of time‐dependent exposures on the hazard
  publication-title: Stat Med
– volume: 7
  start-page: 27
  year: 2013
  article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives
  publication-title: Front Neuroinform
– volume: 33
  year: 2022
  article-title: Brain age prediction using fMRI network coupling in youths and associations with psychiatric symptoms
  publication-title: Neuroimage Clin
– volume: 329
  start-page: 1358
  issue: 5997
  year: 2010
  end-page: 1361
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
– volume: 7
  start-page: 1
  year: 2013
  end-page: 36
  article-title: Analyzing complex functional brain networks: fusing statistics and network science to understand the brain
  publication-title: Stat Surv
– volume: 55
  start-page: 1132
  issue: 3
  year: 2011
  end-page: 1146
  article-title: Negative edges and soft thresholding in complex network analysis of resting state functional connectivity data
  publication-title: NeuroImage
– year: 2005
– volume: 118
  start-page: 651
  year: 2015
  end-page: 661
  article-title: The (in) stability of functional brain network measures across thresholds
  publication-title: NeuroImage
– volume: 66
  year: 2022
  article-title: Phases of methodological research in biostatistics—building the evidence base for new methods
  publication-title: Biom J
– volume: 53
  start-page: 1755
  issue: 5
  year: 2009
  end-page: 1766
  article-title: The use of plasmodes as a supplement to simulations: a simple example evaluating individual admixture estimation methodologies
  publication-title: Comput Stat Data Anal
– volume: 39
  start-page: 4213
  issue: 11
  year: 2018
  end-page: 4227
  article-title: Statistical harmonization corrects site effects in functional connectivity measurements from multi‐site fMRI data
  publication-title: Hum Brain Mapp
– volume: 9
  start-page: 1027
  issue: 1
  year: 2018
  article-title: Development of the social brain from age three to twelve years
  publication-title: Nat Commun
– volume: 6
  start-page: 50
  issue: 1
  year: 1972
  end-page: 62
  article-title: On calculating with B‐splines
  publication-title: J Approx Theory
– volume: 161
  start-page: 149
  year: 2017
  end-page: 170
  article-title: Harmonization of multi‐site diffusion tensor imaging data
  publication-title: NeuroImage
– year: 1994
– volume: 4
  start-page: 1
  issue: 1
  year: 2020
  end-page: 18
  article-title: State of the art in selection of variables and functional forms in multivariable analysis—outstanding issues
  publication-title: Diagn Progn Res
– volume: 6
  start-page: 49
  issue: 1
  year: 2022
  end-page: 68
  article-title: A regression framework for brain network distance metrics
  publication-title: Netw Neurosci
– volume: 12
  start-page: 467
  issue: 2
  year: 2018
  end-page: 476
  article-title: Negative functional brain networks
  publication-title: Brain Imaging Behav
– volume: 14
  start-page: 346
  year: 2020
  article-title: Brain network modularity predicts improvements in cognitive and scholastic performance in children involved in a physical activity intervention
  publication-title: Front Hum Neurosci
– volume: 1
  start-page: 269
  issue: 1
  year: 1959
  end-page: 271
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer Math
– volume: 21
  start-page: 1
  year: 2021
  end-page: 15
  article-title: To tune or not to tune, a case study of ridge logistic regression in small or sparse datasets
  publication-title: BMC Med Res Methodol
– volume: 608
  year: 2001
– volume: 9
  start-page: 418
  year: 2015
  article-title: Predicting individual brain maturity using dynamic functional connectivity
  publication-title: Front Hum Neurosci
– volume: 7
  start-page: 1733
  year: 2013
  end-page: 1762
  article-title: A method for generating realistic correlation matrices.
  publication-title: Appl Stat
– volume: 194
  start-page: 68
  year: 2019
  end-page: 81
  article-title: Is removal of weak connections necessary for graph‐theoretical analysis of dense weighted structural connectomes from diffusion MRI?
