Numerical investigation on wake characteristics of floating offshore wind turbine under pitch motion
The floating offshore wind turbine platform is subject to six degrees‐of‐freedom motions due to the influence of wind, waves, and currents. To examine the impact of pitch motion on the wake characteristics of offshore wind turbines, this research focused on investigating the wind turbine wake under...
Saved in:
Published in | IET renewable power generation Vol. 17; no. 11; pp. 2765 - 2778 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The floating offshore wind turbine platform is subject to six degrees‐of‐freedom motions due to the influence of wind, waves, and currents. To examine the impact of pitch motion on the wake characteristics of offshore wind turbines, this research focused on investigating the wind turbine wake under pitch motion using the RANS
k−ε$k - \varepsilon $ model and the overset grid technique based on OpenFOAM. The simulation accounted for wind shear flow conditions and simplified the movements of the six degrees‐of‐freedom of floating platform. Results showed that the wind turbine wake recovery rate increased with pitch motion, and that the recovery rate increased with the frequency and amplitude of the pitch motion. The wind velocity recovery rate of near‐wake was sensitive to small amplitudes, while the far‐field wake was unaffected. When the amplitude was larger, pitch motion accelerated the wind velocity recovery rate in all wake areas, leading to more pronounced diffusion. These findings provide insight into the mechanism of wake generation and diffusion under pitch motion in floating offshore wind turbines and offer a basis for enhancing the wake deficit model of floating offshore wind farms.
This study simulated the NREL 5 MW floating offshore wind turbine under pitch motion based on OpenFOAM. The results of the simulation provided insight into the mechanism of wake generation and diffusion under pitch motion in floating offshore wind turbines and offer a basis for enhancing the wake deficit model of floating offshore wind farms. |
---|---|
AbstractList | The floating offshore wind turbine platform is subject to six degrees‐of‐freedom motions due to the influence of wind, waves, and currents. To examine the impact of pitch motion on the wake characteristics of offshore wind turbines, this research focused on investigating the wind turbine wake under pitch motion using the RANS
k−ε$k - \varepsilon $ model and the overset grid technique based on OpenFOAM. The simulation accounted for wind shear flow conditions and simplified the movements of the six degrees‐of‐freedom of floating platform. Results showed that the wind turbine wake recovery rate increased with pitch motion, and that the recovery rate increased with the frequency and amplitude of the pitch motion. The wind velocity recovery rate of near‐wake was sensitive to small amplitudes, while the far‐field wake was unaffected. When the amplitude was larger, pitch motion accelerated the wind velocity recovery rate in all wake areas, leading to more pronounced diffusion. These findings provide insight into the mechanism of wake generation and diffusion under pitch motion in floating offshore wind turbines and offer a basis for enhancing the wake deficit model of floating offshore wind farms.
