Numerical investigation on wake characteristics of floating offshore wind turbine under pitch motion

The floating offshore wind turbine platform is subject to six degrees‐of‐freedom motions due to the influence of wind, waves, and currents. To examine the impact of pitch motion on the wake characteristics of offshore wind turbines, this research focused on investigating the wind turbine wake under...

Full description

Saved in:
Bibliographic Details
Published inIET renewable power generation Vol. 17; no. 11; pp. 2765 - 2778
Main Authors Tang, Rundong, Cao, Renjing
Format Journal Article
LanguageEnglish
Published 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The floating offshore wind turbine platform is subject to six degrees‐of‐freedom motions due to the influence of wind, waves, and currents. To examine the impact of pitch motion on the wake characteristics of offshore wind turbines, this research focused on investigating the wind turbine wake under pitch motion using the RANS k−ε$k - \varepsilon $ model and the overset grid technique based on OpenFOAM. The simulation accounted for wind shear flow conditions and simplified the movements of the six degrees‐of‐freedom of floating platform. Results showed that the wind turbine wake recovery rate increased with pitch motion, and that the recovery rate increased with the frequency and amplitude of the pitch motion. The wind velocity recovery rate of near‐wake was sensitive to small amplitudes, while the far‐field wake was unaffected. When the amplitude was larger, pitch motion accelerated the wind velocity recovery rate in all wake areas, leading to more pronounced diffusion. These findings provide insight into the mechanism of wake generation and diffusion under pitch motion in floating offshore wind turbines and offer a basis for enhancing the wake deficit model of floating offshore wind farms. This study simulated the NREL 5 MW floating offshore wind turbine under pitch motion based on OpenFOAM. The results of the simulation provided insight into the mechanism of wake generation and diffusion under pitch motion in floating offshore wind turbines and offer a basis for enhancing the wake deficit model of floating offshore wind farms.
AbstractList The floating offshore wind turbine platform is subject to six degrees‐of‐freedom motions due to the influence of wind, waves, and currents. To examine the impact of pitch motion on the wake characteristics of offshore wind turbines, this research focused on investigating the wind turbine wake under pitch motion using the RANS k−ε$k - \varepsilon $ model and the overset grid technique based on OpenFOAM. The simulation accounted for wind shear flow conditions and simplified the movements of the six degrees‐of‐freedom of floating platform. Results showed that the wind turbine wake recovery rate increased with pitch motion, and that the recovery rate increased with the frequency and amplitude of the pitch motion. The wind velocity recovery rate of near‐wake was sensitive to small amplitudes, while the far‐field wake was unaffected. When the amplitude was larger, pitch motion accelerated the wind velocity recovery rate in all wake areas, leading to more pronounced diffusion. These findings provide insight into the mechanism of wake generation and diffusion under pitch motion in floating offshore wind turbines and offer a basis for enhancing the wake deficit model of floating offshore wind farms. This study simulated the NREL 5 MW floating offshore wind turbine under pitch motion based on OpenFOAM. The results of the simulation provided insight into the mechanism of wake generation and diffusion under pitch motion in floating offshore wind turbines and offer a basis for enhancing the wake deficit model of floating offshore wind farms.
The floating offshore wind turbine platform is subject to six degrees‐of‐freedom motions due to the influence of wind, waves, and currents. To examine the impact of pitch motion on the wake characteristics of offshore wind turbines, this research focused on investigating the wind turbine wake under pitch motion using the RANS model and the overset grid technique based on OpenFOAM. The simulation accounted for wind shear flow conditions and simplified the movements of the six degrees‐of‐freedom of floating platform. Results showed that the wind turbine wake recovery rate increased with pitch motion, and that the recovery rate increased with the frequency and amplitude of the pitch motion. The wind velocity recovery rate of near‐wake was sensitive to small amplitudes, while the far‐field wake was unaffected. When the amplitude was larger, pitch motion accelerated the wind velocity recovery rate in all wake areas, leading to more pronounced diffusion. These findings provide insight into the mechanism of wake generation and diffusion under pitch motion in floating offshore wind turbines and offer a basis for enhancing the wake deficit model of floating offshore wind farms.