  publication-title: NeuroImage
– year: 2022
– year: 2023
– volume: 12
  issue: 1
  year: 2022
  article-title: The thresholding problem and variability in the EEG graph network parameters
  publication-title: Sci Rep
– volume: 56
  year: 2022
  article-title: Resting‐state functional connectivity identifies individuals and predicts age in 8‐to‐26‐month‐olds
  publication-title: Dev Cogn Neurosci
– volume: 19
  start-page: 659
  issue: 6
  year: 2014
  end-page: 667
  article-title: The autism brain imaging data exchange: towards a large‐scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol Psychiatry
– volume: 22
  start-page: 62
  issue: 1
  year: 2022
  article-title: Individual‐specific networks for prediction modelling–A scoping review of methods
  publication-title: BMC Med Res Methodol
– volume: 51
  start-page: 1
  issue: 2
  year: 2018
  end-page: 39
  article-title: Network structure inference, a survey: motivations, methods, and applications
  publication-title: ACM Comput Surv
– ident: e_1_2_9_19_1
  doi: 10.1007/978-1-4757-3462-1
– ident: e_1_2_9_17_1
  doi: 10.1017/CBO9780511815478
– ident: e_1_2_9_4_1
  doi: 10.3389/fnhum.2020.00346
– ident: e_1_2_9_13_1
  doi: 10.1162/netn_a_00214
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2023
  ident: e_1_2_9_24_1
– ident: e_1_2_9_20_1
  doi: 10.1016/0021-9045(72)90080-9
– ident: e_1_2_9_7_1
  doi: 10.1145/3154524
– ident: e_1_2_9_21_1
  doi: 10.1186/s41512-020-00074-3
– ident: e_1_2_9_16_1
  doi: 10.1007/BF01386390
– ident: e_1_2_9_27_1
  doi: 10.1016/j.csda.2008.02.032
– ident: e_1_2_9_18_1
  doi: 10.1186/s12874-022-01544-6
– ident: e_1_2_9_2_1
  doi: 10.3389/fnhum.2015.00418
– ident: e_1_2_9_15_1
  doi: 10.1016/j.neuroimage.2010.12.047
– ident: e_1_2_9_14_1
  doi: 10.1007/s11682‐017‐9715‐x
– ident: e_1_2_9_25_1
  doi: 10.1002/sim.3701
– volume: 7
  start-page: 27
  year: 2013
  ident: e_1_2_9_29_1
  article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives
  publication-title: Front Neuroinform
– ident: e_1_2_9_8_1
  doi: 10.1214/13-SS103
– ident: e_1_2_9_10_1
  doi: 10.1016/j.neuroimage.2015.05.046
– ident: e_1_2_9_12_1
  doi: 10.1002/bimj.202200222
– ident: e_1_2_9_31_1
  doi: 10.1016/j.neuroimage.2017.08.047
– ident: e_1_2_9_11_1
  doi: 10.1016/j.neuroimage.2019.02.039
– ident: e_1_2_9_33_1
  doi: 10.1038/s41467-018-03399-2
– volume: 7
  start-page: 1733
  year: 2013
  ident: e_1_2_9_32_1
  article-title: A method for generating realistic correlation matrices. Ann
  publication-title: Appl Stat
– ident: e_1_2_9_34_1
  doi: 10.1186/s12874-021-01374-y
– ident: e_1_2_9_28_1
  doi: 10.1038/mp.2013.78
– ident: e_1_2_9_5_1
  doi: 10.1016/j.dcn.2022.101123
– ident: e_1_2_9_6_1
  doi: 10.1126/science.1194144
– ident: e_1_2_9_22_1
– ident: e_1_2_9_23_1
– ident: e_1_2_9_30_1
  doi: 10.1002/hbm.24241
– ident: e_1_2_9_26_1
  doi: 10.1002/0470013192.bsa239
– ident: e_1_2_9_3_1
  doi: 10.1016/j.nicl.2021.102921
– ident: e_1_2_9_9_1
  doi: 10.1038/s41598-022-22079-2
SSID ssj0011527
Score 2.4386785
Snippet Statistical techniques are needed to analyze data structures with complex dependencies such that clinically useful information can be extracted....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2592