This study simulated the NREL 5 MW floating offshore wind turbine under pitch motion based on OpenFOAM. The results of the simulation provided insight into the mechanism of wake generation and diffusion under pitch motion in floating offshore wind turbines and offer a basis for enhancing the wake deficit model of floating offshore wind farms. The floating offshore wind turbine platform is subject to six degrees‐of‐freedom motions due to the influence of wind, waves, and currents. To examine the impact of pitch motion on the wake characteristics of offshore wind turbines, this research focused on investigating the wind turbine wake under pitch motion using the RANS model and the overset grid technique based on OpenFOAM. The simulation accounted for wind shear flow conditions and simplified the movements of the six degrees‐of‐freedom of floating platform. Results showed that the wind turbine wake recovery rate increased with pitch motion, and that the recovery rate increased with the frequency and amplitude of the pitch motion. The wind velocity recovery rate of near‐wake was sensitive to small amplitudes, while the far‐field wake was unaffected. When the amplitude was larger, pitch motion accelerated the wind velocity recovery rate in all wake areas, leading to more pronounced diffusion. These findings provide insight into the mechanism of wake generation and diffusion under pitch motion in floating offshore wind turbines and offer a basis for enhancing the wake deficit model of floating offshore wind farms. |
Author | Cao, Renjing Tang, Rundong |
Author_xml | – sequence: 1 givenname: Rundong orcidid: 0000-0001-7658-8013 surname: Tang fullname: Tang, Rundong organization: Southern University of Science and Technology – sequence: 2 givenname: Renjing surname: Cao fullname: Cao, Renjing email: caorj@sustech.edu.cn organization: Southern University of Science and Technology |
BookMark | eNp9kE9LAzEQxYNUsK1e_AQ5C1sz2Ww3PUrRKhQV0fOSv210m5Rka-m3N23Fg4gwMAPze4-ZN0A9H7xB6BLICAibXMf1go6A1gxOUB_qihbAKOv9zDA-Q4OU3gmpJoSP-0g_blYmOiVa7PynSZ1biM4Fj3NtxYfBaimiUF1m8k4lHCy2bciMX-TZpmWIBm-d17jbROm8wRuvTcRr16klXoW92Tk6taJN5uK7D9Hb3e3r9L6YP80epjfzQpWMQ0EVSMPyYbauQRHLJrbiAioGsrRQCsHHEiquSKWV5ppyBraWBkrJuLRalEN0dfRVMaQUjW3W0a1E3DVAmn0-zT6f5pBPhskvWLnu8HsXhWv_lsBRsnWt2f1j3rw8z-hR8wXzY3yS |
CitedBy_id | crossref_primary_10_1016_j_energy_2025_135137 crossref_primary_10_1063_5_0246831 crossref_primary_10_1016_j_oceaneng_2024_117808 |
Cites_doi | 10.1115/OMAE2006-92029 10.1088/1742‐6596/2265/4/042015 10.1016/j.renene.2015.05.016 10.1002/we.514 10.1186/s40807‐020‐00062‐7 10.1016/j.renene.2020.10.096 10.1016/j.jweia.2015.03.009 10.1016/j.apenergy.2018.06.027 10.1016/j.engstruct.2014.08.010 10.1016/j.oceaneng.2017.08.004 10.2172/15000240 10.1002/we.347 10.1115/OMAE2006-92291 10.3390/jmse7030056 10.1016/j.egypro.2011.10.103 10.1016/j.seta.2022.102537 10.1360/sspma2016‐00276 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
DBID | 24P AAYXX CITATION |
DOI | 10.1049/rpg2.12741 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1752-1424 |
EndPage | 2778 |
ExternalDocumentID | 10_1049_rpg2_12741 RPG212741 |
Genre | article |
GrantInformation_xml | – fundername: The Centers for Mechanical Engineering Education and Research at MIT and SUSTech (MechERE Centers at MIT and SUSTech). |
GroupedDBID | .DC 0R~ 1OC 24P 29I 5GY 6IK AAHHS AAHJG AAJGR ABMDY ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AFRAH AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU CS3 DU5 EBS GROUPED_DOAJ HZ~ IAO IEP IFIPE IGS IPLJI ITC JAVBF LAI MCNEO O9- OCL OK1 P2P RIE RNS ROL RUI 4.4 7XC 8FE 8FG 8FH AAYXX ABJCF AEUYN AFKRA ARAPS ATCPS BENPR BGLVJ BHPHI CCPQU CITATION EJD HCIFZ IDLOA L6V M43 M7S P62 PATMY PHGZM PHGZT PTHSS PYCSY S0W |
ID | FETCH-LOGICAL-c3481-2c1be4590f771c0f49f58a1541b3f13aa86b158c05dcd8d2841f7be13b48bfda3 |
IEDL.DBID | 24P |
ISSN | 1752-1416 |
IngestDate | Thu Apr 24 22:54:00 EDT 2025 Tue Jul 01 05:17:37 EDT 2025 Wed Jan 22 16:18:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3481-2c1be4590f771c0f49f58a1541b3f13aa86b158c05dcd8d2841f7be13b48bfda3 |
ORCID | 0000-0001-7658-8013 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frpg2.12741 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1049_rpg2_12741 crossref_citationtrail_10_1049_rpg2_12741 wiley_primary_10_1049_rpg2_12741_RPG212741 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IET renewable power generation |
PublicationYear | 2023 |
References | 2019; 7 2010; 2010 2011 2018; 226 2015; 142 2009 2006 1972 2021; 163 2011; 12 2002 2009; 12 2020; 7 2022; 2265 2001 2022 2021 2015; 83 2014; 79 2022; 53 2014 2013 2017; 144 2012; 43 2009; 16 2016; 46 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 Jonkman J.S.B. (e_1_2_9_21_1) 2009 Sharpe D. (e_1_2_9_28_1) 2013 Qiang L. (e_1_2_9_27_1) 2014 e_1_2_9_15_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 Lei W. (e_1_2_9_14_1) 2012; 43 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 Ziwen C. (e_1_2_9_23_1) 2021 e_1_2_9_25_1 e_1_2_9_29_1 |
References_xml | – year: 2009 – volume: 12 start-page: 770 year: 2011 end-page: 778 article-title: A review of wind power forecasting models publication-title: Energy Procedia – volume: 43 start-page: 1309 issue: 04 year: 2012 end-page: 1314 article-title: Dynamic simulation analysis of floating wind `turbine publication-title: J. Cent. South Univ. – volume: 83 start-page: 737 year: 2015 end-page: 748 article-title: Loading effects on floating offshore horizontal axis wind turbines in surge motion publication-title: Renew. Energy – year: 2021 – volume: 142 start-page: 65 year: 2015 end-page: 81 article-title: The platform pitching motion of floating offshore wind turbine: A preliminary unsteady aerodynamic analysis publication-title: J. Wind Eng. Ind. Aerodyn. – year: 2001 article-title: Unsteady aerodynamics experiment phase VI: Wind tunnel test configurations and available data campaigns publication-title: NREL/TP‐500‐29955 – start-page: 11 year: 1972 end-page: 13 – volume: 2265 issue: 4 year: 2022 article-title: A six degree‐of‐freedom set‐up for wind tunnel testing of floating wind turbines publication-title: J. Phys. Conf. Ser. – year: 2011 article-title: State of the art in floating wind turbine design tools – year: 2014 – volume: 144 start-page: 21 year: 2017 end-page: 34 article-title: Motions of a 5 MW floating VAWT evaluated by numerical simulations and model tests publication-title: Ocean Eng. – volume: 2010 start-page: 80 year: 2010 end-page: 86 article-title: The motion performance of two offshore wind turbine floating platforms with combined tension leg‐mooring line system – year: 2006 article-title: Integrated dynamic analysis of floating offshore wind turbines – year: 2002 article-title: Potential for floating offshore wind energy in Japanese waters – volume: 79 start-page: 58 year: 2014 end-page: 69 article-title: Incremental wind‐wave analysis of the structural capacity of offshore wind turbine support structures under extreme loading publication-title: Eng. Struct. – volume: 12 start-page: 459 year: 2009 end-page: 492 article-title: Dynamics of offshore floating wind turbines—model development and verification publication-title: Wind Energy – start-page: 1 year: 2022 end-page: 19 – volume: 226 start-page: 483 year: 2018 end-page: 493 article-title: Study on an innovative three‐dimensional wind turbine wake model publication-title: Appl. Energy – year: 2006 – start-page: 1 year: 2006 end-page: 6 article-title: Dynamic modeling of deepwater offshore wind turbine structures in Gulf of Mexico storm conditions – volume: 7 start-page: 5 issue: 1 year: 2020 article-title: Wind turbine performance analysis for energy cost minimization publication-title: Renew. Wind Water Solar – volume: 53 year: 2022 article-title: A study on measuring wind turbine wake based on UAV anemometry system publication-title: Sustain. Energy Technol. Assess. – volume: 16 start-page: 1 year: 2009 end-page: 17 article-title: Effect of steady and transient wind shear on the wake structure and performance of a horizontal axis wind turbine rotor publication-title: Wind Energy – volume: 7 start-page: 56 issue: 3 year: 2019 article-title: Loads and response of a tension leg platform wind turbine with non‐rotating blades: An experimental study publication-title: J. Mar. Sci. Eng. – volume: 163 start-page: 1849 year: 2021 end-page: 1870 article-title: Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions publication-title: Renew. Energy – volume: 46 issue: 12 year: 2016 article-title: Progress of recent research and development in floating offshore wind turbines publication-title: SCIENTIA SINICA Physica Mechanica Astronomica – year: 2013 – ident: e_1_2_9_11_1 doi: 10.1115/OMAE2006-92029 – ident: e_1_2_9_6_1 doi: 10.1088/1742‐6596/2265/4/042015 – ident: e_1_2_9_3_1 – ident: e_1_2_9_12_1 doi: 10.1016/j.renene.2015.05.016 – ident: e_1_2_9_22_1 doi: 10.1002/we.514 – ident: e_1_2_9_26_1 doi: 10.1186/s40807‐020‐00062‐7 – ident: e_1_2_9_15_1 doi: 10.1016/j.renene.2020.10.096 – ident: e_1_2_9_13_1 doi: 10.1016/j.jweia.2015.03.009 – volume-title: Dynamic Response and Aerodynamic Characteristics of Floating Wind Turbine year: 2014 ident: e_1_2_9_27_1 – ident: e_1_2_9_16_1 – ident: e_1_2_9_4_1 – ident: e_1_2_9_2_1 – ident: e_1_2_9_24_1 – volume-title: Technical Report NREL/TP‐500‐38060 year: 2009 ident: e_1_2_9_21_1 – ident: e_1_2_9_30_1 doi: 10.1016/j.apenergy.2018.06.027 – ident: e_1_2_9_10_1 doi: 10.1016/j.engstruct.2014.08.010 – ident: e_1_2_9_8_1 – ident: e_1_2_9_25_1 doi: 10.1016/j.oceaneng.2017.08.004 – ident: e_1_2_9_18_1 doi: 10.2172/15000240 – ident: e_1_2_9_7_1 doi: 10.1002/we.347 – ident: e_1_2_9_17_1 doi: 10.1115/OMAE2006-92291 – volume-title: Investigations on Unsteady Aerodynamic Characteristics of Floating Offshore Wind Turbine year: 2021 ident: e_1_2_9_23_1 – ident: e_1_2_9_9_1 – ident: e_1_2_9_19_1 doi: 10.3390/jmse7030056 – ident: e_1_2_9_20_1 doi: 10.1016/j.egypro.2011.10.103 – ident: e_1_2_9_29_1 doi: 10.1016/j.seta.2022.102537 – ident: e_1_2_9_5_1 doi: 10.1360/sspma2016‐00276 – volume-title: Wind Energy Handbook year: 2013 ident: e_1_2_9_28_1 – volume: 43 start-page: 1309 issue: 04 year: 2012 ident: e_1_2_9_14_1 article-title: Dynamic simulation analysis of floating wind `turbine publication-title: J. Cent. South Univ. |
SSID | ssj0059086 |
Score | 2.36389 |
Snippet | The floating offshore wind turbine platform is subject to six degrees‐of‐freedom motions due to the influence of wind, waves, and currents. To examine the... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2765 |
SubjectTerms | computational fluid dynamics numerical analysis wakes wind turbines |
Title | Numerical investigation on wake characteristics of floating offshore wind turbine under pitch motion |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frpg2.12741 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5qvehBfGJ9lAW9KES7m908wIuItQiWIhZ6C_vUYmlKbOnfd3bTtBVEkOSwh8khM5lXduf7ELokSdrSPDJBlMYmYIqzQEbgeEJqSQ2ESu1J-166UafPngd8UEN31SxMiQ-x_OHmPMPHa-fgQpYsJFDUghGLyTu9IQ59ZQNtutlah5xPWa-Kw47M288WxZwGBOqOCpyUpberZ3-ko_Xy1OeX9i7aWRSG-L605B6qmfE-2l6DCzxAujsr91dGeLiCx8jHGO65-DRY_URfxrnFdpQLd7IZ1vbrIy8MnkMXjiHRQEtssBshK_BkCLbDJaHPIeq3H98eOsGCJSFQbog2oIpIw-BtbRwT1bIstTwRUBkRGVoSCpFEkvBEtbhWOtGQjoiNpSGhZIm0WoRHqD7Ox-YY4VhqHXIlEoc5b6hN4ZKEOiZqplLGGuiqUlamFhDijslilPmtbJZmTrGZV2wDXSxlJyVwxq9S117nf4hkr70n6lcn_xE-RVuOGb48q3eG6tNiZs6hfpjKpv9Mmr77_gayRsKR |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5aD-pBXLGuAb0ojDaZZJajiLVqW4q00NuQVYtlpowt_fsmmekGIsjMIYc3h3nJW5K8930AXKMorkkaKC-IQ-URQYnHA2N4jEuOlXGV0pH2tdpBo0de-7Rf1ubYXpgCH2J-4GYtw_lra-D2QLrYcBILkpmPPvAdsvAr62CDBDi0dolJZ-aILZu3ay4KKfaQSTxm6KQkvl98uxKPlvNTF2Dqu2CnzAzhQzGVe2BNpftgewkv8ADI9qS4YBnCwQIfI0uheafsS0GxCr8MMw31MGO2tNmM9fdnlis4NdtwaCKN2RMraHvIcjgamMmDBaPPIejVn7qPDa-kSfCE7aL1sEBcEfO3OgyRqGkSaxoxkxoh7mvkMxYFHNFI1KgUMpImHiEdcoV8TiKuJfOPQCXNUnUMYMil9KlgkQWdV1jH5uEIWypqImJCquBmpqxElBjilspimLi7bBInVrGJU2wVXM1lRwVyxq9St07nf4gk751n7EYn_xG-BJuNbquZNF_ab6dgy9LEF4V7Z6Ayzifq3CQTY37hlswPp_fFCA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB5qC6IHccW6DuhFIdpJZrKAl6LWupUiRoqXMKsWSxJqS_--M1m6gAiSHObw5pA387bMvO8D4BT5QUMQV1pu4EkLc4It5mrDo0wwW2pXKTLSvueO2w7xQ4_0KuCq7IXJ8SGmP9yMZWT-2hh4KlReb2KDkTlMP-wLZNBXlkDNwOTpPV1rvoXvYemJDZ131l3kEdtCOvMo4UlxcDmbvRCQ5hPULMK01sFakRrCZr6WG6Ai402wOgcYuAVEZ5yfsAxgfwaQkcRQvxP6JSFfxF-GiYJqkFBzt1mP1fdnMpRwoutwqEONLoolNE1kQ5j29erBnNJnG4St29frtlXwJFjctNFaNkdMYv21yvMQbygcKOJTnRsh5ijkUOq7DBGfN4jgwhc6ICHlMYkchn2mBHV2QDVOYrkLoMeEcAinvkGdl7YK9MOQbbioMQ8wroOzUlkRL0DEDZfFIMoOs3EQGcVGmWLr4GQqm-bQGb9KnWc6_0Mkeune2dlo7z_Cx2C5e9OKnu47j_tgxdDE5xf3DkB1NBzLQ51MjNhRsWd-AHH_xgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+on+wake+characteristics+of+floating+offshore+wind+turbine+under+pitch+motion&rft.jtitle=IET+renewable+power+generation&rft.au=Tang%2C+Rundong&rft.au=Cao%2C+Renjing&rft.date=2023-08-01&rft.issn=1752-1416&rft.eissn=1752-1424&rft.volume=17&rft.issue=11&rft.spage=2765&rft.epage=2778&rft_id=info:doi/10.1049%2Frpg2.12741&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_rpg2_12741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-1416&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-1416&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-1416&client=summon |