Author Cao, Renjing
Tang, Rundong
Author_xml – sequence: 1
  givenname: Rundong
  orcidid: 0000-0001-7658-8013
  surname: Tang
  fullname: Tang, Rundong
  organization: Southern University of Science and Technology
– sequence: 2
  givenname: Renjing
  surname: Cao
  fullname: Cao, Renjing
  email: caorj@sustech.edu.cn
  organization: Southern University of Science and Technology
BookMark eNp9kE9LAzEQxYNUsK1e_AQ5C1sz2Ww3PUrRKhQV0fOSv210m5Rka-m3N23Fg4gwMAPze4-ZN0A9H7xB6BLICAibXMf1go6A1gxOUB_qihbAKOv9zDA-Q4OU3gmpJoSP-0g_blYmOiVa7PynSZ1biM4Fj3NtxYfBaimiUF1m8k4lHCy2bciMX-TZpmWIBm-d17jbROm8wRuvTcRr16klXoW92Tk6taJN5uK7D9Hb3e3r9L6YP80epjfzQpWMQ0EVSMPyYbauQRHLJrbiAioGsrRQCsHHEiquSKWV5ppyBraWBkrJuLRalEN0dfRVMaQUjW3W0a1E3DVAmn0-zT6f5pBPhskvWLnu8HsXhWv_lsBRsnWt2f1j3rw8z-hR8wXzY3yS
CitedBy_id crossref_primary_10_1016_j_energy_2025_135137
crossref_primary_10_1063_5_0246831
crossref_primary_10_1016_j_oceaneng_2024_117808
Cites_doi 10.1115/OMAE2006-92029
10.1088/1742‐6596/2265/4/042015
10.1016/j.renene.2015.05.016
10.1002/we.514
10.1186/s40807‐020‐00062‐7
10.1016/j.renene.2020.10.096
10.1016/j.jweia.2015.03.009
10.1016/j.apenergy.2018.06.027
10.1016/j.engstruct.2014.08.010
10.1016/j.oceaneng.2017.08.004
10.2172/15000240
10.1002/we.347
10.1115/OMAE2006-92291
10.3390/jmse7030056
10.1016/j.egypro.2011.10.103
10.1016/j.seta.2022.102537
10.1360/sspma2016‐00276
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOI 10.1049/rpg2.12741
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1752-1424
EndPage 2778
ExternalDocumentID 10_1049_rpg2_12741
RPG212741
Genre article
GrantInformation_xml – fundername: The Centers for Mechanical Engineering Education and Research at MIT and SUSTech (MechERE Centers at MIT and SUSTech).
GroupedDBID .DC
0R~
1OC
24P
29I
5GY
6IK
AAHHS
AAHJG
AAJGR
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AFRAH
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
GROUPED_DOAJ
HZ~
IAO
IEP
IFIPE
IGS
IPLJI
ITC
JAVBF
LAI
MCNEO
O9-
OCL
OK1
P2P
RIE
RNS
ROL
RUI
4.4
7XC
8FE
8FG
8FH
AAYXX
ABJCF
AEUYN
AFKRA
ARAPS
ATCPS
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
EJD
HCIFZ
IDLOA
L6V
M43
M7S
P62
PATMY
PHGZM
PHGZT
PTHSS
PYCSY
S0W
ID FETCH-LOGICAL-c3481-2c1be4590f771c0f49f58a1541b3f13aa86b158c05dcd8d2841f7be13b48bfda3
IEDL.DBID 24P
ISSN 1752-1416
IngestDate Thu Apr 24 22:54:00 EDT 2025
Tue Jul 01 05:17:37 EDT 2025
Wed Jan 22 16:18:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3481-2c1be4590f771c0f49f58a1541b3f13aa86b158c05dcd8d2841f7be13b48bfda3
ORCID 0000-0001-7658-8013
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frpg2.12741
PageCount 14
ParticipantIDs crossref_primary_10_1049_rpg2_12741
crossref_citationtrail_10_1049_rpg2_12741
wiley_primary_10_1049_rpg2_12741_RPG212741
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationTitle IET renewable power generation
PublicationYear 2023
References 2019; 7
2010; 2010
2011
2018; 226
2015; 142
2009
2006
1972
2021; 163
2011; 12
2002
2009; 12
2020; 7
2022; 2265
2001
2022
2021
2015; 83
2014; 79
2022; 53
2014
2013
2017; 144
2012; 43
2009; 16
2016; 46
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
Jonkman J.S.B. (e_1_2_9_21_1) 2009
Sharpe D. (e_1_2_9_28_1) 2013
Qiang L. (e_1_2_9_27_1) 2014
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
Lei W. (e_1_2_9_14_1) 2012; 43
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
Ziwen C. (e_1_2_9_23_1) 2021
e_1_2_9_25_1
e_1_2_9_29_1
References_xml – year: 2009
– volume: 12
  start-page: 770
  year: 2011
  end-page: 778
  article-title: A review of wind power forecasting models
  publication-title: Energy Procedia
– volume: 43
  start-page: 1309
  issue: 04
  year: 2012
  end-page: 1314
  article-title: Dynamic simulation analysis of floating wind `turbine
  publication-title: J. Cent. South Univ.
– volume: 83
  start-page: 737
  year: 2015
  end-page: 748
  article-title: Loading effects on floating offshore horizontal axis wind turbines in surge motion
  publication-title: Renew. Energy
– year: 2021
– volume: 142
  start-page: 65
  year: 2015
  end-page: 81
  article-title: The platform pitching motion of floating offshore wind turbine: A preliminary unsteady aerodynamic analysis
  publication-title: J. Wind Eng. Ind. Aerodyn.
– year: 2001
  article-title: Unsteady aerodynamics experiment phase VI: Wind tunnel test configurations and available data campaigns
  publication-title: NREL/TP‐500‐29955
– start-page: 11
  year: 1972
  end-page: 13
– volume: 2265
  issue: 4
  year: 2022
  article-title: A six degree‐of‐freedom set‐up for wind tunnel testing of floating wind turbines
  publication-title: J. Phys. Conf. Ser.
– year: 2011
  article-title: State of the art in floating wind turbine design tools
– year: 2014
– volume: 144
  start-page: 21
  year: 2017
  end-page: 34
  article-title: Motions of a 5 MW floating VAWT evaluated by numerical simulations and model tests
  publication-title: Ocean Eng.
– volume: 2010
  start-page: 80
  year: 2010
  end-page: 86
  article-title: The motion performance of two offshore wind turbine floating platforms with combined tension leg‐mooring line system
– year: 2006
  article-title: Integrated dynamic analysis of floating offshore wind turbines
– year: 2002
  article-title: Potential for floating offshore wind energy in Japanese waters
– volume: 79
  start-page: 58
  year: 2014
  end-page: 69
  article-title: Incremental wind‐wave analysis of the structural capacity of offshore wind turbine support structures under extreme loading
  publication-title: Eng. Struct.
– volume: 12
  start-page: 459
  year: 2009
  end-page: 492
  article-title: Dynamics of offshore floating wind turbines—model development and verification
  publication-title: Wind Energy
– start-page: 1
  year: 2022
  end-page: 19
– volume: 226
  start-page: 483
  year: 2018
  end-page: 493
  article-title: Study on an innovative three‐dimensional wind turbine wake model
  publication-title: Appl. Energy
– year: 2006
– start-page: 1
  year: 2006
  end-page: 6
  article-title: Dynamic modeling of deepwater offshore wind turbine structures in Gulf of Mexico storm conditions
– volume: 7
  start-page: 5
  issue: 1
  year: 2020
  article-title: Wind turbine performance analysis for energy cost minimization
  publication-title: Renew. Wind Water Solar
– volume: 53
  year: 2022
  article-title: A study on measuring wind turbine wake based on UAV anemometry system
  publication-title: Sustain. Energy Technol. Assess.
– volume: 16
  start-page: 1
  year: 2009
  end-page: 17
  article-title: Effect of steady and transient wind shear on the wake structure and performance of a horizontal axis wind turbine rotor
  publication-title: Wind Energy
– volume: 7
  start-page: 56
  issue: 3
  year: 2019
  article-title: Loads and response of a tension leg platform wind turbine with non‐rotating blades: An experimental study
  publication-title: J. Mar. Sci. Eng.
– volume: 163
  start-page: 1849
  year: 2021
  end-page: 1870
  article-title: Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions
  publication-title: Renew. Energy
– volume: 46
  issue: 12
  year: 2016
  article-title: Progress of recent research and development in floating offshore wind turbines
  publication-title: SCIENTIA SINICA Physica Mechanica Astronomica
– year: 2013
– ident: e_1_2_9_11_1
  doi: 10.1115/OMAE2006-92029
– ident: e_1_2_9_6_1
  doi: 10.1088/1742‐6596/2265/4/042015
– ident: e_1_2_9_3_1
– ident: e_1_2_9_12_1
  doi: 10.1016/j.renene.2015.05.016
– ident: e_1_2_9_22_1
  doi: 10.1002/we.514
– ident: e_1_2_9_26_1
  doi: 10.1186/s40807‐020‐00062‐7
– ident: e_1_2_9_15_1
  doi: 10.1016/j.renene.2020.10.096
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jweia.2015.03.009
– volume-title: Dynamic Response and Aerodynamic Characteristics of Floating Wind Turbine
  year: 2014
  ident: e_1_2_9_27_1
– ident: e_1_2_9_16_1
– ident: e_1_2_9_4_1
– ident: e_1_2_9_2_1
– ident: e_1_2_9_24_1
– volume-title: Technical Report NREL/TP‐500‐38060
  year: 2009
  ident: e_1_2_9_21_1
– ident: e_1_2_9_30_1
  doi: 10.1016/j.apenergy.2018.06.027
– ident: e_1_2_9_10_1
  doi: 10.1016/j.engstruct.2014.08.010
– ident: e_1_2_9_8_1
– ident: e_1_2_9_25_1
  doi: 10.1016/j.oceaneng.2017.08.004
– ident: e_1_2_9_18_1
  doi: 10.2172/15000240
– ident: e_1_2_9_7_1
  doi: 10.1002/we.347
– ident: e_1_2_9_17_1
  doi: 10.1115/OMAE2006-92291
– volume-title: Investigations on Unsteady Aerodynamic Characteristics of Floating Offshore Wind Turbine
  year: 2021
  ident: e_1_2_9_23_1
– ident: e_1_2_9_9_1
– ident: e_1_2_9_19_1
  doi: 10.3390/jmse7030056
– ident: e_1_2_9_20_1
  doi: 10.1016/j.egypro.2011.10.103
– ident: e_1_2_9_29_1
  doi: 10.1016/j.seta.2022.102537
– ident: e_1_2_9_5_1
  doi: 10.1360/sspma2016‐00276
– volume-title: Wind Energy Handbook
  year: 2013
  ident: e_1_2_9_28_1
– volume: 43
  start-page: 1309
  issue: 04
  year: 2012
  ident: e_1_2_9_14_1
  article-title: Dynamic simulation analysis of floating wind `turbine
  publication-title: J. Cent. South Univ.
SSID ssj0059086
Score 2.36389
Snippet The floating offshore wind turbine platform is subject to six degrees‐of‐freedom motions due to the influence of wind, waves, and currents. To examine the...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
StartPage 2765
SubjectTerms computational fluid dynamics
numerical analysis
wakes
wind turbines
Title Numerical investigation on wake characteristics of floating offshore wind turbine under pitch motion
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frpg2.12741
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5qvehBfGJ9lAW9KES7m908wIuItQiWIhZ6C_vUYmlKbOnfd3bTtBVEkOSwh8khM5lXduf7ELokSdrSPDJBlMYmYIqzQEbgeEJqSQ2ESu1J-166UafPngd8UEN31SxMiQ-x_OHmPMPHa-fgQpYsJFDUghGLyTu9IQ59ZQNtutlah5xPWa-Kw47M288WxZwGBOqOCpyUpberZ3-ko_Xy1OeX9i7aWRSG-L605B6qmfE-2l6DCzxAujsr91dGeLiCx8jHGO65-DRY_URfxrnFdpQLd7IZ1vbrIy8MnkMXjiHRQEtssBshK_BkCLbDJaHPIeq3H98eOsGCJSFQbog2oIpIw-BtbRwT1bIstTwRUBkRGVoSCpFEkvBEtbhWOtGQjoiNpSGhZIm0WoRHqD7Ox-YY4VhqHXIlEoc5b6hN4ZKEOiZqplLGGuiqUlamFhDijslilPmtbJZmTrGZV2wDXSxlJyVwxq9S117nf4hkr70n6lcn_xE-RVuOGb48q3eG6tNiZs6hfpjKpv9Mmr77_gayRsKR
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5aD-pBXLGuAb0ojDaZZJajiLVqW4q00NuQVYtlpowt_fsmmekGIsjMIYc3h3nJW5K8930AXKMorkkaKC-IQ-URQYnHA2N4jEuOlXGV0pH2tdpBo0de-7Rf1ubYXpgCH2J-4GYtw_lra-D2QLrYcBILkpmPPvAdsvAr62CDBDi0dolJZ-aILZu3ay4KKfaQSTxm6KQkvl98uxKPlvNTF2Dqu2CnzAzhQzGVe2BNpftgewkv8ADI9qS4YBnCwQIfI0uheafsS0GxCr8MMw31MGO2tNmM9fdnlis4NdtwaCKN2RMraHvIcjgamMmDBaPPIejVn7qPDa-kSfCE7aL1sEBcEfO3OgyRqGkSaxoxkxoh7mvkMxYFHNFI1KgUMpImHiEdcoV8TiKuJfOPQCXNUnUMYMil9KlgkQWdV1jH5uEIWypqImJCquBmpqxElBjilspimLi7bBInVrGJU2wVXM1lRwVyxq9St07nf4gk751n7EYn_xG-BJuNbquZNF_ab6dgy9LEF4V7Z6Ayzifq3CQTY37hlswPp_fFCA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB5qC6IHccW6DuhFIdpJZrKAl6LWupUiRoqXMKsWSxJqS_--M1m6gAiSHObw5pA387bMvO8D4BT5QUMQV1pu4EkLc4It5mrDo0wwW2pXKTLSvueO2w7xQ4_0KuCq7IXJ8SGmP9yMZWT-2hh4KlReb2KDkTlMP-wLZNBXlkDNwOTpPV1rvoXvYemJDZ131l3kEdtCOvMo4UlxcDmbvRCQ5hPULMK01sFakRrCZr6WG6Ai402wOgcYuAVEZ5yfsAxgfwaQkcRQvxP6JSFfxF-GiYJqkFBzt1mP1fdnMpRwoutwqEONLoolNE1kQ5j29erBnNJnG4St29frtlXwJFjctNFaNkdMYv21yvMQbygcKOJTnRsh5ijkUOq7DBGfN4jgwhc6ICHlMYkchn2mBHV2QDVOYrkLoMeEcAinvkGdl7YK9MOQbbioMQ8wroOzUlkRL0DEDZfFIMoOs3EQGcVGmWLr4GQqm-bQGb9KnWc6_0Mkeune2dlo7z_Cx2C5e9OKnu47j_tgxdDE5xf3DkB1NBzLQ51MjNhRsWd-AHH_xgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+on+wake+characteristics+of+floating+offshore+wind+turbine+under+pitch+motion&rft.jtitle=IET+renewable+power+generation&rft.au=Tang%2C+Rundong&rft.au=Cao%2C+Renjing&rft.date=2023-08-01&rft.issn=1752-1416&rft.eissn=1752-1424&rft.volume=17&rft.issue=11&rft.spage=2765&rft.epage=2778&rft_id=info:doi/10.1049%2Frpg2.12741&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_rpg2_12741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-1416&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-1416&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-1416&client=summon