SubjectTerms Age
Autism
Autistic Disorder
Brain - diagnostic imaging
Child
Childrens health
complex systems
Computer Simulation
fMRI
Humans
Magnetic Resonance Imaging
Models, Statistical
networks
prediction
splines
Statistical analysis
Title Flexible parametrization of graph‐theoretical features from individual‐specific networks for prediction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10091
https://www.ncbi.nlm.nih.gov/pubmed/38664934
https://www.proquest.com/docview/3058552517
https://www.proquest.com/docview/3047948777
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS-QwFL2oD8uArOuou11dieKDL9U2k6QtPsmygyuMiB_gg1CSNgGZnY7Mx4tP_oT9jf4Sc5NpdVwWxLeU3rZpcpOcJPecAOwpajRNyyK004lOyKwPhSqN7aWgpYjjRGgnpN07EyfX7PSG3yzAUc2F8foQzYIbtgzXX2MDl2p8-CIaOr4bYNIx1zFWCwHRRSMdFdfHteIWpUhiXqsKRfSweXJ-LPoHYM7jVTfgdFfgts6qjzPpH0wn6qB4eKPi-MF_-QKfZ0CUHHvPWYUFXbXhU2-21d6GZb-gRzxPqQ0thKVe1XkN-l3U0VR_NEHp8AGeyuXpnGRoiNPAfnr8-4ojSYx2AqJjgnQWctewwKwZcj0xXolUPiLd2gxH5H6EOcFXrsN199fVz5NwdmxDWCCrNzSJSHQmeBmVUrFYSxkVXEs7WpYsUZmdERvbDShWaJoohYgjdYdYZhZJCKNkZwOWqmGlvwGxYDKRRsRFZihTRSapyLhWZcojlUaGBrBbV2B-79U5cq_DTHNbprkr0wC26qrNZw10nNtuLuUc9doC2Glu26aF-yWy0sMp2qD8PgomBvDVu0TzlU4qBMs6LIB9V7H__3x--bvnEt_fb7oJLWrBE4akxXwLliajqf5hwc9EbcMiZefbztefAbtBAr8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH6IggriMm51jeLBS8c206QteBFxGJfx4AJepDRtAqJ2ZJaLJ3-Cv9FfYl4yrRuCeEvpa5smL8mX5fsewI6gStIoz1w9nWi4gfYhV0S-vuQ0574fcmmEtNvnvHUdnNywmxHYL7kwVh-iWnDDlmH6a2zguCC996Ea2rt7xCRS18cworeZUF1U4lF-GbAVNyl56LNSV8ije9WjX0ejHxDzK2I1Q05zBm7LzNqTJvf1QV_Us-dvOo7__ZtZmB5iUXJgnWcORmRRg_H2cLe9BlN2TY9YqlINJhGZWmHnebhvopSmeJAE1cMfMTCXZXSSjiJGBvvt5fUTTZIoaTREewQZLeSuIoJpM6R74pElUthD6dqm0yVPXcwJvnIBrptHV4ctdxi5wc2Q2OuqkIcy5iz38lQEvkxTL2My1QNmHoQi1pNipXsCEWSShkIg6IhMHMtYgwmuRNpYhNGiU8hlIBpPhqnifhYrGogsTimPmRR5xDwReYo6sF3WYPJkBToSK8VME12miSlTB9bKuk2GbbSX6J4uYgwl2xzYqm7r1oVbJmkhOwO0QQV-1Ex0YMn6RPWVRsR5EDcCB3ZNzf7--eTyuG0SK3833YSJ1lX7LDk7Pj9dhUmqsRSeUPPZGoz2uwO5rrFQX2wYl38HtxEGAw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFD6ICyIsro672vUWxQdfqm0mSVt8EnXwNiJewIeF0rQJiGtnmMuLT_4Ef6O_xJxkWm8I4ltK0zZNzkm-XL7vAKxLqhWNi9w304mmz4wN-TIOzaWghQjDSCgrpN0-FQdX7OiaX4_BdsWFcfoQ9YIbeobtr9HBu4XeehEN7d_cYRKZ6z-YCGI06b3zWjsqrOK14h6liEJeyQoFdKt-9O1g9AFhvgWsdsRp_YJ_VVndQZPbzeFAbub372Qcv_kz0zA1QqJkx5nODIypsgET7dFeewN-uhU94ohKDZhEXOpknWfhtoVCmvK_IqgdfodhuRyfk3Q0sSLYTw-Pr0iSRCurINonyGchNzUNzGRDsiceWCKlO5Ju8nR6pNvDkuArf8NVa_9y98AfxW3wc6T1-joSkUoEL4IikyxUWRbkXGVmuCxYJBMzJdamH5AsVzSSEiFHbKNYJgZKCC2z5h8YLzulmgdi0GSUaRHmiaZM5klGRcKVLGIeyDjQ1IO1qgHTrpPnSJ0QM01Nnaa2Tj1YrJo2HXloPzX9XMw5CrZ5sFrfNr6FGyZZqTpDzIP6-6iY6MGcM4n6K81YCJY0mQcbtmE__3x6cdi2ib9fz7oCE2d7rfTk8PR4ASapAVJ4PC3kizA-6A3VkgFCA7lsDf4Zx4AEuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+parametrization+of+graph%E2%80%90theoretical+features+from+individual%E2%80%90specific+networks+for+prediction&rft.jtitle=Statistics+in+medicine&rft.au=Gregorich%2C+Mariella&rft.au=Simpson%2C+Sean+L.&rft.au=Heinze%2C+Georg&rft.date=2024-06-15&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=43&rft.issue=13&rft.spage=2592&rft.epage=2606&rft_id=info:doi/10.1002%2Fsim.10091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_10091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon